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The method ofmacro-modelling of nonperiodic multilayered elastic plates has been proposed in [l ]. 
The proposed method is based on certain concepts of the nonstandard analysis (2,3] combined with 
some a priori postulated physical assumptions. In this paper, using this method the homogenized 
model of nonperiodic plate will be derived and applied to the evaluation of inhomogeneity effects 
on a critical force and a free vibration frequency for a simply supported laminated plate. 

1. Introduction 

An underformed plate which occupies a region n in physical space (parametrized by 
cartesian orthogonal coordinates x1,x2,x3 ) bounded by the coordinate planes x3=h +, 
X3=h- where h+>O, h-<o and by cylindrical surface r:aflx(h-,h+), where fI is a 
regular region on Ox1x2 plane is considered in the analysis. We define 
X=(x1,x2,x3)en, Xa=(x1,x2)efl, x3e[h-,h1, 'tE['t0,'tr) stands for a time coordinate. 

The plate is made of N basie layers bounded by the coordinate plan es x3= h-+śK, 
K=0,1,2, ... ,N, with l;o=O, śN=h ,where h=h+-h- denotes the thickness of the plate; ŚK-1 
describes the distance of K-th basie lamina from the boundry plane x3=h-. The 
thickness EK=ŚK-ŚK-I ,K=l,2, ... ,N, (śK>śK-t), of every basie layer is assumed to be 
sufficiently small when compared to the thickness h of the plate; this means that we 
shall deal with the nonperiodic plates made of a large number of laminae. Moreover, 
let every basie layer (ŚK-t,ŚK) consists of three sublayers, made of three different -homogeneous anisotropic linear-elastic materials; by óK, óK we denote the 

thicknesses of upper and middle sublayer of K-th basie unit, respectively. 
Throughout the paper subscripts ij run over 1,2,3, subscripts a,p,y,ó and 

indices a,d run over the sequence 1,2. The summation convetion holds with respect 
to all aforementioned indices. 

The composite is loaded on the boundary planes x3=h +, x3=h- by the known 

normal surface tractions P! (xa, 't), p~ (xa, 't), respectively, and on the part r of the 

boundary the displacements ur(x,'t), xer, are known. By ui(x,'t),eij(x,'t),tij(x;r),b3(x,'t) 
we denote displacements, strains, stresses and body forces, respectively, as functions 
defined ( almost everywhere ) on n. 

We shall define the subsets of [h-, h +] by means of: 
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N 

L=LJ(h-+śK-1,h-+śK-1+TlKEK); T1K=8K/eK; 11K=8K/eK; 
K=I 

N 

S= LJ(h- +ŚK-1 +TlKEK,h- +ŚK-1 +(11K +llK)eK); 
K=I 

N 

U=LJ{h-+śK-i+{riK+llK)eK,h-+śK) ; K=l,2, ... ,N (1.1) 
K=I 

Hence the mass denisity p(x3) and the tensor of elastic constants cu1c1(x3) of the 
nonperiodic plate under consideration will be given by: 

( L p, L C ijkl ) gdy X 3 E L 

( P( X 3 ), C ijkl ( X 3)) = (Sp, S C ijkl) gdy X 3 E S 

(Up, U Cijkl) gdy X3 EU ; (1.2) 

where LP, Lcij\ sp, s cijkl' up, ucijkl are materiał constants related to the parts flxL, 
nxs, rrxu of the region n, respectively. 

We define the discrete functions [1], (K=l,2, ... ,N), such that: 

~( h- + ~) =" /;K; TJ( h- + :h) =" TJK; +- + ~) =" rjK; (J.3) 

Next, we "approximate" functions ś(·), ri(·), T\C-) .by certain smooth functions 

ś(x3),111(x3), T12(x3), respectively, defined on the interval [h-, h +]: 

ś:[h-,h+]~[O,h]; ri 1:[h-,h+]~{0,1); ri 2:[h-,h+]~(O,l); (1.4) 

where ś(x3) is a strongly monotone function, such that ś(x3=h-)=0, ś(x3=h +)=h and 
ri 1(x3), T12(x3) must satisfy a condition: T\i(x3)+ T\z(x3)<1. 

2. The primary problem 

The governing equations of the plate under consideration will be represented by: 
(i) The strain-displacement relations 

Eap {x, -r) = u(a.!3) (x, -r) + u3,a (x, -r)u3,p (x, -r) I 2; 

Ea3(x,-r)=u(a,J)(x,-r); e 33 (x,-r)=u3,3(x,-r); xeO; -re[-r0 ,-rr]; (2.1) 

(ii) The stress-strain relations 

ta13 (x,-r) = capyl'{x3)ey6(u)(x,-r); ta3(x,-r) = 2ca336 (x3)e36 (x,-r); (2.2) 

where: c°py6(x3) = capy& (x3)-cal333(x3)cY633(x3)/ c3333(x3); 

(iii) The principle of virtual work 
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h.,. 

J J[tallóeap + 2t
03

óea3 + t
33

óe33 }mdx, = [p!Ou,J X)'h+ + p'..óu,J ,,.h-Jdn + 
h- n n 

h.,. h+ 

+ f f pb38u3dlldx 3 - f f pil i8uidlldx 3 ; dll = dx 1dx 2 ; 8ui = O on r; (2.3) 
h-n h-n 

Now we formulate the following: 

Problem P: for known n, P!, p~, b3
, initial and boundary conditions and Lp, LciJ"kl' 

sp, s cijkl' up, ucijkl as well as for known L,S,U, find the displacements u(x;t) and 
stresses t(x,t), xEO, tE[to,tr], such that Eqs.(2.1)-(2.3) under conditions (1.2) hold. 

3. Passage to the nonstandard problem 

Applying the approximation hypothesis [l] and the homogeni:zation hypothesis [3] 

we will pass from P to the nonstandard problem p(w). 
The micro-macro locali:zation hypothesis: the approximate solution to the 

nonstandard problem p(w) can be expected in the class of functions given by: 

u~w) (x, t) = *Wa (xa, t) + x3 * Da (xa, t) + ha (x 3 ) * Q~ (xa, t); 

u~00 \x,t)=*W3(xa,t); XE*O; tE*[t 0 ,tr]; a=l,2, a=l,2; (3.2) 

where 

(i) *Wi, *Da, *Q~ are (sufficiently regular) unknown standard functions [2], fields 

Wj, Da are called macrodisplacements [3], vector Q~ is called microlocal (or 

correction) parameters [3], 
(ii) ha(x3) are postulated a priori, linear independent, nonstandard micro-shape 
functions [3]; they attain only infinitesimal values and hence the therms involving 
ha(x3) can be neglected, but their derivatives attain values that are not infinitely 
small, so they play an essential role ifwe calculate the strains and stresses. 

Taking into account the known theorems of the nonstandard integral calculus 
[2] and after neglecting the terms involving micro-shape functions (but not their 
derivatives!) we can pass from the nonstandard structure to the primary structure. 

The approximate solution to the nonstandard problem p(w) can be found as the 

solution to a certain problem P for the macrodisplacements Wj , Da and the 

correction parameters Q~; XaEil, tE[t0,tr], the problem will be called the effective 

(microlocal or standard) problem and it does not involve any nonstandard entity. 

4. The eff ective problem 
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Since the functions Wi , Da , Q~ are arbitrary and independent, then after denotations: 

h+ h+ h+ 

Nal3(xa,-r)= JTaPdx3; Mal3(xa,-r)= fx3Tapdx3; Qa(Xa,-r)= JTa3dx3; 

h+ h+ h+ 

p3 (xa, -r) = P! + p~ + f p(X3)b
3
dx3; f = f p(X3)dx3 ; f = f p(X3)x~dx3 ; ( 4.1) 

h- h- h-

where the mean stress tensor ij(x,-r) and the mean mass density p(x3) have a form: 

Taj (x, -r)=Ltaj (x, 't)T'l 1 (x3 )+ 5taj(x, -r)T'1 2 (x3 )+utaj (x, -r)( 1- Tl 1 (x3) - T'12 (x3)); ( 4.2) 

p(x3)=LPT'l1 (x3)+ 5 PT'12 (x3)+ u P(l - T'l1 (x3) - Tl2 (x3)); (4.3) 

and using the divergence theorem as well as du Bois lemma, 'we obtain from the 
principle of virtual work tha following equations ofhomogenized model: 
(i) the plate equations of motion 

ap _ - ·· a . ap " a _ " ·· a . 
N ,13(Xa,'t)-fW (xa,'t), M ,13(Xa,'t)-Q (xa,-r-fD (xa,-r), 

" a ( ap ) 3 _ - - 3 . Q ,a(Xa,-r)+ N (xa,-r)W3,a(Xa,'t) ,p +p (xa,-r)- fW (xa,-r), 

(ii) the following system of linear algebraic equations for correctors: 

(4.4) 

p~33oQg (xa, -r) = -h [ c~33o] (w3,ó (xa, -r) + Do (xa '-r)); ( 4.5) 

where: 

h+ ( L ca33ó s ca33ó) J + dx 3 gdy a= b = l; 
h- 1l1(X3) 1l2(X3) 

h+ ( s ca33ó u ca33ó ) 
p~33ó = J + dx3 gdy 

h- 1l2(X3) l-111(X3)-T12(X3) 
a= b = 2; (4.6) 

h+ Sca33o {a=lib=2 lub_ 
- J ( ) dx3 gdy a= 2 i b = 1 ' 

h- 112 X3 

[ cf33o] =LCa33ó _SCa33ó; [er)()] =SCa33o _ U Ca33S; (4.7) 

A solution to the equations (4.5) can be written in the form 

Qg (xa, -r) = -hKg13y [ cf
3
P] {W3,13 (xa, -r) + Dp (xa, -r)); (4.8) 

where K~31 are defined by: P~331 K~131 = 8~8i; (4.9) 

(iii) the following plate constitutive equations 
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Nap (xa, t) = Bapyo[ W<r ,o) (xa, t) + W3,y (xa, t)W3,6 (xa, t) / 2] + Fapyo D(y,6) (xa, t); 

Map (xa, t) = Fapy6[ W{y,6) (xa, t) + W3,y (xa, t)W3,6 (xa, t) / 2] + Gapyo D<r ,6) (xa, t); 

Q a ( X a ' 't) = ( 8 a33j3 - Ha 3313 X W 3,13 ( X a ' 't) + D 13 ( X a ' 't)] ; ( 4. 1 O) 

where: 
h+ 

Ha33P = h2 [ ca33ó] Kad [ cy33p ]· 8 apy6 = fcaPro(x )dx . 
- a 633y d , - J '-' 3 3 , 

h-

~ ~ ~ 

Ba33ó = Jca33ó(X3)dx3; Faj3y6 = Jcal3y6(X3)X3dX3; Gaj3y6 = Jcal3y6(X3)x~dx3; 
h- h- h-

capy6 =LCapy6T)1 (x3)+ Scal3yoT)2 (x3)+ Ucal3yo ( 1-T) 1 (x3 )- T'12 (X3)) ; ( 4.11) 

It can be proven that tensors B al3yo , F apy6 , G al3yo , ( B a33/3 - H a33P) are 
positive definite. 

Combining ( 4.1 O) and ( 4.4) we arrive at the system of five nonlinear 
differential equations for five basie unknows: Wi, Da. However, in stability and 
vibration problems the goveming system of equations will be written in the form: 

{

( ga3313 - Ha3313 X w3,al3 + D(a.13)] + NaPw3,aj3 + p3 - fW3 = O; (4.12) 

Fal3r0 [w +W W ]+GapyoD -(sa33P _Ha33P'iw +D ]-ma =O· r ,op 3.r 3,613 r ,613 A 3.13 13 , 

{
Naf - 7wa = O; Nap = BaPr0[w +_!_W W ] + Fapyo D · (4.13) .... y,o 

2 
J,y 3,6 (r.o)• 

The underlined terms in (4.12), (4.13) depend on Fal3yo and represent the 
coupling between Na13 and Ma13 in the plate constitutive equations ( 4.1 O). 

5. Applications 

In order to illustrate the generał results obtained in the paper we shall apply 
equations ( 4.12), ( 4.13) to the analysis of the stability and free vibrations of a 
rectangular plate which is simply suported on edges x1=0, x1=a1. We shall treat this 
problem as onedimensional, setting Xa=X1. For simplicity we shall neglect the inertia 

terms rwa and the body forces. We also assume that p3=0 and N 11 =N11(t). Let: 

(5.1) 
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Using the aforementioned assumptions and subsituting (5.1) into (4.12) we obtain for 
Arn:;t:O' Brn:;t:O: 

fro2 -(Bl331 _ 8nJ1)"-2 + N11~,.2 m m m 
=o; 

-(B1331 _ 8 nJ1)"-m fro~ -Ó1111"-~ -(B1331 _ 8 n31) 
(5.2) 

where: Nl\r)=-N11('r); Ó1111 =G1111_(F1111)2 /B1111; "-rn=mn:/a1. 

Let us introduce parameters: Ę, = H1331 ( B1331 r'; s2 = B1331 (a1 )2 ( G1111 n: 2 r1
; 

where Ę, characterizes the relative heterogenity of laminated plate structure (for c;;=o 
we are dealing with a homogeneous plate) and s is the plate slendemess parameter. 

a) if ro~ = O, then for a critical force we obtain the condition: 

N~= B1331 {I-Ę,)[t+(l-Ę,)s2 r\ (5.3) 

which describes the effect of the heterogeneity of a laminated plate structure on the 
plate stability. 

(ii) if N 11 
= O then, after neglecting terms fro ~ we obtain the formula: 

wf =n:2(fa1rls1331(1-Ę,)[1+(l-Ę,)s2rl; (5.4) 

which has a form similar to (5.3) and characterizes the effect of a laminated plate 
structure on the plate free vibration frequency. 

6. Conclusions 

From numerical example, it follows that the effects of heterogenity of the plate under 
consideration on a critical force and a free vibration frequency are negligibly small. 
However, if Ę, is close to 1 then the heterogenity of laminated plate strucutre leads to 
the sudden decrease of the critical force and the free vibration frequency. 
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