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Abstract: This paper uses the example of a three-phase core-less linear motor to create 

a mathematical model of single-dimension multi-parameter oscillator. The studied 

linear motor consists of: a stator, an U-shaped stationary guide-way with permanent 

magnets placed askew to the motor’s movement’s direction; and a forcer, a movable set 

of three rectangular coils subjected to alternating external electrical voltage. The 

system's parameters are both mechanical (number of magnets and coils, size of magnets, 

distances between magnets, size of coils) and electromagnetic (auxiliary magnetic field, 

permeability, coil’s resistance). Lorentz force allows for the transition from 

electromagnetic parameters to mechanical force and Faraday’s law of induction creates 

a feedback between the forcer’s speed and coils voltage. An Ampere’s model of 

permanent magnet is used to determine the simplified function of auxiliary magnetic 

field distribution throughout the stator. In the model the external voltage applied to each 

coil serves as the excitation while displacement of the forcer is the output parameter. 

The solution to the introduced mathematical model of the system is compared with the 

experimental results showing a good coincidence. 

1. Introduction

Over the years linear motors have been taking on bigger and bigger shares in the market for precise 

positioning systems. They provide a dynamically superior although costly alternative to standard drives 

such as feed screw conveyors. For a motor to correctly project a desired motion profile a specific 

close-looped controller should be introduced between the motor and mains. The quality of such system 

depends on, amongst other things, the precision of motor’s model used for building the controller. Most 

industrial controllers today use simplified models while this paper focuses on construction of a model 

for a simple core-less motor from scratch. 

A lab stand, with HIWIN's coreless linear motor and Copley-Controls' servo-drive, is used as both 

a physical base for constructing the model and a platform for its validation. The forcer (inductor) is 

capable of moving at speeds of up to 5 meters per second with a load of 45N. An analogue optical linear 

encoder can read the forcer's position with a resolution of 0,1 µm and the entire system's positioning 

error not trailing far behind. Three U-shaped stators with permanent magnets were used to create the 

motors magnetic guide-way giving the stand a theoretical maximum stroke of 830 mm and an actual 

stroke of 780 mm. Two high quality linear guide-way provide for a swift and quiet motion. The stand 
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program allows it to work with both manual input and automatically based on a signal from external 

devices, [1]. 

Figure 1. Lab stand’s diagram 

As the most interesting scientifically only the motor will be modeled in this paper. The stand will 

serve merely as a validation platform. 

2. Model construction

To construct the motor model a simple base model, consisting of a single winding and single magnet, 

was built first. The force acting on such a coil was calculated with respect to its position and of magnetic 

field strength. The field’s distribution for a single magnet and an infinitely long guide-way was then 

evaluated using Ampere’s model. The entire model for three windings inside the guide-way is then 

presented and encapsulated to a single ODE. 

2.1. Base model 

A single motor winding can be modeled as a perfectly rectangular conductor loop, with a certain voltage 

function Ug applied to it. The means and exact spot of this application is omitted as unimportant for the 

workings of the model. Let this loop be placed in the vicinity of a C-shaped magnet in a way depicted 

in Figure 2.  
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Figure 2. Model of a single winding 

 

Assuming that the loop cannot deform or rotate and can only move along the direction of y-axis it 

shall always remain a rectangle with a center placed on y-axis and with shorter sides parallel to the 

direction of motion. Every infinitely small slice of the coil is subjected to Lorentz force acting 

perpendicularly to its side (see Figure 3). 

 

 

Figure 3. Single loop overview: (a) - coordinate system; (b) - Lorentz force of the elemental slice 

 

The value of that force equals 

��� � ��� � ��, (1) 

��� � 
��� � ���, (2) 
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where � and � are the vector of electric current and magnetic induction respectively. In every point of

a conductor loop the i vector's direction is parallel to the coil while its value can be treated as constant 

equal to �.

Since the model cannot move in any direction other than along y-axis, the only significant 

component of the Lorentz force is one parallel to that axis.  It is defined as 

��� = �� cos � = ����� cos �, (3) 

where � is the angle between ��	and the direction of motion. After integration, the equation takes the

form 

� = 	 ��� 
�� � ��
�

. (4) 

In equation (4) � is the y-component of total force acting on the coil, �′ is the z-component of magnetic

field acting on ��, and 
 is the conductor loop’s path. The above method can be used for calculating the

force working on any other closed loop conductor coils as well. For a specific case of rectangular shape 

the closed-loop integral can be rewritten as a sum of two definite integrals in the following form 

� = �
�
�� � � ��, �� −

��
2

� ��
���

����

− � � ��, �� +
��
2

� ��
���

���� �
��, (5) 

where �(�, �) is the function of the magnetic field’s z-component distribution, [2].

The electric current � is the result of the external voltage function ��(�) and the voltage �	 induced

in the loop due to Faraday’s law of induction. The second component can be calculated as 

�	 = −
��� � B�x, y�dS



, (6) 

where � is the area inside the conductor loop. For a rectangular coil (6) can be recast to the following

form 

�	 = −
��� � � ���, ������

���

����

��
�

����

. (7) 

Equation (5) can then be rewritten in the form 
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��, (8) 

where �� is the electric resistance of the coil. 

2.2. C-Shape magnets’ field distribution 

With accordance to [3] the value of magnetic field of a permanent magnet can be approximated by 

using Ampere’s model, that is by assuming that a magnet’s magnetic field is the same as that of a 

perfect, tightly wound solenoid. Then Biot-Savart’s law can be applied to calculate the exact value of 

magnetic field at any point P in the vicinity of the magnet via the following formula 

� !�"!� =
#�
4$ � �	 ��!× "′  !

%"�   !%��
, (9) 

where 

"�   ! = "! − �!, (10) 

and "! is the distance between point P and the center of the magnet, �! is the distance between the magnet’s 

center and the infinitely small solenoid length �� and #� is the magnetic permeability of the magnet’s 

environment. 

In case of a C-shaped magnet the field can be calculated as a resultant fields of two bar magnets 

placed perpendicular to each other with opposing poles facing each other. For a single bar magnet the 

field can be then calculated by solving the following integral equation 

����, ��,��� =
���
4	 
�����,��,��� + �����,��,��� + �����,��,��� + �����,��,����, (11) 

where 

�
&��, �� , '�( = � � &' − '�(�) + *�� −
+�
2
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+�
2
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���', (12) 

��&��, ��, '�( = − � � &' − '�(�) + *�� +
+�
2
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2
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and �
�, ��, ��� are the coordinates of point P, ��, �� , �	 are the bar magnet dimensions in their
respective axes, 
�, ��, �̂ are the unit vectors of axes x, y and z and i is the current density over the diameter
of wire of the solenoid. 

Figures 4-5 show the C-shaped magnet’s magnetic field’s z-component distribution in a yz-plane  

calculated with equations (11) - (15) for a sample magnet.  

Figure 4. Z-axis coefficient of magnetic field distribution of 

a C-shaped permanent magnet (in Teslas) 

Figure 5. Distribution of C-shaped permanent magnet’s magnetic field (z-axis coefficient) on a line 

ran parallel to y-axis in between the magnet’s poles, highlighted part marks 

the position of magnet’s poles 
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For the ease of use and because of the good coincidence with actual values, the magnetic field’s 

distribution on a xy-plane (coordinate system set as in Figure 3) will be approximated with 2D Gaussian 

function in the following form 

����, �
 = ����	

�����


�

����, 

(16) 

where �� is the given magnet’s constant. 

2.3. Magnetic guide-way field distribution 

An infinitely long magnetic guide-way can be modeled as a set of C-shape magnets placed in equal 

distance /� from one another along the y-axis. All of the magnets are placed askew from the x-axis by 

the angle � and each two neighboring ones have their poles set oppositely (see Figure 6). 

 

Figure 6. Magnetic guide-way modeled as infinite set of C-shaped magnets 

For such a guide-way the magnetic field distribution can be written as 

����, �
 = �����

������ � �−1
�����
�����

�

���� �
�
�����	�����	 ��

����
, (17) 

 

where 

1

 +��� =
+�� ��0���� + +�� 
������+��+�� , (18) 

1

 +��� =
+�� 
������ + +�� ��0����+��+�� , (19) 

1

+��� 
� =

��0�2�� (+�� + +��)+��+�� , 
(20) 

are the relative pole sizes for tilted magnets. 
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After introducing a correlation factor between the relative pole size in y (+��) and magnets’

displacement (/�) in the form

� =
���
�, (21) 

the equation (17) can be rewritten in the form 

�� = ������

�

������, �
,
(22) 

where 

1

�� = � �
�
4�

� −

1

�
�� , ��� =
��√	

2� , (23) 

and Θ(�, �) is the sum of two Jacobi theta functions of the third kind (1�(', 2)) in the form

���,�
 = ������
 + ��
, ��� − �� ���
 + ��
 −
1

2
, ���  �, (24) 

where 

'� =
$+��

4+���� , '� =
$

23+�� , 2� = 4� ��

��� . (25) 

2.4. Three-phase motor model 

For a set of three same size, stiffly connected, rectangular conductor loops inside the magnetic guide-

way the total force acting on this set can be calculated as a sum of forces acting on each coil. That is 

�� = 5 ��
�

��

, (26) 

where �� is calculated with (8) assuming the filed distribution is equal to (22). This single force can be

written as 

�� =
� 0��

&��	��� − �
	(
�
�� � �−�2

�2 �� 6
, �	 − �

2

7 − �6
, �	 + �

2

7� 


��
2

−
��
2 �

��, (27) 

where ��  is the position of individual coil and is equal to

�� = �� + 8�9 − 2�, (28) 

and �� is the position of the motor’s forcer and 8 is the displacement of coils in the forcer. The induced

voltage for j-coil &���( is equal to
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��� = −��'��: � � 4����

���;′��, ������
������

������

���

����

. (29) 

The Θ′(�, �) is the sum of two Jacobi theta prime functions of the third kind 

Θ���, �� = <1�′&�'� + �'� , 2�( − 1�′ 6�'� + �'� −
1

2
, 2�7  =. (30) 

The complete model’s ODE can be written as 

�>���� =
1? 5 ��

�

��

, (31) 

where ? is the mass of the forcer. (31) can also be written in developed form 

���(�) = 1���
���
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����(�) − ������� � � �����������
,�� +  �! − 2	"


�
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���
 

���
�� � ����
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,�� +  �! − 2	− ��
2
�− � �
,�� +  �! − 2	 + ��

2
�'

���

���� #$$
$%
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(32) 

As the integration of Jacobi theta functions Θ(�, �) and Jacobi theta prime functions Θ′(�, �) over 

x and y are analytically insolvable, it is likewise only possible to solve (32) using numerical methods. 

The nature of Jacobi theta function makes the equation highly non-linear. 

3. Validation 

Based on the equation (32) a computer simulation was created and conducted in Wolfram Mathematica. 

The external voltage functions ���(�) were used as excitation while the position of the forcer ��(�) 

was the output parameter. The size and displacement of magnets and coils, magnet’s skew angle and 

magnetic field constant and coils’ resistance, were treated as constant parameters. 

Mathematica gives a wide variety of possible excitation functions to be supplied to the model. 

Likewise the stand's servo-drive can be set in "maintenance mode" giving, amongst other options, a 

direct control over the motor from a PC desktop. This function function allows subjecting the coils to 

a given voltage function. The variety of functions available from the servo-drive manufacturers is scarce 

but sufficient. All of them have the form of 
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������ = ����� sin 6@� + �9 − 1� 2$
3

7, (33) 

with ��(�) (maximum voltage) and ω (angular frequency) changeable in time along a step, a sawtooth

or a sinusoidal function. For the purpose of validation a step function of maximum voltage was used. 

The computer model was supplied with the following set of parameters, taken from the motor's 

documentation as well as from direct measurement, so that they resemble the actual motor as closely 

as possible. 

Table 1 - Parameters used  for the model 

Parameter Symbol Value 

Coils’ width �� 5,2 [mm] 

Coils’ length �� 49 [mm] 

Coils’ displacement 8 7,36 [mm] 

Magnets' field strength �� 1,5 [T] 

Magnets' width (x-axis) +� 4,7 [mm] 

Magnets’ length (y-axis) +� 53 [mm] 

Electrical resistance �� 6,7 [Ω] 

Magnets' displacement correlation 3 2,35 [-] 

Forcer’s mass ? 0,31 [kg] 

Maximum voltage ��� 1,5 [V] 

Voltage frequency @ 20 [rad/s] 

Voltage step function frequency A 1 [Hz] 

Figure 6 displays the function of maximum voltage and the resulting voltage on one of the coils 

taken from the simulation. 
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Figure 7. Function of maximum voltage (top most graph) and voltage 
 on the first coil (bottom most graph) 

Exactly the same function of voltage was applied to actual motor coils. The result of both the experiment 

and simulation are presented below. 

 

Figure 8. Response of computer simulation: 
 the position and velocity of inductor 
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Figure 9. Response of the actual motor 

In light of the result above further validation was abandoned. 

4. Conclusions 

The prepared and studied model does not yet reassemble actual motor with satisfactory precision. Most 

likely cause of this is the usage of documentation data for parameter identification. Instead the 

parameters should be identified with numerical methods. The model clearly expresses interesting 

chaotic behaviors, however the complexity of Jacobi theta functions necessitate a largely time 

consuming simulations. A further simplification of the model might be required to better study it. 
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