Książki, monografie, podręczniki, rozdziały (WFTIiMS)
Stały URI dla kolekcjihttp://hdl.handle.net/11652/173
Przeglądaj
Pozycja Metody matematyki aktuarialnej(Wydawnictwo Politechniki Łódzkiej, 2012) Kałuszka, Marek; Krzeszowiec, Michał; Okolewski, Andrzej; Poreda, TadeuszMatematyka aktuarialna powstała wraz z rozwojem działalności ubezpieczeniowej. Podzielona jest na teorię ubezpieczeń osobowych i teorię ubezpieczeń majątkowych i obejmuje szerokie spektrum zagadnień powiązanych z analizą matematyczną, matematyką finansową, teorią ryzyka, równaniami różniczkowymi, rachunkiem prawdopodobieństwa, teorią procesów stochastycznych, statystyką, metodami numerycznymi i innymi gałęziami matematyki. Metody matematyki aktuarialnej są stosowane w praktyce przez wysokiej klasy specjalistów, zwanych aktuariuszami. Ich zadaniem jest m.in. ocena ryzyka ubezpieczeniowego, kalkulacja składek ubezpieczeniowych, rent i rezerw oraz tworzenie nowych produktów ubezpieczeniowych. Problemami aktuarialnymi zajmowali się tak znakomici matematycy, jak Christiaan Huygens, Edmond Halley, Abraham de Moivre, Daniel Bernoulli, Leonhard Euler, Carl Friedrich Gauss i Harald Cramer. Skrypt powstał na bazie doświadczeń, jakie zdobyliśmy prowadząc wykłady i ćwiczenia z matematyki aktuarialnej dla studentów FTIMS oraz kursy przygotowujące do egzaminów aktuarialnych. Podczas zajęć natrafiliśmy na szereg problemów dydaktycznych. W standardowych podręcznikach nie było faktów potrzebnych do szybkiego rozwiązywania zadań z egzaminów. Materiał był rozproszony po kilkudziesięciu książkach i artykułach, zaś nazwy i oznaczenia tych samych pojęć były różne w źródłach literaturowych, co prowadziło do wielu nieporozumień. Aby ułatwić życie studentom (i sobie), postanowiliśmy uporządkować dostępne metody i zaprezentować je w zwartej i przejrzystej formie. Kompletując zagadnienia, staraliśmy się nie wychodzić poza listę tematów zamieszczonych w rozporządzeniu Ministra Finansów z dn. 20 listopada 2003 (Dziennik Ustaw Nr. 211, Poz. 2054). Większość dowodów zostało pominiętych, co radykalnie zmniejszyło objętość skryptu. Studentów pragnących pogłębić swoją wiedzę odsyłamy do literatury zamieszczonej na końcu rozdziałów. Rozdziały 1, 2 i 4 napisał Marek Kałuszka, rozdział 3 jest autorstwa Andrzeja Okolewskiego, a twórcą rozdziału 5 jest Michał Krzeszowiec, ale w weryfikacji całości uczestniczyliśmy wspólnie.