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Abstract: It is considered the system composed of a cart moving along a linear rolling bear-

ing with harmonic excitation produced by a stepper motor with an unbalanced disk. The mag-

netic field is generated by a pair of non-point neodymium magnets, one of which is mounted 

on the cart, whereas another one is fixed on the guide out of the axis of oscillations. The 

mathematical model for the cart dynamics is derived where the scaled point dipoles approxi-

mation of magnetic interaction is used. The numerical and bifurcation analysis of the model 

presented is carried out and compared to the experimental results. 
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1. Introduction 

In contrast to the dynamics of linear system, the behaviour of nonlinear systems are much more 

diverse and complex [1]. It depends on the peculiarities of system’s construction, regimes of its op-

eration, and many other reasons. Therefore, the nonlinear systems are the permanent source of new 

studies and inventions. This work deals with the relatively simple mechanical model, but the incorpo-

ration of nonlinear magnetic interaction leads us to the statement of new problems in the field of 

nonlinear dynamics. Thus, we continue the studies of the system presented in [2] and we develop the 

physically motivated description for the magnetic interactions produced by non-point magnets. 
 

2. Results and Discussion  

The experimental stand (Fig.1a) we treat consists of trolley moving along a linear rolling bearing 

with periodic forcing realized by the use of rotating unbalanced disk driven by a stepper motor. The 

stiffness is composed of linear elasticity generated by linear mechanical spring and nonlinear stiffness 

produced by a pair of repulsive neodymium magnets of axes perpendicular to the direction of system 

motion. The position of the system is measured by the use of Hall sensors.  
The mathematical description of the physical model (Fig. 1b) of the experimental stand (Fig. 1a) 

reads as follows :  

𝑚 𝑥̈ + 𝐹𝑅(𝑥̇, 𝑥) + 𝐹𝑆(𝑥) = 𝑚0𝑒𝜔2sin 𝜔𝑡,                    (1) 

where 𝐹𝑅(𝑥̇, 𝑥) is a resistance force; 𝐹𝑆(𝑥) is a restoring force. When the magnets are absent, the 

resistance force incorporates the viscous force 𝑐𝑥̇ and dry friction 𝑇 sign 𝑥̇, whereas 𝐹𝑆 = 𝑘𝑥. Add-

ing the magnets causes the appearance of magnetic repulsive force 𝐹⃗𝑀 which makes the contribution 
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to 𝐹𝑆 and 𝐹𝑅. To estimate 𝐹⃗𝑀, we adopt the point dipoles approximation. According to this approach, 

the repulsive magnetic force 𝐹⃗𝑀 = −𝛻(𝑛⃗⃗ ⋅ 𝐵⃗⃗), where 𝐵⃗⃗ =
𝐹0

𝑛2|𝑟|3
(3(𝑛⃗⃗ ⋅ 𝑟̂)𝑟̂ − 𝑛⃗⃗), the magnetic mo-

ment 𝑛⃗⃗ = (0, 𝑛), 𝑟 = (𝑥, 𝑧), 𝑟̂ = 𝑟/|𝑟|. Thus, we get 𝐹⃗𝑀 = (𝐹𝑀
𝑥 , 𝐹𝑀

𝑧 ) = 𝐹0 (
3𝑥(4𝑧2−𝑥2)

(𝑥2+𝑧2)7/2 ,
3𝑧(2𝑧2−9𝑥2)

(𝑥2+𝑧2)7/2 ). 

The components of the vector 𝐹⃗𝑀 provide the horizontal and orthogonal force projections which are 

incorporated into the restoring and friction forces: 𝐹𝑆(𝑥) = 𝑘𝑥 − 𝐹𝑀
𝑥  and 𝐹𝑅 = 𝑐𝑥̇ + 𝑇 sign 𝑥̇ + 𝜇 ⋅

sign𝑥̇ ⋅ 𝐹𝑀
𝑧 . To validate the model (1), the results of experiments [2], carried out at fixed 𝑧 = 0.01m 

and varying frequency 𝜔, are used. It turned out, to describe the cart’s dynamic correctly, the expres-

sion for the magnetic force should be scaled, i.e. in the equation (1) 𝐹⃗𝑀𝛼𝐹⃗𝑀(𝑥/𝛽, 𝑧), where 𝛼 =
2.5, 𝛽 = 3, 𝜇 = 0.001, 𝐹0 = 1.4695 ⋅ 10−8 N·m4, 𝑐 = 12.9906 N·s/m, 𝑘 = 929.333 N/m, 𝑇 =
1.2267 N, 𝑚0𝑒 = 0.25152 kg·m, 𝑚 = 6.73766 kg [2]. The corresponding numerical bifurcation 

diagram for the equation (1) is presented in Fig.1c, which is in very good agreement with the experi-

mental bifurcation diagram (see [2]). From the diagram it follows that equation (1) possesses the 

coexisting attractors (color points). These attractors undergo only one period doubling bifurcation at 

ω < 12.54, whereas at ω > 18.91 their bifurcations are described by the period-doubling cascade. 

Moreover, the jump phenomenon occurs at ω18.91. 
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Fig.1. The experimental stand (a) of the oscillator, its physical model (b) and the numerical bifurcation diagram 

(c) for the equation (1). 

3. Concluding Remarks 

Thus, the present research deals with the forced oscillator taking into account the influence exerted by 

field of permanent magnets. To develop the equation of motion for this model, the magnetic interac-

tion is described on the base of the point dipoles approximation. During model validation it is derived 

the scaled point dipoles approximation describing the experimentally observed regimes in a wide 

range of frequency interval.  
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