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Simulation of diffusion in a crowded environment

Piotr Polanowskia and Andrzej Sikorski*b

We performed extensive and systematic simulation studies of two-dimensional fluid motion in a complex

crowded environment. In contrast to other studies we focused on cooperative phenomena that

occurred if the motion of particles takes place in a dense crowded system, which can be considered as a

crude model of a cellular membrane. Our main goal was to answer the following question: how do the

fluid molecules move in an environment with a complex structure, taking into account the fact that

motions of fluid molecules are highly correlated. The dynamic lattice liquid (DLL) model, which can work

at the highest fluid density, was employed. Within the frame of the DLL model we considered

cooperative motion of fluid particles in an environment that contained static obstacles. The dynamic

properties of the system as a function of the concentration of obstacles were studied. The subdiffusive

motion of particles was found in the crowded system. The influence of hydrodynamics on the motion

was investigated via analysis of the displacement in closed cooperative loops. The simulation and the

analysis emphasize the influence of the movement correlation between moving particles and obstacles.
I. Introduction

Fluid transport in a crowded environment plays a crucial role in
a variety of elds: diffusion of lipids and proteins in cellular
membranes,1 water inltration in porous media,2 transport in
glasses3 and in supercooled liquids4 and diffusion of islands in
metals.5 The dynamics in such systems is still far from being
understood as the experiments indicate the diversity of dynamic
behavior and even its origin are being discussed.6–14 The envi-
ronment in living cells is a good example of such a system. It is
mostly heterogeneous, because the motion of molecules is
obstructed here by different kinds of lipids and proteins. Thus,
it can be treated as a representative, interesting and challenging
problem.15,16 Experimental studies concerning the motion of
proteins and lipids in cells were performed using uorescence
correlation spectroscopy,17–20 pulsed eld gradient NMR21 and
single particle tracking (SPT).6,7,22–27 In many cases an anoma-
lous diffusion was detected, i.e. the mean square displacement
of objects hDr2i scaled with time t as hDr2i � ta, with a < 1.6,28–30

On the other hand, a regular Brownian motion was also
observed in such an environment, i.e. the scaling exponent a
was equal to 1.15 Beside changes of the dynamic behavior, a
crowded environment can also change the rate of the associa-
tion and adsorption of macromolecules.31 It should be pointed
out that, recently, it was proven that the slowing down of
motion in living cells had previously been overestimated.16

Theoretical treatment of the motion of objects in a crowded
environment also results in a subdiffusive behavior.32–37 One
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should remember that similar motion could be achieved by the
inuence of a geometrical connement or forces. Computer
simulations showed that this subdiffusive motion in the matrix
of immobile obstacles has been characterized by the exponent a
located in a narrow range between 0.697 (at the percolation
threshold) and 1 (ref. 18, 38–42) while SPT experiments give
values between 0.2 and 0.9.37 This kind of subdiffusive behavior
can be obtained using several models and herein we focus our
attention on two cases only. In the rst one called continuous
time random walks approach (CTRW), anomalous diffusion
results from appropriate distribution of traps.38–43 The second
one corresponds to a well-known percolation problem, where
anomalous diffusion is caused by the presence of the matrix of
xed impenetrable obstacles, which results in numerous dead
ends.8,28 The crowded environment in such cases can be
modeled as a cluster of obstacles and this problem can be dis-
cussed using the theory of percolation. If the concentration of
obstacles is lower than the percolation threshold, the diffusion
should be anomalous (non-Fickian) only for a short time. If the
concentration of obstacles reaches the percolation threshold,
the diffusion becomes anomalous over the entire time
range.28,30 The simulation studies of such systems were per-
formed employing the molecular dynamics technique using
coarse-grained and atomistic models.44–54 Moreover, one should
remember that in reality the motion of a given molecule is
correlated with the movement of neighboring molecules. The
inuence of traps and obstacles should also be taken into
consideration. Thus, the questions how do the molecules move
in a complex environment and how does the correlation of all
elements in this motion inuence their mobility are especially
interesting in cell biology, so matter physics and in many
other areas.
Soft Matter, 2014, 10, 3597–3607 | 3597
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In this paper we have investigated the percolation problem
with static obstacles within the frame of the Dynamic Lattice
Liquid (DLL) model.55,56 The dynamics of liquid in a two-
dimensional crowded environment was an object of our inves-
tigation. The correlations in motion between elements of the
entire system (moving elements, elements in traps or static
obstacle elements) were taken into consideration. There is an
important difference between the proposed herein treatment
and other lattice models generally based on the concept of “an
ant in the labyrinth”.28,57 In this kind of model a single point
(“an ant”) travels on a lattice and methods that take into
account jumps of mixture elements into vacancies (the vacan-
cies are regarded as uctuating free volume assuming that
their size is comparable with that of the mobile elements)
are employed. In these considerations the correlation and
hydrodynamic effects are practically neglected. The present
study allows us to include the cooperative motion of elements
and to study the hydrodynamic properties of the system,
which are apparently crucial for the diffusion in a crowded
environment.58–60
Fig. 1 The illustration of the vector field representing attempts of
molecular displacements towards neighboring lattice sites as assumed
in the DLL model. The marked areas represent various local situations:
(1) elements (yellow) try to move in the opposite direction (an
unsuccessful attempt), (2) an attempt of motion starts from an element
(violet) that whenmovedwould not be replaced by any of its neighbors
(an unsuccessful attempt), and (3) each green element replaces one of
its neighbors (successful attempts).
II. The DLL model and simulation
conditions

The DLL model is based on the concept of strictly cooperative
motion of molecules in a dense system.55,56 The positions of
beads representing molecules or larger objects are regarded as
coinciding with lattice sites. For simplicity, the positions of the
beads are limited to vertices of a quasi-crystalline lattice. All
lattice sites may be occupied by beads so fully lled systems can
be studied. It has been assumed that the system has some
excess volume so each molecule has enough space to vibrate
around its position dened by the lattice site. The beads,
however, cannot easily move over a longer distance, because all
neighboring lattice sites are occupied. Nevertheless, a long-
range motion can take place in such systems in reality. The
studies on the DLLmodel allow determination of the conditions
required for molecular translations over distances exceeding
the vibrational range. Each displacement of amolecule from the
mean position is considered as an attempt of a movement to a
neighboring lattice site. For simplicity, the directions of the
attempts are assumed along the coordination lines of the lattice
only, but they are independent and randomly distributed
among the q directions, where q is the lattice coordination
number. The DLL model fullls the continuity equation and
provides the correlated movements of ‘molecules’ as in a real
liquid; it does not reproduce all properties known from the
liquid mechanics but it is sufficient for studies of coarse-
grained models. It is based on the model of liquid where
molecules vibrate near quasi-localized points (staying in given
lattice sites) sometime being involved in a motion correlated
with neighbors resulting in a translation. The simulations were
performed at the highest possible density, which cannot be
obtained using other models. Molecular dynamics simulations
of models with a matrix of immobilized obstacles were usually
performed for liquid concentration near 0 (ref. 46 and 51) but
3598 | Soft Matter, 2014, 10, 3597–3607
the total concentration (uid + obstacles) in these studies did
not exceed 0.6.49 Properties generated by the DLL model
reected suitable dynamic behavior in several problems like
simple liquid dynamics,55 polymer–polymer interdiffusion,56

reaction diffusion front problems,61 polymer solution
dynamics62 and dynamics of the ATRP.63–68

As depicted in Fig. 1, the DLL cooperative rearrangements on
the lattice have a form of closed loops of displacements
involving at least three molecules. In contrast to many other
lattice models, DLL allows one to study lattice systems at the
density r ¼ 1 (all lattice sites are occupied). Moreover, the
dynamic properties, which it produces, are in good agreement
with those established for liquids.55,56 We employed a triangular
lattice, with periodic boundary conditions imposed along the x
and y axes. Time was assumed to be a discrete variable in which
the positions of all molecules were attempted to be updated
simultaneously. At any moment each lattice node was occupied
by exactly one molecule and to each molecule k a unit vector vk
was assigned that pointed randomly at one of the nearest
neighboring sites. This vector represented the direction along
which the molecule attempted to move to an adjacent site.
Then, all closed loops determined by these vectors were iden-
tied. The molecules that did not belong to a closed loop con-
sisting of at least three elements were immobilized at the given
time step. The static obstacles in the system can be introduced
in a very simple way within the frame of the DLL model – an
element chosen randomly as an obstacle cannot take place in a
cooperative loop in any case.
This journal is © The Royal Society of Chemistry 2014
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Thus, the simulation process of a simple liquid using the
DLL algorithm consisted of three steps:

(1) The generation of the random vector eld of motion
attempts with a single vector assigned to each bead in the
athermal case. A unit vector pointed towards one of the nearest-
neighboring lattice sites. This is illustrated in Fig. 1.

(2) The selection of groups of vectors coinciding with
contours of closed continuous paths (loops), indicating ways of
possible successful cooperative rearrangements.

(3) The rearrangement of elements (beads) along these
closed paths by displacing them to the neighboring sites (each
bead replaces its neighbor).

The studies were performed in the simulation box L � L
where L ¼ 256. It was shown previously within the frame of the
regarded model that for the system larger than L ¼ 64 the
statistic of cooperative loops of displacement did not depend on
the size of the Monte Carlo box.55 In all cases static obstacles
were generated randomly with the assumed probability. In all
considered systems all lattice sites were occupied by immobile
obstacles or mobile particles, which implied a dense system.
Parallelism of the used algorithm allows monitoring of simul-
taneously more than 40 000 trajectories for each density of
obstacles. The trajectories extend over huge time windows
consisting of typically 2.5 � 108 simulation steps near the
percolation threshold. The concentration of the obstacles (each
of them had a size of a lattice bead) in the system c was dened
as the ratio of the sites occupied by the obstacles to the total
number of lattice sites in the simulation box (c ¼ N/L2, where N
is the number of immobile obstacles in the system). Thus, the
concentration of mobile elements (beads), i.e. molecules of
liquid phase was p¼ 1� c. The simulations were repeatedmany
times and each simulation run was performed for a different
matrix of randomly set obstacles (about 30 different matrices of
obstacles) and the results were averaged over all runs for a given
set of parameters.

III. Results and discussion
A. General characteristics of the DLL model in the presence
of immobile obstacles

As we have already stated the considered system consists of
objects located at vertices of a triangular lattice, while some
randomly positioned vertices cannot move. Although, this kind
of system seems to be very simple, immobile obstacles form
clusters (i.e. groups in which immobile elements contact each
other). The question arises about the size of clusters formed by
these obstacles and their inuence on the motion of mobile
elements (liquid). Moreover, the explicit treatment of solvent
molecules and their cooperative motion results in the
momentum transport of the uid and, therefore, it introduces
hydrodynamic interactions. Hydrodynamic effects are modied
by the presence of the immobilized obstacles. A simple analysis
of hydrodynamic interactions in the regarded system was based
on the monitoring of the motion in a cooperative loop,
where the main quantity is the total probability of an elemen-
tary bead movement according to the mechanism proposed in
the DLL model:
This journal is © The Royal Society of Chemistry 2014
Ptot ¼
XM
k¼3

kPðkÞ (1)

where k is the length while M is the maximum length of the
cooperative loop. The quantity P(k) is adopted from ref. 62 and it
plays a crucial role in the determination of dynamics of the
investigated system. It can be regarded as a probability of “k-
circuits” formation on a given lattice. This quantity can be
analytically dened as:62

P(k) ¼ Bk�hgk (2)

where B is a lattice dependent constant, g plays a role of an
effective coordination number (called “connective constant”) of
the lattice, and h is a positive exponent. The exponent h depends
on the dimensionality of space and is largely independent of the
structure of the lattice. The theories predict the lower boundary
for this exponent: h $ d/2, where d is the dimensionality of
space67,68 (in the case of a triangular lattice these parameters
were found as follows: B ¼ 1.07 � 0.11, g ¼ 0.710 � 0.003, h ¼
2.93 � 0.07 (ref. 55)). This relationship has been derived for
lattices, which (i) are homogeneous in the sense that the
number of self-avoiding walks of k steps is independent of the
starting site, (ii) for each positive integer k, at least one k-step
self-avoiding walk is possible, and (iii) the number of bonds
leading out of any site is nite. In our case these assumptions
are fullled for the case with no obstacles (c ¼ 0) only, when the
lattice is really homogeneous.55 We assumed that this quantity
is independent of the system size, if the system was large
enough; a similar assumption was made for the homogeneous
case.55 Thus, the product k$P(k) is the probability that a bead
takes place in a cooperative loop of the length k. In other cases,
i.e. in the presence of obstacles our lattice system is not
homogeneous because the points that are immobilized cannot
be a starting point for cooperative loop. Fig. 2a presents the
probability that a bead belongs to a cooperative loop of the
length k versus the length of the loop k. One can observe that
the shape of the curves for the systems with obstacles (c > 0) is
similar to that of the curve for c ¼ 0. This indicates the possi-
bility of a universal scaling behavior. One can introduce the
effective coordination number g(1 � c) where g is the effective
coordination number for the homogeneous case (c ¼ 0) and
(1 � c) is the liquid concentration. Fig. 2b presents plots of the
reduced quantities (k$P(k)/(1 � c)k vs. k), which results in
the “collapse” of all curves into one. This behavior conrms
the assumptions of the common behavior of homogeneous and
inhomogeneous systems.

An analysis of the cooperative loop statistics directly relates
to the distribution of waiting times. This analysis allows us to
observe changes of hydrodynamic properties of the system with
the increasing concentration of obstacles. It is shown in Fig. 2a
that the cooperative loop is longer, the probability that a bead
belongs to this loop decreases rapidly. One can also observe that
an increase of the concentration of obstacles leads to a signi-
cant reduction of the probability of performing a long cooper-
ative loop – the rate of this reduction increases with the loop
length. The length of the cooperative loop decreases almost
Soft Matter, 2014, 10, 3597–3607 | 3599
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Fig. 2 (a) The probability that a bead takes place in a cooperative loop of the length k versus the length of the loop k for various concentrations of
obstacles c. (b) The reduced probability k$P(k)/(1 � c)k versus the length of the loop k for various concentrations of obstacles c (see text for
details).
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twice going from the system without obstacles to the highest
considered obstacle density (c ¼ 0.34). These changes in the
probability of the participation in a cooperative loop result in
changes in the liquid mobility. In other words, the increase of
the obstacle concentration makes the hydrodynamic interac-
tions induced by the cooperative loop strongly screened by
obstacles, which is expected and manifests in the decrease of
the effective coordination number.

The total probability of a bead motion Ptot could also be
dened as the total number of cooperative movements Ntot

performed by all (mobile and immobile) beads in the entire
system divided by the number of simulation steps R and by the
size of the system (in 2-D system represented by L2):

Ptot ¼ Ntot

RL2
(3)

To calculate the total probability of move for mobile particles
only Ptot_mov, eqn (3) should be divided by the factor 1/(1 � c) in
order to deal with moveable elements only. An introduction of
this factor leads to a signicant decrease of the total probability
of the bead movement Ptot_mov with increasing obstacle
Fig. 3 The total probability of the bead movement in a cooperative
loop Ptot_mov for movable particles only (see text for details) as a
function of the concentration of obstacles c.

3600 | Soft Matter, 2014, 10, 3597–3607
concentration, which is illustrated in Fig. 3. The behavior of the
probability Ptot_mov as a function of the obstacle concentration
in the considered range of the obstacles' density c can be easily
approximated by the following function:

Ptot_mov(c) ¼ ae�bc (4)

where the tting parameters are: a ¼ 0.0916 � 0.003 and b ¼
3.02 � 0.02. It implies that the mean waiting time 1/Ptot_mov

increases exponentially with the increasing concentration of
obstacles.
B. Dynamic properties

It is particularly interesting to analyze the local dynamics, the
dynamics that concern only a given lattice point in the investi-
gated system, because quantities averaged over all beads in the
system usually obscure the details of the local behavior. We
started this analysis by dening the probability of a single bead
cooperative move:

Pbead ¼ Nbead

R
(5)

where Nbead is the total number of accepted cooperative move-
ments of a given lattice site. The reciprocal of this probability
1/Pbead corresponds to the waiting time for the move of a given
lattice site. The information about changes in the local
dynamics of the system with the concentration of obstacles can
be obtained from the distribution of the probability that a single
bead performs a cooperative move in the regarded lattice site.
Fig. 4 depicts the distribution of the probability of a molecule (a
bead) cooperative move Pbead for various concentrations of
obstacles c. For the system without obstacles one peak can be
found only for the probability near 0.09. This behavior is rather
obvious as the system is homogeneous and no lattice site and
no direction are distinguished. The situation changes when
immobile obstacles are introduced into the system. Their
presence leads to a heterogeneous nature of the environment,
which results in a broad distribution of the probability of a
cooperative move: from the probability 0.01 to 0.09. The
distribution of the move probability is not continuous and
This journal is © The Royal Society of Chemistry 2014
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Fig. 4 The distribution of the probability of a bead cooperative move
Pbead for various concentrations of obstacles c. The inset shows the
distribution of the probability of bead cooperative move for systems
with non-zero concentration of obstacles.
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consists of some widely distributed peaks. This kind of behavior
is connected with the presence of obstacles but one has to keep
in mind that our model is discrete. The distribution of the move
probability shis towards lower probability with the increasing
concentration of obstacles, which was expected. The conrma-
tion of this distribution one can nd when studying a part of the
simulated system as shown in Fig. 5. The probability of the
cooperative move in a given lattice site is marked by colors (in
general dark colors correspond to lower mobility and light ones
to the higher one). The hydrodynamic nature of the system in
motion is revealed in this gure: the presence of the obstacles
induces the regions of the slower motion near the obstacles.
Thus, the distribution of the waiting time for a single bead at a
given place (which shows how many time beads spend in a
given lattice site before moving to another, neighboring site) is
also broad. The map of the probability of cooperative motion
shown in Fig. 5 is fully consistent with the distribution of the
Fig. 5 The probability of the motion in a system with the concen-
tration of obstacles c z 0.30. The assignments of colors to the
probabilities are given in the inset.

This journal is © The Royal Society of Chemistry 2014
probability of motion presented in Fig. 4. It was found that a
local environment strongly inuences this probability. For a
simple liquid a monomodal distribution of the move proba-
bility is observed, while for more complex systems, the presence
of obstacles creates additional probability peaks. Moreover two
trends are clearly visible: (i) probability peaks shi to lower
values and simultaneously broaden with the increasing obstacle
concentration and (ii) the distribution of the move probability is
shied towards low values (peaks at lower values become
stronger) with the increasing obstacle concentration.

The time that mobile elements spend in a lattice site before
leaving it is the next interesting quantity especially in the light
of the CTRW model. The waiting time distribution is obtained
by monitoring the waiting time of mobile elements along their
trajectory. Fig. 6a depicts the waiting time distribution for
several values of the obstacle concentration c. The distribution
is quite broad even for the homogeneous case (c ¼ 0), and
becomes broader for heterogeneous medium, which has been
already illustrated in Fig. 4 and 5. The waiting time is longer for
the places that have several obstacles as neighbors and shorter
for places where the obstacles are distant. Fig. 6b shows the
comparison of the average waiting time 1/Ptot with the waiting
time calculated from the waiting time distribution along
trajectories. One can observe that values determined via both
methods are in good agreement.

The next problem is related to the diffusion in the studied
model systems. Positions of all mobile beads in the simulated
systems were monitored during the entire simulation run by the
mean-squared displacement (MSD) of the beads, dened as

�
Dr2ðtÞ� ¼ 1

n

Xn

i¼1

h
~riðtÞ �~rið0Þ

i2
(6)

where ~riðtÞ are the space coordinates of the ith bead at time t
and n is the number of moving elements. In the case of the
normal (Fickian) diffusion the mean square displacement is
proportional to the time t. The diffusion coefficient D in two-
dimensional systems is described by the Einstein relationship
Fig. 6 (a) Waiting time distribution along the trajectory for several
concentrations of obstacles. (b) The comparison of the mean waiting
time obtained by using the distribution along the trajectory and the
distribution of waiting time in given lattice sites (see text for details).

Soft Matter, 2014, 10, 3597–3607 | 3601
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hDr2i ¼ 4Dt (7)

In disordered systems this law is not valid and the anoma-
lous diffusion appears. Near the percolation threshold one has
the following formula:

hDr2i z ta z t2/dw (8)

where a ¼ 2/dw is the anomalous diffusion exponent. The
diffusion is hindered in these conditions and one can nd a# 1
or dw $ 2.28,30 Other important transport characteristics of the
investigated system can be obtained from the analysis of the
velocity autocorrelation function (VACF). The negative values in
the VACF indicate a persistent tendency of the diffusing mole-
cules to invert their direction of motion and thus a tendency to
stay localized. To investigate the existence of negative values in
the VACF we estimated the contribution of the individual
molecules through time averages
Fig. 8 (a) Mean square displacement hDr2(t)i as a function of time for vari

a long time as a function of the obstacle concentration c. (b) a ¼ dð

concentrations (concentrations of obstacles are marked with the same

Fig. 7 Negative part of velocity autocorrelation function (VACF) for
the two-dimensional DLLmodel. Mean square displacement hDr2(t)i as
a function of time for various concentrations of obstacles.

3602 | Soft Matter, 2014, 10, 3597–3607
coriðnÞ ¼ 1

N � n

XN�n�1

k¼0

~uiðkÞ$~uiðk þ nÞ (9)

where n corresponds to the lag time and N corresponds to the
length of the time series. Finally, the VACF was calculated as the
average over the individual contributions

corðnÞ ¼ 1

M

XM
j¼1

corjðnÞ (10)

where M is the total number of investigated molecules. The
results for various obstacle concentrations are presented in
Fig. 7, where the VACF has been normalized in the way that
cor(0) ¼ 1. The VACF entered the region of anticorrelation
already aer one simulation step and this region has only been
shown. The observed effect is similar to the results obtained for
the Lorentz gas model69 where one can observe the increasing
anticorrelation behavior with the increase of the concentration
of obstacles.

Fig. 8a shows the mean square displacement as a function of
time for some obstacle densities. One can observe the changes
of hDr2i over a large time scale (above 8 decades): the upper
curve (no obstacles) exhibits the exponent a ¼ 1 in the entire
time range while the other ones (the obstacle density above the
percolation threshold) reach a plateau for longer times – the
obstacles apparently divide the space into separated cages and
the motion is limited. The systems with the obstacles below the
percolation threshold exhibit three regimes but the conven-
tional plot in Fig. 8a does not clearly show the changes of the
diffusion behavior. Therefore, we have also plotted the simu-

lation results as a ¼ dðlogðDr2ðtÞÞÞ
dðlogðtÞÞ versus log(t), which is pre-

sented in Fig. 8b. The diffusion at short times (t # 5 � 101) is
always normal (a is close to 1) in spite of the presence of
obstacles (for the concentration of obstacles lower than the
percolation threshold). One can observe that for short times (t#
ous concentrations of obstacles. The inset indicates the exponent a for
logðDr2ðtÞÞÞ
dðlogðtÞÞ as a function of logarithm of time for various obstacle

colors as in (a)).

This journal is © The Royal Society of Chemistry 2014
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5 � 101) the mobility of moving particles systematically
decreases with the increase of the obstacle concentration. This
relates to the changes of a local arrangement of obstacles in the
system when their concentration becomes higher and their
inuence on the short time (local) diffusion increases. For
systems containing obstacles at intermediate times (5 � 101 <
t# 104 to 107) the diffusion is anomalous, while for long times it
becomes normal again (a is close to 1). This regime begins near
t ¼ 5 � 101, but its end shis towards a longer time and the
closer is the system to the critical density the faster is the shi.
What is interesting is the fact that the curves which correspond
to c $ 0.38 (the curve for c ¼ 0.38 is only shown in Fig. 8b for
clarity) exhibit perfect plateaus over almost three decades. If we
compare Fig. 8a and b we can observe a crossover to a normal
diffusion at higher concentrations of obstacles 0.38 < c < 0.50;
for longer times the curve for c¼ 0.38 scales with the exponent a
close to 0.25.

Taking into consideration the above picture of the diffusion
process one can introduce short time DSH and long time DL

diffusion constants of mobile beads. Fig. 9 depicts the behavior
of these quantities as a function of the obstacle concentration.
One can nd that the short time mobility described by the DSH
Fig. 9 Short time diffusion DSH and long time diffusion DLT coeffi-
cients as a function of the obstacle concentration c.

Fig. 10 The position correlation function r(t) (see eqn (9) and text for
details) for various concentrations of obstacles c. Continuous lines
represent fitting curves obtained using eqn (10).

This journal is © The Royal Society of Chemistry 2014
constant decreases with the obstacle concentration exponen-
tially (DSH ¼ D0 exp(�ac), where D0 corresponds to the diffusion
coefficient when the concentration of obstacles is equal to 0).
The decrease of the long time diffusion coefficient DL is much
faster and has more complex character. We can conrm the
differences between the short and long time dynamic behaviors
of the system by studying the position correlation function of
the mobile elements. It can give important information about
the global dynamics in dense systems, where the movement of
particles is highly correlated. This function is dened in the
following way:

rðtÞ ¼ 1

n

Xn

i¼1

mið0ÞmiðtÞ (11)

wheremi(0)¼ 1 andmi(t)¼ 1 or 0, depending whether or not the
ith bead occupied its original position (at t ¼ 0) and at a given
time t respectively. Fig. 10 shows the position correlation
function calculated according to eqn (9) for various concentra-
tions of obstacles. Observing this function one can distinguish
two relaxation processes in the system. The fast relaxation
process corresponds to the short time diffusion. The second
process corresponds to a long time delay process connected
with movement of the beads, which are hindered by trapping in
cages. This process becomes visible for the concentration of
obstacles c z 0.20. The existence of this plateau on the corre-
lation function shows that in the considered range of concen-
trations more and more beads cannot be included into
cooperative loops or are caged in closed enclaves if the
concentration of obstacles increases. This effect is especially
well visible at the concentration of obstacles 0.5 which corre-
sponds to the ordinary percolation threshold on the triangular
lattice,70 where many beads are caged in a dead end branch or in
closed enclaves. Thus, the behavior of the position correlation
function that can be split into two processes based on quite
different time scales conrms the inuence of the local envi-
ronment on the mean square displacement and the self-
diffusion with the increase of crowding.
C. Dynamic behavior near the critical point: the percolation
threshold

Direct observation of the percolation transition is not easy using
MSD because it is only the simplest quantity exhibiting anom-
alous long-time behavior. Deviations from the Fickian diffusion
can be indicated by a parameter which is more sensitive than
MSD: it is called the (rst) non-Gaussian parameter (NGP)
quantifying deviations from the Gaussian distribution71 which
in the two-dimensional case looks as follows:

a2ðtÞ ¼ hDr4ðtÞi
2hDr2ðtÞi � 1 (12)

The long time limit of a2(t) is presented in Fig. 11. One can
observe that the highest deviation from the Gaussian behavior
at the long time is found for c¼ 0.38. It suggests that one should
expect the percolation point near c ¼ 0.38.72 Taking into
consideration the above observations and based on the data
Soft Matter, 2014, 10, 3597–3607 | 3603
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Fig. 11 The non-Gaussian parameter a2(t) for various concentrations
of obstacles c.
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from Fig. 9 one can perform the scaling analysis of the diffusion
coefficient D (in the limit of the long times which were obtained
by D ¼ hDr2i/t, t / N) near the critical point c ¼ 0.38 as a
function of the obstacle concentration, which is presented in
Fig. 12. The diffusion coefficient follows the predicted scaling
relationship Dz 3m where 3¼ |c� cc|/cc and mz 4.34.28,30,73 The
critical density was found to be cc z 0.371 but one has to
remember that the value of the diffusion coefficient is
approximate.

The diffusion in a percolation cluster can be described in two
different ways. In the rst, one can restrict walks to the incipient
innite cluster at p ¼ pc. In the second, one can study the
diffusion in all clusters of the system unrestrictedly and this
treatment corresponds to the applied herein model. Moreover,
our case is similar to the high-density percolation problem74

which shares the same universality class as the ordinary lattice
percolation. It means that for two dimensions the universal
exponent describing the probability that a lattice site belongs to
the percolation cluster is equal to b ¼ 5/36 and the universal
exponent, which describes the divergence of the correlation
length, near the percolation threshold is equal to n ¼ 4/3. Using
the scaling analysis one can nd that in our case the exponent
Fig. 12 Scaling behavior of the long-time diffusion coefficient D as a
function of separation parameter 3 ¼ |c � cc|/cc.

3604 | Soft Matter, 2014, 10, 3597–3607
dw from eqn (8) (near the critical point) can be described by the
formula:28,30

dw ¼ 2þ m=v� b=v

1� b=2v
(13)

In our case dw z 5.43 and, therefore, it corresponds to the
critical exponent a z 0.37. Similar values of this exponent can
be found in computer simulations of Lorentz gas, where a ¼
0.32 or 0.42 (ref. 72, 76 and 77) and in real experiments where a
¼ 0.32 or 0.39.26,27 However, it has to be stressed that higher
values of the subdiffusion exponent were also found in both
simulations and experiments.37

Taking into consideration the results presented above a
rough estimation of the percolation threshold can be done
using the dependence of the exponent a on the obstacle
concentration. In our model the percolation threshold corre-
sponds to the concentration of obstacles cc z 0.37–0.38 (see the
inset in Fig. 8a) and the concentration of liquid molecules at
this threshold pc is calculated as pc ¼ 1 � cc z 0.62–0.63. One
can observe quite good agreement between the percolation
threshold obtained from the scaling law Dz 3m and from direct
measurements of the critical exponents a. We have also used
the so-called data collapsed technique, which is more sensitive
than a single direct measurement of critical exponents to
determine the exponent m and the percolation threshold cc. This
procedure is based on the fact that the mean squared
displacement follows the scaling relationship26

hDr2(t)i ¼ t2/dwf[(p � pc)t
(dw�2)/mdw]. (14)

The f(x) is a scaling function given by

f ðxÞ ¼
8<
:

xm for x/N
const for x/0
ð�xÞ�2nþb

for x/�N
(15)

Fig. 13a presents the expression hDr2(t)it�2/dw as a function of

tðp� pcÞ
mdw
dw�2 for various concentrations of liquid molecules p

(which implies various concentrations of obstacles as c¼ 1� p).
One can expect that the curves should approach a common
slope (dw � 2)/dw for longer times. In this plot we used the
exponent m ¼ 4.34, i.e. the one obtained from the scaling
analysis of the diffusion coefficient and the percolation
threshold pcz 0.629 (ccz 0.371). One can observe that the data
collapse onto a single curve for longer times with deviations for
short times, which is expected, because in this time region the
system is far from the asymptotic behavior. The common
straight line corresponds to a power law function with the slope
(dw� 2)/dw¼ 0.632. Fig. 13b shows hDr2(t)it�2/dw as a function of

tðp� pcÞ
mdw
dw�2 for x / �N in eqn (15). In this case we have also

obtained an expected behavior too, i.e. a common straight line.
But the slope of this common line is �0.238, which differs
signicantly from that expected using (dw � 2)(�2n + b)/dwm z
�0.352. We cannot explain the reasons for this discrepancy but
such behavior of scaling conrms that the percolation
threshold was determined correctly. The above analysis
This journal is © The Royal Society of Chemistry 2014
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Fig. 13 The scaling function hDr2(t)it�2/dw as a function of tðp� pcÞ
mdw
dw�2 for various concentrations of liquid p (a) for x/N and (b) x/ �N see

eqn (15).
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indicates that both the exponent m ¼ 4.34 calculated and the
percolation threshold cc z 0.371 determined from the scaling
analysis of the diffusion coefficient are rather appropriate
values. Therefore, it is possible that the scaling behavior in our
model is different from that of a single particle motion on the
percolation clusters.

The next problem concerns the universality of the percola-
tion phenomenon in our model system. The coefficient D scales
well as 3m with m ¼ 4.34 as shown in Fig. 12. The exponent
obtained in our simulations m ¼ 4.34 deviates considerably
from the theoretical value 1.31 found for the 2D lattice system in
which all the clusters of the system are taken into consideration
unrestrictedly. The problem with the universality of the expo-
nent m and its dependency on the transport mechanism and on
the matrix type was already reported over 25 years ago.75 The
problem with no-universality of the m exponent in 2D simula-
tions was reported later in ref. 50, when the Discontinuous
Molecular Dynamic (DMD) simulations and the spatial tessel-
lation were used to investigate the effect of polydispersity in
obstacle size on the solute diffusion. On the other hand perfect
agreement between the expected scaling behavior of m and
simulation results in the case of the two-dimensional Lorentz
model was reported.33 We cannot conclusively determine
whether the exponent m is universal. The transport mechanism
in our model is completely different from the continuous model
represented by the Lorentz model, the DMD model and from
models based on a lattice.44 The movement of beads in our
simulations is highly correlated and this way the mobility of the
beads is strongly connected (hydrodynamics) with positions
and the concentration of obstacles. This situation leads to
specic changes of diffusivity in the system and consequently to
higher values of the exponent m. This is proved by data pre-
sented in Fig. 5 which shows a typical part of the simulation
system where the concentration of obstacles c > 0.3. One can
observe that the considered area contains enclaves where some
beads move fast but the mobility of the most elements is
strongly limited. The system percolates in the sense of the
percolation cluster analysis but the motion in the system is
determined by the mobility of the slowest elements. In other
words, the system besides the real immobile obstacles contains
also considerably less mobile molecules of liquids, which only
This journal is © The Royal Society of Chemistry 2014
very rarely can take place in themotion and therefore they play a
crucial role in the movement of liquid. One should consider
them as some kinds of uctuating obstacles; in our opinion this
phenomenon corresponds to the presence of small holes in the
continuous-space system considered by Halperin et al.44

The next problem concerns the question how does the
percolation threshold obtained by us can be related to other
results obtained within the frame of a continuous model. It is
especially interesting, as it is well known that a triangular lattice
mimics a continuous two-dimensional space – the lling of the
space by discs is the same for this lattice and for the continuous
space. In order to make such a comparison possible one has to
redene the concentration on a triangular lattice. This new
denition better corresponds to a continuous space and is
calculated as the ratio of the total surface of disks representing
beads to the total area of the considered system. The concen-
tration based on this denition will be denoted by F. In this
convention the maximum possible concentration corresponds
to the close packing of disks and it is approximately equal to
0.9069. Taking into account this value one can nd out that our
percolation threshold cc z 0.37–0.38 corresponds to Fc z
0.335–0.345. This value is located between Fc ¼ 0.22 found by
Sung and Yethiraj40 and the value Fc ¼ 0.356 obtained by Bauer
and coworkers using the Lorentz gas model.33

IV. Conclusions

In this work we have simulated the dynamic properties of a
liquid in the presence of obstacles. A high density characterizes
a liquid environment and consequently the movement of
particles has to be highly correlated. Investigation of this type of
system is particularly important from the cognitive point of view
and for practical reasons, because such systems are very popular
in nature. In order to accomplish this task, we used the DLL
model, which easily allows incorporation of interactions
between the solute (liquid) and the obstacles. The motion in
this model is realized in a way of cooperative loops, which more
resembles a real liquid in comparison with other models, where
the motion is determined randomly from an arbitrary assumed
distribution. The excluded volume was the only potential
included in our model. Moreover, the inuence of
Soft Matter, 2014, 10, 3597–3607 | 3605

http://dx.doi.org/10.1039/c3sm52861h


Soft Matter Paper

Pu
bl

is
he

d 
on

 1
9 

Fe
br

ua
ry

 2
01

4.
 D

ow
nl

oa
de

d 
by

 T
ec

hn
ic

al
 U

ni
ve

rs
ity

 o
f 

L
od

z 
on

 2
6/

01
/2

01
6 

07
:3

4:
58

. 
View Article Online
hydrodynamic interactions can also be taken into consideration
in our model.

We analyzed the behavior of the basic parameters of the DLL
model in the presence of obstacles. The concentration of obsta-
cles affects the dynamics of the system (which was expected) by
the modication of the distribution of cooperative movement
loops. It was found that the main factor, which is responsible for
the cooperative move loop distribution for a given concentration
of obstacles, is the so-called effective coordination number. This
quantity decides on the conductivity between near neighbor
lattice sites and it decreases with the obstacle concentration c like
1 � c in the investigated range of obstacle concentrations. Our
treatment based on the DLL model allows the exact investigation
of the local behavior of the system, and we determined the
distribution probability of the bead move in a given lattice site
(depending on this site's neighborhood).

The analysis of the waiting time distribution along the
trajectory indicates that this distribution does not display a
power-law behavior and thus one can conclude that the CTRW
model is not consistent with the DLL model (when the obstacles
are present). The study of the dynamics generated by the DLL
model, i.e. the diffusion and the position correlation function,
indicated the existence of two relaxation processes associated
with the movement in the presence of obstacles. A short relaxa-
tion time is associated with the fast beads, located far from
obstacles, while the slow process corresponds to motion of beads
with the reduced mobility as a result of the location near obsta-
cles or remaining in cages arranged by obstacles. Moreover, the
simulations show a transition from a normal to an anomalous
diffusion of beads as the concentration of obstacles increases.

We show that in our 2D model the percolation threshold
occurs at the obstacle concentration c ¼ 0.37–0.38. Simple
comparison of our results with the results obtained using the
continuous model in 2D places them between the results
obtained for the Lorentz gas model33 and the results found
using the discontinuous molecular dynamicmodel.40 It was also
found that the diffusion coefficient for a long time near the
percolation threshold scales as Dz 3m where 3 ¼ |c � cc|/cc with
m z 4.34. This value of the exponent m is different from the
pervious prediction obtained from the percolation theory and
simulations,50 where m ¼ 1.31. This probably results from the
completely different transport mechanism in our model and
mechanisms proposed in continuous models (represented by
the Lorentz model or by the DMD model) and in models based
on a lattice.33 The presence of a very high value of the exponent m
can explain why the exponent a determined in experiments is
considerably lower than 0.6–0.7. Thus, the scenario based on
the DLL model can be closer to reality than other models,
especially in membranes or cells.

Our simulation results indicate that the DLL model can be
effectively used in a dense system, where all lattice sites are
occupied by moving objects or obstacles, i.e. when the envi-
ronment is crowded. The DLL model also allows the introduc-
tion of the dynamics into the system in a natural way based on
cooperative concepts with a good time scale connected with one
MC step. Simulations based on the DLL model enable easy
observations of the local and global dynamics. Moreover, our
3606 | Soft Matter, 2014, 10, 3597–3607
treatment can be directly applied to other systems with a
crowded environment, which contains obstacles or traps of
various shapes and different levels of dispersion.
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