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The structural macromechanics 1s applied to investigate the stabilitv of a composite plate. Thin
elastic plates with microperiodic structure in planes parallel to the midplane are examined. A new
refined approach is used to the problem of the dynamic stability of periodic plates. Some special
results are shown.

1. Introduction

The aim of our considerations is a dynamic stability of thin microperiodic plates. The
plates are assumed to have material and/or inertial properties, which are periodic fun-
ctions in planes parallel into the midplane. In these plates we can distinguish a small
(comparing to the minimum characteristic size of the plate in the midplane) repeated
element. The example of this plate is presented on Fig. 1.1.

vX
Fig. I.1. An example of a pcrii)dic plate
Rys. 1.1. Proyklad plyvty periodvezne;

The dynamic problems for periodic plates can be described by the equations of
three-dimensional micromechanics, which are too complicated to constitute the basis
for investigations of most engineering problems. Since they involve highly oscillating
coefficients. This is why the simplified models, called homogenized or local models,
are used to investigate these problems. Local models describe periodic plates using
constant effective stiffnesses and averaged mass densities. However, these models are
not able to describe some important features of the dynamic plate behaviour because
they neglect the length-scale effect, which plays a crucial role in the description
non-stationary processes.

In this paper we will take into account this effect of the microstructure size on the
dynamic stability. Our considerations are based on the structural (refined) macrodyna-
mics of periodic materials and structures (2, 3), in particular of microperiodic plates
(1). Using assumptions of the refined theory, which were presented in the aforementio-
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ned papers, and the assumptions of the Kirchhoff plate theory the governing equations
describing the dynamic plate behaviour were derived in (1).

These equations we will adapt here for problems of the dynamic stability, which
makes it possible to investigate the length-scale effect on the dynamic macrobehaviour
of microperiodic plates loaded in their midplanes.

2. Preliminaries

Let Ox,x,x; be the orthogonal cartesian coordinate system in the physical space.
Setting x=(x,,x,) and z=x;, we assume that the region of underformed plate 1s defined
by £2={(x,2):-h(x)/2 <z < h(x)/2, xeIT}, where ITis the region of midplane and /i(x)
1s the plate thickness at a point x< /7 We shall denote by 4:=(0,/,)*(0,/,) the periodici-
ty unit cell on Ox,x, plane, where /,, /> are length dimensions sufficiently small compa-
red to L which is the minimum characteristic length dimension of /7
(L;=min(L,,L,)). The size of the cell is described by the microstructure length

parameter | (defined by /= J/? + I} | where I<<Lp). Subscripts a, £, ...(, j. ...) run

over 1, 2 (over 1, 2, 3) and indices A4, B,... run over 1,..., N. Summation convention
holds for all aforementioned indices. We assume that A(x) i1s a 4-periodic function of x
and all material and inertial properties of the plate (o - a mass density, a,z.s - terms of
an elastic modulae tensor) are also 4-periodic functions of x and even functions of -.
For an arbitrary integrable  A4-periodic  function f{1) we  define

<f>= (/llz)"Lf (x)da, where <f> 1s an averaged (constant) value of /. By p, p~

tractions (in the xj-axis direction) on upper and lower plate boundaries, respectively,
will be denoted and 4 stands for the constant body force. We also define 7 as the time
coordinate.

2.1. Fundamental relations of the refined plate theory

We assume that every plane z=const is a material symmetry plane (as5=0, a33;,70)
and define caﬂ;/o':zaaﬂyo‘aa/l‘}a'/&}(a}ﬂ})-l-

Under the well known denotations this theory will be described by the following
relations.
o The kinematic constrains:

ux,2,0)=-2w, x.0),  3(x,z.0=(x, 1), (1)
where w(x,/) are displacements of points of the midplane assumed in the form
w(x, =, N+g ()1 (0, ()

where functions W(x,f), }™(x,f) are macrodeflections and inhomogeneity correctors,
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respectively, which are macrofunctions (cf (1)). Moreover, g'(x) are postulated
a priori microshape functions defining the class of disturbances of the plate deflections.
o The strain-displacement equations:

Cop = Uup T JZ_WUW/J ) (3)
where the non-linear term depends only on macrodeflections.
o The stress-strain relations for the plane stress:

Saf=Capr¥ v 533=0- (4)
o The equation of motion (weak form):

| hfpii, Sid=da + | T(su,,&u,, +25,,0¢,, )d=da =

T-h2 M-h?2 s (5)
= j [p™ ity (x, ) + p~ Sy (x,— &)]da + b j j péid=da,
7 T-h2

which has to be satisfied for every admissible virtual fields du and &g restricted by
(1), (2), (3).

For microperiodic plates from Eqs (1)+(5) the governing equations of the refined
(structural) theory were derived in (1). At the some time the macromodelling
hypothesis was applied, which states that for every macrofunction /" in calculation of
averages over 4 terms (&) can be neglected, where &- is a computational accuracy
parameter related to an arbitrary macrofunction F.

In the subsequent section the governing equations of the structural theory for
microperiodic plates with forces in the midplane will be obtained.

3. The governing equations

Under denotations

2 h2

U= J_I':Z pd=,  j= J’_h 2p_-3p(f:, dyps = L’ 2_,‘.zcaﬂ;/ou,__’ 6)
D

aflyo
where 4, j, d,p,5 are A-periodic functions and using the macromodelling hypothesis we
shall obtain

e the constitutive equations

_ B -8B
A/[aﬂ - Da/i'/dn/.ro' +D“/’L ’

M* =DiW .+ D)2,

4 _ 4 48 _ 4 B
=< daﬂ'/o’ >, Da/i =< da/}'/rig,;r(f >, D =< daﬂ;'dg,aﬂg,;/o‘ >, (7)

(8)

o the equations of motion

Meopg = NogW gt <p > W< j> W, +<pg’ 5" =< jgi N7 =p+b<u>,

. . - . 9)
M+ < ug? SW+ <jgisW, +<uglg® I+ < jglg? 1% =b< ug” >,
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where N,z are membrane forces acting in the plate midplane. The underlined terms in
(9) describe the length-scale effect on the dynamic stability of periodic plates. The new
basis unknowns are macrodeflections /¥ and inhomogeneity correctors } =, 4=1,..., V.
Let us consider a thin plate made of an isotropic homogeneous material and
having the 4-periodic thickness 4. In this case under the denotation
_ER
T 12(1-vY)’
where £, v are the constant Young modulus and the constant Poisson ratio, respecti-
vely, from Eq (6); and Eq (7), we obtain
D,;=<B[3,,0,(1-v)+3,,0 ,v]>
and after substituting the right-hand sides of Egs. (8) to Eqs. (9) the resulting system of
governing equations can be written in the form
<B>W =N W+ <u>W-<j>W_ + -
. B - B _*B
+Daﬂlf-yaﬁ+<yg ST -<jg, S =ptb<u>,

6 7,/5+<‘ng > +<-]g.u> .(1+

+DPIE 4 < ugg® S8 +<jg"igfl SI8 = b< g™ >,

The above equations constitute the basis for subsequent investigations.

4. Applications

In the order to estimate the length-scale effect on the dynamic stability of a
microperiodic plate we will investigate a stability of the rectangular isotropic
homogeneous plate, simply supported on the opposite edges, and having the 4-
periodic thickness. We will assume that body force b can be neglected. To simplify the
model only one microshape function g(x,,x»)=g'(x;,x2)=F[cos(2mc/l})cos(2ey/lx)+c],
which satisfies the condition <ug>=0 will be introduced. It can be shown that

<jg1>=0. Hence, setting }" = V"', D, = D;;, D= D" equations (10) take the form
<B>W, 05— N W p+<p> W- < j> WM +D, YV =D,
D W+ DV +< 1(g)? S5 +< j(g,) 54 =0,

We can show that Dp—Dﬂ =0. Solutions to Eqs. (11) can be assumed in the form

W= Zamn sin(a,,x,)sin(3,x,) cos(ar),

m=1.n=1

(11)

. (12)
J = b,.sin(a, x,)sm(f3, x,)cos(wt),

m=1.m=1

provided that external loads are given by
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[) = Z l)mn Sin(amxl ) Sin(anxj ) COS(G)’), (13)

n=1.n=1

where a,=mmL,, B=n7L,, mn=1,23,... and wis a vibration frequency.
Substituting the nght-hand sides of formulae for W, I, p into Eqs. (11) and assuming
that N,»=0 we obtain the system of linear algebraic equations for coefficients a,.,, &

{<B>[a,) + (BT +Nyla,) + Nu(B,) +
-{< lll>+<.]>[(a7")2 +(ﬁ’l)2]}}0)2alﬂﬂ —[Dll(a’")- +D22(ﬂn)2]bmn =p"lﬂ’ (14)
—[Dll(am): + D:Z(ﬂn)z ]CImn + {D - [< :Ll(g)3 > +< .](ga)z >]a)2}bmn = O
Denoting by
N, =-N,. N,=-N,,, (15)
the critical values of forces in the plate midplane the criterion of the loss of dynamic
stability can be written in the form
<B>[(a,) + T1P-N(a,) -N,(B,) + , )
[( m) ' (ﬁn) ]’ l( 2:1) \ _(ﬂn) __[[)“(am)-_{_Dz:(ﬂn)_]
—ku>+<j>(a,) +(B,) llw =0.
"[D“(a",)z + Dlz(ﬁn)z] ]) - [< :Ll(g)z >+ < .](gu)z >](02
(16)
From the above formula, assuming that the critical forces are acting only in the x;-axis
direction (V>=0) we will obtain the following formula for N,
N e M@V H BT <u>r<jola) B e
(a,) (a,)
_ [Dll(am): +D::(ﬁn):]:
(@,) (D= (<pug) >+<j(g.,)’ ]

(17)

which takes into account the length-scale effect in the dynamic stability. This effect is
described by the underlined terms.

The above analysis was carried out in the framework of the structural theory. In
the order to pass to the local theory we will neglect the underlined terms in Egs. (11).
After some manipulations the formula for the critical force N, in the x,-axis direction

takes the form

N, =<B> (a,) + (@,,)z]: _SHU>+<]> [(a:,): +(8,)°] 0 +
~(a,,.)' . (a,)” (18)
_[Dy(a,) + D (B)]
(a,)'D '

We can observe qualitative differences between formulae (17) and (18) for the

value of a critical force. More . detailed analysis of the obtained results will be
investigated in a separate paper.
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