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In this paper, the behaviour of a system of coupled mechanical oscilla-
tors excited kinematically was studied numerically. Several methods of
detection of synchronization were shown and advantages of each were
mentioned. The relation between Lyapunov exponents and the synchro-
nization state under different kinds of the excitation signal (harmonic,
periodic and chaotic ones) was presented. It was demonstrated that the
mode locking with excitation was dependent only on inner damping and
completely uncorrelated with the connection between oscillators.
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1. Introduction

The phenomenon of synchronization in dynamics has been known for a long ti-
me. Recently, the idea of synchronization has been also adopted for non-linear
systems. It has been demonstrated that two or more non-linear systems can be
synchronized by linking them with mutual coupling or with a common signal
or signals (Blekhman et al., 1995; Boccaletti et al., 2002; Kapitaniak, 1994; Pe-
cora and Carroll, 1990; Pyragas, 1993). In the case of linking, a set of identical
chaotic systems (the same set of ODEs and values of the system parameters)
Complete Synchronization (CS) can be obtained. The complete synchroniza-
tion takes place when all trajectories converge to the same value and remain
in step with each other during further evolution (i.e. limt→∞ |x(t)− y(t)| = 0
for two arbitrarily chosen trajectories x(t) and y(t)). In such a situation,
all subsystems of the augmented system evolve on the same invariant mani-
fold on which one of these subsystems evolves (the phase space is reduced
to the synchronization manifold). The linking of homochaotic systems (i.e.
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systems given by the same set of ODEs but with different values of the sys-
tem parameters) can lead to Imperfect Complete Synchronization (ICS) (i.e.
limt→∞ |x(t)−y(t)| ¬ ε, where ε is a vector of small parameters) (Kapitaniak
et al., 1996). A significant change of the chaotic behaviour of one or more sys-
tems can be also observed in such linked systems. This so-called ”controlling
chaos by chaos” procedure has some potential importance for mechanical and
electrical systems. An attractor of such two systems coupled by a negative
feedback mechanism can be even reduced to the fixed point (Stefański and
Kapitaniak, 1996).

Recently, another type of synchronization has been detected in non-linear
systems called Phase Synchronization (PS) (Rosenblum et al., 1996; Rosen-
blum et al., 2001). It can be introduced as synchronization of periodic oscil-
lators, where only the phase locking is necessary, while no requirements on
the amplitudes is imposed. The PS in non-linear systems is defined as the ap-
pearance of reaction between phases of subsystems (or between the phase of
subsystems and the driving signal), while the amplitudes can still be non-linear
and non-correlated.

From the viewpoint of practical considerations, a periodic and non-periodic
excitation can be met in mechanical systems. For that reason, this paper is
concentrated on analysis of the CS of a set of identical mechanical oscillators
linked by a common excitation. Interactions between phases of the excitation
and oscillators were taken under consideration. The presented analysis is ba-
sed on connections between the appearance of synchronization and Lyapunov
Exponents (LEs), and it is motivated by Pecora and Carroll’s theoretical and
experimental studies (Pecora and Carroll, 1990, 1991). It has been discovered
that uncoupled non-linear systems linked by common signals can synchronize
if LEs for the subsystems reaches negatives values. In the next paper by Peco-
ra and Carroll (1998) a concept called Master Stability Function (MSF) was
introduced. It has been proved that the system of coupled non-linear oscilla-
tors can synchronize when all Transversal Lyapunov Exponents (TLEs) are
negative. Considerations presented in this paper, which are supported by nu-
merical analysis, shown that even a non-periodic nature of common external
excitation can lead to synchronization of driven mechanical oscillators. The
necessary, but not sufficient, condition for the occurrence of synchronization
is the negative sign of LEs associated with the response of the system. In the
numerical experiment, a pair of non-linear mechanical oscillators of the Duf-
fing type, coupled or uncoupled, forced by different types of excitation has
been used. All numerical simulations have been carried out with programs
written in C++, and for calculating LEs and TLEs algorithms by Parker and
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Chua (1989) have been used. The paper is organized as follows. In Sec. 2 some
theoretical fundamentals are recalled. Section 3 describes types of oscillators
which are used in numerical investigations. Section 4 is devoted to numerical
examples. A brief conclusion is presented in Sec. 5.

2. Complete synchronization, phase synchronization and

Lyapunov exponents

2.1. Complete synchronization of uncoupled systems

Consider a set of l separate identical j-degree-of-freedom mechanical oscil-
lators forced by a common signal as shown in Figure 1. The character of
excitation (function e(t)) and differential equations describing the motion
of oscillators can be chosen arbitrarily. The dynamical state each of these
oscillators is determined by the j-dimensional vector xi = [xi1, xi2, . . . , xij ],
(i = 1, 2, . . . , l). This vector describes a response generated by the system. The
r-dimensional vector e = [e1, e2, . . . , er] describes evolution of the excitation.
Thus, the state of a separate subsystem is described in the phase space of
h = j + r dimension, and the equations of motion of such a subsystem can be
written in a general first order differential equation autonomous form

ẋi = f(xi,e) ė = f(e) (2.1)

where xi ∈ R
j (i = 1, 2, . . . , l) and e ∈ R

r.

Fig. 1. The scheme of the system under consideration

Equation (2.1) describes the dynamical evolution of excitation in the s-
dimensional subspace of the system phase space (excitation subspace). From
the form of Eqs. (2.1) it results that the time evolution of excitation is indepen-
dent of the remaining state variables and is characterized by Lyapunov expo-
nents, where at least one of them is equal to zero. Equation (2.1)1 describes
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the evolution of the system response (response subspace) in the j-dimensional
subspace of the phase space which is transversal to the above mentioned exci-
tation subspace and is characterized by a series of j LEs. A two-dimensional
visualization of the system phase space is presented in Fig. 2. This idea was
proposed by Stefański and Kapitaniak (2003b).

Fig. 2. Two-dimensional visualization of synchronization (a) and
desynchronization (b); attractor of the chaotic system; α(A) basin of attraction of

the attractor A; E excitation subspace; R response subspace

The common excitation causes that the distance between trajectories in
the direction associated with zero LE amounts to zero and the trajectories
can be found in the same j-dimensional response subspace at each moment.
This fact leads to the conclusion that for a set of negative RLEs there exists a
point in the response subspace which is a stable sub-attractor. This point is a
trace of the system attractor in the response subspace. If the trajectories start
from different points of the basin of attraction, then they evolve to the same
state and the oscillators will synchronize (Fig. 2a). In other words, an invariant
subspace representing the synchronized state (x1 = x2 = . . . = xl) is a stable
attractor. Such synchronization is caused by the common excitation only, and
it occurs without any additional coupling between the oscillators.

If at least one RLEs is positive, then the synchronization between the oscil-
lators under consideration is impossible. It means that instability associated
with positive RLEs causes divergence of nearby trajectories (Fig. 2b) in the
response subspace, and the sub-attractor becomes a sub-repeller representing
an unstable orbit in this subspace.
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2.2. Complete synchronization of coupled systems

Systems with couplings between oscillators can not be treated in the same
way as uncoupled ones. It is impossible to describe their behaviour as a system
composed of independent oscillators. The idea of RLEs is not sufficient to
determine synchronization. Different criteria have to be applied. Pecora and
Caroll (1998) introduced a concept called the Master Stability Function, which
allows one to determine the stability of synchronization by means of TLEs.
The stability problem in this idea can be formulated in a very general way by
addressing the question of stability of the CS manifold x1 ≡ x2 ≡ . . . ≡ xi.
The CS exists when the synchronization manifold is asymptotically stable for
all possible trajectories.

Considering a dynamical uncoupled system given by equations

ẋi = f(xi) (2.2)

H : R
m → mIRm is the output function of each oscillator variables that is

used in the coupling, x = (x1,x2, . . . ,xN ) ∈ R
m, F(x) = (f(x1), . . . , f(xN )),

G is the matrix of coupling coefficients and σ is the coupling strength. An
arbitrary set of N coupled (linear coupling) identical systems can be created

ẋ = F(xi) + (σG⊗H) (2.3)

where ⊗ is the direct (Kronecker) product. In this place, it should be recalled
that the direct product of two matrices A and B is given by

A⊗B = [aijB] (2.4)

where aij are elements of the matrix A. Note also that the manifold invariant
requires

∑
j Gij = 0. The variational equation of Eq. (2.3) is

ϕ̇ = [IN ⊗DF+ σG⊗DH]ϕ (2.5)

where ϕ = (ϕ1, ϕ2, . . . , ϕN ) are perturbations and IN is the (N × N)-
dimensional identity matrix. After diagonalization, each block has the form

ϕ̇k = [DF+ σγkDH]ϕk (2.6)

where γk is the eigenvalue of the connectivity matrix G, (k = 0, 1, 2 . . . ,
N − 1). For k = 0→ γ0, one gets variational equation for the synchronization
manifold. All k correspond to transverse eigenvectors, so one has succeed in
separating the synchronization manifold from the other, transverse directions.
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The Jacobian functions DF and DH are the same for each block, since they
are evaluated on the synchronized state. Thus, for each k, the form of each
block (Eq. (2.6)) is the same only with only the scalar multiplier σγk different
for each of them. This leads to the following formulation of the master stability
equation and the associated MSF. One can calculate the maximum TLE λ1
for the generic variational equation

ϕ̇k = [DF+ (δ + iβ)DH]ϕk (2.7)

where σγk = δ+iβ. In mechanical systems, we have mutual interaction, hence
σγk = δ (real coupling β = 0).

2.3. Phase synchronization

In chaotic oscillators, there is no unique phase of oscillations. The idea
introduced by Rosenblum et al. (Rosenblum et al., 1996, 2001) was applied to
detect the phase. It enabled one to detect the PS between the oscillators and
the driven signal. The amplitude and the phase of an arbitrary signal s(t) has
to be determined. A general approach was introduced by Gabor (1946) and
it was based on the analytic signal concept by Rosenblum et al. (1996). The
analytic signal x(t) is a complex function of time defined as

x(t) = s(t) + js̃ = A(t)ejφ(t) (2.8)

where the function s̃(t) is the Hilbert transform of s(t)

s̃ =
1

π
P.V.

∞∫

−∞

s(t)

t− τ
dτ (2.9)

(where P.V. means that the integral is taken in the sense of the Cauchy prin-
cipal value). The instantaneous amplitude A(t) and the instantaneous pha-
se φ(t) of the signal s(t) are thus uniquely defined by equation (2.8). From
(2.9), the Hilbert transform s̃(t) of s(t) may be considered as the convolution
of the functions s(t) and t/π. Hence, the Fourier transform S̃(jω) of s̃(t) is
the product of the Fourier transforms of s(t) and t/π. For physically relevant
frequencies ω > 0, S̃(jω) = −jS(jω); i.e. ideally, s̃(t) may be obtained from
s(t) by a filter whose amplitude response is unity, and whose phase response
is a constant π/2 lag at all frequencies.
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3. Duffing oscillator

The Duffing system has been chosen to present an example of a mechanical
oscillator. The considered system is excited kinematically, what was shown in
Fig. 3. Its evolution is described by

mÿ − dy[ė(t)− ẏ] + ky[e(t)− y]− kd[e(t)− y]
3 = 0 (3.1)

where m, dy, ky, kd are viscous damping, linear and non-linear parts of stiffness
of the spring, respectively, and e(t) is the signal of excitation.

Fig. 3. Duffing oscillator

After introducing dimensionless variables, the following form of the equ-
ation of motion is obtained

ξ̈ − c1[ċ4(τ)− ξ̇] + [c4(τ)− ξ]− c2[c4(τ)− ξ]
3 = 0 (3.2)

where

ω =
ky
m

c1 =
dy
mω

c2 =
kdmy

2
st

ω2k2y

c4(τ) =
e(t)

yst
ċ4(τ) =

ė(t)

ystω
yst =

mg

ky

In numerical analysis it is assumed that c2 = 2.0. The inner damping c1 is
chosen as a controlling parameter. The excitation signal c4(τ) depends on the
type of excitation transmitted to the oscillator. It is described in Sec. 4 in
more detail.

3.1. Two Duffing oscillators excited by common signal

A system of two Duffing oscillators excited by a common signal e(t) is
shown in Fig. 4.
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Fig. 4. Two Duffing oscillators with common excitation

This is the simplest example of the system given by Eqs. (???). According
to Eqs. (3.2), the system shown in Fig. 4 can be described by the following
dimensionless equations

ξ̈1 − c1[ċ4(τ)− ξ̇1] + [c4(τ)− ξ1]− c2[c4(τ)− ξ1]
3 = 0

(3.3)

ξ̈2 − c1[ċ4(τ)− ξ̇2] + [c4(τ)− ξ2]− c2[c4(τ)− ξ2]
3 = 0

Common dynamics is realized by the kinematic excitation applied to the ri-
gid suspension of oscillators, which ensures the same amplitude and phase of
forcing.

3.2. Two dissipatively coupled Duffing oscillators excited by common

signal

The system of two coupled Duffing oscillators excited by the common signal
is taken under consideration. Due to mutual coupling, there are interactions
between subsystems.

Fig. 5. Two coupled Duffing with common excitation
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This system is a generalisation of the previous problem. When d1 is equal
to zero the system given by Eq. (3.3) is obtained. Motion of the system is
given by dimensionless equations

ξ̈1 − c1[ċ4(τ)− ξ̇1] + [c4(τ)− ξ1]− c2[c4(τ)− ξ1]
3 + d1[ξ̇1 − ξ̇2] = 0

(3.4)

ξ̈1 − c1[ċ4(τ)− ξ̇1] + [c4(τ)− ξ1]− c2[c4(τ)− ξ1]
3 − d1[ξ̇1 − ξ̇2] = 0

where: d1 = d/(mω) and ω, c1, c2, c4(τ), ċ4(τ) are the same as in Eq. (3.2).

4. Numerical examples

4.1. Harmonic excitation

To show the idea of RLE on the simplest example, the harmonic excitation
is applied to the Duffing oscillators. The excitation signal e(t) is given by the
equation e(t) = a sin(Ωt). Hence, for the whole system, the dimensionless
equations of motion are as follows

ξ̈1 − c1[ċ4(τ)− ξ̇1] + [c4(τ)− ξ1]− c2[c4(τ)− ξ1]
3 = 0

(4.1)

ξ̈2 − c1[ċ4(τ)− ξ̇2] + [c4(τ)− ξ2]− c2[c4(τ)− ξ2]
3 = 0

where
c4(τ) =

a

yst
sin(ητ) ċ4(τ) =

a

yst
η cos(ητ)

τ = ωt η =
Ω

ω
= 1

other parameters are the same as in the Eq. (3.2). As it was mentioned before,
the controlling parameter is the dimensionless viscous damping c1. As can
be seen in Figs. 6 and 7, there is a wide range of chaotic behaviour. It is
well known that due to sensitivity to the initial condition, it is impossible to
synchronize systems working in the chaotic regime without additional coupling
between them. In Figs. 6 and 7, bifurcation diagrams of ξ1 and the difference
ξ1 − ξ2 as a function of c1 are shown. As can be, the seen subsystems reach
synchronization in ranges where a single oscillator has periodic behaviour.
For each subsystem, there is a boundary value of c1 after which the state
of synchronization is stable and unchangeable despite an increase of c1. For
the system with the amplitude of excitation c4(τ) = 1.9 sin τ (Fig. 6) the
boundary value is c1 = 0.2, and for c4(τ) = 2.2 sin τ (Fig. 7) is c1 = 0.27. In
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the second example, it is worth mentioning that ”synchronization windows” in
which synchronization appears exist between two ranges of desynchronization.
Such a type of synchronization has been also detected in networks of coupled
oscillators and has been called Ragged Synchronizability (RSA) (Stefański et
al., 2007).

Fig. 6. Bifurcation diagram of a single oscillator excited by the periodic signal Eq.
(4.1). Parameters: c1 ∈ (0.0, 0.5), c4(τ) = 1.9 cos τ

4.2. Non-linear excitation

In this Section, the system with the excitation signal given by a non-linear
signal is taken under consideration . As a system generating non-linear forcing,
the Duffing oscillator has been chosen. It is described by the dimensionless
equation

β̈ + 0.1β̇ − β + β3 = q sin τ (4.2)
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Fig. 7. Bifurcation diagram of a single oscillator excited by the periodic signal Eq.
(4.1). Parameters: c1 ∈ (0.0, 0.5), c4(τ) = 2.2 cos τ

In this case, the investigated system is excited using a signal given by the
variables β and β̇, i.e. c4(τ) = β and ċ4(τ) = β̇. For numerical simulations,
three different values of the forcing amplitude are chosen:
1. q = 4.0 – periodic motion with the period one (Fig. 8)

2. q = 5.6 – chaotic motion (Fig. 9)

3. q = 5.8 – periodic motion with the period three (Fig. 10).

In Figures 8-10, three bifurcation diagrams depicting the relation between
the controlling parameter c1 versus ξ1 − ξ2, ξ1 and Lyapunov exponents of
the single subsystem (two RLEs and two ELEs) are presented respectively. In
Sec. 2, the rule that the system reaches synchronization when RLEs reaches
negative values is introduced. Thus, it is sufficient to calculate LEs for one
subsystem only (in the case when subsystems are identical). It is worth to
mention that the subsystems tend to behave like the excitation. For the perio-
dic excitation with the period one, the oscillators reach period one motion and
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Fig. 8. Non-linear excitation – period one (q = 4.0), bifurcation diagrams of ξ1 − ξ2,
ξ1 and Lyapunov exponents
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Fig. 9. Non-linear excitation – chaotic behaviour (q = 5.6), bifurcation diagrams of
ξ1 − ξ2, ξ1 and Lyapunov exponents
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Fig. 10. Non-linear excitation – period three (q = 5.8), bifurcation diagrams of
ξ1 − ξ2, ξ1 and Lyapunov exponents
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so on. The relation between the largest RLE and synchronization phenomena
is confirmed. In Fig. 9, the synchronization is reached despite chaotic motion
– in this way the oscillators lose their sensitivity to the initial conditions. It is
possible because the phenomena of mode locking with the signal of excitation
occur (it is proved in the next Subsection and shown in Fig. 16c). Pioncaré
maps of the system with chaotic excitation (q = 5.6) are presented in Fig. 11.
In Fig. 11a a map before synchronization range (c1 = 0.3) where hyperchaos
exists (two positive LEs – λr1 and λe1) is shown. Figure 11b concerns the sys-
tem working in the synchronous regime (c1 = 0.5) and the chaotic attractor
can be seen (mode locking regime with excitation occurrs and only one LE is
positive: λe1). In Fig. 11 a comparison of Pioncaré maps of excitation (grey
color) and the response (black color) is shown. As can be seen, the transition
from hyperchaos to chaos is exhibited by noticeable reduction of the fractal
dimension from DKY = 2.76 (Fig. 11a – hyperchaos) to DKY = 1.89 (Fig. 11b
– chaos).

Fig. 11. Pioncaré maps of one subsystem excited by the chaotic signal (black dots)
and a comparison map of the excitation (grey dots): (a) c1 = 0.3 and DKY = 2.76
(before synchronization), (b) c1 = 0.5, DKY = 1.89 (after synchronization)
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In the last Figure in this subsection, the influence of perturbation on the
stability of the synchronous state is shown. Every 50 periods of the driving
system, the response systems have been perturbed by a small displacement
(δ = 0.1). After a short time, the response systems reach synchronization,
which means that this state is stable.

Fig. 12. Synchronization error ξ1 − ξ2 for c1 = 0.4 and q = 5.6, after every
50 periods of the excitation signal, a small perturbation is added to the system

4.3. Coupled oscillators

Synchronization between forced coupled Duffing oscillators has been inve-
stigated in Perlikowski and Stefańsk (2006), Stefański and Kapitaniak (2003),
Stefański et al. (2007). In this Section, two coupled Duffing oscillators exci-
ted kinematically, described by Eqs. (3.4), are taken under consideration. The
excitation signal is given by the forced Duffing oscillator introduced in the pre-
vious Section. In these simulations, only one value of the parameter q: q = 5.6
(chaotic motion) has been used. The results of different kinds of analysis of
the synchronization process in the examined system, are presented below.

Fig. 13. Plot of the synchronization error ξ1 − ξ2 as a function of c1 and d1
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In Fig. 13, a plot of the evolution of the synchronization error (ǫ = ξ1−ξ2)
is shown. Then, in Fig. 14, values of RLE for the whole system presented in
Fig. 5 are plotted. At the end (Fig. 15), the maximal TLE is presented. All
figures exhibit the dependence on the dissipative parameters c1 versus d1.

Fig. 14. Lyapunov exponents for the whole system for all cases: λr3 < 0, λr4 < 0,
λe1 > 0 and λe2 < 0

The comparison of those three methods arises their interchangeability, but
on the other hand, much more information about the system is possible to
obtain by calculating LE. In Fig. 14 areas with three possible configurations
of RLE are presented. The first range (dark grey) corresponds to desynchro-
nization and hyperchaotic behaviour of the response systems. When the pa-
rameters are located in the light grey area, then the oscillators reach syn-
chronization, but still there is no correlation with the signal of the excita-
tion. In the last range (white), the oscillators not only synchronize but al-
so the mode locking regime with the excitation occurs. In Fig. 16, phases
for all cases are presented. Calculation of TLEs enabled one to present the
synchronization area for any number of coupled oscillators and any set of
coupling scheme, but in spite of RLE, less information about the system is
attained.



202 P. Perlikowski

Fig. 15. Transversal Lyapunov exponents for all cases: λtr2 < 0, λe1 > 0 and λe2 < 0

Fig. 16. Phase φξ1 , φξ2 , φβ of the first and the second oscillator as well as the
excitation, respectively; (a) hyperchaos for c1 = 0.1, d1 = 0.1, d2 = 0.0, (b) chaos
for c1 = 0.1, d1 = 0.5, d2 = 0.0 and (c) steady state (mode locking) for c1 = 0.5,

d1 = 0.0, d2 = 0.0

5. Conclusion

In this work, phenomena of synchronization of mechanical oscillators excited
by a common signal, also introduced by a mechanical system, have been shown.
As a result, detection methods of synchronization in coupled and uncoupled
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oscillators have been presented. The dependence on changes in the spectrum
of Lyapunov exponents has also been investigated. It is worth mentioning that
the period of the forced system tends to the period of the excitation. Whenever
in the case of chaotic excitation, the response tends to the chaotic behaviour.
It has been also found that uncoupled oscillators completely synchronize with
each other when the mode locking regime with the excitation takes place. This
phenomenon depends only on the inner viscous damping and is independent
of dissipative connections between the oscillators. It is sufficient to calculate
the spectrum of Lyapunov exponents of the single system to detect it.
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Synchronizacja oscylatorów mechanicznych wymuszanych kinematycznie

Streszczenie

W artykule pokazano numeryczną analizę dynamiki sprzężonych oscylatorów me-
chanicznych wymuszonych kinematycznie. Przedstawiono przegląd najważniejszych
metod detekcji synchronizacji, zwracając szczególną uwagę na ich własności. Następ-
nie opisano powiązania między widmem wykładników Lapunowa, a różnymi typami
synchronizacji. Zbadano odpowiedź układu dla różnych typów sygnału wymuszające-
go (harmonicznego, okresowego i chaotycznego). Udowodniono, że zamykanie modów
pomiędzy sygnałem oscylatora a wymuszeniem zależne jest tylko od tłumienia we-
wnętrznego oscylatorów, natomiast jest niezależne od sprzężeń pomiędzy nimi.
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