Nowak-Brzezińska, Agnieszka2021-07-152021-07-152017Nowak-Brzezińska, A. (2017). Outlier Mining in Rule-Based Knowledge Bases. Journal of Applied Computer Science, 25(2), 7-27. https://doi.org/10.34658/jacs.2017.2.7-271507-0360http://hdl.handle.net/11652/3876https://doi.org/10.34658/jacs.2017.2.7-27This paper introduces an approach to outlier mining in the context of rule-based knowledge bases. Rules in knowledge bases are a very specific type of data representation and it is necessary to analyze them carefully, especially when they differ from each other. The goal of the paper is to analyze the influence of using different similarity measures and clustering methods on the number of outliers discovered during the mining process. The results of the experiments are presented in Section 6 in order to discuss the significance of the analyzed parameters.enFair use conditionDla wszystkich w zakresie dozwolonego użytkuoutlier detectionsimilarity analysisclusteringknowledge-based systemswykrywanie wartości odstającychanaliza podobieństwagrupowaniesystemy oparte na wiedzyOutlier Mining in Rule-Based Knowledge BasesArtykułLUT LicenseLicencja PŁhttps://doi.org/10.34658/jacs.2017.2.7-2710.34658/jacs.2017.2.7-27