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EXACT SOLUTION OF MODE III
CRACK IN ELASTIC HALF-SPACE

The elastic half-space contains a straight — line crack which lies in
some distance from the tangentially loaded boundary. Fourier transform
technique is used to reduce the problem to the solution of the Fredholm
integral equation of the second kind. This equation is solved exactly. Field
intensity factors of stress, crack displacement and the energy release rate
are determined explicitly. Accordingly to exact analytical solution, obtained
here, which is new to the author’best knowledge, the behaviour of a crack
which is located in the neighbourhood of the boundary of a half-space may
be investigated exactly.

1. Introduction

Sih (1963, 1965) was apparently the first to publish the solution of an anti-
plane shear crack for elastic medium. Sih and Chen (1981) did the same. They
used integral transforms, and their solutions were very convoluted, difficult for
numerical implementation and for estimation of the solution accuracy. The most
recent publications can be quoted (Hu et al. (2005); Li and Kardomateas (2006);
Zhou et al (2005)), where reader can find numerous other references. Additionally
the numerical procedures are used to obtain the results. When the crack lies near
the boundary of the medium the numerical procedures become illposed in the
sense of Hadamard, i.e. small perturbation of the data can yield arbitrarily large
changes in the result. This makes the numerical solution of governing integral
equation of the problem quite difficult when the crack is in the neighbourhood of
the boundary medium.

Motivated by this consideration the author reconsiders the problem in this
elaboration to shown exact solution.

2. Basic equations

For a linearly elastic medium under anti-plane shear there are only the non-
trivial antiplane displacement w :
le:O ) uy:() ’ uz:W(x’y) (1)
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strain components 7. and 7, :

o, @
]/xz ax N yz ay
and stress components 7, and 7

Tac = C447/zz: o= X, y (3)

b

where c,, is the shear modulus along the z -direction.
The equilibrium equation (Einstein’s summation convention is used)

Ta=0 4
yields the harmonic equation for displacement w
Viw=0 (5)

where V? =9%/ax* +92/dy” is the two-dimensional Laplace operator.

3. Formulation of the crack problem

Consider an elastic half-space containing straight-line crack of length 2a,
parallel to the surface of a half-space which is subjected to mechanical loads 7,.
The crack is located along the x-axis from —a to « at a depth & from the loaded
surface with a rectangular coordinate system, as shown in Fig.1.

Fig. 1. The elastic half-space with a crack parallel to its surface under an anti-plane
mechanical load

To solve the crack problem in linear elastic solids, the superposition
technique is usually used. The elementary solution of the medium without the
crack is 7, =7,. Therefore, we use equal and opposite value as the crack surface
traction. Thus, in this study, -7z, , is mechanical loading applied on the crack

surfaces (the so called perturbation problem).
The boundary conditions can be written as:

f_<(x,h i) =-1, |x| <a (6)

2y 5
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[ka[]=0 + W= y=n @
[wi]=0 . Kza  y=n (8)
T, (x,0)=0 , |x| <o )]

where the notation [|f H =f"=f"and /" denotes the values for /+while /~

for h-.
Of course, in perturbation problem the surface of the half-space is free.

4. The solution for half-space with discontinuity aty = h

Define the Fourier transform pair by equations

A < <. 10
f(s)z If(x)cos(sx)dx , f(x)z%jf(s)cos(sx)ds (10)

Considering the symmetry about Y -axis the Fourier cosine transform is only
applied in Egs (5) resulting in ordinary differential equations and their solutions

(s, y)=A(s)e™ | Wh (11a)
W(s,y)=A,(s)e™ + A(s)e® , 0< y(h (11b)

In the domain Y >4 the solution has the form (11a) to ensure the regularity
conditions at infinity.
The unknown functions A4, (S), i=1,2,3, are obtained from the boundary conditions
(7) and (9), which in transform domain are:

[J=0 . y=n (12)

where HfH:f(siH)—f(sh—)
The result is:

As)= Fls)e™ - e”)
Ay(s)=Ay(s)= f(s) e

Finally, the solution for the half-space with dislocation density functions f (s) in

(13)

the domain y >0, |x(= is given by:
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wlx.y) === [ Fs)sen(y—mle e eos(sx)ds (14)

7,(xy)= 2 044I of (s )[eﬂ‘y*h‘ —e 0 ]cos(sx)ds
/4

0

where sgn(y—h)equalslas y—h >0and-1as y—-h <O.

5. Fredholm integral equation of the second kind

The unknown function f(s) can be obtained from the mixed boundary
conditions (6) and (8) which yield

27~ o T,
;'!: sf(s)[l —e ]cos(sx)ds = ., |x|(a (152)

44

If(s)cos(sx)ds =0 , |x| 2a (15b)

The integral equations (15a) may be rewritten as

72[ T F(s)1=e"Jsin(sx)ds = _G*

Cu

 ta (16)

We introduce the integral representation of the unknown function f (s) as follows

JAC(S)Z—:A]LJC(M)UO(W)W (17)

44 0

where J O(Su) is the Bessel function of the first kind and zero order and f(u) is
new auxiliary functions. This representation satisfies equation (15b) automatically
and converts equation (16) to the Abel integral equation, which can be solved
explicitly. The result is the Fredholm integral equation of the second kind

f(u)—ff(V)K(u,V)dv=1 (18)
with the kernel
K(u,v)= ste_MJ0 (su)]0 (sv)ds (19)
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6. The solution of Fredholm integral equation of the second kind

The kernel function K(x,v) may be presented in more useful form. Using the
Neumann’s theorem (Watson, 1966)

z (20)
Jo(su)J(sv)= %JJO(SR)G'(Z , R'=u"+v’-2uvcosx
0
and the integral
r 2h
sJo(Rs)e ™" ds =
{ ’ R*+(n)|” D
the kernel function becomes
/2
4hy da
K(u,v)= 22
a¥? 0 (l—k2 cos’ 0{)3/2 (22)
P=(u+v)+4n® K =%

The kernel function is presented by means of elliptic integral. The integral
equation (18) can be solved by consecutive iterations.
The recurrence formula is

filu)= 1+Jﬁ_l (V)K (i, v)dv . ], (V) =1 i=12,.n (23)

The n-th approximation gives

‘(u)=1+aiu{l—z‘—;l{gf")}r(aiujz {1—4—;%}: ......... +[a;:uj {1_4_;%T

(24)
where K(k,) is the elliptic integral of the first kind defined by
/2
da
Kle,)= [ —4%
0 '([ (1-k; cos’ a)'? (25)

4au
B=(a+u)+an® | k=

Iy
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The sum of infinite geometric series converges to the solution as n — oo, giving

flu)= {1—L[1—EMHI b < a (26)

a+tu 7 ly/2h

The range of convergence is given by inequality

2 ull (27)
;K(ko) < [2"‘;)2—2 |I/I|Sa

and is satisfied for all of u and a/h.
For h—o, (2/7)K(k,)—1 and [ /2h—1 while for h—0 we have the
logarithmic singularity of K(k,) for u=a

1
K(ky) ~1In| ————
(k) ~In 1_2@ 28)

atu

But hK(k,)/I, tends to zero as a/h — oo .
Thus we have the values

ﬂ=212 ! K{ g J_ 0=15_2 o 29
f[h] [+N1+52 s L FO=1+ P (29)

The values of f(a/h) changes from 1 to 2 for all of a/h and f(u) is given
explicitly by Eq. (26).
This analytical solution is new to the author' best knowledge.

| 2

7. Field intensity factors

The shear stress outside of the crack surface can be expressed by

T, (x, h i) = —% TOI f(u )uduJ.: st (su)(l —e )cos(sx)ds (30)

Using the integral (Rogowski, 2006)
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we_m sin(sx)J, (su )ds = 7
l ’ e +) A1)
u2=x2(1+§2X1—7]2) 2h=x¢n , X650, 70

equations (30) may be written as

(32)

2 4 o
7, (xht)= ﬂrodx;.)-f(u)udu wt—u? AE+7)

The singular term is included in the first term as |x| — a”. Since the singular field

near the crack tip exhibits the inverse square-root singularity we define the stress,
intensity factor as follows

—tim | ( jt 33
K{—‘}‘IEZ{ 2Ux|—a o (33)

The intensity factor is obtained as

K. =25 f(aWa 9
b4
The jump of displacement on the crack surfaces can be expressed as
_417 7 f (o Judu
"w”_ﬂ-cu x I/l2 —x2 (35)
If we define the jump of displacement intensity factor as
: 1 (36)
K, =lim ———— w]
SEEET
then in view of the results in Eq. (35), we have
1 (37)

K, =—K,

w
Cuy

The energy release rate of the crack-tip is obtained from the following integral:

G =%1§i§01%:[{2'w (r+a,0)nw|](r+ a- 5)}dr (38)
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The energy release rate is defined as

G=—KK,
or
2
G=i2f2(a)af—°
T C

8. Result and discussion

(39)

(40)

The stress intensity factor K_ is proportional to the applied mechanical load,
as Eq. (34) implies. The K, therefore is just a function of the geometry of the

cracked elastic half-space as shown in Fig. 2.

f<%> ]
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Fig. 2. Variation of f (a/ h) versus ratio of a/h ; stress intensity factor is proportional to

fla/h) since: fla/h)=

From the figure 2 we can see that the stress intensity factor increase with a/h .

For small values of a/h these quantities grow at an approximately constant rate
with increasing a/h . For very large a/h (the crack near the boundary of a half —

space) f(a/h) increases slowly tending to 2.
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9. Conclusions

The following conclusions can be reached from the results of this study:
The stress intensity factor of mode III changes as follows:

K0K[2)S2K,0), where K,0)=/mr2da

The energy release rate of a crack mode III changes as follows:
a 2 2

G(0)< G[;j <4G(0), where G(0)=2/7*)7;a/c,,  where a is half —length of

a crack and 7 is the distance of one from the boundary of a half-space.

The analytical solution (26) is new to the author’ best knowledge.
Accordingly, the behaviour of a crack which lies in the neighbourhood of the
boundary of the medium may be investigated exactly.

Note that the solution presented here is also the solution of quarter plane with
an edge crack of length a since the plane x =0 is the plane of symmetry

and 7 _ vanishes on this plane.
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DOKEADNE ROZWIAZANIE DLA SZCZELINY
TRZECIEGO RODZAJU W SPREZYSTE]
POLPRZESTRZENI

Streszczenie

Sprezysta polprzestrzen zawiera prostoliniowg szczeling usytuowana
w pewnej odleglo$ci od stycznie obcigzonego brzegu. Zastosowana technika
transformacji catkowej Fouriera sprowadza zagadnienie do rozwigzania rownania
catkowego Fredholma drugiego rodzaju. Réwnanie to jest rozwigzane doktadnie.
Wspdtczynniki intensywno$ci pola naprezenia i przemieszczenia oraz energia
odksztatcenia szczeliny sa wyznaczone w sposéb jawny. Dzieki doktadnemu
analitycznemu rozwigzaniu, otrzymanemu tutaj, ktére jest nowym o ile autor
dobrze wie, mozemy bada¢ dokladnie zachowanie si¢ szczeliny usytuowanej
w bliskim sgsiedztwie brzegu.
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