Przeglądaj {{ collection }} wg Autor "Abramczyk, Halina"
Teraz wyświetlane 1 - 2 z 2
- Wyników na stronę
- Opcje sortowania
Pozycja Introduction to laser spectroscopy(Elsevier, 2005) Abramczyk, HalinaThis book is intended to be used by students of chemistry, chemical engineering, biophysics, biology, materials science, electrical, mechanical, and other engineering fields, and physics. It assumes that the reader has some familiarity with the basic concepts of molecular spectroscopy and quantum theory, e.g., the concept of the uncertainty principle, quantized energy levels, but starts with the most basic concepts of laser physics and develops the advanced topics of modern laser spectroscopy including femtochemistry. The major distinction between this book and the many fine books available on laser physics and time resolved spectroscopy is its emphasis on a general approach that does not focus mainly on an extensive consideration of time resolved spectroscopy. Books at the correct level of presentation for beginners tend to be focused either totally or mainly on the basic fundamentals of lasers and include only a minimal amount of material on modern ultrashort laser spectroscopy and its chemical, physical and biological applications. On the other hand, books that contain the desired material to a significant degree, are too advanced, requiring too much prior knowledge of nonlinear optics, quantum theory, generation of ultrafast pulses, detection methods, and vibrational and electronic dynamics. This book is intended to fill the gap. More advanced problems of modern ultrafast spectroscopy are developed in the later chapters using concepts and methods from earlier chapters [...].Pozycja Oncologic photodynamic diagnosis and therapy: confocal Raman/fluorescence imaging of metal phthalocyanines in human breast cancer tissue in vitro(Royal Society of Chemistry, 2014) Abramczyk, Halina; Brożek-Płuska, Anna; Surmacki, Jakub; Musiał, Jacek; Kordek, RadzisławRaman microspectroscopy and confocal Raman imaging combined with confocal fluorescence were used to study the distribution and aggregation of aluminum tetrasulfonated phthalocyanine (AlPcS4) in noncancerous and cancerous breast tissues. The results demonstrate the ability of Raman spectroscopy to distinguish between noncancerous and cancerous human breast tissue and to identify differences in the distribution and aggregation of aluminum phthalocyanine, which is a potential photosensitizer in photodynamic therapy (PDT), photodynamic diagnosis (PDD) and photoimmunotherapy (PIT) of cancer. We have observed that the distribution of aluminum tetrasulfonated phthalocyanine confined in cancerous tissue is markedly different from that in noncancerous tissue. We have concluded that Raman imaging can be treated as a new and powerful technique useful in cancer photodynamic therapy, increasing our understanding of the mechanisms and efficiency of photosensitizers by better monitoring localization in cancer cells as well as the clinical assessment of the therapeutic effects of PDT and PIT.