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1. INTRODUCTION

In this note we will consider the following discrete boundary value problem which is
subject to a certain parameter, namely{

∆
(
|∆u(k − 1)|p(k−1)−2∆u(k − 1)

)
+ f(k, u(k), w) = 0, k ∈ N(1, T ),

u(0) = u(T + 1) = 0,
(1.1)

where T ≥ 2 is an integer, ∆ is the forward difference operator defined by ∆u(k) =
u(k + 1) − u(k), u (k) ∈ R for all k ∈ N(1, T ), for fixed a, b such that a < b < ∞,
a ∈ N∪{0}, b ∈ N we denote N(a, b) = {a, a+1, . . . , b−1, b}, f : N(1, T )×R×W→ R,
w ∈ W, the space W is some topological space (in most applications one takes R in
place of W), p : N(0, T )→ [2,+∞).

Put
p− = min

k∈N(0,T )
p (k) , p+ = max

k∈N(0,T )
p (k) .

c© AGH University of Science and Technology Press, Krakow 2014 851



852 Joanna Smejda and Renata Wieteska

The boundary value problem for a discrete anisotropic equation has been a very
active area of research recently, we refer to the references by [2–4, 6, 10, 16, 17]. The
authors have studied the boundary value problems with the Dirichlet, the Neumann
or periodic conditions using critical point theory.

Our goal is to find conditions under which problem (1.1) has or has not solutions
with respect to any parameter from some set (see for example [7, 11]). The approch
relies on the application of the direct method of the calculus of variations and the
mountain pass technique, which is a basic tool in critical point theory ([15, 18, 20]).
Apart from that we investigate the continuous dependence on parameters, where we
do not need to have the mountain pass geometry. The continuous dependence on
parameters has been discussed for instance by [5, 7, 13, 21]. In this paper we consider
the same boundary conditions as in [7], but the main operator involves a variable
exponent, the p(k)-Laplacian being a generalization of the p(x)-Laplacian ([9]). Based
on the results in the area of differential equations ([12,19]) we examine some problem
within a non-variational framework. The uniqueness of solutions is undertaken too.

The paper is organized as follows. Firstly, we provide some auxiliary materials.
Then we give a variational formulation of the considered problem. The existence of
nontrivial solutions and the continuous dependence on parameters are investigated
in the next section. The example is also provided. Afterwards we focus on finding
conditions under which the examined equation has an unique solution. Further, we
examine some non-variational problem. The nonexistence of solutions is the subject
of the last section.

Let F (k, x, y) =
x∫
0

f(k, s, y)ds for all (k, x, y) ∈ N(1, T )× R×W.

We assume that the nonlinear term satisfies:

(H0) f ∈ C(N(1, T )× R×W;R);
(H1) there exist constants c > 0 and r > p+ such that

|f(k, x, y)| ≤ c(1 + |x|r−1) for all k ∈ N(1, T ), (x, y)∈R×W;

(H2) limx→0
f(k,x,y)

|x|p+−1
= 0 uniformly for all k ∈ N(1, T ), y ∈W;

(H3) there exists a constant µ > p+ such that

0 < µF (k, x, y) ≤ xf(k, x, y) for all k ∈ N(1, T ), x ∈ R\ {0} , y ∈W;

(H4) there exist constants c1, c2 > 0 such that

F (k, x, y) ≥ c1|x|µ − c2 for all k ∈ N(1, T ), x ∈ R, y ∈W.

The condition f ∈ C(N(1, T ) × R ×W;R) means that for each k ∈ N(1, T ) the
real valued function f (k, ·, ·) is jointly continuous on R×W.
By a solution to problem (1.1) we mean such a function u : N(0, T + 1) → R,
which satisfies the given equation on N(1, T ) and the boundary conditions. Solutions
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are investigated in the space E of functions u : N(0, T + 1) → R such that u(0) =
u(T + 1) = 0. We will consider the space E with the norm

‖u‖ =

(
T+1∑
k=1

|∆u(k − 1)|2
) 1

2

.

In the space E we can also (like in [3]) introduce the Luxemburg norm

‖u‖p(·) = inf

{
v > 0 :

T+1∑
k=1

∣∣∣∆u(k − 1)

v

∣∣∣p(k−1)

≤ 1

}
.

Since E has a finite dimension these norms are equivalent, therefore there exist con-
stants L1 > 0, L2 > 1 such that

L1 ‖u‖p(·) ≤ ‖u‖ ≤ L2 ‖u‖p(·) . (1.2)

Now, let ϕ : E → R be given by the formula

ϕ (u) =

T+1∑
k=1

|∆u(k − 1)|p(k−1),

then inequalities
‖u‖p

+

p(·) ≤ ϕ (u) ≤ ‖u‖p
−

p(·) , if ‖u‖p(·) < 1, (1.3)

‖u‖p
−

p(·) ≤ ϕ (u) ≤ ‖u‖p
+

p(·) , if ‖u‖p(·) > 1 (1.4)

hold.

2. PRELIMINARY RESULTS

First, we recall some essential tools from critical point theory. Let E be a real reflexive
Banach space and J ∈ C1(E,R). We say that J satisfies the Palais-Smale condition
– the (PS) condition for short - if for any sequence {un} ⊂ E, such that {J(un)}
is bounded and J

′
(un) → 0 as n → ∞, there exists a convergent subsequence. This

condition is needed for the mountain pass lemma.

Lemma 2.1 (Mountain Pass Lemma [20]). Let E be a real reflexive Banach space.
Assume that J ∈ C1(E,R) and J satisfies the (PS) condition. Suppose also that:

1) J(0) = 0,
2) there exist ρ > 0 and α > 0 such that J(u) ≥ α for all u ∈ E with ‖u‖ = ρ,
3) there exists u1 in E with ‖u1‖ > ρ such that J(u1) < α.
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Then J has a critical value c ≥ α. Moreover, c can be characterized as

inf
g∈Γ

max
u∈g([0,1])

J(u),

where Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = u1}.

The functional J is called anti-coercive if lim
‖x‖→+∞

J(x) = −∞.

Directly from the definition of the (PS) condition and the notion of anti-coercivity we
get the following lemma.

Lemma 2.2. Let E be a finite dimensional Banach space and let J ∈ C1(E,R) be
an anti-coercive functional. Then J satisfies the (PS) condition.

Proof. Suppose to the contrary, i.e. suppose that in a finite dimensional Banach space
the Gâteaux differentiable anti-coercive functional does not satisfy the (PS) condition.
There exists an unbounded sequence {un} such that J

′
(un) → 0 as n → ∞ and

sequence {J(un)} is bounded. There exists a subsequence {unk} such that ‖unk‖ →
+∞ as k →∞ (since {un} is unbounded) and by anticoercivity we get J(unk)→ −∞.
The contradiction completes the proof.

Let us also recall the inequalities which we use throughout the paper (see [8]):

(A1) for every u ∈ E and for every m ≥ 2 we have

T+1∑
k=1

|∆u(k − 1)|m ≤ 2m
T∑
k=1

|u(k)|m ;

(A2) for every u ∈ E and for every m > 1 we have

T∑
k=1

|u(k)|m ≤ T (T + 1)m−1
T+1∑
k=1

|∆u(k − 1)|m ;

(A3) for every u ∈ E and for every m ≥ 1 we have

T+1∑
k=1

|∆u(k − 1)|m ≤ (T + 1) ‖u‖m ;

(A4) for every u ∈ E and for every m ≥ 2 we have

T+1∑
k=1

|∆u(k − 1)|m ≥ (T + 1)
2−m

2 ‖u‖m ;

(A5) for every u ∈ E we have

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≤ (T + 1)‖u‖p
+

+ (T + 1).
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3. VARIATIONAL SETTING

For a fixed parameter w ∈ W solutions to problem (1.1) correspond to the critical
points of the following functional Jw : E→ R:

Jw(u) =

T+1∑
k=1

1
p(k−1) |∆u(k − 1)|p(k−1) −

T∑
k=1

F (k, u(k), w). (3.1)

Lemma 3.1. Assume that (H0) holds and let a parameter w ∈ W be fixed. Then
u ∈ E is a critical point of Jw if and only if u solves the problem (1.1).

Proof. Let us fix u, h ∈ E. We consider a function ψ : R→ R defined by

ψ(ε) = Jw(u+ εh)

=

T+1∑
k=1

1
p(k−1) |∆ (u(k − 1) + εh(k − 1)) |p(k−1) −

T∑
k=1

F (k, u(k) + εh(k), w).

Recalling that h (0) = h(T + 1) = 0 we obtain, what follows by summation by parts
(see [1]),

ψ
′
(0) =

T+1∑
k=1

|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆h(k − 1)−
T∑
k=1

f(k, u(k), w)h(k)

= |∆u(T )|p(T )−2∆u(T )∆h(T ) + |∆u(k − 1)|p(k−1)−2∆u(k − 1)h(k − 1)|T+1
1

−
T∑
k=1

∆
(
|∆u(k − 1)|p(k−1)−2∆u(k − 1)

)
h(k)−

T∑
k=1

f(k, u(k), w)h(k)

= −
T∑
k=1

(
−∆

(
|∆u(k − 1)|p(k−1)−2∆u(k − 1)

)
− f(k, u(k), w)

)
h(k).

Since h was arbitrarily fixed, we arrive at the assertion.

By the above lemma, it easy to obtain the following result.

Lemma 3.2. Assume that (H0) holds. If u is a solution to problem (1.1), then

T+1∑
k=1

|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆h(k − 1) =

T∑
k=1

f (k, u(k), w)h(k) for any h ∈ E

(3.2)
and

T+1∑
k=1

|∆u(k − 1)|p(k−1) =

T∑
k=1

f (k, u(k), w)u(k). (3.3)
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4. EXISTENCE OF NONTRIVIAL SOLUTIONS

In this section we consider the existence of solutions to equation (1.1). Note that the
solution which we obtain need not be unique. We will study the question of uniqueness
of solutions in the next section. However, solutions which we obtain are necessarily
nontrivial. We also investigate the continuous dependence on parameters.

Theorem 4.1. Assume that conditions (H0), (H2), (H4) hold. Then for any w ∈W
problem (1.1) has at least one nonzero solution.

Proof. Let us fix w ∈W. We shall show that Jw defined by (3.1) satisfies the assump-
tions of Lemma 2.1. By (H4), (A5), (A1) and (A4), we obtain, for any u ∈ E,

Jw(u) =

T+1∑
k=1

1
p(k−1) |∆u(k − 1)|p(k−1) −

T∑
k=1

F (k, u(k), w)

≤ 1
p−

T+1∑
k=1

|∆u(k − 1)|p(k−1) −
T∑
k=1

(c1|u(k)|µ − c2)

≤ 1
p− (T + 1)‖u‖p

+

+ 1
p− (T + 1)− c1

T∑
k=1

|u(k)|µ + c2T

≤ 1
p− (T + 1)‖u‖p

+

− c12−µ (T + 1)
2−µ
µ ‖u‖

µ

+ 1
p− (T + 1) + c2T

(4.1)

and, as a consequence, Jw(u)→ −∞ as ‖u‖ → +∞, since µ > p+. By Lemma 2.2, it
follows that Jw satisfies the (PS) condition.

By (H2), for any given 0 < ε < (T+1)
2−p+

2

T (T+1)p+
, there exists δ > 0 such that for all

|x| ≤ δ we have

|f(k, x, y)| ≤ ε|x|p
+−1 for all k ∈ N(1, T ), y ∈W.

For 0 < x ≤ δ we observe that

|F (k, x, y)| =

∣∣∣∣∣∣
x∫

0

f(k, s, y)ds

∣∣∣∣∣∣ ≤
x∫

0

|f(k, s, y)| ds

≤
x∫

0

ε |s|p
+−1

ds = ε

x∫
0

sp
+−1ds = ε

sp
+

p+
|x0 = ε

xp
+

p+
= ε
|x|p

+

p+

and for −δ ≤ x < 0 we obtain

|F (k, x, y)| =

∣∣∣∣∣∣
x∫

0

f(k, s, y)ds

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0∫
x

−f(k, s, y)ds

∣∣∣∣∣∣
≤

0∫
x

ε |s|p
+−1

ds = ε

0∫
x

(−s)p
+−1ds = −ε (−s)p+

p+
|0x = ε

|x|p
+

p+
.
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Finally, for any 0 < ε < (T+1)
2−p+

2

T (T+1)p+
there exists δ > 0 such that for all |x| ≤ δ we have

|F (k, x, y)| ≤ ε |x|
p+

p+
for all k ∈ N(1, T ), y ∈W. (4.2)

Take u ∈ E such that |u(k)| ≤ δ, for any k ∈ N(1, T ). Then, for any
k ∈ N(1, T + 1), we get |∆u(k − 1)| ≤ 2δ. Hence

‖u‖ ≤ 2

(
T+1∑
k=1

δ2

) 1
2

= 2δ (T + 1)
1
2 .

Let u ∈ E with ‖u‖ ≤ 1. Then |∆u(k − 1)| ≤ 1 for any k ∈ N(1, T + 1), so by (A4)
we obtain

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥
T+1∑
k=1

|∆u(k − 1)|p
+

≥ (T + 1)
2−p+

2 ‖u‖p+ . (4.3)

Put η = min
(

2δ (T + 1)
1
2 , 1

)
. For u ∈ E with ‖u‖ ≤ η, by (4.2), (4.3), (A2) and

(A3) it follows that

Jw(u) =

T+1∑
k=1

1
p(k−1) |∆u(k − 1)|p(k−1) −

T∑
k=1

F (k, u(k), w)

≥ 1

p+

T+1∑
k=1

|∆u(k − 1)|p(k−1) − ε 1

p+

T∑
k=1

|u(k)|p
+

≥ 1

p+
(T + 1)

2−p+
2 ‖u‖p

+

− ε 1

p+
T (T + 1)

p+ ‖u‖p
+

= ‖u‖p
+ 1

p+

(
(T + 1)

2−p+
2 − εT (T + 1)

p+
)
.

So, there exists positive numbers 0 < ρ < η and

α =
ρp

+

p+

(
(T + 1)

2−p+
2 − εT (T + 1)

p+
)

such that Jw(u) ≥ α for all u ∈ E with ‖u‖ = ρ. It is also obvious that Jw(0) = 0.
Since Jw is anti-coercive, there exists u1 which satisfied condition 3 from the Mountain
Pass Lemma. Therefore, the functional Jw has the mountain pass geometry.

By the Mountain Pass Lemma (see Lemma 2.1), functional Jw has a critical value
c∗ > 0, i.e. there exists u∗ ∈ E such that Jw(u∗) = c∗ and J ′w(u∗) = 0. It is obvious
that u∗ 6= 0, because Jw(0) = 0. The critical value c∗ can be characterized as

Jw(u∗) = inf
g∈Γ

max
t∈[0,1]

Jw(g(t)), (4.4)

where Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = u1}. We have shown the existence of
a solution to problem (1.1) for any parameter w ∈W.
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Next, we prove that for a fixed parameter all solutions of (1.1) are bounded.

Theorem 4.2. Assume that conditions (H0)–(H4) hold. Let a parameter w ∈ W be
fixed. If u is a solution to problem (1.1), then there exists constants C1, C2 > 0 such
that C1 ≤ ‖u‖ ≤ C2.

Proof. We will distinguish two cases. First we will assume that u is a solution to (1.1)
such that ‖u‖p(·) ≤ 1. Put γ = 1

T (T+1)p+Lp
+

2

. By (H2), for any given 0 < ε < γ, there

exists δ > 0 such that for all |x| ≤ δ we have

|f(k, x, y)| ≤ ε|x|p
+−1 for all k ∈ N(1, T ), y ∈W.

By (H1), there exists a constant cε > 0 such that for all |x| > δ we have

|f(k, x, y)| ≤ cε|x|r−1 for all k ∈ N(1, T ), y ∈W.

Indeed, if |x| > δ then

1 + |x|r−1
<

(
1

δr−1
+ 1

)
|x|r−1

,

so
|f(k, x, y)| ≤ c(1 + |x|r−1) ≤ cε|x|r−1,

where cε =
(

1
δr−1 + 1

)
. Thus for any given 0 < ε < γ, there exists a constant cε such

that
|f(k, x, y)| ≤ ε|x|p

+−1 + cε|x|r−1 for all k ∈ N(1, T ), y ∈W. (4.5)

By (1.3), (3.3), (4.5), (A2), (A3) and (1.2), we get

‖u‖p
+

p(·) ≤ ϕ (u) =

T+1∑
k=1

|∆u(k − 1)|p(k−1) =

T∑
k=1

f (k, u(k), w)u(k)

≤ ε
T∑
k=1

|u(k)|p
+

+ cε

T∑
k=1

|u(k)|r

≤ εT (T + 1)
p+ ‖u‖p

+

+ cεT (T + 1)
r ‖u‖r

≤ εT (T + 1)
p+
Lp

+

2 ‖u‖
p+

p(·) + cεT (T + 1)
r
Lr2 ‖u‖

r
p(·) .

Hence

‖u‖p(·) ≥

(
1− εT (T + 1)

p+
Lp

+

2

cεT (T + 1)
r
Lr2

) 1

r−p+

.

Put

C̃1 =

(
1− T (T + 1)

p+
εLp

+

2

T (T + 1)
r
cεLr2

) 1

r−p+

.
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Notice that 0 < C̃1 < 1. Indeed, we get

0 < 1− εT (T + 1)
p+
Lp

+

2 < 1,

because
0 < ε <

1

T (T + 1)p+Lp
+

2

.

By definition, cε > 1 and L2 > 1, therefore cεT (T + 1)
r
Lr2 > 1. Thus 0 < C̃1 < 1.

In the second case, we will assume that u is a solution to (1.1), such that
‖u‖p(·) ≥ 1. Then, we can find constant C̃2 > 1 such that ‖u‖p(·) ≤ C̃2.

By (H3), (4.4), (4.1) and (1.2) we deduce that

µ(Jw(u) +

T∑
k=1

F (k, u(k), w))−
T∑
k=1

f(k, u(k), w)u(k)

≤ µJw(u) + µ

T∑
k=1

1

µ
f(k, u(k), w))u(k)−

T∑
k=1

f(k, u(k), w)u(k)

= µJw(u) = µ inf
g∈Γ

max
u∈g([0,1])

Jw(g(t)) ≤ µ max
t∈[0,1]

Jw(tu1)

= µ max
t∈[0,1]

Jw

(
tu1

‖u1‖p(·)
‖u1‖p(·)

)
≤ µmax

t≥0
Jw

(
t

u1

‖u1‖p(·)

)
≤ µmax

t≥0

(
1
p− (T + 1)Lp

+

2 tp
+

− c12−µ (T + 1)
2−µ
µ Lµ1 t

µ

+ Tc2 + 1
p− (T + 1)

)
,

where u1 is an element in the space E which satisfies condition 3 from the Mountain
Pass Lemma. On the other hand, by (3.1) and (3.3), we get

µ(Jw(u) +

T∑
k=1

F (k, u(k), w))−
T∑
k=1

f(k, u(k), w)u(k)

= µ

T+1∑
k=1

1

p(k − 1)
|∆u(k − 1)|p(k−1) −

T∑
k=1

|∆u(k − 1)|p(k−1)

≥ µ 1

p+

T+1∑
k=1

|∆u(k − 1)|p(k−1) −
T+1∑
k=1

|∆u(k − 1)|p(k−1)

=

(
µ

1

p+
− 1

) T+1∑
k=1

|∆u(k − 1)|p(k−1).

As a consequence, we obtain(
µ

1

p+
− 1

) T+1∑
k=1

|∆u(k − 1)|p(k−1)

≤ µmax
t≥0

(
1
p− (T + 1)Lp

+

2 tp
+

− c12−µ (T + 1)
2−µ
µ L1t

µ

+ Tc2 + 1
p− (T + 1)

)
.
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Bearing in mind (1.4) we have(
µ

1

p+
− 1

)
‖u‖p

−

p(·)

≤ µmax
t≥0

(
1
p− (T + 1)Lp

+

2 tp
+

− c12−µ (T + 1)
2−µ
µ Lµ1 t

µ

+ Tc2 + 1
p− (T + 1)

)
.

The function

r (t) = 1
p− (T + 1)Lp

+

2 tp
+

− c12−µ (T + 1)
2−µ
µ Lµ1 t

µ

+ Tc2 + 1
p− (T + 1)

is continuous, lim
t−→∞

r(t) = −∞ and achieves its maximum at the point

t0 =

 1
p− (T + 1)Lp

+

2 p+

c12−µ (T + 1)
2−µ
µ Lµ1µ

 1

µ−p+

.

Therefore, we may put

C̃2 =

µ
(

1
p− (T + 1)Lp

+

2 tp
+

0 − c12−µ (T + 1)
2−µ
µ L1t

µ

0 + Tc2 + 1
p− (T + 1)

)
µ 1
p+ − 1


1

p−

.

(4.6)
It easy to check that C̃2 > 1. Notice that r(t0) ≥ Tc2 + 1

p− (T + 1). Hence

µr(t0) ≥ µTc2 + µ
p− (T + 1) > µ

p− (T + 1) > µ
p− ≥

µ
p+ > µ

p+ − 1,

since µ > p+ ≥ 2 and p+ ≥ p−. Consequently C̃2 > 1.
Thus we have shown that, if u is a solution to problem (1.1), then there exist

constants C̃1, C̃2 > 0 such that

C̃1 ≤ ‖u‖p(·) ≤ C̃2.

Consequently, by (1.2), there exist constants C1 = L1C̃1, C2 = L2C̃2 such that

C1 ≤ ‖u‖ ≤ C2.

The obtained result allows us to study the continuous dependence on parameters.
Considering a sequence of parameters we get existence of a sequence of solutions (cor-
responding to parameters). Supposing that the sequence of parameters is convergent
we arrive at the limit of a subsequence selected from a sequence of solutions. This
limit is a solution to the considered problem and it corresponds to the limit of the
sequence of parameters.

Theorem 4.3. Let W be a Hausdorff space. Assume that conditions (H0)–(H4) are
satisfied. Let {wn}∞n=1 ⊂W be a convergent sequence of parameters with limn→∞ wn =
w ∈ W. For any sequence {un}∞n=1 of nontrivial solutions to (1.1) corresponding to
{wn}∞n=1, there exists a subsequence {uni}

∞
i=1 ⊂ E and an element u ∈ E such that

limi→∞ uni = u and that u satisfies problem (1.1) corresponding to w.
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Proof. We define a sequence {un}∞n=1 ∈ E as follows: un is a solution to (1.1) with
w = wn. Thus, for n = 1, 2, . . .{

∆
(
|∆un(k − 1)|p(k−1)−2∆un(k − 1)

)
+ f(k, un(k), wn) = 0, k ∈ N(1, T ),

un(0) = un(T + 1) = 0.

(4.7)
By Theorem 4.2, there exist constants C1, C2 > 0 such that C1 ≤ ‖un‖ ≤ C2

for n = 1, 2, . . .. Thus, the sequence {un}∞n=1 can be assumed convergent, up to
a subsequence {uni}

∞
i=1. So there exists u ∈ E such that uni → u in E. Since

C1 ≤ ‖uni‖ ≤ C2, we know that C1 ≤ ‖u‖ ≤ C2 and thus u 6= 0. The assertion
that u is a solution to problem (1.1) is equivalent to showing that for any v ∈ E

T+1∑
k=1

|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆v(k − 1) =

T∑
k=1

f(k, u(k), w))v(k). (4.8)

For any v ∈ E by continuity of f we get from (4.7)

T∑
k=1

f(k, uni(k), wni)v(k)→
T∑
k=1

f(k, u(k), w)v(k)

and

T+1∑
k=1

|∆uni(k − 1)|p(k−1)−2∆uni(k − 1)∆v(k − 1)

→
T+1∑
k=1

|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆v(k − 1).

Hence (4.8) holds. Since v was arbitrarily fixed, summing by parts as we did in the
proof of Lemma 3.1, we see that u is a solution to (1.1).

Now, we will show an example of a function which satisfies conditions (H0)–(H4).

Example 4.4. Let us take a function F : N(1, T )× R× R→ R given by

F (k, x, y) = (3 + sin k) |x|4
(

1 + e−y
2
)

and p : N(0, T )→[2,+∞) given by

p(k) = 2 +
1

k + 1
.

Then p+ = 3 and conditions (H0)–(H4) are fulfilled with µ = r = 4.
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5. UNIQUENESS OF SOLUTIONS

In this section we will examine conditions under which problem (1.1) has a unique
solution. Recall that, by the previous section, if u is a solution to (1.1), then there
exists a constant C̃2 > 1 given by (4.6) such that ‖u‖p(·) ≤ C̃2.

Lemma 5.1 ([14]). Assume that p ≥ 2 and cp = 2
p(2p−1−1) . Then(

|x|p−2x− |y|p−2y
)

(x− y) ≥ cp|x− y|p for all x, y ∈ R.

Put
cp(k) =

2

p(k)(2p(k)−1 − 1)
for all k ∈ N(0, T )

and
cp+ =

2

p+(2p+−1 − 1)
= min
k∈N(0,T )

cp(k).

Let us introduce an additional condition:

(H5) there exists a constant

d ∈

0,
cp+

T (T + 1)p+Lp
+

2

(
2C̃2

)p+−p−


such that for any x, x ∈ R, t ∈ N(1, T ) and y ∈W we have

|f(t, x, y)− f(t, x, y)| ≤ d|x− x|p
+−1,

where C̃2 > 1 is given by (4.6).

Theorem 5.2. Assume that conditions (H0)-(H5) hold. Then for every fixed w ∈W
there exists exactly one solution u to problem (1.1) satisfying C1 ≤ ‖u‖ ≤ C2 (for
some C1, C2 > 0).

Proof. The existence part follows by Theorem 4.1. Suppose that there exist two dif-
ferent functions u1, u2 satisfying (1.1). Then, by (3.2),

T+1∑
k=1

|∆u1(k−1)|p(k−1)−2∆u1(k−1)∆(u2−u1)(k−1) =

T∑
k=1

f(k, u1(k), w)(u2−u1)(k)

(5.1)
and

T+1∑
k=1

|∆u2(k−1)|p(k−1)−2∆u2(k−1)∆(u2−u1)(k−1) =

T∑
k=1

f(k, u2(k), w)(u2−u1)(k).

(5.2)
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Using (1.3), Lemma 5.1, (5.1), (5.2), (H5), (A2), (A3) and (1.2), in case
‖u2 − u1‖p(·) ≤ 1, we deduce that

cp+ · ‖u2 − u1‖p
+

p(·) ≤ cp+ · ϕ(u2 − u1)

≤
T+1∑
k=1

cp(k−1)|∆u2(k − 1)−∆u1(k − 1)|p(k−1)

≤
T+1∑
k=1

(
|∆u2(k − 1)|p(k−1)−2∆u2(k − 1)− |∆u1(k − 1)|p(k−1)−2∆u1(k − 1)

)
(∆u2(k − 1)−∆u1(k − 1))

=

T∑
k=1

[f(k, u2(k), w)− f(k, u1(k), w)](u2 − u1)(k)

≤ d
T∑
k=1

|u2(k)− u1(k)|p
+

≤ dT (T + 1)p
+

‖u2 − u1‖p
+

≤ dT (T + 1)p
+

Lp
+

2 ‖u2 − u1‖p
+

p(·) .

Thus (
cp+ − dT (T + 1)p

+

Lp
+

2

)
‖u2 − u1‖p

+

p(·) ≤ 0,

that is, u1 = u2, since d <
cp+

T (T+1)p+Lp
+

2

.

In case ‖u2 − u1‖p(·) ≥ 1, the preceding arguments already imply (using (1.4) in
place of (1.3)) that

cp+ ‖u2 − u1‖p
−

p(·) ≤ cp+ϕ(u2 − u1) = cp+
T+1∑
k=1

|∆u2(k − 1)−∆u1(k − 1)|p(k−1)

≤ dT (T + 1)p
+

Lp
+

2 ‖u2 − u1‖p
+

p(·) .

Hence
‖u2 − u1‖p

+−p−
p(·) ≥

cp+

dT (T + 1)p+Lp
+

2

,

so

‖u2 − u1‖p(·) ≥

(
cp+

dT (T + 1)p+Lp
+

2

) 1

p+−p−

.

Since u1, u2 are solutions to (1.1) and d<
cp+

T (T+1)p+Lp
+

2 (2C̃2)
p+−p− , so

2C̃2 ≥ ‖u2‖p(·) + ‖u1‖p(·) ≥ ‖u2 − u1‖p(·) > 2C̃2.

Contradiction, therefore u1 = u2.
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6. NON-VARIATIONAL PROBLEM

In this section we focus on the existence of solutions to the following Dirichlet
boundary value problem{

∆
(
|∆u(k − 1)|p(k−1)−2∆u(k − 1)

)
+ f(k, u(k),∆u(k − 1)) = 0, k ∈ N(1, T ),

u(0) = u(T + 1) = 0,
(6.1)

within a non-variational framework. Precisely, we discuss conditions under which the
problem (6.1) has exactly one nonzero solution.

Recall, once again that if u is a solution to (1.1), then there exists a constant
C̃2 > 1 given by (4.6) such that ‖u‖p(·) ≤ C̃2.

Assume that f has the following property:

(H6) There exist constants d1 ∈
(

0,
cp+

T (T+1)p+Lp
+

2 (2C̃2)
p+−p−

)
, d2 > 0 satisfying the

inequality

d1T (T + 1)
p+
Lp

+

2 + d2T
1

p+ (T + 1)
p+−1

p+
+1
Lp

+

2

(
2C̃2

)p+−1

<
cp+(

2C̃2

)p+−p−
(6.2)

for which
|f(t, x, y)− f(t, x, y)| ≤ d1|x− x|p

+−1

and
|f(t, x, y)− f(t, x, y)| ≤ d2|y − y|p

+−1

for all x, x, y, y ∈ R and t ∈ N(1, T ).

Theorem 6.1. Assume that conditions (H0)–(H4) and (H6) hold. Then the problem
(6.1) has exactly one nonzero solution.

Proof. Let u0 ∈ E be fixed. Putting w = ∆u0(k − 1) in (1.1) for every k ∈ N(1, T ) it
follows by Theorem 5.2 that the following problem{

∆
(
|∆u(k − 1)|p(k−1)−2∆u(k − 1)

)
+ f(k, u(k),∆u0(k − 1)) = 0, k ∈ N(1, T ),

u(0) = u(T + 1) = 0

(6.3)
has exactly one nonzero solution (namely u1) since (H6) implies (H5).

Repeating the reasoning, we construct a sequence {un}∞n=1 in E as a sequence of
solutions to the following boundary value problems{

∆
(
|∆un(k − 1)|p(k−1)−2∆un(k − 1)

)
+ f(k, un(k),∆un−1(k − 1)) = 0,

un(0) = un(T + 1) = 0, k ∈ N(1, T ), n ∈ N.
(6.4)
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By Theorem 4.2, there exist constants C1, C2 > 0 such that C1 ≤ ‖un‖ ≤ C2 for all
n ∈ N, so the sequence {un}∞n=1 is bounded. We will show that {un}∞n=1 is a Cauchy
sequence. Suppose so for any n ∈ N we have ‖un+1 − un‖p(·) ≥ 1. Then, by (1.4),
Lemma 5.1 and (3.2), we get

cp+ ‖un+1 − un‖p
−

p(·) ≤ cp+ϕ(un+1 − un)

≤
T+1∑
k=1

cp(k−1)|∆un+1(k − 1)−∆un(k − 1)|p(k−1)

≤
T+1∑
k=1

(
|∆un+1(k − 1)|p(k−1)−2∆un+1(k − 1)

− |∆un(k − 1)|p(k−1)−2∆un(k − 1)

)
(∆un+1(k − 1)−∆un(k − 1))

=

T∑
k=1

f(k, un+1(k),∆un(k − 1))(un+1 − un)(k)

−
T∑
k=1

f(k, un(k),∆un−1(k − 1))(un+1 − un)(k)

=

T∑
k=1

(f(k, un+1(k),∆un(k − 1))− f(k, un(k),∆un(k − 1))) (un+1 − un)(k)

+

T∑
k=1

(f(k, un(k),∆un(k − 1))− f(k, un(k),∆un−1(k − 1))) (un+1 − un)(k).

Continuing, by (H6), (A2), (A5), the Hölder inequality, (1.2) and (A3), we have

cp+ ‖un+1 − un‖p
−

p(·)

≤ d1

T∑
k=1

|(un+1 − un)(k)|p
+

+ d2

T∑
k=1

|(∆un −∆un−1)(k − 1)|p
+−1

(un+1 − un)(k)

≤ d1T (T + 1)
p+
Lp

+

2 ‖un+1 − un‖p
+

p(·)

+ d2

(
T+1∑
k=1

(
|∆un(k − 1)−∆un−1(k − 1)|p

+−1
) p+

p+−1

) p+−1

p+

×

(
T∑
k=1

|un+1(k)− un(k)|p
+

) 1

p+

≤ d1T (T + 1)
p+
Lp

+

2 ‖un+1 − un‖p
+

p(·)

+ d2

(
(T + 1)Lp

+

2 ‖un − un−1‖p
+

p(·)

) p+−1

p+
(
T (T + 1)

p+
Lp

+

2 ‖un+1 − un‖p
+

p(·)

) 1

p+

.
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Bearing in mind that {un}∞n=1 is a sequence of solutions to (6.4) we obtain

cp+ ‖un+1 − un‖p
−

p(·) ≤ d1T (T + 1)
p+
Lp

+

2 ‖un+1 − un‖p
+

p(·)

+d2 (T + 1)
p+−1

p+ Lp
+−1

2

(
‖un‖p(·) + ‖un−1‖p(·)

)p+−1

T
1

p+ (T + 1)L2 ‖un+1 − un‖p
+

p(·)

≤ d1T (T + 1)
p+
Lp

+

2 ‖un+1 − un‖p
+

p(·)

+d2T
1

p+ (T + 1)
p+−1

p+
+1
Lp

+

2

(
2C̃2

)p+−1

‖un+1 − un‖p
+

p(·)

=

(
d1T (T + 1)

p+
Lp

+

2 + d2T
1

p+ (T + 1)
p+−1

p+
+1
Lp

+

2

(
2C̃2

)p+−1
)
‖un+1 − un‖p

+

p(·) .

Hence

‖un+1 − un‖p
+−p−
p(·) ≥

cp+

d1T (T + 1)
p+
Lp

+

2 + d2T
1

p+ (T + 1)
p+−1

p+
+1
Lp

+

2

(
2C̃2

)p+−1
.

By (H6), it follows that

2C̃2 ≥ ‖un+1‖p(·) + ‖un‖p(·) ≥ ‖un+1 − un‖p(·)

≥

(
cp+

d1T (T + 1)
p+
Lp

+

2 + d2T
1

p+ (T + 1)
p+−1

p+
+1
Lp

+

2

(
2C̃2

)p+−1

) 1

p+−p−

> 2C̃2.

Contradiction. Thus for any n ∈ N we have ‖un+1 − un‖p(·) < 1. The preceding
arguments already imply, using (1.3) in place of (1.4) that

cp+ ‖un+1 − un‖p
+

p(·) ≤ d1T (T + 1)
p+
Lp

+

2 ‖un+1 − un‖p
+

p(·)

+d2 (T + 1)
p+−1

p+ Lp
+−1

2 ‖un − un−1‖p
+−1
p(·) T

1

p+ (T + 1)L2 ‖un+1 − un‖p(·) .

Hence (
cp+ − d1T (T + 1)

p+
Lp

+

2

)
‖un+1 − un‖p

+−1
p(·)

≤ d2T
1

p+ (T + 1)
p+−1

p+
+1
Lp

+

2 ‖un − un−1‖p
+−1
p(·) .
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It is equivalent to

‖un+1 − un‖p(·) ≤

(
d2T

1
p+ (T+1)

p+−1

p+
+1
Lp

+

2

cp+−d1T (T+1)p
+
Lp

+

2

) 1

p+−1

‖un − un−1‖p(·) .

By (H6), we deduce that

d1T (T + 1)
p+
Lp

+

2 + d2T
1

p+ (T + 1)
p+−1

p+
+1
Lp

+

2

< d1T (T + 1)
p+
Lp

+

2 + d2T
1

p+ (T + 1)
p+−1

p+
+1
Lp

+

2

(
2C̃2

)p+−1

<
cp+

(2C̃2)
p+−p− < cp+ .

Finally

d2T
1

p+ (T + 1)
p+−1

p+
+1
Lp

+

2 < cp+ − d1T (T + 1)
p+
Lp

+

2 .

It implies that the sequence {un}∞n=1 is a Cauchy sequence.
Therefore, there exists u ∈ E such that un → u. Since C1 ≤ ‖un‖ ≤ C2 for all n

∈ N, so C1 ≤ ‖u‖ ≤ C2. It implies that u 6= 0. For every h ∈ E, by continuity of f
and (6.4), we have

T∑
k=1

f(k, un(k),∆un−1(k − 1))h(k)→
T∑
k=1

f(k, u(k),∆u(k − 1))h(k)

and

T+1∑
k=1

|∆un(k − 1)|p(k−1)−2∆un(k − 1)∆h(k − 1)

→
T+1∑
k=1

|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆h(k − 1).

Eventually,

T+1∑
k=1

(
|∆u(k − 1)|p(k−1)−2∆u(k − 1)

)
∆h(k − 1) =

T∑
k=1

f (k, u(k),∆u(k − 1))h(k)

for any h ∈ E. Next, summing by parts we deduce that u is a solution to (6.1). The
uniqueness of the solution can be demonstrated in the same way as in the proof of
Theorem 5.2 (note that condition (H5) is satisfied).
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7. NONEXISTENCE OF SOLUTIONS

In this section we give a condition under which the considered problems (1.1) and
(6.1) have no solutions.

Theorem 7.1. Let (H0) hold. Suppose that

xf(k, x, y) < 0 for all k ∈ N(1, T ), x ∈ R\ {0} , y ∈W. (7.1)

Then for every w ∈W problem (1.1) has no nontrivial solutions.

Proof. Assume that (1.1) has a nonzero solution. Then Jw has a nontrivial critical
point ũ. By Lemma 3.2,

0 =
(
J
′

w (ũ) , ũ
)

=

T+1∑
k=1

|∆ũ(k − 1)|p(k−1) −
T∑
k=1

f(k, ũ(k), w)ũ(k),

so it holds

(f (k, ũ, w) , ũ) =

T+1∑
k=1

|∆ũ(k − 1)|p(k−1) ≥ 0 for all k ∈ N(1, T ).

On the other hand, from (7.1) we get

(f (k, ũ, w) , ũ) =

T∑
k=1

ũ(k)f (k, ũ(k), w) < 0 for all k ∈ N(1, T ).

This contradicts our assumption, so for every w ∈W problem (1.1) has no nontrivial
solution.

Example 7.2. Let us take a function f : N(1, T )× R× R→ R given by

f(k, x, y) = −k arctanx.

Then we see that assumptions of Theorem 7.1 are satisfied.

Remark 7.3. Under the assumptions of Theorem 7.1 it follows immediately that
problem (6.1) has also no nontrivial solutions.
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