BADANIA DOŚWIADCZALNE ELEMENTÓW I KONSTRUKCJI BETONOWYCH

PUBLIKACJA POD PATRONATEM SEKCJI KONSTRUKCJI BETONOWYCH KOMITETU INŻYNIERII LĄDOWEJ I WODNEJ PAN

ZESZYT NR 8

Experimental research on HSC one -dimensional members Doświadczalne badania żelbetowych elementów prętowych z betonu wysokiej wytrzymałości

Maria E. Kamińska

Department of Concrete Structures Technical University of Lodz, Poland Łódź 1999 Katedra Budownictwa Betonowego Wydział Budownictwa, Architektury i Inżynierii Środowiska Politechniki Łódzkiej

BIBLIOTEKA GŁÓWNA PŁ BIBLIOTEKA BUDOWNICTWA I ARCHITEKTURY

P.

BADANIA DOŚWIADCZALNE ELEMENTÓW I KONSTRUKCJI BETONOWYCH

PUBLIKACJA POD PATRONATEM SEKCJI KONSTRUKCJI Betonowych komitetu inżynierii lądowej i wodnej pan

ZESZYT NR 8

Experimental research on HSC one -dimensional members

Doświadczalne badania żelbetowych elementów prętowych z betonu wysokiej wytrzymałości

Maria E. Kamińska

Pracę wykonano w ramach projektu badawczego Nr 7 T07E 043 12 finansowanego przez Komitet Badań Naukowych w latach 1997 - 1999

Department of Concrete Structures Technical University of Lodz, Poland Łódź 1999 Katedra Budownictwa Betonowego Wydział Budownictwa, Architektury i Inżynierii Środowiska Politechniki Łódzkiej Recenzent / reviewer prof. dr inż. Andrzej Ajdukiewicz

> Tłumaczenie / translation mgr inż. Maciej Winiarski

Opracowanie wyników pomiarów i skład tekstu / preparing of measurement results and text mgr inż. Jacek Filipczak

©1999 Katedra Budownictwa Betonowego, Łódź, Poland

ISSN 1230-6010

Katedra Budownictwa Betonowego Politechniki Łódzkiej Al. Politechniki 6, 93-590 Łódź, Poland tel. (48) (42) 6313575, fax (48) (42) 6313584, e-mail: betonkbb@ck-sg.p.lodz.pl

1

DOŚWIADCZALNE BADANIA ŻELBETOWYCH ELEMENTÓW PRĘTOWYCH Z BETONU WYSOKIEJ WYTRZYMAŁOŚCI

Badania objęły 8 wolnopodpartych belek, 10 słupów obciążonych ze stałym początkowym mimośrodem i 6 ram portalowych. Wszystkie elementy wykonano z betonu o wytrzymałości $f_{c,cube}$ =85 - 110MPa.

Belki były obciążane dwiema siłami skupionymi. Przyjęto dwie wysokości przekroju - 300 i 500mm - i odpowiednio do nich dwie rozpiętości w osiach podpór - 3000 i 5000mm. Dla obu typów belek przyjęto po dwa stopnie zbrojenia przekroju - około 0.4 % i około 1.5%. Zbrojenie strefy ściskanej było stałe (2#10), przy czym w połowie belek strefa ściskana środ-kowej ich części nie była zbrojona.

Słupy o wymiarach przekroju 140×250mm i długości 3000mm wykonano z dwóch betonów - z kruszywem żwirowym lub grysem granitowym. Przyjęto stały stopień zbrojenia podłużnego słupów równy około 1% oraz mimośród początkowy e=50mm. Dzięki zmianie płaszczyzn obciążenia uzyskano dwie smukłości słupów: l/h=12 i l/h=22 oraz możliwość oceny stopnia wpływu historii obciążenia słupów na ich odkształcenia i nośność.

Ramy portalowe o wysokości 2000mm i rozpiętości 3000mm oraz przekroju poprzecznym słupów i rygla 140×250mm, były obciążane siłą działającą wzdłuż osi rygla. Przyjęto stały stopień łącznego zbrojenia podłużnego ram, ale układ zbrojenia zróżnicowano tak, aby wymusić wyraźną redystrybucję sił wewnętrznych. W czasie badania zmieniano kierunek obciążania, przyjmując dwa poziomy zaawansowania obciążenia w pierwszym kierunku.

Łącznie z badaniami elementów wykonano badania betonu, z rejestracją zależności σ-ε oraz badanie stali zbrojeniowej. Badania wykazały, że obawy o niską graniczną odkształcalność elementów z betonu wysokiej wytrzymałości są nieuzasadnione. Stwierdzono, że:

- w tych elementach, które zniszczyły się przez zmiażdżenie betonu strefy ściskanej, następowało to przy odkształceniach znacznie większych niż odkształcenia niszczące rejestrowane na próbkach; w belkach odkształcenia sięgnęły aż 6‰,
- graniczne krzywizny przekrojów były wyraźnie większe niż w elementach z betonu zwykłego, a w ramach następowała pełna redystrybucja sił wewnętrznych,
- nawet przy bardzo dużych odkształceniach, rzędu kilkudziesięciu promili w poziomie rozciąganego zbrojenia, dobrze współpracowało ono z betonem,
- w zakresie obciążeń eksploatacyjnych elementy wykazały małą wrażliwość na historię, a także powtarzalność obciążenia,
- ujawniła się tendencja do powstawania rys tzw. zbiorczych, w poziomie zbrojenia dzielących się na kilka o mniejszym rozwarciu.

EXPERIMENTAL RESEARCH ON HSC ONE-DIMENSIONAL MEMBERS

Investigations concerned 8 simply supported beams, 10 columns loaded with constant initial eccentricity and 6 portal frames. All elements were cast using concrete of 85 to 110MPa ($f_{c,cube}$) strength.

Beams were loaded by two concentrated forces. Two cross-section depths were adopted: 300 and 500mm and two spans (to support axes): 3000 and 5000mm correspondingly. Two percentages of reinforcement were adopted - abt 0.4% and abt 1.5% for each of the two types of beams. Compression zone reinforcement was constant (2-10mm dia bars). In a half of the beams the mid-span zone was left unreinforced.

Columns of 140×250 mm cross-section and 3000mm length were cast using two kinds of concrete: one - with natural gravel aggregate, other - with crushed granite aggregate. Constant percentage of total longitudinal reinforcement was adopted, of abt. 1% and constant eccentricity e=50mm. Thanks to change of loading planes, two column stiffness were obtained: l/h=12 and l/h=22, as well as the possibility to assess the degree of load history influence on column strains and carrying capacity.

Portal frames of 2000mm height and 3000mm span had beam and column cross-sections of 140×250mm and were loaded by a force acting along beam axis. Total longitudinal reinforcement percentage of frames was adopted as constant, but its arrangement was diversified so as to force distinct redistribution of internal forces. The direction of loading was changed during the test, with two levels of loading in the direction loaded first.

Tests on concrete (including recording of relationship) and these on reinforcement were carried out jointly with tests on elements.

Tests proved that fears of low limit deformability of elements cast of high strength concrete are unfounded.

It was found that:

- in elements that failed by crushing of concrete in the compression zone this occurred at much higher strains than those recorded in tests on specimens. In beams strains attained even 6%.
- limit curvatures of cross-sections were distinctly greater than in elements cast of ordinary concrete and full redistribution of internal forces took place in frames,
- bond between reinforcement and concrete was retained even at very large strains (of the order of several dozens of per mille),
- within the range of service loads, the elements revealed small sensitiveness to history and repetition of loading,
- a tendency was revealed for the formation of "cumulative cracks", which were fanning out into several smaller cracks of lesser width at reinforcement level.

SPIS TREŚCI

Załącznik

1.	Wpr	owadze	enie .				•	•				•	7
2.	Bada	anie bel	lek .			•				•			10
	2.1.	Progra	ım bada	ania									10
	2.2.	Opis b	adań										10
		2.2.1.	Mater	iałv									10
		2.2.2	Belki		•	•	•	•	•	•	•	-	12
		223	Stanov	visko	b ha	dav	/C76	. i o	bciz	iżan	ie	-	
		2.2.0.	belek		. 04					22411			14
		224	Pomia	rv.	•	•	•	•	•	•	·	•	15
		2.2.4.	Forma	nrze	det	awi	enia	•	vnik	ów	•	•	16
	23	Omóu	lienie v	vvnik	ώsι άw	hac	lani	ເໜີ ຄ	y	0 11	•	•	17
	2.5.	231	7nisza	v y III k v zeni/	.uw eic	odko vdko	ztal	a. Ical	noś	بر	•	•	17
		2.3.1.	aranio	700		JUK)Zia	icai	1105	0			17
		222	laine	Zna	• ston	· ia a	kon	• •	taaii	•	•	•	21
		2.3.2.	Zorug	ia w s	stan io		кър	10a	lacji	•	·	•	21
2	Ded	2.3.3.	Zarysu	Jwan	le	•	•	•	•	•	•	•	25
3.	Bada	anie słu	pow .	•	•	•	•	•	•	•	•	•	25
	3.1.	Progra	im bada	ania	•	•	•	•	•	•	•	·	25
	3.2.	Opis c	adan	• •	•	•	•	•	•	•	·	•	20
		3.2.1.	Mater	iały	•	•	•	•	•	•	•	•	26
		3.2.2.	Słupy	•	:	•	•	:	•	•	•	•	28
		3.2.3.	Stanov	wiskc	b ba	daw	/cze	e i s	pos	Ób			•
			obciąż	ania	słuj	pów	'•	•	•	•	•	•	28
		3.2.4.	Pomia	ry	•	•	•	•	•	•	•	•	30
		3.2.5.	Forma	ı prze	dst	awi	enia	ı wy	ynik	ów	•	•	32
	3.3.	Omów	vienie v	vynik	ów	bac	lani	a	•	•	•	•	32
		3.3.1.	Usytu	owan	ie c	osi c	oboj	ętn	ej				
			odkszt	tałcer	nia y	w pi	rzek	croj	u				32
		3.3.2.	Zniszo	zenie	e słi	upó	w i	odk	szta	ıłcal	noś	ść	
			granic	zna	•				•	•		•	34
		3.3.3.	Zależr	ność d	σ _c -	ε _c c	okre	śla	na n	a			
			próbka	ach					•				36
4.	Bada	anie rar	n			•							37
	4.1.	Progra	ım bada	ania									37
	4.2.	Opis b	adań										37
		4.2.1.	Mater	iały									37
		4.2.2.	Ramy										39
		4.2.3.	Stanov	wisko) ba	daw	/cze	e i o	bcia	iżan	ie		
			ram .										40
		4.2.4.	Pomia	rv									42
		4.2.5.	Forma	prze	dst	awie	enia	w	vnik	ów			43
	4.3.	Omów	vienie v	vvnik	ów	bad	lani	a					44
		4.3.1.	Maksy	/malr	ne o	bcia	ażer	nie 1	ram				44
		432	Redvs	trvbu	icia	sił	wev	vne	trzn	vch			45
		433	Przem	ieszc	zen	ia i	zar	vso	wan	ie		•	
		1.0.0.	ram	10020				,					46
		434	Zależr	1066 6	- ح	হ ი	okre	ćlar	19 n	я	•	•	
		ч. <i>э</i> . ч .	próbk	iose (J _c -	c_{c} (5141	ia ii	u			53
5	Pode	umowa	pioura		•	•	•	•	·	•	•	•	55
э.	rous	uniowa		•	•	•	•	•	•	•	•	•	55
T ;+	eratu	r 9											56
וויי	viatu		• •	•	•	•	•	•	•	•	•	•	50

4.	Rese	earch on	ı fran	nes							•			
	4.1.	Resear	ch pi	rogr	am	•								
	4.2.	Accou	nt of	the	res	ear	ch							
		4.2.1.	Mat	eria	ls									
		4.2.2.	Fran	nes	•									í
		4.2.3.	Test	sta	nd a	and	loa	din	g of	fra	mes	.	•	4
		4.2.4.	Mea	sure	eme	ents								4
		4.2.5.	Pres	enta	itio	ns c	of th	ne re	esul	ts				4
	4.3.	Discus	sion	of t	he	resu	lts	•					•	4
		4.3.1.	Max	imu	im	load	l on	the	e fra	ime	s .		•	4
		4.3.2.	Red	istri	but	ion	of i	nte	rnal	for	ces		•	4
		4.3.3.	Disp	olace	eme	ents	and	d cr	ack	for	mat	ion		
			in fr	ame	s		•			•	•	•	•	4
		4.3.4.	The	σ _c -	ϵ_{c}	rela	tio	nshi	p de	eter	min	ed	on	
			spec	ime	ns	•	•					•	•	
5.	Cond	clusions		•		•			•			•	•	
Ac	know	ledgem	ents	•	•	•	•	•	•	•	•	•	•	
Re	teren	ces	•	•	•	•	•	•	•	•	•	•	•	
An	nendi	ix												

CONTENTS LIST

2.1. Research program		10
2.2. Account of the research		10
2.2.1. Materials		10
2.2.2. Beams		12
2.2.3. Test stand and process of loading th	e	
beams		14
2.2.4. Measurements		15
2.2.5. Presentations of the results		16
2.3. Discussion of the results		17
2.3.1. The failure and the limit		
deformation		17
2.3.2. Deflections in service		21
2.3.3. Cracking	•	23
3. Research on concrete columns	•	25
3.1 Research program	•	25
3.2 Account of the research	•	26
3.2.1 Materials	•	26
$3.2.1$. Materials \cdot	•	20
3.2.2. Columns	•	20
5.2.5. Test statu and column loading		20
$\begin{array}{cccc} procedure & . & . & . & . \\ 2.24 Mossurements \end{array}$	•	20
3.2.4. Measurements	•	20
3.2.5. Presentations of the results	•	32
3.3. Discussion of the results	•	32
3.3.1. Situation of the neutral axis of strain	1	~~
in the cross - section	•	32
3.3.2 Failure of columns and limit		
5.5.2. Panule of columns and mint		
deformability		34
deformability	•	34
deformability	•	34 36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	34 36 37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	34 36 37 37
 deformability		34 36 37 37 37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		34 36 37 37 37 37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		34 36 37 37 37 37 39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		34 36 37 37 37 37 39 40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		34 36 37 37 37 37 39 40
$\begin{array}{r} \text{deformability} \\ 3.3.3. \text{ The } \sigma_c - \varepsilon_c \text{ relationship determined} \\ \text{on specimens} \\ \text{4. Research on frames} \\ \text{4.1. Research program} . . . \\ \text{4.2. Account of the research} . . \\ \text{4.2.1. Materials} . . \\ \text{4.2.2. Frames} . . \\ \text{4.2.3. Test stand and loading of frames} \\ \text{4.2.4. Measurements} . . \\ \end{array}$	· · ·	 34 36 37 37 37 39 40 42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · ·	 34 36 37 37 37 39 40 42 43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	 34 36 37 37 37 39 40 42 43 44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · ·	 34 36 37 37 37 39 40 42 43 44 44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · ·	 34 36 37 37 37 39 40 42 43 44 44 45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · ·	 34 36 37 37 37 39 40 42 43 44 44 45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	 34 36 37 37 37 37 39 40 42 43 44 45 46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · ·	 34 36 37 37 37 39 40 42 43 44 45 46
$\begin{array}{c} \text{deformability} \\ 3.3.3. \text{ The } \sigma_{c} - \varepsilon_{c} \text{ relationship determined} \\ \text{on specimens} . . . \\ \text{4. Research on frames} . . . \\ \text{4.1. Research program} . . \\ \text{4.2. Account of the research} . \\ \text{4.2. Account of the research} . \\ \text{4.2.1. Materials} . \\ \text{4.2.2. Frames} . \\ \text{4.2.2. Frames} . \\ \text{4.2.3. Test stand and loading of frames} \\ \text{4.2.4. Measurements} . \\ \text{4.2.5. Presentations of the results} \\ \text{4.3. Discussion of the results} \\ \text{4.3.1. Maximum load on the frames} \\ \text{4.3.2. Redistribution of internal forces} \\ \text{4.3.3. Displacements and crack formation} \\ \text{in frames} \\ \text{4.3.4. The } \sigma_{c} - \varepsilon_{c} \text{ relationship determined} \\ \text{specimens} \\ \end{array}$		 34 36 37 37 37 39 40 42 43 44 45 46 53
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		 34 36 37 37 37 39 40 42 43 44 45 46 53 55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		 34 36 37 37 37 39 40 42 43 44 45 46 53 55
$\begin{array}{r} \text{deformability} \dots \dots \dots \\ \text{deformability} \dots \dots \dots \\ \text{3.3.3. The } \sigma_{c} - \varepsilon_{c} \text{ relationship determined} \\ \text{on specimens} \dots \dots \\ \text{4. Research on frames} \dots \dots \\ \text{4.1. Research program} \dots \dots \\ \text{4.2. Account of the research} \dots \dots \\ \text{4.2. Account of the research} \dots \dots \\ \text{4.2.1. Materials} \dots \dots \\ \text{4.2.2. Frames} \dots \dots \\ \text{4.2.3. Test stand and loading of frames} \\ \text{4.2.4. Measurements} \dots \dots \\ \text{4.2.5. Presentations of the results} \dots \\ \text{4.3.1. Maximum load on the frames} \\ \text{4.3.2. Redistribution of internal forces} \\ \text{4.3.3. Displacements and crack formation} \\ \text{in frames} \dots \dots \\ \text{4.3.4. The } \sigma_{c} - \varepsilon_{c} \text{ relationship determined} \\ \text{specimens} \dots \dots \\ \text{5. Conclusions} \dots \dots \\ \text{Acknowledgements} \end{array}$		 34 36 37 37 37 39 40 42 43 44 45 46 53 55 56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		 34 36 37 37 37 39 40 42 43 44 45 46 53 55 56
deformability		 34 36 37 37 37 39 40 42 43 44 45 46 53 55 56 56
deformability		 34 36 37 37 37 39 40 42 43 44 45 46 53 55 56 56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		 34 36 37 37 37 39 40 42 43 44 45 46 53 55 56 56 56 56 57

1. Introduction...

OZNACZENIA

A _s E _c	-	pole przekroju zbrojenia moduł styczny sprężystości betonu	A _s E _c	-	area of reinforcement tangent modulus of elasticity of concrete
E_s	-	moduł sprężystości stali	E _s	-	modulus of elasticity of reinforcement
F	-	siła	F	-	force
Ν	-	siła osiowa	N	-	axial force
b	-	szerokość przekroju	b	-	width of a cross - section
d	-	użyteczna wysokość przekroju	d	-	effective depth of a cross - section
e	-	początkowy mimośród	e	-	initial eccentricity
f _c	-	wytrzymałość betonu na ściskanie określona na walcach	f _c	-	concrete cylinder compressive strength
f _{c,cube}	-	wytrzymałość betonu na ściskanie określona na próbkach	$f_{c,cube}$	-	concrete cube compressive strength
f _{ck}	-	wytrzymałość charakterystyczna betonu na ściskanie	f _{ck}	-	characteristic compressive cylinder strength of concrete
f _{ct,sp}	-	wytrzymałość betonu na rozciąganie określona metodą rozłupywania	f _{ct,sp}	-	concrete splitting tensile strength
ft	-	wytrzymałość stali zbrojeniowej na rozciąganie	$\mathbf{f}_{\mathbf{t}}$	-	tensile strength of reinforcement
fy	-	granica plastyczności stali zbrojeniowej	f_y	-	yield stress of reinforcement
h	-	wysokość przekroju	h	-	overall depth of a cross - section
1	-	długość słupa	1	-	length of column
v	-	przemieszczenie	v	-	displacement
Vx	-	przemieszczenie osi słupa w płaszczyźnie x	Vx	-	displacement of column axis in x - plane
vy	-	przemieszczenie osi słupa w płaszczyźnie y	vy		displacement of column axis in y- plane
ΔL	-	zmiana długości	ΔL	-	change in length
δ	-	kąt określający kierunek płaszczyzny zginania	δ	-	angle defining the direction of flexure plane
δ	-	współczynnik redystrybucji sił wewnętrznych	δ	-	ratio of the redistribution of internal forces
ε _c	-	odkształcenie betonu ściskanego	ε _c	-	strain of the fibre in compression
E _{c1}	-	odkształcenie betonu odpowiadające wytrzy- małości na ściskanie f _c	E _{c1}	-	compressive strain in the concrete at the peak stress $f_{\rm c}$
E _{cu}	-	graniczne odkształcenie betonu	€ _{cu}	-	ultimate compressive strain in the concrete
E _d	-	odkształcenie skrajnego włókna strefy rozcią- ganej	ε _d	-	strain of extreme fibre in tension
٤g	-	odkształcenie skrajnego włókna strefy ściskanej	٤g	-	strain of extreme fibre in compression
ε	-	odkształcenie zbrojenia	εs	-	strain of reinforcement
ε _t	-	odkształcenie włókna rozciąganego	ε _t	-	strain of the fibre in tension
ε _u	-	odkształcenie zbrojenia przy obciążeniu mak- symalnym	ε _u	-	strain of reinforcement at maximum load
κ	-	średnia krzywizna	κ	-	mean curvature
ρ	-	stopień zbrojenia	ρ	-	reinforcement ratio
σ	-	napreżenie ściskajace w betonie	σ	-	compressive stress in concrete
σ	-	naprężenie w zbrojeniu	σ_{s}	-	stress in reinforcement
			••		

NOTATION

1. WPROWADZENIE

Betonowi wysokowartościowemu, a za taki według [1] uważa się beton o wytrzymałości na ściskanie $f_{ck} >$ 50MPa, przypisywane są niewielkie odkształcenia graniczne przy ściskaniu. Próbki poddawane ściskaniu niszczą się bowiem w sposób gwałtowny, a opadająca część krzywej jest tym bardziej stroma, im wyższa jest wytrzymałość betonu (rys. 1.1). Na tę część krzywej wyraźnie przy tym wpływa procedura badania (prędkość narastania odkształcenia, sposób pomiaru odkształcenia, warunki brzegowe itp.).

Rys. 1.1. Przykładowe doświadczalne zależności σ_c - ϵ_c według [2]

Fig. 1.1. Examples of experimental relationships σ_c - ε_c according to [2]

Według Model Code 90 [3], dla betonów do klasy C80 włącznie przyjmuje się, przy oznaczeniach jak na rys. 1.2, dla odkształceń $\varepsilon_c \le \varepsilon_{cu}$

$$\sigma_{c} = \frac{\frac{E_{c}}{E_{c1}} \frac{\varepsilon_{c}}{\varepsilon_{c1}} - \left(\frac{\varepsilon_{c}}{\varepsilon_{c1}}\right)^{2}}{1 + \left(\frac{E_{c}}{E_{c1}} - 2\right) \frac{\varepsilon_{c}}{\varepsilon_{c1}}} f_{cm}$$
(1.1)

gdzie: $\epsilon_{c1} = -0.0022$,

$$\begin{split} E_{c1} &= \frac{I_{cm}}{\epsilon_{c1}}, \\ E_{c} &= 10^{4} (f_{cm})^{1/3}, \\ f_{cm} &= f_{ck} + 8, \end{split}$$

a odkształcenie ε_{cu} odpowiada naprężeniu $\sigma_{cu}=0.5 f_{cm}$.

W zaleceniach do Model Code 90 [1] dokonano korekty odkształcenia ε_{c1} , przyjmując je jako

$$\varepsilon_{c1} = \frac{-0.7 f_{cm}^{0.31}}{1000}, \quad f_{cm} \text{ w MPa}, \quad (1.2)$$

a opadającą część krzywej opisano zależnością

$$\sigma_{\rm c} = \frac{f_{\rm cm}}{1 + \left(\frac{\eta - 1}{\eta_2 - 1}\right)^2}$$
(1.3)

gdzie: $\eta = \frac{\varepsilon_c}{\varepsilon}$,

$$\eta_2 = \frac{\varepsilon_{c1} + t}{\varepsilon_{c1}}$$
, t wedly tablicy 1.1.

1. INTRODUCTION

The high strength concrete ($f_{ck} > 50$ MPa, according to [1]) is assumed to have low ultimate strain in compression. The collapse of concrete samples is violent, and descending branch of σ - ϵ diagram is sharper as the concrete strength becomes higher (Fig 1.1). In addition, the procedure of tests (such as strain rate, way of measuring strain, boundary conditions, etc.) is influencing that part of the descending curve.

Fig. 1.2. Stress - strain diagram for uniaxial compression

According to Model Code 90 [3], in concrete of Class $\leq C80$ (following the denotation of Fig. 1.2), for strains $\varepsilon_c \leq \varepsilon_{cu}$

$$\sigma_{c} = \frac{\frac{E_{c}}{E_{cl}} \frac{\varepsilon_{c}}{\varepsilon_{cl}} - \left(\frac{\varepsilon_{c}}{\varepsilon_{cl}}\right)^{2}}{1 + \left(\frac{E_{c}}{E_{cl}} - 2\right) \frac{\varepsilon_{c}}{\varepsilon_{cl}}} f_{cm}$$
(1.1)

where: $\epsilon_{c1} = -0.0022$,

$$\begin{split} E_{c1} &= \frac{f_{cm}}{\epsilon_{c1}}, \\ E_{c} &= 10^{4} (f_{cm})^{1/3}, \\ f_{cm} &= f_{ck} + 8, \end{split}$$

and deformation ϵ_{cu} corresponds to stress σ_{cu} =0.5f_{cm}.

In Recommended Extensions to the Model Code 90 [1], strain has been corrected and assumed to be equal:

$$\varepsilon_{c1} = \frac{-0.7 f_{cm}^{0.31}}{1000}, \quad f_{cm} \text{ in MPa}, \quad (1.2)$$

and the descending branch of the curve was described by the following formula:

$$\sigma_{\rm c} = \frac{f_{\rm cm}}{1 + \left(\frac{\eta - 1}{\eta_2 - 1}\right)^2}$$
(1.3)

where:
$$\eta = \frac{\varepsilon_{c}}{\varepsilon_{c1}}$$
,
 $\eta_{2} = \frac{\varepsilon_{c1} + t}{\varepsilon_{c1}}$, t according to Table 1.1.

Wykresy $\sigma_c - \varepsilon_c$ ilustrujące te zależności są podane na rys. 1.3.

Rys. 1.3. Zależności $\sigma_c - \varepsilon_c$ według propozycji MC [1] Fig. 1.3. The $\sigma_c - \varepsilon_c$ relationships according to MC [1] proposals

Przy sprawdzaniu stanu granicznego nośności według [1] można posłużyć się zależnościami uproszczonymi, w postaci

$$\varepsilon_{c1} = -0.002 - 0.5(f_{ck} - 50)10^{-5}$$
(1.4)

$$\varepsilon_{\rm cu} = -0.0025 - 0.002 \left(1 - \frac{f_{\rm ck}}{100} \right)$$
 (1.5)

które prowadzą do wartości odkształceń podanych w tablicy 1.2.

Zbliżone wartości odkształceń zostały zaproponowane w normie DIN [4], co ilustruje tablica 1.3.

W Eurocode 2 w wersji z lipca 1999r. [5] także przyjęto zasadę redukcji granicznych odkształceń betonu wraz z przyrostem jego wytrzymałości (tabl. 1.4).

Zależność σ_c - ε_c przy jednoosiowym krótkotrwałym obciążeniu jest opisana jako

$$\frac{\sigma_{\rm c}}{f_{\rm cm}} = \frac{k\eta - \eta^2}{1 + (k - 2)\eta}$$
(1.6)

gdzie: $\eta = \frac{\varepsilon_c}{\varepsilon_{cl}}$ ($\varepsilon_c < 0$),

$$k = -1.1 E_{cm} \frac{\varepsilon_{c1}}{f_{cm}},$$
$$E_{cm} = 9.5 (f_{ck} + 8)^{1/3}.$$

Zależność tę dla trzech klas betonu przedstawiono na rys. 1.4.

Jeszcze większe ograniczenie granicznych odkształceń dotyczy paraboliczno - prostokątnej postaci zależności $\sigma_c - \varepsilon_c$ (tabl. 1.4), stosowanej przy obliczaniu przekroju.

Przyjęcie tak małych możliwości odkształcania się betonu wysokiej wytrzymałości przy ściskaniu powoduje znaczne zmniejszenie granicznych krzywizn. Zasadę określania krzywizny granicznej w funkcji granicznych odkształceń betonu ε_{cu} i zbrojenia ε_{su} wyjaśnia rys. 1.5. The σ_c - ε_c diagrams illustrating these relationships are shown in Fig 1.3.

Tablica 1.1. Parametr t dla BWW

3	Table 1.1	. The pa	arameter	r t for H	SC		
	f _{ck} , MPa	50	60	70	80	90	100
	t, %0	0.807	0.579	0.338	0.221	0.070	0.015

Tablica 1.2. Odkształcenie ε_{c1} i ε_{cu} według [1]

Table 1.2. Strains ε_{c1} and ε_{cu} after [1]

	C1	0				
Klasa betonu Conrete grade	C50	C60	C70	C80	C90	C100
$\varepsilon_{c1}, \%_{o}$	-2.00	-2.05	-2.10	-2.15	-2.20	-2.25
Ecu, %0	-3.5	-3.3	-3.1	-2.9	-2.7	-2.5

Tablica1.3. Odkształcenie ε_{c1} i ε_{cu} według [4]Table1.3. Strains ε_{c1} and ε_{cu} after [4]

Klasa betonu Conrete grade	C70/85	C80/95	C90/105	C100/115
f _{ck} , MPa	70	80	90	100
Ec1, %0	-2.10	-2.14	-2.17	-2.20
E _{cu} ; %0	-2.5	-2.4	-2.3	-2.2

In verification of the ultimate state, Model Code 90 [1] allows simplified methods to be used in the following form:

$$\varepsilon_{c1} = -0.002 - 0.5(f_{ck} - 50)10^{-5}$$
 (1.4)

$$\varepsilon_{\rm cu} = -0.0025 - 0.002 \left(1 - \frac{f_{\rm ck}}{100} \right)$$
 (1.5)

The above formulas lead to the deformation values as shown in Table 1.2.

Similar values of deformations are proposed by Norm DIN [4], (see Table 1.3)

In Eurocode 2 (July 1999 release) [5], the principle of the reduction of limit strains in concrete with the increase of its strength is also accepted (Table 1.4).

Relationship $\sigma_c - \varepsilon_c$ for uniaxial loading of short duration is defined as:

$$\frac{\sigma_c}{f_{cm}} = \frac{k\eta - \eta^2}{1 + (k - 2)\eta}$$
(1.6)

where:
$$\eta = \frac{\varepsilon_{c}}{\varepsilon_{c1}} (\varepsilon_{c} < 0),$$

 $k = -1.1 E_{cm} \frac{\varepsilon_{c1}}{\varepsilon_{c1}}.$

$$E_{cm} = 9.5(f_{ck} + 8)^{1/3}$$
.

The above relationship is presented in Fig. 1.4 for three concrete grades.

Even greater restriction of limit strains concerns the parabolic-rectangular form of $\sigma_c - \varepsilon_c$ relationship (Table 1.4), applied in the design of the cross-sections.

The acceptance of such small possibilities of deformation of high-strength concrete in compression results in appreciable diminishing of limit curvatures. The principle of determination of limit curvature in function of limit strains of concrete ε_{cu} and reinforcement ε_{su} is explained in Fig. 1.5.

Rys. 1.4. Zależność naprężenie - odkształcenia do celów analizy konstrukcji według [5]

Fig. 1.4. Stress - strain relationship for structural analysis purposes (after [5])

Rys. 1.5. Graniczne odkształcenia skrajnych włókienFig. 1.5. Ultimate strains of extreme fiber of the cross-section

Z zależności geometrycznych otrzymuje się

$$\kappa_{\lim} d = \min \begin{cases} \frac{-\varepsilon_{cu}}{x} d\\ \frac{\varepsilon_{su}}{d-x} d \end{cases}$$
(1.7)

Wpływ wielkości odkształcenia ε_{cu} na graniczną krzywiznę ilustruje rys. 1.6. Odkształcenia stali ingerują jedynie przy niewielkich wartościach x/d i małej ciągliwości zbrojenia.

Mniejsze krzywizny graniczne oznaczają zmniejszenie możliwości redystrybucji sił wewnętrznych w konstrukcji, niekorzystne z punktu widzenia jej bezpieczeństwa. Można jednak oczekiwać, że w elementach zbrojonych beton o wysokiej wytrzymałości będzie się zachowywał inaczej, ze względu na zbrojenie i efekt skali.

Tych właśnie problemów dotyczą przedstawione poniżej badania. Objęły one 8 wolnopodpartych belek, 10 smukłych słupów i 6 ram portalowych.

Program badań słupów nawiązuje do wykonanych wcześniej w Katedrze Budownictwa Betonowego Politechniki Łódzkiej badań słupów ukośnie mimośrodowo ściskanych z betonu zwykłego. Badania 18 słupów były przeprowadzone w ramach projektu badawczego nr 7 S1 0300204 finansowanego przez Komitet Badań Naukowych i zostały szczegółowo opisane w pracy [6].

Badania ram także są kontynuacją wcześniejszych badań ram z betonu zwykłego, opisanych w [7].

Tablica	1.4.	Charakterystyka naprężeń i odkształceń
		betonu według [5]

 Table
 1.4.
 Stress and strain characteristics for concrete after [5]

f _{ck} , MPa	55	60	70	80	90	100				
$\epsilon_{c1}, \%_0$	-2.65	-2.70	-2.80	-2.90	-2.95	-3.00				
$\epsilon_{c1u}, \%_0$	-3.40	-3.30	-3.20	-3.10	-3.00	-3.00				
$\epsilon_{c2}^{(1)}, \%_{0}$	-2.03	-2.06	-2.10	-2.14	-2.17	-2.20				
$\epsilon_{c2u}^{(1)}, \%_{0}$	-3.10	-2.70	-2.50	-2.40	-2.30	-2.20				
1) paraboliczno - prostokątny wykres dla betonu przy ściskaniu										

parabola - rectangle diagram for concrete in compression

Rys. 1.6. Graniczne krzywizny przekroju Fig. 1.6. Ultimate curvatures of cross-section

From geometrical relationships it can be obtained:

$$\kappa_{\lim} d = \min \begin{cases} \frac{-\varepsilon_{cu}}{x} d\\ \frac{\varepsilon_{su}}{d-x} d \end{cases}$$
(1.7)

The influence of the magnitude of deformation on the ultimate curvature is shown in Fig 1.6. Steel strains interfere only when the values of x/d are low, and ductility of reinforcement is small.

Lower ultimate curvatures mean lower capability of redistribution of internal forces in the structure, which is unfavourable from the safety point of view. It can be however expected that high strength concrete would behave differently in reinforced elements, due to the presence of reinforcement as well as to the scale effect.

The investigations presented below concern all these problems. The research programme included investigation of 8 simply supported beams, 10 slender columns and 6 portal frames.

The column research programme refers to investigations carried out earlier in the Department of Concrete Structures, Technical University of Lodz on normal strength concrete columns, under bi-axial loading. The investigations of 18 columns was carried out as a part of research project No 7 S1 0300204, financed by the Committee of Scientific Research. The detailed account of it can be found in [6].

The investigation of portal frames is also a continuation of the earlier research, dealing with normal strength concrete frames. It was presented [7].

2. BADANIE BELEK

2.1. Program badania

Ze względu na założony cel badania – ocenę odkształcalności przy zginaniu – przyjęto, że przedmiotem badania będą wolnopodparte belki obciążone dwiema siłami skupionymi. Przyjęto także, że odcinek czystego zginania musi być dostatecznie długi, równy co najmniej czterem wysokościom przekroju.

Zbadano osiem belek – cztery o przekroju prostokątnym i rozpiętości w osiach podpór 3000mm (belki BP) oraz cztery o przekroju teowym i rozpiętości 5000mm (belki BT) (rys. 2.1). W obu typach belek przyjęto dwa stopnie podłużnego zbrojenia rozciąganego (tabl. 2.1). W belkach oznaczonych literą "a" podłużne zbrojenie ściskane było stałe (2 pręty Ø10mm ze stali klasy A-III). Litera "b" w symbolu belki oznacza, że na odcinku czystego zginania ściskana strefa przekroju nie była zbrojona.

Rys. 2.1. Przekroje i wymiary belek

Fig. 2.1. Cross-sections and dimensions of beams

Rozstaw strzemion w strefie między siłami ustalono z warunków konstrukcyjnych, a w strefie przypodporowej z warunku nie dopuszczenia do zniszczenia belki na ścinanie.

2.2. Opis badań

2.2.1. Materiały

Zbrojenie podłużne belek wykonano ze stali żebrowanej 34GS o nominalnej średnicy 10, 12 i 16mm, a strzemiona ze stali gładkiej Ø6mm.

Próbki pobierano ze wszystkich prętów (o handlowej długości 12m), z których wykonano zbrojenie belek.

Badanie próbek stali przeprowadzono w maszynie wytrzymałościowej ZD20, wyposażonej w dodatkowy rejestrator wydłużeń o bazie pomiarowej 50mm i powiększeniu 50:1 do 2000:1. Stosowano powiększenie 200:1, przy którym zakres pomiaru odkształceń ograniczał się do 40‰ oraz powiększenie 1000:1 (zakres pomiaru odpo-

2. RESEARCH ON CONCRETE BEAMS

2.1. Research program

The aim of the examination was to assess deformation ability in bending. Thus, simply supported beams, loaded by two concentrated forces each, were chosen as the subject of the research. It was also required that pure bending segment must be at least four times longer than beam depth.

Research included investigation of eight beams - four beams were of rectangular cross-section, and 3000mm span (defined by support centres) (BP-type). Remaining beams were of T-shaped cross-section and 5000mm span (BT-type) (Fig. 2.1). In both types of beams two ratios of longitudinal tension reinforcement were used (Table 2.1). Beams marked "a" were reinforced in the compression zone by 2 bars (Ø10mm, steel class: A-III). Letter "b" in the symbol stands for the absence of any reinforcement in pure bending compression zone of the beam.

Table 2.1. Characteristics and denotation of the beams								
	Zbro	ojenie poo	Rozstaw					
	w strefie	e czystego	strzemion					
Belka	Longitu	dinal rein	forcement	przy podporze				
beam	in the zo	Stirrup spacing						
	dolne / bottom górne / top			near supports				
	$\rho = A_s/bd$			[mm]				
BP-1a	0.0038	2Ø10	2Ø10	100				
BP-1b		2Ø10	·· -					
BP-2a	0.0146	3Ø16	2Ø10	80				
BP-2b		3Ø16	-					
BT-1a	0.0048	3Ø12	2Ø10	162.5				
BT-1b		3Ø12	-					
BT-2a	0.0171	6Ø16	2Ø10	75				
BT-2b		6Ø16	-	2				

Tablica	2.1. Charakterystyka i oznaczenia belek
Table	2.1 Characteristics and denotation of the beams

Stirrup spacing in the segment between the two loads was determined on the basis of constructional requirements, while in the support zone it was calculated from the condition of maximum allowable shear force.

2.2. Account of the research

2.2.1. Materials

Longitudinal reinforcement of the beams consisted of ribbed 34GS steel bars of 10, 12 and 16mm dia. Stirrups were of 6mm dia. round steel bars.

Samples were taken from each bar (of 12m standard commercial length) used for reinforcing the beams..

The examination of steel specimens was carried out in a ZD20 testing machine. The machine was equipped with an additional strain-logging device, with 50mm measuring base, and magnifying power from 50:1 to 2000:1. In order to establish modulus of elasticity of steel, the applied magnification was 200:1 (at which the range of deformation measurement was limited to 40‰) and 1000:1 (the range of measurement limited to 8‰). Longitudinal deformation of specimen (up to failure) was - on the other wiednio 8‰), w celu uściślenia wartości współczynników sprężystości stali. Wydłużenia próbek aż do ich zerwania były natomiast rejestrowane z powiększeniem 5:1 i na podstawie tych pomiarów oszacowano odkształcenie ε_u przy maksymalnym naprężeniu. Wytrzymałościowa charakterystyka zbrojenia jest podana na rys. 2.2 i w Załączniku.

We wszystkich belkach stosowano mieszankę betonową o takim samym składzie (tabl. 2.2). Krzywe przesiewu piasku kopalnianego i grysu granitowego sortowanego oraz stosu okruchowego przedstawia rys. 2.3.

Tablica	2.2.	Skład	mieszanki	betonowe	i
		~		000000000000	1

Składnik	kg/m ³
grys granitowy do 8mm	1230
piasek kopalniany	600
cement CP 45N	500
krzemionka	40
superplastyfikator	11
woda	145
w / (c + krzemionka)	0.27

hand - registered at magnification of 5:1. On the basis of these measurements the strain ε_c was assessed at the maximum stress. The strength characteristics of the reinforcement are shown in Fig. 2.2. and in the Appendix.

All the beams were cast using concrete mix of identical composition (Table 2.2). Grading curves of pit sand, granite grit and grading curve for aggregate mix is shown in Fig. 2.3.

Table 2.2. Proportions of concrete mix

Components	kg/m ³
granite grit up to 8mm dia.	1230
pit sand	600
CP 45N cement	500
silica fume	40
superplasticizer	11
water	145
w / (c + silica fume)	0.27

Rys. 2.3.Krzywe przesiewu kruszywaFig. 2.3.Grading curves of aggregate

Wytrzymałościowe cechy betonu były określane w dniu badania na próbkach kostkowych o boku 150mm ($f_{c,cube}$, $f_{ct,sp}$) oraz walcowych o średnicy 150mm i wysokości 300mm (f_c , E_c).

Podłużne odkształcenia próbek walcowych mierzono za pomocą przyrządu spełniającego wymagania DIN, a wartość współczynnika sprężystości betonu ustalano na podstawie ostatniego cyklu obciążenia z przedziału odkształceń: 0.05% i odkształcenia odpowiadającego $0.35f_c$ (rys. 2.4).

Wyniki badań betonu są zestawione w Załączniku, a wyniki średnie podano w tabl. 2.3.

Rys. 2.4. Schemat obciązania próbek walcowychFig. 2.4. Loading sequence on cylindrical specimens

Strength properties of concrete were measured the day the beams were tested, on 150mm cube specimens ($f_{c,cube}$, $f_{ct,sp}$), and 150mm dia. cylindrical specimens 300mm high (f_c , E_c).

Longitudinal deformations of the cylindrical specimens were measured using a device satisfying the requirements of DIN. The value of the elasticity coefficient of concrete was established during the last cycle of loading, from the strain range: 0.05% and the strain corresponding to $0.35f_c$ (Fig. 2.4).

Concrete test results are set up in Appendix, while the average results are presented in Table 2.3.

Table $2.3.5$	able 2.3. Strength properties of concrete							
Belka	Wiek betonu [dni]	f _{c,cube}	f_c	f _{ct,sp}	E _c	f_c		
Beam	Age of concrete [days]	[MPa]	[MPa]	[MPa]	[MPa]	$f_{c,cube}$		
BP-1a	29	93.2	81.2	5.23	35300	0.87		
BP-1b	29	84.6	72.8	4.73	34000	0.86		
BP-2a	46	91.6	78.8	4.57	37000	0.86		
BP-2b	32	89.5	73.3	5.06	35800	0.82		
BT-1a	30	88.6	72.5	5.67	33400	0.82		
BT-1b	31	87.6	78.0	5.18	35600	0.89		
BT-2a	33	87.9	73.3	5.04	34800	0.83		
BT-2b	36	78.6	70.3	4.88	-	0.89		

Tablica 2.3. Wytrzymałościowe cechy betonu

2.2.2. Belki

Zbrojenie belek BP przedstawiono na rys. 2.5, a belek BT na rys. 2.6.

Mieszankę betonową przygotowywano w betoniarce wolnospadowej o pojemności 0.15m³, wobec czego belki i próbki wykonywano z dwóch (belki BP) lub czterech zarobów (belki BT).

Do zagęszczania mieszanki betonowej w belce i próbkach stosowano wibrator wgłębny o częstotliwości 200Hz. Elementy i próbki rozformowywano po 24 godzinach i do dnia badania przechowywano w hali wytrzymałościowej. Przez pierwsze trzy doby po betonowaniu belki i próbki polewano wodą.

2.2.2. Beams

Reinforcement of BP beams is shown in Fig. 2.5, and that of BT beams in Fig. 2.6.

Concrete mix was prepared in a free-fall concrete mixer of $0.15m^3$ capacity. Thus two BP beams together with specimens were cast from two batches and BT beams from four batches of mix.

To compacting concrete mix in the beams and samples, immersion vibrator of working frequency 200Hz was applied. All the elements were demoulded after 24 hours, and cured in the University laboratory until the day of testing. For the first three days all the beams and samples were sprinkled with water.

Rys. 2.6. Zbrojenie belek BT Fig. 2.6. Reinforcement of the BT beams

2.2.3. Stanowisko badawcze i obciążanie belek

Stanowisko badawcze (rys. 2.7) składało się ze stalowej konstrukcji ramowej, obciążników hydraulicznych podwieszonych do górnego rygla ramy i urządzenia zasilającego te obciążniki.

2.2.3. Test stand and process of loading the beams

The test stand (Fig. 2.7) consisted of: a steel frame structure, hydraulic presses acting between the upper spandrel beam and the beam under test, and a device activating hydraulic presses.

Rys. 2.7. Ogólny widok stanowiska badawczegoFig. 2.7. Overall view of the test stand

Badana belka była umieszczana na dwóch podporach przegubowych, na dolnym ryglu ramy. Belki BP były obciążane za pomocą jednego obciążnika o nośności 100kN lub 400kN i stalowego trawersu (rys. 2.8). Belki BT obciążano bezpośrednio dwoma obciążnikami o nośności jednostkowej także 100kN lub 400kN. Urządzenie zasilające obciążniki ma klasę dokładności 1.0. The tested beam was placed on two articulated supports, on the lower spandrel beam of the frame. BP beams were loaded by one press of 100kN or 400kN capacity via a steel beam (Fig. 2.8). BT beams were loaded directly by two presses of 100kN or 400kN capacity. The device activating the presses had an accuracy class of 1.0.

Rys. 2.8. Belka BP-2a na stanowisku badawczym po zniszczeniuFig. 2.8. BP-2a beam on the test stand, after failure

Siły przykładano według wskazań urządzenia zasilającego obciążniki i kontrolowano za pomocą czujnika ciśnieniowego umieszczonego w układzie hydraulicznym urządzenia. The forces were applied according to the indication on the activating device and were controlled by a pressure sensor, placed in the hydraulic system of the device.

2.2.4. Pomiary

Zasadnicze pomiary były dokonywane za pomocą przetworników przemieszczeń liniowych, których wskazania rejestrowano i przetwarzano komputerowo, wraz z zapisem ciśnienia w układzie hydraulicznym. Przy każdym kolejnym obciążeniu odczyty wykonywano 60 razy co 1 sekundę.

Ugięcia belki były mierzone za pomocą przetworników PSx50 (o zakresie ±25mm) umieszczonych na listwie opartej na belce w osiach jej podpór. Listwa była podparta z jednej strony przegubowo nieprzesuwnie, z drugiej zaś przegubowo przesuwnie. Rozmieszczenie przetworników do pomiaru ugięć ilustruje rys. 2.9.

Rys. 2.9. Rozmieszczenie baz do pomiaru ugięć, belki BP i BT

Fig. 2.9. Location of the bases for measuring the deflections of BP and BT beam

Odkształcenia na powierzchni belki mierzono w dwóch poziomach: na górnej krawędzi belki i w odległości 35mm od dolnej krawędzi belki. Przyjęto długość baz pomiarowych 300mm w belkach BP i 400mm w belkach BT. Rozmieszczenie baz pomiarowych ilustruje rys. 2.10. W strefie ściskanej stosowano przetworniki $PS \times 10$ (zakres ±5mm), a w strefie rozciąganej PSx20 (zakres ±10mm).

Rys. 2.11. Sposób stabilizacji baz do pomiaru odkształceń Fig. 2.11. Stabilisation method of strain bases

Bazy były wyznaczone przez stalowe bolce i osadzone na nich aluminiowe listwy z przetwornikami. Listwy miały możliwość swobodnego obrotu na jednym z bolców i obrotu z przesuwem na drugim. Sposób mocowania bolców i układania listew wyjaśnia rys. 2.11.

Ze względu na ograniczenie zakresu pomiaru ugięć przetwornikami do 50mm, wprowadzono dodatkowy przybliżony sposób obserwacji ugięć. Na powierzchni

2.2.4. Measurements

The main measuring process was carried out using linear displacement transducers, which transmitted all the readings, including the pressure in hydraulic system, directly to the computer. During each step of load application, the measuring device recorded 60 readings per second.

Beam deflections were measured by transducers PSx50 (of ± 25 mm range), placed on a strip supported on the beam at its support axes. The strip was simply supported, sliding at the one end and constrained at the other. Fig. 2.9 shows the location of transducers used for measuring deflections.

Rys. 2.10. Rozmieszczenie baz do pomiaru odkształceń, belki BP i BT

Fig. 2.10. Location of the bases for measuring the strains in BP and BT beam

Strains on beam faces were measured at two levels: at the top edge, and at 35mm above the lower edge. Adopted length of measuring bases was 300mm for BP-beams and 400mm for BT-beams. The location of measuring bases is shown in Fig. 2.10. PSx10 transducers (of \pm 5mm working range) were used in the compression zone and PSx20 (of \pm 10mm working range) in tension zone.

The bases were defining by steel rods and aluminium flat bars with transducers mounted on them. The flats could freely rotate around one end and rotate with sliding at the other. The way of mounting the flats and bolts is shown in Fig. 2.11.

In view of the limitation of the transducer measured deflections to 50mm, additional approximate method of deflection observations was used: millimetre rulers glued

belki naklejano miarki z podziałką milimetrową (są one widoczne na rys. 2.7), a na rolkach umieszczonych w osiach podpór belki zawieszano obciążoną nitkę (żyłkę). Umożliwiało to odczytywanie ugięć z dokładnością do 0.5mm.

Ten dodatkowy sposób pomiaru ugięć przyjęto z powodów dydaktycznych, gdyż w badaniach uczestniczyły grupy studenckie. Z tego samego względu mierzono także odkształcenia ręcznie, za pomocą mechanicznych mierników nasadowych firmy Mayes & Son, o bazach 200 i 400mm, przy kilku wybranych poziomach obciążenia. Rozmieszczenie odpowiednich baz pomiarowych przedstawia rys. 2.12. Wyniki tych pomiarów nie będą dalej przytaczane ani interpretowane, gdyż na ogół powielają one wyniki komputerowe.

Belki BP / BP beams

on the surface of the beam (visible on Fig. 2.7) and weighted wire attached to the rollers placed at the beam support axes. This enabled the deflections to be read with an accuracy of up to 0.5mm.

This additional method of deflection measurement was adopted for teaching purposes, since student groups took part in the investigations. For the same reason, the deflections at several selected loading levels, were measured manually, using mechanical strain gauge (produced by Mayes & Son) with 200mm and 400mm bases. Fig. 2.12. shows the location of measuring bases. Further discussion on these measurements shall be omitted, since they match computer-generated results.

Rys. 2.12. Rozmieszczenie baz do pomiaru odkształceń mechanicznymi miernikami nasadowymi Fig. 2.12. Location of the bases for mechanical strain gauge

Przy kilku wybranych poziomach obciążenia dokonywano ponadto pomiarów szerokości rozwarcia rys za pomocą lupki o powiększeniu 24-krotnym, z podziałką.

Rejestrowano także obraz rys i ich rozwój w miarę narastania obciążenia.

2.2.5. Forma przedstawienia wyników

Wyniki komputerowych pomiarów odkształceń i ugięć opracowano w formie tablic. Przy każdym kroku obciążenia podano pierwszą i ostatnią zarejestrowaną wartość oraz wartość średnią.

Odkształcenia poszczególnych baz otrzymano dzieląc zmianę jej długości przez długość początkową, odpowiednio 300mm (belki BP) lub 400mm (belki BP).

Na podstawie odkształceń obliczono średnią krzywiznę na odcinku czystego zginania

$$\kappa_{\rm m} = \frac{\left(\sum_{l=1}^{n} \varepsilon_{\rm t} - \sum_{l=1}^{n} \varepsilon_{\rm c}\right)}{\rm nd} \ [1/m] \tag{1}$$

- gdzie: $\dot{\epsilon}_t$ odkształcenie włókna rozciąganego (ze znakiem dodatnim),
 - ε_c odkształcenie włókna ściskanego (ze znakiem ujemnym),

Moreover, at several chosen loading steps crack widths were measured using magnifying glass of 24-fold magnification, with a ruler of 0.05mm scale.

Overall map of the cracks and their development were recorded during load increase.

2.2.5. Presentations of the results

All computer-generated results of the deformations and deflections were presented in tabular form. For each step of load increase the first, the last and mean registered values are presented.

Deformations of particular bases were obtained by dividing the change in their length by their initial length: 300mm for BP- and 400mm for BT-beams respectively.

Mean curvature of the beam in the pure bending zone was calculated from values of strains

$$\kappa_{\rm m} = \frac{\left(\sum_{1}^{\rm n} \varepsilon_{\rm t} - \sum_{1}^{\rm n} \varepsilon_{\rm c}\right)}{\rm nd} \ [1/m] \tag{1}$$

where: ε_t - strain of the fibre in tension (positive value),

 ϵ_c - strain of the fibre in compression (negative value),

n - liczba uwzględnionych baz,

d - odległość między rozważanymi włóknami.

Dla belek BP jest zatem n=4, d=0.265m, zaś dla belek BT odpowiednio n=5, d=0.465m.

Ze względu na dużą objętość tablic, w Załączniku zamieszczono tylko dwie (odkształcenia i ugięcia) dla jednej z belek. Większość wyników jest natomiast przedstawiona w formie wykresów.

Odkształcenia strefy ściskanej ε_{cm} i rozciąganej ε_{tm} podano jako średnie z baz usytuowanych na odcinku czystego zginania. Dla belek, które uległy zniszczeniu na skutek zmiażdżenia betonu strefy ściskanej (BP-2 i BT-2), zamieszczono dodatkowo wykresy odkształceń poszczególnych baz pomiarowych.

W Załączniku przedstawiono także dla wszystkich belek obraz rys oraz pomierzone szerokości ich rozwarcia.

2.3. Omówienie wyników badania

2.3.1. Zniszczenie i odkształcalność graniczna

Belki o wyższym stopniu zbrojenia, BP-2 i BT-2, zniszczyły się zgodnie z oczekiwaniami przez zmiażdżenie betonu w strefie ściskanej. W belkach bez zbrojenia w strefie ściskanej zniszczenie miało charakter gwałtowny, wręcz eksplozyjny, natomiast obecność zbrojenia w tej strefie wyraźnie łagodziła przebieg procesu zniszczenia.

Obraz strefy zniszczenia belki BP-2a przedstawia rys. 2.13, a belki BP-2b rys. 2.14. Jak widać, podłużne zbrojenie strefy ściskanej i strzemiona radykalnie ograniczyły zasięg obszaru zniszczenia, zwłaszcza w odniesieniu do strefy rozciąganej.

Rys. 2.13. Obraz strefy zniszczenia belki BP-2a Fig. 2.13. Beam BP-2a, view of failure zone

Zniszczenie belek BT-2a i BT-2b miało taki sam charakter, choć nie było tak spektakularne.

Rozwój odkształceń skrajnych włókien strefy ściskanej w funkcji obciążenia ilustruje rysunek 2.15. Podano na nim wykresy średnich odkształceń z czterech (belki BP) lub pięciu (belki BT) baz pomiarowych oraz maksymalne odkształcenia zarejestrowane na pojedynczej bazie. Widoczne jest załamanie wykresów związane z zarysowaniem belki, oraz drugie, znacznie wyraźniejsze, spowodowane uplastycznieniem zbrojenia rozciąganego. Wzmocnienie zbrojenia rozciąganego sygnalizuje natomiast zmiana pochylenia ostatniej gałęzi wykresów - w belce BP-2a ma to miejsce przy średnim odkształceniu n - number of the bases under consideration,

d - distance between fibres under consideration.

Thus, n=4, d=0.265m for BP-beams, and n=5, d=0.465m for BT-beams.

Due to the large dimensions of tabulated results, only two tables (strains and deflections) for one of the beams are presented in the Appendix. However, most of results are available in form of graphs.

Strains in the compression ε_{cm} and the tension ε_{tm} zones are presented as a mean of bases situated in the pure bending section. For beams which collapsed by crushing of concrete in the compression zone (BP-2 and BT-2), additional graphs of deformations for particular measuring bases are presented in addition.

The Appendix includes also maps of cracks and their measured widths for all beams.

2.3. Discussion of the results

2.3.1. The failure and the limit deformation

The beams with higher reinforcement ratio - BP-2 and BT-2 - collapsed as expected, by crushing of the concrete compression zone. In the beams without any reinforcement in the compression zone, the failure was violent, even explosive. The presence of reinforcement in that zone attenuated the whole process.

The views of damaged zones of BP-2a and BP-2b beams are shown in Figs. 2.13 and 2.14 respectively. As can be seen, longitudinal reinforcement in the compression zone as well as stirrups restricted the damage zone appreciably, especially with respect to the tension zone.

Rys. 2.14. Obraz strefy zniszczenia belki BP-2b Fig. 2.14. Beam BP-2b, view of failure zone

The destruction of BT-2a and BT-2b beams was of the same character, though not as spectacular.

The development of strain in extreme fibres of the compression zone as a function of load is presented in Fig. 2.15. It shows the graphs of mean strains from four measuring bases on (BP-beams) or five bases on (BT-beams) and maximum strain recorded at a single base. Flexure is visible in the graphs, connected with formation of cracks, as well as the second, even more pronounced, when tension reinforcement yielded. The strengthening of tension reinforcement is visualised as a change in inclination of the extreme branch of the graph. In BT-2a beam this phe-

skrajnego włókna około -3.2‰, zaś w belce BT-2a przy około -2.1‰, co wynika z różnych wysokości strefy ści-skanej.

nomenon occurred at the mean deformation of the extreme fibre of abt. -3.2‰ and in BT-2a beam - at deformation of abt. -2.1‰, which was caused by difference in depths of the compression zones.

Rys. 2.15. Rozwój odkształceń skrajnych włókien strefy ściskanej Fig. 2.15. Development of strain in extreme fibres of the compression zone

Nie udało się doprowadzić do zniszczenia - w sensie materiałowym - belek o niskim stopniu zbrojenia, BP-1 i BT-1. Przy bardzo dużych przemieszczeniach, sięgających 200mm w połowie rozpiętości belek, co wyczerpywało możliwości stanowiska badawczego, obciążenie belek przerywano. Tak dużemu przemieszczeniu towarzyszyły bardzo duże krzywizny i rysy o znacznych szerokościach rozwarcia, było to więc oczywiste przekroczenie stanu granicznego nośności ze względu na odkształcenia. Przykładowy obraz belki BT-1a w trakcie odciążania, po osiągnięciu maksymalnego obciążenia, przedstawiono na rys. 2.16. Ugięcie belki osiągnęło wielkość odpowiadającą około 1/25 jej rozpiętości.

Ugięcie belki BP-1b przy maksymalnym obciążeniu F=28.5kN stanowiło natomiast aż około 1/15 część jej rozpiętości, a mimo to zbrojenie w pełni współpracowało z betonem.

The destruction (in the sense of material failure) of the beams with low reinforcement percentage (BP-1 and BT-1 beams) has not been reached. Due to the very large deflections, approaching even 200 mm at mid-span, which was beyond the test stand range, further loading of beams was discontinued. Such large displacement was accompanied large curvatures and very wide cracks. Thus, the beam definitely exceeded the ultimate state of strain. Fig. 2.16 presents the view of BT-1 beam during removal of the load after maximum load has been reached. Beam deflection was abt. 1/25 of the span.

The deflection of BP-1b beam at the maximum load of F=28.5kN attained as much as 1/15 of the span; despite this, reinforcement was still preserving full bond with concrete.

Rys. 2.16. Belka BT-1a po odciążeniu Fig. 2.16. BT-1a beam after removal the load

Rys. 2.17. Krzywizny belek o niskim stopniu zbrojenia Fig. 2.17. Curvatures of beams with low reinforcement ratio

Wykresy krzywizn tych belek w funkcji obciążenia (rys. 2.17), dotyczące odcinka czystego zginania, wskazują na bardzo duże plastyczne odkształcenia. Widoczny też jest przyrost obciążenia po uplastycznieniu zbrojenia, spowodowany wzmocnieniem stali przy dużych odkształceniach. Krzywizny belek o wyższym stopniu zbrojenia kształtowały się podobnie, jednak oczywiście z mniejszymi odkształceniami plastycznymi, co ilustruje rys. 2.18. Przykładowo w belce BT-2b średnia wysokość strefy ściskanej zmniejszała się od x=0.144m przy uplastycznieniu rozciąganego zbrojenia (F=160kN) do x=0.083m podczas zniszczenia, a $\Delta \kappa_m$ =0.0525m⁻¹.

Graphs showing beam curvatures as functions of load (Fig. 2.17) (the graphs concern pure bending zone) indicate large plastic deformation. Graphs show also load increase after yielding of steel, caused by strain hardening effect. Curvatures of beams with higher reinforcement ratio were similar, but had lower plastic deformations (see Fig. 2.18). For example, mean depth of the compression zone in BT-2b beam decreased from x=0.144m at yielding of the tension reinforcement (F=160kN), up to x=0.083m at failure, and $\Delta \kappa_m$ =0.0525m.

250

Rys. 2.18. Krzywizny belek o wyższym stopniu zbrojenia Fig. 2.18. Curvatures of the beams with high reinforcement ratio

W tabl. 2.4 zestawiono maksymalne obciążenia i krzywizny - w odniesieniu do belek silnie zbrojonych są to wielkości niszczące, natomiast w wypadku belek słabo zbrojonych - osiągnięte w badaniach. Na podstawie pomiarów odkształceń określono też obciążenia, przy których w rozciąganym zbrojeniu w strefie rozciąganej wystąpiły odkształcenia $\varepsilon_s=10\%$ i 20‰.

Maximum values of loads and curvatures obtained are presented in Table 2.4. With respect to highly reinforced beams they refer to the failure load; for beams with low reinforcement ratio they are just the highest obtained in tests. On the basis of strain measurements, load values at which strains in tension reinforcement reached $\varepsilon_s=10\%_0$ and 20\% were also determined.

I HOMON	2. II IIIai	ito j mame	overquerin	a r meg mi	ung
	Siła	Obciąź	zenie okre	ślone z	Krzywizna
Belka	niszcz.	warunku	max.		
	F _u [kN]	ε _s =10‰	$\epsilon_s = 20\%$	max	[1/m]
BP-1a	-	23.5	26.5	30	0.18957
BP-1b	-	24.5	26.5	28.5	0.19272
BP-2a	104	87.5	100		0.11092
BP-2b	105	85.5	98		0.11713
BT-1a	-	55.2	60	64	0.06702
BT-1b	-	56	60	66	0.06677
BT-2a	212	176	200		0.06434
BT-2b	212	183	205		0.06073

Tablica 2.4. Maksymalne obciążenia i krzywizny

Jak widać, we wszystkich wypadkach ograniczenie odkształceń w zbrojeniu prowadzi do sił granicznych mniejszych niż osiągnięte w badaniach. Właśnie te obciążenia, przy ε_s =10‰, należy uznawać, zgodnie z zaleceniami normy europejskiej, za nośność elementu.

2.3.2. Ugięcia w stanie eksploatacji

Rys. 2.19. Belki BP, doświadczalne zależności F-v Fig. 2.19. BP-beams: F-v experimental relationship

Table	2.4.	Maximum	values	of	loads	and	curvature

raute	2.4. Maximum values of folds and cut value						
	Load at	Load	Load defined from				
Beam	failure	strain	condition	F[kN]	curvature		
	F _u [kN]	$\epsilon_s = 10\%$	$\epsilon_s = 20\%$	max	[1/m]		
BP-1a	-	23.5	26.5	30	0.18957		
BP-1b	-	24.5	26.5	28.5	0.19272		
BP-2a	104	87.5	100		0.11092		
BP-2b	105	85.5	98		0.11713		
BT-1a	-	55.2	60	64	0.06702		
BT-1b	-	56	60	66	0.06677		
BT-2a	212	176	200		0.06434		
BT-2b	212	183	205		0.06073		

As can be seen, the limitation of reinforcement strain leads in all cases to lower limit forces than those obtained in investigations. These forces, at $\varepsilon_s=10\%_o$, should be admitted as load capacity of the given element in accordance with European Code of Practice.

2.3.2. Deflections in service

Zachowanie się belek pod obciążeniem ilustrują wykresy F-v (obciążenie – ugięcie w połowie rozpiętości) (rys. 2.19 i 2.20). Ugięcia ograniczono na nich do 20mm lub 25mm, aby wyeksponować stan eksploatacji. Jak wspomniano wyżej, maksymalne ugięcia były dużo większe, aż do blisko 200mm w wypadku belek BP-1 i BT-1.

Rys. 2.20. Belki BT, doświadczalne zależności F-v Fig. 2.20. BT-beams: F-v experimental relationship

Jak wynika z wykresów, belki o niskim stopniu zbrojenia (BP-1 i BT-1) poddawano cyklom powtarzalnych obciążeń tuż po uplastycznieniu rozciąganego zbrojenia, a mimo to powtarzalność obciążenia nie spowodowała przyrostu przemieszczeń. Jedynie w belce BP-1b ta uwaga nie jest prawdziwa, ugięcia wyraźnie przyrastają, co można wytłumaczyć brakiem zbrojenia ściskanego w tej belce w strefie czystego zginania. Oczywiście takie zachowanie się belek wynika nie tylko z wytrzymałościowej charakterystyki betonu, lecz także z cech stali zbrojeniowej, która po niewielkich odkształceniach plastycznych wykazywała dalszy przyrost naprężeń (por. rys. 2.2). The behaviour of beams under load is presented in F-v graphs (load vs. deflection at mid-span) (Figs 2.19 and 2.20). In order to emphasise the operating range, the deflections were confined to 20mm or 25mm. As mentioned above, maximum deflections were much higher, reaching 200mm in case of beams BP-1 and BT-1.

As can be seen see in the graphs, beams with low reinforcement percentage (BP-1, BT-1) were subjected to the repeated loading, just after tension reinforcement yield point has been reached. However, that repeated loading did not cause any increase in displacements. The only exception is BP-1b beam. Its displacement increased significantly, which can be explained by lack of compression reinforcement in pure bending zone of that beam. Such behaviour of the beams was caused not only by strength properties of concrete, but also by the property of reinforcing steel, in which - after showing some small plastic deformations, a further increase in stress could be observed (see Fig. 2.2). Belki o wyższym stopniu zbrojenia (BP-2 i BT-2) poddawano obciążeniom powtarzalnym przy obciążeniach stanowiących około 70% obciążenia niszczącego. W tym wypadku pięciokrotne powtórzenie cyklu obciążenieodciążenie nie wywarło żadnego wpływu na wielkość przemieszczeń.

Warto też zauważyć, że w obu słabo zbrojonych belkach o przekroju teowym (BT-1a i 1b) zarysowaniu towarzyszył szybki - choć przejściowy - ubytek sztywności (rys. 2.20).

2.3.3. Zarysowanie

Zarysowanie wszystkich belek przebiegało podobnie rysy pojawiały się najpierw ponad zbrojeniem, na wysokości przekroju. W miarę narastania obciążenia rysy stawały się widoczne także w poziomie zbrojenia, ale było ich kilkakrotnie więcej niż rys głównych (zbiorczych), gdyż układały się przy nich w formie wachlarzyka.

Problematyczne stało się zatem określenie doświadczalnego rozstawu rys. Główne rysy, o dużych szerokościach rozwarcia, nie są istotne z punktu widzenia trwałości, choć oczywiście wyglądają niepokojąco. Rysy w poziomie zbrojenia miały wyraźnie mniejsze szerokości rozwarcia, ale bardzo zróżnicowane, co powodowało niejednoznaczność pojęcia średniej odległości między rysami. Beams with higher reinforcement percentage (BP-2, BT-2) were subjected to repeated loading at loads equalling abt. 70% of the load at failure. In this case, five cycles of load did not have any influence on the displacements.

It is also worth mentioning, that in both T-shaped lowreinforcement beams (BT-1a and BT-1b), the cracking process was accompanied by fast, but transient, loss in stiffness (Fig. 2.20).

2.3.3. Cracking

In all beams the cracking process was similar: at the beginning, cracks appeared first above the reinforcement level, at the height of the cross-section. As the load was increased, the cracks became visible also at the reinforcement level, but their number was several times higher than the number of main (cumulative) cracks, because they were fanning out from them.

Thus, the problem of experimental definition of crack spacing became difficult. Main cracks, although very wide, are not particularly important for durability, although they look alarming. Cracks at reinforcement level were of lesser, but diversified width. This made the concept of mean crack spacing ambiguous.

Rys. 2.21. Obraz rys w belkach BP po zakończeniu obciążania Fig. 2.21. Crack map in BP beams after the test

Układ rys w badanych belkach po ich zniszczeniu, tj. zmiażdżeniu betonu w strefie ściskanej, lub po przerwaniu obciążenia ze względu na bardzo duże odkształcenia ilustrują rys. 2.21 i 2.22. Figs 2.21 and 2.22 present crack maps in beams after failure, i.e. after crushing of concrete in compression zone, or after interrupting the loading due to excessive deformations. Nie oznaczono na nich obszarów zniszczenia strefy ściskanej, aby nie zaciemniać obrazu rys.

Jak można zauważyć, w belkach o niskim stopniu zbrojenia, BP-1a i BT-1a, na odcinku czystego zginania układ głównych rys pokrywa się z układem strzemion. W odpowiednikach tych belek bez zbrojenia poprzecznego na odcinku czystego zginania, BP-1b i BT-1b, układ rys jest przypadkowy. Obrazy rys potwierdzają też znaną prawidłowość o wpływie stopnia zbrojenia na liczbę rys.

Odciążenie belek po zakończeniu badania wywoływało połączenie się rys w poziomie tuż nad zbrojeniem w taki sposób, że wydzielało się ono wraz z betonem je otulającym. Wystąpiło to wyraźniej w belkach o przekroju teowym, zwłaszcza przy braku zbrojenia w strefie ściskanej.

Tendencję do kształtowania się rys zbiorczych zaobserwowano także w badaniach [2], w belkach o wysokości przekroju 80cm i stopniach zbrojenia przekroju do 3.6%. Najwyraźniej wystąpiła ona przy niższych stopniach zbrojenia ($\rho \le 1.0\%$), a więc przy dużej względnej wysokości strefy rozciąganej. Rysy zbiorcze nie pojawiły się natomiast w belkach o tej samej wysokości, ale o bardzo wysokim stopniu zbrojenia $\rho=4.62\%$, w których zbrojenie rozciągane zajmowało około 0.35 wysokości przekroju. The areas of crushed concrete in compression zones are not shown, in order to make crack maps more visible.

It is noticeable, that in low reinforced beams: BP-1a and BT-1a, the set of main cracks matches the arrangement of stirrups in pure bending zone. In corresponding beams without transverse reinforcement in pure bending zone (BP-1b and BT-1b) cracks are randomly distributed. Crack maps also confirm the known theory of influence of the percentage of reinforcement on the number of cracks.

Removing the loads after the end of investigation caused the cracks to form a horizontal line just above reinforcement level, separating the reinforcement and concrete covering it. That phenomenon was more pronounced in beams of T-shaped cross-section, especially in those without reinforcement in the compression zone.

The tendency to form cumulative cracks was observed also in research [2] on beams of 80cm depth, with reinforcement percentage up to 3.6%. It was most pronounced at lower reinforcement percentages ($\rho \le 1.0\%$), thus at a large relative depth of the tension zone. Cumulative cracks however, were not observed in beams of the same depth, but with very high percentage of reinforcement, $\rho=4.62\%$, in which tension reinforcement occupied up to 0.35 of cross-section depth.

Rys. 2.22. Obraz rys w belkach BT po zakończeniu obciążania Fig. 2.22. Crack map in BT beams after the test

3. BADANIE SŁUPÓW

3.1. Program badania

Przewidziano zbadanie dziesięciu słupów o przekroju prostokątnym 140×250mm i długości 3000mm.

Założono stały stopień zbrojenia podłużnego, stały początkowy mimośród siły, dwie wytrzymałości betonu oraz dwie smukłości słupa, uzyskane dzięki obciążaniu w obu płaszczyznach symetrii przekroju. Oznaczenia i charakterystykę elementów zawiera tablica 3.1.

	Przekrój	Smu-	Względny	Wytrzy-	Rozstaw
	b×h	kłość	mimośród	małość	strzemion
Słup		słupa		betonu	
		l/h	e/h	f _{c,cube}	
	mm			MPa	mm
Sw-1A				90	
Sw-1B	250x140	21.4	0.36		
Sw-2A				100	
Sw-2B					140
Sk-1A				90	
Sk-1B	140x250	12.0	0.20		
Sk-2A			v	100	
Sk-2B					
Sw-2Ac	250x140	21.4	0.36	90	70
Sk-2Ac	140x250	12.0	0.20	90	

Tablica 3.1. Charakterystyka i oznaczenia elementów

3. RESEARCH ON CONCRETE COLUMNS

3.1. Research program

Investigation on 10 columns of rectangular crosssection (140×250mm) and 3000mm length was scheduled.

Constant longitudinal reinforcement ratio, constant initial eccentricity, two concrete strengths, and two values of column slenderness obtained by applying the load alternatively in two planes of symmetry were assumed. All symbols and element characteristics are shown in Table 3.1.

	Cross	Column	Relative	Concrete	Stirrups
	section	slender-	eccectri-	strength	spacing
Column	b×h	ness	city	f _{c,cube}	
		l/h	e/h		
	mm			MPa	mm
Sw-1A				90	
Sw-1B	250x140	21.4	0.36		
Sw-2A	э х			100	
Sw-2B					140
Sk-1A				90	
Sk-1B	140x250	12.0	0.20		
Sk-2A				100	
Sk-2B					
Sw-2Ac	250x140	21.4	0.36	90	70
Sk-2Ac	140x250	12.0	0.20	90	

Table 3.1. Symbols and properties of specimens

Rys. 3.1. Zasada obciążania słupów

Fig. 3.1. Rules of applying the loads to the columns

Symbole "Sw" i "Sk" informują, w której płaszczyźnie doprowadzano do zniszczenia słupa.

Słupy oznaczone symbolem "Sw" były obciążane w płaszczyźnie mniejszej sztywności, zaś oznaczone symbolem "Sk" – w płaszczyźnie większej sztywności.

Litera "A" w symbolu słupa oznacza, że obciążenie było przykładane tylko w jednej płaszczyźnie, aż do zniszczenia słupa. Litera "B" oznacza natomiast, że obciążenie słupa było przykładane początkowo w jednej płaszczyźnie, doprowadzane do pewnego poziomu, potem słup był odciążany, płaszczyznę obciążenia zmieniano i obciążenie słupa kontynuowano aż do jego zniszczenia. Te zasady obciążania wyjaśnia rys. 3.1. "Sw" and "Sk" symbols inform in which plane column is destroyed.

Columns marked "Sw" were loaded in the plane of lesser stiffness, and these marked "Sk" - in plane of greater stiffness.

"A" in column symbol stands for load applied in a single stiffness plane until the collapse of the column. "B" denotes that the load was applied at first in one stiffness plane up to a certain level. Then the load was relieved and applied in the second plane until the column collapse.

Fig. 3.1 explains the way of applying the loads.

Początkowy mimośród siły obciążającej słup zawsze wynosił 50mm.

Cyfry "1" i "2" w symbolu elementu odnoszą się do nominalnej wytrzymałości betonu (odpowiednio $f_{c,cube}=90MPa$ i 100MPa). Litera "c" w symbolu dwu ostatnich słupów oznacza zastosowanie strzemion o końcach połączonych przez spawanie i o rozstawie dwukrotnie mniejszym niż w pozostałych słupach.

W trakcie badania przewidziano odciążanie słupów z jednego lub dwu poziomów siły.

3.2. Opis badania

3.2.1. Materiały

Główne zbrojenie słupów wykonano ze stali żebrowanej 34GS o nominalnej średnicy 14mm, a strzemiona ze stali gładkiej o średnicy 6mm.

Próbki pobierano ze wszystkich prętów, z których wykonano zbrojenie słupa – po dwie próbki z każdego odcinka pręta.

Badanie stali przeprowadzono tak samo jak w przypadku belek (por. p. 2.2.1). Wyniki badań przedstawiono na rys. 3.2 oraz w Załączniku.

Rys. 3.2.Charakterystyka stali zbrojeniowejFig. 3.2.Reinforcement properties

Jako kruszywo do betonów zastosowano piasek kopalniany oraz żwir sortowany lub łamany grys granitowy. Skład granulometryczny obu mieszanek kruszyw ilustruje rys. 3.3, natomiast w tabl. 3.2 podano składy mieszanek betonowych.

ruoneu 5.2. Skidu mieszanki betonowe	Tablica 3	.2.	Skład	mieszanki	betonowej
--------------------------------------	-----------	-----	-------	-----------	-----------

Składnik [kg/m ³]	nominalne f _{c,cube}			
	90MPa	100MPa		
tłuczeń	-	1118		
żwir	1357			
piasek	339	602		
cement 45	500	500		
krzemionka	25	40		
superplastyfikator	15	15		
woda	160	140		
w / (c + krzemionka)	0.30	0.26		

Initial load eccentricity was always equal to 50mm.

Numbers ",1" and ",2" are referring to nominal concrete strength ($f_{c,cube}=90MPa$ and 100MPa respectively). ",c" in the symbol of the last two columns indicates the application of stirrups with welded ends at half the spacing used in the remaining columns.

During the investigation, temporary relief of load was scheduled at one or two levels of load.

3.2. Account of the research

3.2.1. Materials

Main reinforcement of columns consisted of 34GS ribbed bars of 14mm nominal diameter. Stirrups were of 6mm dia. round bars.

Samples were taken from all reinforcement bars used for reinforcing the columns - two samples from every section of the bar.

Testing of steel specimens was carried out in the same way as in the case of beams (see par. 2.2.1). The results of investigations are presented in Fig.3.2 and in the Appendix.

The aggregate used consisted of pit sand and graded gravel or crushed granite grit. The sieve analysis of both aggregate mixes is shown in Fig. 3.3 and proportions of concrete mix are presented in Table 3.2.

Tablica 3.2. Proportions of concrete mix

Component [kg/m ³]	Nominal f _{c,cube}		
	90MPa	100MPa	
crushed stone	-	1118	
gravel	1357	-	
sand	339	602	
cement (45 mark)	500	500	
silica fume	25	40	
superplasticizer	15	15	
water	160	140	
w / (c + silica fume)	0.30	0.26	

Rys. 3.3.Granulometryczna charakterystyka kruszywa: a) beton 1, b) beton 2Fig. 3.3.Grading curves of aggregate: a) concrete 1, b) concrete 2

Wytrzymałościowe cechy betonu były określane w dniu badania słupów na próbkach kostkowych o boku 150mm ($f_{c,cube}$, $f_{ct,sp}$) oraz walcowych 150/300mm (f_c). Wyniki badań są podane w Załączniku, a w formie skróconej w tabl. 3.3.

Podczas obciążania próbek walcowych, za pomocą specjalnie skonstruowanego tensometrycznego przyrządu rejestrowano ich skrócenie, na dwóch bazach o początkowych długościach równych 115mm. Ze względu na gwałtowny charakter zniszczenia próbek i związane z tym każdorazowo zagrożenie dla przyrządu pomiarowego, to badanie wykonano na ogół tylko na jednej próbce dla każdego słupa. Wykresy zależności σ_c - ε_c podane są w Załączniku.

Strength properties of concrete were determined on the day of column test on cube specimens of 150mm size $(f_{c,cube}, f_{ct,sp})$ and cylindrical specimens 150/300mm size (f_c) . Test results are presented in Appendix and - in short-ened form - in Table 3.3.

When loading cylindrical specimens their shortening was registered on two bases of 115mm initial lengths. In view of the sudden failure of specimens, and hazard of destruction of the measuring device connected with it, this test was carried out on one specimen only for each column. The graphs of $\sigma_c - \varepsilon_c$ relationships are presented in the Appendix.

Słup	Wiek betonu [dni]	f _{c,cube}	f _c	f _{ct,sp}	E _c	f _c
Column	Age of concrete [days]	[MPa]	[MPa]	[MPa]	[GPa]	f _{c,cube}
Sw-1A	28	98	66*	4.6	34.6	0.67
Sw-1B	28	95	81	4.4	39.1	0.85
Sw-2A	28	100	88	4.9	36.7	0.88
Sw-2B	28	100	76	4.7	32.8	0.76
Sk-1A	28	96	84	4.6	37.8	0.88
Sk-1B	28	91	65*	4.3	33.1	0.71
Sk-2A	28	99	83	4.4	33.4	0.84
Sk-2B	28	102	81	4.7	33.1	0.79
Sw-2Ac	199	107	80	5.7	33.8	0.75
Sk-2Ac	198	110	99	5.2		0.90
*) podstawy	próbek wyrównane przez g	ipsowanie; w p	oozostałych przy	padkach stosow	ano kapslowanie	próbek

Tablica	3.3. Wytrzymałościowe cechy betonu
Table	3.3. Concrete mechanical parameters

*) podstawy próbek wyrównane przez gipsowanie; w pozostałych przypadkach stosowano kapslowanie próbek
 *) specimen bases were smoothed using gypsum; in the remaining cases specimens were capped

3.2.2. Słupy

Słupy były zbrojone symetrycznie czterema prętami o średnicy 14mm (rys. 3.4), a zbrojenie poprzeczne stanowiły strzemiona Ø6 o rozstawie 140 lub 70mm (por. tabl. 3.1).

Pręty zbrojenia podłużnego były kotwione mechanicznie (przez spawane nakładki) w głowicy słupa. Pręty kotwiono od zewnętrznej lub wewnętrznej strony głowicy lub też z obu stron głowicy, odpowiednio do przewidywanego znaku siły w pręcie.

Fig. 3.4. Column reinforcement

Głowicę słupa zaprojektowano z ceownika [140, pełniącego rolę blachy czołowej. W ceownikach zostały wykonane nagwintowane gniazda, które służyły do przykręcenia stalowych płyt o grubości 25mm (rys. 3.5), do których z kolei mocowano za pomocą wkrętów stalowe płyty o grubości 30mm z gniazdem do umieszczenia siłomierza lub trzpienia podporowego. Układ otworów w obu płytach był tak pomyślany, aby przez obrót zewnętrznej płyty można było uzyskać odpowiednie ustawienie siły obciążającej słup.

Przed umieszczeniem szkieletu zbrojeniowego w formie dokonywano pomiarów rozstawu prętów, po ich zewnętrznym obrysie. Wyniki tych pomiarów są podane w Załączniku.

Słupy były betonowane w pozycji poziomej, w stalowej formie, w której blachy czołowe słupa były jednocześnie poprzecznymi ściankami formy.

Beton przygotowywano w betoniarce wolnospadowej o pojemności 0.15m³, wobec czego słup i próbki wykonywano z dwóch zarobów. Mieszankę betonową zagęszczano wibratorem wgłębnym firmy "Tremix" typ OM 2.0 (buława ES o średnicy 50mm), z częstotliwością 200Hz. Elementy i próbki rozformowywano po około 48 godzinach i do dnia badania przechowywano w hali wytrzymałościowej. Przez pierwsze trzy dni po betonowaniu słupy i próbki były polewane wodą.

3.2.3. Stanowisko badawcze i sposób obciążania słupów

Wszystkie słupy były obciążane w pozycji pionowej, w prasie hydraulicznej klasy 1.0 o nośności 6000kN. Wykorzystano jednak jej dwa zakresy, do 600 i 2000kN.

3.2.2. Columns

The columns had symmetrical reinforcement of four 14mm dia bars (Fig. 3.4) with transverse reinforcement consisting of 6mm dia. stirrups spaced at 140mm or 70mm centres (see Table 3.1).

Longitudinal reinforcing bars had mechanical anchors (welded plates) at column caps. The bars were anchored on the inside or on the outside or on both sides of the cap, depending on the expected sign of the force in bar.

Fig. 3.5. Column cap arrangement

Column cap was made of 140mm channel, serving as a head plate. Threaded holes were bored in the channel, serving to screw down 25mm thick steel plates (Fig. 3.5). Steel plates, 30mm thick with a seat to accommodate a dynamometer or support bolt were in turn attached by tap bolts. Position of holes in both plates was so devised, that by rotating the outer plate suitable positioning of column loading could be obtained.

Prior to placing reinforcing cage in formwork, measurement of bar positioning (their outside contours) was carried out. The results of these measurements are given in the Appendix.

Columns were concreted in horizontal position in steel formwork, with column caps serving as transverse walls of the formwork.

Concrete was mixed in a free-fall mixer of 0.15m³ capacity. For this reason, the column and specimens were cast using two batches. Concrete mix was compacted using "Tremix" OM 2.0 immersion vibrator, with 50mm dia. vibrating poker and 200Hz frequency. Columns and specimens were de-moulded after abt. 48 hrs and stored till the day of test in the test hall.

During the first three days after casting, columns and specimens were sprinkled with water.

3.2.3. Test stand and column loading procedure

All columns were loaded in vertical position in a Class 1.0 hydraulic press of 6000kN capacity. Two of its ranges were used: up to 600kN and up to 2000kN.

Ogólny widok stanowiska badawczego przedstawia rys. 3.6 i 3.7. Słup wprowadzano do stanowiska za pomocą układu prowadnic wykonanych ze stalowych kształtowników, połączonych z wózkiem stanowiącym wyposażenie prasy, wtaczanym między jej kolumny. Prowadnice stanowiły też zabezpieczenie podczas badania.

Słupy były podparte przegubowo w dwóch punktach: u góry obciążenie było przykładane przez siłomierz typu K-450 firmy Lorentz GmbH przy zakresie prasy do 600kN lub przez stalową głowicę z trzpieniem przy zakresie prasy 2000kN, a na dole przez stalową głowicę z trzpieniem, umieszczonym w gnieździe blachy czołowej.

Rys. 3.6. Ogólny widok stanowiska badawczego, widoczna kratownica do badania przemieszczeń słupa

Fig. 3.6. Overall view of test stand; truss construction for measuring displacements is visible

W trakcie obciążania słupa siłę zwiększano skokowo, przy czym przyrost siły ustalano w zależności od przewidywanego obciążenia niszczącego, a po osiągnięciu około 0.9 tego obciążenia skok siły zmniejszano, aby dokładniej uchwycić stan zniszczenia.

Z dwóch poziomów obciążenia wykonywano pięciokrotnie odciążenia, nie całkowite, lecz do niewielkiej siły.

Dla słupów obciążonych w jednej płaszczyźnie wykonywano odciążenia z poziomów około 0.6 i 0.8 przewidywanego obciążenia niszczącego, a następnie obciążenie zwiększano aż do zniszczenia.

Nieco inaczej przebiegało badanie słupów, obciążanych ze zmianą miejsca przyłożenia siły. Przy pierwszym położeniu siły (por. rys. 3.1), po osiągnięciu około 0.6 przewidywanego w tej płaszczyźnie obciążenia niszczące Overall view of the test stand is shown in Fig.3.6 and 3.7. The column was introduced in test stand by means of a system of steel section guides, connected with a trolley (which was a part of hydraulic press equipment), rolled in between the columns of the press. The guides afforded also protection during the test.

The columns were supported at two points on hinged joints. At the top, within the press range up to 600kN, the load was applied by K-450 dynamometer (produced by Lorentz GmbH) and at the press range to 2000kN - by steel head with bolt situated in a seat in the head plate.

Rys. 3.7. Oprzyrządowanie pomiarowe słupaFig. 3.7. Measurement instrumentation of column

During the loading of the column the load was increased by steps. The increment of the force was determined depending on the expected failure load. After attaining 0.9 of this load, load step was reduced to assess the failure load more exactly.

Load reduction down to a small force was carried out five times from two levels of loading.

For columns loaded in one plane, load reduction was carried down from the levels of abt. 0.6 and 0.8 of the expected failure load. Following this, load was increased till destruction.

Testing of columns with the change in the position of load application point was carried out in a slightly different way. During the first application of load (see Fig. 3.1) on reaching 0.6 of the expected failure load for this plane, load reduction cycle was repeated four times and in the fifth cycle the load was fully removed allowing to change the situation of load application. go, wykonywano czterokrotnie cykl odciążenie – obciążenie, a w piątym cyklu słup odciążano całkowicie, co umożliwiało zmianę miejsca usytuowania siły. W tej drugiej płaszczyźnie wykonywano odciążenia po osiągnięciu około 0.8 przewidywanego obciążenia niszczącego, a następnie obciążenie kontynuowano aż do zniszczenia.

3.2.4. Pomiary

Przyjęto, że w toku badań będą mierzone przemieszczenia osi słupa oraz odkształcenia na jego powierzchni.

Do pomiaru przemieszczeń wykorzystano specjalny układ pomiarowy, stosowany wcześniej w badaniach [6], który składał się ze sztywnej stalowej kratownicy i listew łączących ją ze słupem. Schemat tego układu jest przedstawiony na rys. 3.8.

- Rys. 3.8. Schemat układu pomiarowego przemieszczeń osi słupa
- Fig. 3.8. Schematic sketch of displacement measuring system

Kratownica stanowiąca poziom odniesienia w pomiarach była połączona z jedną z głowic słupa przegubowo nieprzesuwnie, a z drugą przegubowo przesuwnie. Trzy listwy pomiarowe (a, b, d na rys. 3.8) miały możliwość swobodnego obrotu względem jednego punktu podparcia umieszczonego na słupie oraz możliwość swobodnego obrotu i przesuwu w drugim punkcie podparcia – na pręcie kratownicy. Na tych listwach umieszczone były przetworniki przemieszczeń liniowych, za pomocą których rejestrowano zmiany długości odcinków wyznaczonych przez listwy. Przed rozpoczęciem obciążania słupów dokonywano pomiarów początkowych długości odcinków pomiarowych a, b, d.

Przy przyjętym układzie pomiarowym można opisać położenie punktu "0" przekroju (rys. 3.8) następującymi zależnościami:

$$a_{i} = a_{0} - \Delta a_{i}$$

$$b_{i} = b_{0} - \Delta b_{i}$$

$$d_{i} = d_{0} - \Delta d_{i}$$

(3.1)

$$\cos(\beta_{i}) = \frac{a_{i}^{2} + c^{2} - b_{i}^{2}}{2a_{i}c}$$
(3.2)

$$\beta_{i} = \arccos(\beta_{i})$$

$$\cos(\rho_{i}) = \frac{a_{i}^{2} + e^{2} - d_{i}^{2}}{2a_{i}e}$$
(3.3)

In the second plane, reductions of load were carried out after reaching 0.8 of the expected failure load and then load increase continued till destruction.

3.2.4. Measurements

It was planned that during the test the displacements of column axis and strains on column surfaces shall be taken.

Special measuring system, used in previous tests [6] was applied to measure displacements. It consisted of a stiff steel truss and battens connecting it to the column. Schematic sketch of this system is shown in Fig. 3.8.

- Rys. 3.9. Usytuowanie przekrojów, w których określano przemieszczenia osi słupa
 Fig. 3.9. Situation of cross-sections at which column
 - g. 3.9. Situation of cross-sections at which column axis displacements were determined

The truss, constituting the reference level in measurements, was connected to one column cap by means of a hinged, sliding joint and by hinged, non-sliding joint to the other. Three measuring battens (a,b,d in Fig. 3.8) had possibility to rotate freely with respect to one supporting point on the column and a possibility to rotate with sliding at the other point of support - on truss bar. On these battens linear displacement transducers were placed, by means of which the change of measuring length assigned to the battens was recorded. Before beginning column loading, measurements of the initial lengths of a, b and d measurement sectors were taken.

In the adopted measuring system, the position of point "0" of the cross-section (Fig. 3.8.) can be defined by following relationships:

$$a_{i} = a_{0} - \Delta a_{i}$$

$$b_{i} = b_{0} - \Delta b_{i}$$

$$d_{i} = d_{0} - \Delta d_{i}$$

(3.1)

$$\cos(\beta_{i}) = \frac{a_{i}^{2} + c^{2} - b_{i}^{2}}{2a_{i}c}$$
(3.2)

$$\beta_{i} = \arccos(\beta_{i})$$

$$\cos(\rho_{i}) = \frac{a_{i}^{2} + e^{2} - d_{i}^{2}}{2a_{i}e}$$
(3.3)

$$\rho_{i} = \arccos(\rho_{i})$$

$$\gamma_{i} = \beta_{i} - \rho_{i} \qquad (3.4)$$

$$= a_{i} \sin(\beta_{i} - \gamma_{0}) + f_{0} \cos(\gamma_{i}) \qquad (3.5)$$

$$x_i = a_i \sin(\beta_i - \gamma_0) + f_0 \cos(\gamma_i)$$
(3)
$$y_i = a_i \cos(\beta_i - \gamma_0) - f_0 \sin(\gamma_i)$$

a przemieszczenia tego punktu i obrót przekroju w płaszczyźnie XY zależnościami

$$v_{xi} = x_i - x_0$$

$$v_{yi} = y_i - y_0$$

$$\alpha_i = \gamma_i - \gamma_0$$

(3.6)

przy czym sieczny kąt pochylenia śladu płaszczyzny zginania względem osi Y jest równy

$$\delta = \operatorname{arctg}\left(\frac{\mathbf{v}_{xi}}{\mathbf{v}_{yi}}\right) \tag{3.7}$$

Omawiany układ pomiarowy jest widoczny na rys. 3.6 i 3.7.

We wszystkich słupach rejestrowano przemieszczenia w trzech przekrojach na długości słupa (rys. 3.9), przy użyciu przetworników przemieszczeń liniowych Psx50 o dokładności odczytu 0.05mm.

Odkształcenia na powierzchni betonu były określane za pomocą przetworników przemieszczeń liniowych PSx20 i PSx10, na pięciu bazach pomiarowych na wysokości słupa (rys. 3.10). Położenie baz pomiarowych na obwodzie słupa zróżnicowano w zależności od płaszczyzny jego obciążenia (rys. 3.10).

$$\rho_{i} = \arccos(\rho_{i})$$

$$\gamma_{i} = \beta_{i} - \rho_{i} \qquad (3.4)$$

$$x_{i} = a_{i} \sin(\beta_{i} - \gamma_{0}) + f_{0} \cos(\gamma_{i})$$

$$y_{i} = a_{i} \cos(\beta_{i} - \gamma_{0}) - f_{0} \sin(\gamma_{i})$$
(3.5)

and the displacements of this point and rotation of the cross-section in the XY plane - by relationships:

$$v_{xi} = x_i - x_0$$

$$v_{yi} = y_i - y_0$$

$$\alpha = \gamma - \gamma_0$$

(3.6)

while the secant angle of inclination of bending plane trace with respect to the Y-axis equals:

$$\delta = \operatorname{arctg}\left(\frac{v_{xi}}{v_{yi}}\right)$$
(3.7)

The measuring system, discussed above can be seen in Figs 3.6 and 3.7

In all columns displacements were recorded at three cross sections along column height (Fig. 3.9) by means of PSx50 linear displacement transducers of 0.05mm reading precision.

Strains on the surface of concrete were determined by means of PSx20 and PSx10 linear transducers at five measurement bases over the height of the column (Fig. 3.10). The situation of bases on column perimeter was altered depending on the plane of column loading (Fig. 3.10).

Rys. 3.10. Rozmieszczenie baz do pomiaru odkształceń na powierzchni betonu Fig. 3.10. Layout of strain measurement bases on concrete surface

Bazy pomiarowe były wyznaczone przez stalowe bolce, osadzone w betonie, i umieszczone na nich aluminiowe listwy z przetwornikami, analogicznie jak w przypadku belek (por. rys. 2.11). Bolce pośrednie służyły do zawieszenia dwóch listew, odpowiadających dwom przyległym bazom, wobec czego na jednej z nich oś przetwornika znajdowała się w odległości 20mm od powierzchni betonu, a na drugiej – w odległości 40mm. Te odległości są oznaczone na rys. 3.10.

Odczyty wskazań wszystkich przetworników przemieszczeń liniowych były prowadzone automatycznie za pomocą miernika pomiarowego, współpracującego z komputerem.

Czas utrzymania kolejnego kroku siły przyjęto jako 30 sekund i w zadanym czasie wskazania czujników były rejestrowane 20 razy co 1.5 sekundy.

Measurement bases were determined by steel bolts embedded in concrete with aluminium battens and transducers placed on them, just as in the case of beams (see Fig. 2.11). Intermediate bolts served to attach two battens, corresponding to two adjacent bases; transducer axis on one of them was then 20mm distant from concrete face, while on the other - 40mm. These distances are indicated in Fig. 3.10.

Readings of all linear displacement transducers were controlled automatically by a measuring meter connected to the computer.

Time interval for consecutive load maintenance step was 30 sec., during which gauge readings were recorded 20 times at 1.5 sec. intervals.

3.2.5. Forma przedstawienia wyników

Do przetworzenia wyników pomiarów wykorzystano dwa programy komputerowe, za pomocą których obliczano:

- przemieszczenia osi słupa v_x i v_y , kąt określający kierunek płaszczyzny zginania δ i kąt skręcenia przekroju α , na podstawie zależności 3.6 i 3.7,
- kąt δ i odkształcenia skrajnych włókien przekroju ε_d i ε_g na podstawie odkształceń pomierzonych na długości słupa.

Przy każdym kolejnym kroku obciążenia wszystkie te wielkości obliczano trzykrotnie, na podstawie:

- pierwszego pomiaru z dwudziestu rejestrowanych,
- ostatniego,
- średniego ze wszystkich dwudziestu.

Przy ostatnim kroku obciążenia, a na ogół był to stan zniszczenia elementu, obliczano omawiane wielkości na podstawie wszystkich pomiarów. Odrzucano jednak te wyniki, które były obarczone błędem, np. gdy przy dużych przemieszczeniach skończył się zakres któregoś z czujników, a także te, które zapisano już po wyłączeniu zasilania prasy.

Wyniki obliczeń podano w Załączniku, w postaci tablic i wykresów.

W tablicach S1.1 do S10.1 zamieszczone są przemieszczenia v_x i v_y osi słupa, kąt δ pochylenia płaszczyzny zginania względem osi Y i kąt α , opisujący skręcenie przekroju. Przemieszczenia przedstawiono też w postaci wykresów: $v_x - v_y$, N - v_x , oraz N – v_y .

Tablice S1.2 do S10.2 zawierają wartości kąta δ i odkształcenia skrajnych włókien przekroju ε_d i ε_g w płaszczyźnie wyznaczonej przez kąt δ . W algorytmie obliczania kąta δ oraz odkształceń ε_d i ε_g przyjęto zasadę zachowania płaskiego przekroju oraz posłużono się metodą najmniejszych kwadratów. Omawiane wielkości określono dla wszystkich pięciu baz, usytuowanych na długości słupa. Wyjątkiem jest słup Sk-1A (tabl. S5.2), dla którego pomiary ograniczono do 3 baz, oraz słup Sk-1B (tabl. S6.2), gdyż w bazie 3 zawiódł jeden z przetworników.

Odkształcenia skrajnych włókien przekroju przedstawiono także w postaci wykresów N - ε_d i N - ε_g , a więc w funkcji obciążenia.

3.3. Omówienie wyników badania

3.3.1. Usytuowanie osi obojętnej odkształcenia w przekroju

Na rysunku 3.11 przedstawiono usytuowanie osi obojętnej odkształcenia w przekroju wszystkich słupów, dla wybranych sił podłużnych. Wartości tych sił, a także wartości odpowiadających im odkształceń, są podane na rysunkach.

Jak można zauważyć, osie obojętne odkształcenia nie są prostopadłe do prostych wyznaczających teoretyczną płaszczyznę obciążenia, tj. osi symetrii przekroju. Należy to przypisać przypadkowym niezamierzonym mimośrodom, jakie wystąpiły w trakcie badania. Słupy były bowiem betonowe w pozycji poziomej, co powodowało niejednorodność cech betonu na wysokości słupa, szkielet

3.2.5. Presentations of the results

Two computer programs were used in processing the results. They served to compute:

- displacements of column axis (v_x and v_y), angle defining the direction of plane of flexure δ and cross-section rotation angle α , obtained from relationships 3.6 and 3.7.,
- angle δ and strains in extreme fibres of cross-section ϵ_d and ϵ_g - on the basis of strains measured over the length of column,

At every consecutive loading step all these values were measured three times on the basis of:

- first measurement of twenty recorded,
- last measurement,
- a mean of all twenty measurements.

The above values were calculated again on the basis of all measurements at the last step of loading; it was usually the state of destruction. Results containing errors (e.g. when the range of some gauges was exceeded or readings recorded after the hydraulic press feed was cut off) were rejected.

The results of calculations are presented in the Appendix in the form of Tables and graphs.

Displacements of column axis v_x and v_y , angle of inclination δ of the plane of bending with respect to Y axis, and angle α defining the rotation of the cross-section are contained in Tables S1.1 to S10.1. Displacements are also presented in the form of graphs $v_x - v_y$, N - v_x , and N - v_y .

Tables S1.2 to S10.2 contain the values of angle δ and values of strains ε_d and ε_g in the extreme fibres in the plane defined by angle δ . Principle of plane sections and method of least squares were adopted in the algorithm for computing angle δ and strains ε_d and ε_g . Above magnitudes were determined for all five bases situated along the height of the column. The exception is column Sk-1A (see Table S5.2), for which the measurements were reduced to 3 bases, and column Sk-1B (see Table S6.2) because of the failure of one of the transducers.

Strains in extreme fibres are also presented in the form of N - ϵ_d and N - ϵ_g graphs - therefore as the function of loading.

3.3. Discussion of the results

3.3.1. Situation of the neutral axis of strain in the cross-section

The situation of neutral axis of strain in the crosssections of all columns is shown in Fig. 3.11 for selected longitudinal forces. The values of these forces, as well as the values of corresponding strains are given in the drawings.

It can be noticed that neutral axes of strain are not perpendicular to straight lines determining the theoretical axis of load, i.e. the neutral axis. This can be assigned to incidental, unintentional eccentricities occurring during investigations. The columns were cast in horizontal position what caused inhomogeneity of concrete properties over the depth of the cross-section; the cage of reinforcement could also shift slightly in the formwork, despite restraints zbrojenia też mógł się nieco przesunąć w formie, mimo stabilizacji w blachach czołowych. Budowa przegubu przekazującego obciążenie (trzpień umieszczony w wyżłobieniu blachy głowicy) również mogła być powodem błędu w usytuowaniu siły.

- Rys. 3.11. Zmiana położenia osi obojętnej i odkształcenia skrajnych włókien przekroju - słupy Sw
- Fig. 3.11. Change in the position of the neutral axis and strains in extreme fibres of the cross-section Columns Sw

in cap channels. The construction of the articulated joint transferring the load (mandrel in the seat of the cap plate) could also lead to errors in situating the force.

- Rys. 3.12. Zmiana położenia osi obojętnej i graniczne odkształcenia skrajnych włókien przekroju słupy Sk
- Fig. 3.12. Change in the position of neutral axis and limit strains in the extreme fibres of the cross-section Columns Sk

Niezamierzone mimośrody, które wystąpiły w badanych słupach, można oszacować jako równe $1 \div 4$ mm.

Rysunki 3.11 i 3.12 potwierdzają ponadto oczywistą prawidłowość o zmniejszaniu się wysokości strefy ściskanej w miarę narastania obciążenia.

3.3.2. Zniszczenie słupów i odkształcalność graniczna

W badaniach wystąpiły dwa modele zniszczenia słupów, związane z kierunkiem płaszczyzny ostatecznego obciążenia.

Słupy Sw, w których do zniszczenia doprowadzono w płaszczyźnie o mniejszej sztywności, niszczyły się przez utratę stateczności. Narastanie przemieszczeń słupa powodowało, że dalsze jego obciążenie stawało się niemożliwe. Rozwój przemieszczeń tych słupów w funkcji obciążenia ilustruje rys. 3.13, na przykładzie słupów Sw -1A i Sw -2Ac.

Słupy Sk, obciążane w płaszczyźnie o większej sztywności, niszczyły się przez zmiażdżenie betonu w strefie ściskanej. Zniszczenie miało charakter bardzo gwałtowny, beton rozpryskiwał się, a pręty zbrojenia ulegały wyboczeniu.

Słupy Sk-1A i Sk-1B zniszczyły się przy głowicy, co mogło wskazywać na przedwczesne zniszczenie na skutek docisku. W następnych dwóch słupach, Sk-2A i Sk-2B wzmocniono zatem strefy przy głowicach zewnętrznymi stalowymi opaskami. Okazało się to skuteczne, do zniszczenia tych słupów doszło w pobliżu środka ich wysokości (rys. 3.14).

Przyczynę zniszczenia poszczególnych słupów, wielkości sił niszczących oraz odkształcenia skrajnego włókna strefy ściskanej przy maksymalnej sile osiągniętej w badaniu podano w tablicy 3.4. Unintentional eccentricities present in investigated columns can be assessed to measure 1 to 4 mm.

The evident regularity of the reduction of compression zone height with the increasing load is confirmed in Figs 3.11 and 3.12.

3.3.2. Failure of columns and limit deformability

Two models of column failure occurred in tests. They were connected with the direction of ultimate load plane.

Sw type columns in which the failure occurred in the plane of lesser stiffness, failed because of the loss of stability. The growth of column deflections made their further loading impossible. The development of deflections in these columns as functions of load is shown in Fig. 3.13 on the example of columns Sw - 1A and Sw - 2Ac.

Sk type columns loaded in the plane of greater stiffness failed by crushing of concrete in compression zone. The failure had a very violent character, concrete burst and reinforcing bars buckled.

Sk-1A and Sk-1B columns failed at the cap, what could point to a premature destruction caused by contact pressure. In two columns that followed, Sk-2A and Sk-2B, the zones adjacent to the caps were strengthened by external steel bands. This has proved efficient - the failure of these columns occurred near their mid-height (Fig. 3.14).

The cause of failure in individual columns, magnitude of forces at failure and strains in the extreme fibre of the compression zone at the maximum force attained in test is presented in Table 3.4.

Słup	N _{u, test}	Odkształcenie/strain		Sposób zniszczenia
Column	kN	ε _c , ‰	baza/base	mode of failure
Sw = 1A	300	-2.46	3	
Sw=1B	330	-2.56	3	utrata stateczności
Sw =2A	339	-2.37	3	loss of stability
Sw =2B	384	-2.15	3	
Sk -1A	1300	-3.61/-3.95	2/4	zmiażdżenie betonu przy głowicy
Sk -1B	1180	-3.15/-3.45	2/4	crushing of concrete close to column cap
Sk -2A	1270	-4.28	3	zmiażdżenie betonu w połowie wysokości słupa
Sk -2B	1300	-4.17/-4.31	3/4	crushing of concrete at column mid-height
Sw -2Ac	384	-2.48	3	utrata stateczności loss of stability
Sk -2Ac	1300	-5.78	3	zmiażdżenie betonu crushing of concrete

Tablica 3.4. Sposób zniszczenia i doświadczalne wartości $N_{u, \text{ test}}$ i ε_c Table 3.4. Mode of failure and experimental values of $N_{u, \text{ test}}$ and ε_c

Rys. 3.13. Przemieszczenia słupów Sw-1A i Sw-2Ac w funkcji obciążenia Fig. 3.13. Deflections of Sw-1A and Sw-2Ac columns as functions of load

Warto zauważyć, że do utraty stateczności słupów dochodziło przy zbliżonych odkształceniach skrajnego włókna strefy ściskanej, bez względu na rodzaj betonu (1 lub 2) i rozstaw strzemion.

W słupach Sk-2A i Sk-2B, w których beton uległ zmiażdżeniu w połowie wysokości słupa, odkształcenia skrajnego włókna strefy ściskanej przekroczyły 4‰. Korzystny okazał się w tym przypadku wpływ rozstawu strzemion - w słupie Sk-2Ac zarejestrowano przy zniszczeniu $\varepsilon_c = -5.78\%_0$. It is worth noticing that buckling of the columns occurred at similar strains of the extreme fibre of the compression zone, independent of class of concrete (1 or 2) or stirrup spacing.

In columns type Sk-2A and Sk-2B, in which concrete was crushed at column mid-height, strain in the extreme fibre of the compression zone exceeded 4‰. The influence of stirrup spacing proved here advantageous: strain at failure in column Sk-2Ac was $\varepsilon_c = -5.78\%_o$.

Rys. 3.14. Zniszczenie słupa Sk-1A przy głowicy i Sk-2A w połowie wysokości Fig. 3.14. Failure of Sk-1A column near the cap and Sk-2A column at mid-height

Na podstawie wartości ε_c można też przyjąć, że siły, przy których doszło do zniszczenia słupów Sk-1A i Sk-1B przy głowicach, są właściwymi siłami niszczącymi. Wskazują na to wartości odkształceń w środkowej strefie słupa, wyraźnie przekraczające 3‰.

3.3.3. Zależność σ_c - ϵ_c określana na próbkach

Wykresy zależności $\sigma_c - \varepsilon_c$ dla ściskanego betonu, przedstawione przykładowo na rys. 3.15 potwierdzają, że rodzaj kruszywa ma wpływ na charakter tej zależności i graniczne odkształcenia. It can be also assumed on the basis of ε_c values that the loads at which the failure of Sk-1A and Sk-1B columns occurred at column caps are the actual loads at failure. This is confirmed by the values of strains in the middle part of column height exceeding $3\%_0$.

3.3.3. The σ_c - ϵ_c relationship determined on specimens

The graphs of $\sigma_c - \varepsilon_c$ relationship for concrete in compression presented as an example in Fig. 3.15 confirm that the kind of aggregate does influence this relationship as well as limit strains.

Rys. 3.15. Przykładowe zależności $\sigma_c - \varepsilon_c$ określone na próbkach walcowych Fig. 3.15. Examples of $\sigma_c - \varepsilon_c$ relationship determined on cylindrical specimens

Jeżeli stos okruchowy skomponowano z kruszyw naturalnych (beton 1), zależności $\sigma_c - \varepsilon_c$ pozostawały liniowe aż do naprężeń równych około 0.9f_c, a graniczne odkształcenia były równe zaledwie około 2.3‰.

Wprowadzenie do stosu okruchowego tłucznia granitowego (beton 2) spowodowało skrócenie liniowej części wykresu do naprężeń równych około 0.7f_c oraz zwiększenie granicznych odkształceń do około 3.2‰.

Można też zauważyć, że beton 1, mimo wytrzymałości na ściskanie nieco mniejszej niż beton 2, charakteryzuje się współczynnikiem sprężystości wyższym o około 6% (por. tabl. 3.3). If the aggregate mix was composed of gravel (concrete 1), the σ_c - ε_c relationship remained linear till stresses reached abt. $0.9f_c$, while the limit strains remained at abt. 2.3% only.

Introduction of granite grit to mix (concrete 2) caused the shortening of the linear part of the graph to stresses equal to abt. 0.7fc and increase of limit strains to abt. 3.2‰.

It can be noticed also, that concrete 1, despite somewhat lower compression strength than concrete 2 is characteristic by its modulus of elasticity higher by abt. 6% (see Table 3.3).
4. BADANIE RAM

4.1. Program badania

Przyjęto wymiary, schemat statyczny i sposób obciążania ram jak na rys. 4.1.

Rys. 4.1. Wymiary, schemat statyczny i sposób obciążania ram

Fig. 4.1. Dimensions, static diagram and loading procedure

Założono stały układ zbrojenia podłużnego na długości rygla i słupów, przy całkowitym stopniu zbrojenia wynoszącym około 0.018. Zbrojenie zostało jednak różnie podzielone na wewnętrzne (tj. od wewnętrznej strony ramy) i zewnętrzne, tak aby wymusić wyraźną redystrybucję sił wewnętrznych.

Oznaczenia ram i podział zbrojenia wyjaśnia tablica 4.1. Symbol RPW-a/b oznacza ramy o zbrojeniu wewnętrznym silniejszym niż ułożone od strony zewnętrznej, zaś symbol RPW-b/a odnosi się do zbrojenia ukształtowanego odwrotnie.

Dla ram RPW-c/c założono zbrojenie symetryczne, a więc odpowiadające wykresom momentów określonym dla ciała o charakterystyce liniowo - sprężystej.

Jak wynika z rys. 4.1 przewidziano obciążanie ram w dwóch etapach, ze zmianą kierunku obciążenia. W I etapie przyjęto dwa poziomy obciążenia, którym odpowiadają cyfry 1 i 2 w oznaczeniach ram. W II etapie obciążenia założono doprowadzenie do zniszczenia - materiałowego lub ze względu na stan przemieszczenia.

4.2. Opis badania

4.2.1. Materiały

Zbrojenie podłużne ram wykonano ze stali żebrowanej znaku 34GS o nominalnych średnicach 8, 10, 12 i 14mm, a strzemiona ze stali gładkiej Ø6mm.

Próbki pobierano ze wszystkich prętów (o handlowej długości 12m), z których wykonano zbrojenie ram. Badanie stali przeprowadzono w ten sam sposób co w przypadku belek i słupów. Wyniki badań prętów żebrowanych przedstawiono na rys. 4.2 i w Załączniku.

We wszystkich ramach zastosowano tę samą mieszankę betonową o składzie podanym w tabl. 4.2. Krzywe przesiewu obu zastosowanych kruszyw oraz stosu okruchowego ilustruje rys. 4.3.

4. RESEARCH ON FRAMES

4.1. Research programm

Dimensions, stastics diagram and way of loading the frames was adopted as shown in Fig.1.

Tablica 4.1. Zbrojenie elementów

Table 4.1. Specimens reinforcement data									
	Zbrojenie	podłużne	Stopień zbrojenia						
Element	Longit	udinal	Reinf	orcemen	t ratio				
Specimen	reinfor	cement							
	wewn.	zewn.	wewn.	zewn.	całk.				
	inner	outer	inner	outer	total				
RPW-a/b-1	2¢14	2010	0.013	0.005	0.018				
RPW-a/b-2	+1\012								
RPW-b/a-1	2¢10	2¢14	0.005	0.013	0.018				
RPW-b/a-2		+1\\$12							
RPW-c/c-1	2¢12	2¢12	0.0085	0.0085	0.017				
RPW-c/c-2	+1\$8	+1\$8							

Constant system of reinforcement over the length of beam and columns was assumed. Total reinforcement ratio was abt 0.018. Reinforcement was, however, assigned in a different way to inner and outer sides of the frame so, as to force distinct redistribution of internal forces.

Symbols of frames and distribution of reinforcement is explained in Table 4.1. Symbol RPW-a/b denotes frames having reinforcement at the inner side stronger than at the outer edges; symbol RPW-b/a refers to reinforcement arranged in opposite way.

For RPW-c/c frames, symmetrical reinforcement was assumed, corresponding to moment diagrams defined for materials of linear-elastic characteristics.

As follows from Fig. 4.1, loading of frames was provided for two stages, with change of load direction. In the first stage, two loading levels were assumed (numbers 1 and 2 in frame symbols refer to this). In stage II of loading, loading up to failure (destruction of material or state of excessive displacement) was assumed.

4.2. Account of the research

4.2.1. Materials

Longitudinal reinforcement of frames was of ribbed steel 34GS, of nominal diameters of 8, 10, 12 and 14mm. Stirrups were of round bars, 6mm diameter.

Specimens were taken from all bars (of 12m commercial length) of which frame reinforcement was made. Tests on steel were carried out in the same way as in the case of beams and columns. Results of tests on ribbed bars are presented in Table 4.2 and in the Appendix.

Concrete mix of identical characteristics as presented in Table 4.2, was used in all frames. Grading curves for both aggregates used and for aggregate mix are shown in Fig. 4.3.

Tablica 4.2. Skład mieszanki betonowej Table 4.2. Composition of concrete mix

Składnik / Component	kg/m ³
Żwir 2 do 8mm / gravel 2 - 8mm	1211
piasek / sand	519
cement / cement	460
krzemionka / silica fume	25
superplastyfikator / superplasticizer	15
woda /water	160
w / (c + krzemionka) / w / (c + silica)	0.33

Wytrzymałościowe cechy betonu określono na próbkach kostkowych i walcowych w ten sam sposób, co w badaniach słupów.

Wyniki badań betonu są zestawione w Załączniku, a wyniki średnie podano w tabl. 4.3.

Rys. 4.3. Charakterystyka granulometryczna kruszywaFig. 4.3. Grading curves of aggregate

Strength properties of concrete have been determined on cube and cylindrical specimens in the same manner as for column tests.

Results of tests on concrete are tabulated in Appendix, and average results are shown in Table 4.3.

Rama	Wiek betonu [dni]	f _{c,cube}	f _c	f _{ct,sp}	E _c	f _c
Frame	Age of concrete [days]	[MPa]	[MPa]	[MPa]	[GPa]	$f_{c,cube}$
RPW-a/b-1	136	107	93	5.3	32.7	0.87
RPW-a/b-2	144	110	88	5.3	33.0	0.80
RPW-b/a-1	44	97	85	4.0	32.1	0.88
RPW-b/a-2	163	119	85	4.9	32.9	0.71
RPW-c/c-1	116	102	88	4.9	32.1	0.86
RPW-c/c-2	169	106	87	4.9	33.2	0.82

Tablica4.3. Wytrzymałościowe cechy betonuTable4.3. Concrete mechanical parameters

4.2.2. Ramy

Układ zbrojenia trzech przyjętych typów ram przedstawiono na rys. 4.4, 4.5 i 4.6. W narożach ram zbrojenie wykonstruowano tak, aby możliwe było przenoszenie momentów zginających odmiennych znaków. Przy końcach słupów zbrojenie było spawane do stalowych głowic, stanowiących jeden z elementów podpory.

Reinforcement layouts in three frame types adopted are shown in Figs 4.4, 4.5 and 4.6. At frame corners the reinforcement was so arranged, as to allow for moment sign reversal. At column ends, reinforcement was welded to steel plates, constituting one of support elements.

Rys. 4.4. Zbrojenie ram RPW-a/b

Fig. 4.4. Reinforcement of the RPW-a/b frames

Fig. 4.5. Reinforcement of the RPW-b/a frames

Rys. 4.6.Zbrojenie ram RPW-c/cFig. 4.6.Reinforcement of the RPW-c/c frames

Ramy były betonowane w stalowej formie, w pozycji poziomej. Mieszankę betonową przygotowywano w betoniarce wolnospadowej o pojemności 0.15m³, wobec czego każdą ramę i odpowiednią liczbę próbek wykonywano z trzech zarobów.

Do zagęszczania mieszanki betonowej w ramie i próbkach stosowano wibrator wgłębny o częstotliwości 200Hz. Elementy i próbki rozformowywano po 24 godzinach i do dnia badania przechowywano w hali wytrzymałościowej. Przez pierwsze trzy doby po betonowaniu ramy i próbki polewano wodą.

4.2.3. Stanowisko badawcze i obciążanie ram

Ramy były badane w pozycji poziomej, na specjalnie przygotowanym stanowisku badawczym (rys. 4.7).

The frames were concreted in steel formwork, in horizontal position. Concrete mix was prepared in a free-fall mixer of 0.15m capacity. In view of this, three frames and suitable number of specimens were cast of three batches.

Immersion vibrator of 200Hz frequency was used to compacting concrete mix in frames and specimens. Frames and specimens were de-moulded after 24 hours and till the day of test were stored in the Laboratory hall. During the first three days after casting, frames and specimens were sprinkled with water.

4.2.3. Test stand and loading of frames

Frames were tested in horizontal position on a specially prepared test stand (Fig. 4.7).

Rys. 4.7. Ogólny widok stanowiska badawczego Fig. 4.7. Overall view of the test stand

Obciążenie ramy w jej płaszczyźnie, siłą działającą wzdłuż osi rygla, było przykładane za pomocą dwóch hydraulicznych obciążników. W I etapie badania stosowano obciążnik o nośności 40kN, w II etapie o nośności 100kN. Obydwa obciążniki były podparte kozłami oporowymi, zakotwionymi w stendzie hali wytrzymałościowej. Rama była układana na czterech kulkowych podporach, których poziom można było korygować za pomocą śrubowych regulatorów. Dwie z podpór były umieszczone pod ryglem ramy, a po jednej przy przegubach słupów.

Reakcje podporowe ramy także były przenoszone na sześć kozłów oporowych, zakotwionych w stendzie (rys. 4.8). Między głowicami słupów a kozłami oporowymi przewidziano gniazda na siłomierze tensometryczne do pomiaru reakcji poziomych (równoległych do kierunku obciążenia).

Głowice słupa i ich połączenia z kozłami oporowymi wykonstruowano tak, aby mogły przenosić reakcje pionowe (tj. w kierunku prostopadłym do obciążenia) ściskające lub rozciągające. Do głowic słupa i kozłów były przyspawane stalowe "łapy" (rys. 4.9), z odpowiednimi otworami. Przez te otwory przetknięty został stalowy bolec z kulkowym łożyskiem, zapewniającym swobodny obrót słupa ramy przy podporze. Korpus łożyska przekazywał siłę ściskającą ze słupa na kozioł oporowy. Siła rozciągająca od słupa była przejmowana wprost przez stalowe łapy, połączone z kozłem oporowym. Loading of frame in its plane by a force acting along beam axis was applied by two hydraulic presses. In the first stage, 40kN presses were applied, in II stage the capacity of the presses was 100kN. Both presses were restrained by buffer stops anchored in laboratory hall test stands. The frame was laid on four ball bearings of adjustable level by means of a screw regulator. Two of the supports were placed under frame spandrel beam and one each under hinged column joints.

Support reactions of the frame were also transferred to six buffer stops, anchored in the stand (Fig. 4.8). Seats for inserting dynamometers between column caps and buffer stops were provided for measuring horizontal reactions, parallel to the direction of loading.

Column caps and their connections with buffer stops were so designed as to transfer compressive or tensile vertical (i.e. perpendicular to the direction of load) reactions. Steel lugs (Fig. 4.9) with suitable openings were welded to column and buffers caps. Steel bar with ball bearing allowing free rotation of frame column at the support, was passing through these openings. The casing of the bearing transferred compressive force from column to buffer stop. Tensile force from column was taken directly by steel lugs connected to buffer stop.

Rys. 4.8.Schemat stanowiska badawczegoFig. 4.8.Diagram of the test stand

Rys. 4.9.Schemat podpór ramy w jej płaszczyźnieFig. 4.9.Diagram of support in the plane of frame

W I etapie obciążenie było zwiększane co 2kN do założonego poziomu, następnie wykonywano pięciokrotny cykl obciążenie - odciążenie, po czym ramę odciążano całkowicie. Po zmianie kierunku obciążenia, w II etapie, znowu zwiększano siłę co 2kN do poziomu obciążenia jak w I etapie i ponownie wykonywano pięciokrotny cykl obciążenie - odciążenie. Następnie obciążenie zwiększano co 2kN, a po przekroczeniu 30kN co 1kN, aż do osiągnięcia stanu zniszczenia. Za stan zniszczenia uznawano przy tym, poza oczywistym przez zmiażdżenie betonu w strefie ściskanej w którymś z przekrojów, także przemieszczenia uniemożliwiające dalsze obciążanie elementu.

Obciążenie przykładano według wskazań urządzenia zasilającego obciążniki i kontrolowano za pomocą czujnika ciśnieniowego, umieszczonego w układzie hydraulicznym tego urządzenia.

W badaniach trzech pierwszych ram (z cyfrą 1 w symbolu ramy) ujawniły się kłopoty z pomiarem reakcji poziomych, spowodowane wadliwym działaniem jednego z siłomierzy. To spowodowało, że w badaniach ostatnich trzech ram (z cyfrą 2 w symbolu ramy) zamieniono kierunek obciążeń w I i II etapie, aby w II etapie rejestrować obydwie reakcje poziome.

Okazało się jednak, że przy słupie rozciąganym pomiar reakcji poziomej obarczony jest błędem wynikającym z sił tarcia, i to narastającym w miarę zwiększania obciążenia. Z tego powodu postanowiono ograniczyć się do rozpatrywania jedynie reakcji poziomej przy słupie ściskanym.

4.2.4. Pomiary

W toku badań mierzono przemieszczenia osi prętów ramy, zmiany długości odcinków łączących węzły ramy oraz reakcje podporowe. Śledzono także obraz i rozwój zarysowania.

Zmiany długości osi łączących węzłowe punkty ramy były mierzone przetwornikami przemieszczeń liniowych, przymocowanymi do listew łączących odpowiednie węzły. Każda listwa była jednym końcem nałożona na pionowy bolec usytuowany w punkcie przecięcia osi i mogła się swobodnie względem niego obracać. Drugi koniec listwy miał podłużny otwór o szerokości równej średnicy bolca, co umożliwiało swobodny przesuw listwy wzdłuż rozpatrywanej osi i obrót względem bolca. Rozmieszczenie przetworników oraz przyjęte oznaczenia przedstawiono na rys. 4.10. In the first stage, the load was increased by 2kN up to the planned load and then, an unload-reload cycle was repeated five times. After this, the frame was completely unloaded. In the second stage, after changing the direction of loading, the load was increased by 2kN steps up to the load level assumed as in the first stage, then the unloadreload cycle was repeated again five times. After that, loading was increased by 2kN steps, and above 30kN - by 1kN steps up to destruction. Evident crushing of concrete in the compression zone in one of the cross-sections or displacements making further loading impossible were considered as the state of destruction.

Loads were applied according to the indications of the device feeding the presses and controlled by pressure gauge situated in the hydraulic system of this device.

During tests on the first three frames (denoted by 1 in the symbol of frame) difficulties appeared with the measurements of horizontal reactions, caused by faulty functioning of one of the presses. This resulted in interchanging the direction of loading in the Ist and IInd stage of tests for the last three frames (denoted by 2 in frame symbol) in order to record both horizontal reactions in the second stage.

It turned out, that in case of the column subjected to tension, horizontal reaction measurements are charged with error due to frictional force, growing with load increase. For this reason, it was decided to limit the tests on column under compression to horizontal reaction only.

4.2.4. Measurements

Displacements of axes of frame members, changes in length of distances connecting frame nodes and reactions at supports were measured during investigations. Observations of crack maps and their development were also carried out.

Changes in length of axes connecting frame nodes were measured using linear transducers, attached to battens connecting the relevant nodes. Each of the battens was at one end put on a vertical bolt, situated at intersection of member axes and could rotate freely round this bolt. The other end of the batten had an oblong hole in it, allowing its free displacement along the relevant axis and also rotation with respect to the bolt. Disposition of the transducers and adopted symbols are shown in Fig. 4.10.

Rys. 4.10. Rozmieszczenie przetworników przemieszczeń liniowych do pomiarów zmian długości odcinków łączących węzły ramy

Do pomiaru zmian długości osi AB, CD, BC i AD stosowano przetworniki PSx10 o dokładności odczytu 0.02mm, a osi AC (lub BD) przetwornik PSx100 o dokładności odczytu 0.1mm.

Przemieszczenia rygla i słupów, a dokładniej przemieszczenia ich geometrycznej osi, mierzono przetwornikami PSx50 (rygiel) oraz PSx20 (słupy) o dokładności odczytu odpowiednio 0.05mm i 0.02mm. Przetworniki były przymocowane do sztywnych listew, podpartych przegubowo nieprzesuwnie w jednym węźle ramy i przegubowo przesuwnie w drugim węźle. Rozmieszczenie i oznaczenie punktów pomiarowych przedstawiono na rys. 4.11. Szczegóły oprzyrządowania są widoczne na rys. 4.12.

- Rys. 4.11. Rozmieszczenie przetworników przemieszczeń liniowych do pomiarów przemieszczeń rygli i słupów
- Fig. 4.11. Disposition of linear displacement transducers in measurements of beam and column displacements

Reakcje poziome mierzono za pomocą siłomierzy tensometrycznych o nośności 100kN i klasie 1.0.

Odczyty wskazań wszystkich przetworników przemieszczeń liniowych oraz czujnika ciśnieniowego były prowadzone automatycznie za pomocą miernika pomiarowego, współpracującego z komputerem.

Czas utrzymywania każdego kolejnego kroku obciążenia przyjęto jako 30 sekund i w tym czasie wskazania czujników były rejestrowane 20 razy co 1.5 sekundy. Całe badanie ramy trwało około 8 godzin, łącznie z czasem potrzebnym na zmianę kierunku obciążenia.

Przy zmianie kierunku obciążenia ramy zachowywano ciągłość pomiarów przetwornikami przemieszczeń liniowych, natomiast reakcje były rejestrowane od nowa.

4.2.5. Forma przedstawienia wyników

Wyniki pomiarów komputerowych opracowano w postaci tablic i wykresów.

W tablicach R1.1 do R6.1 podano wartości reakcji poziomej przy słupie ściskanym oraz przemieszczeń osi rygli. Tablice R1.2 do R6.2 obejmują przemieszczenia osi słupów oraz zmiany długości odcinków łączących węzły ramy. PSx10 transducers of 0.02mm reading accuracy were used to measure changes in length of AB, CD, BC and AD axes. In case of AC (or BD) axis, PCx100 transducer was used of 0.1mm reading accuracy.

Beam and column displacements (more accurately the displacements of their geometric axes) were measured using PSx50 transducer (beam) and PSx20 transducers (columns) of reading accuracy 0.05 and 0.02mm correspondingly. Transducers were attached to stiff battens, pin-jointed at one end and pin-jointed with sliding movement at the other. The positions and marking of measuring points are shown in Fig. 4.11. Details of apparatus are shown in Fig. 12.

Rys. 4.12. Listwy pomiarowe i umieszczone na nich przetworniki przemieszczeń liniowych

Fig. 4.12. Battens used in measurements, with linear displacement transducers mounted on them

Horizontal reactions were measured by means of tensometric gauges of Class 1 and 100kN capacity.

Readings of all linear displacement transducers and of the pressure gauge were carried out automatically by a record meter connected to the computer.

30 sec. time interval was adopted for maintaining successive load steps; during this interval gauge readings were recorded 20 times every 1.5 sec. Complete investigation of a frame lasted abt. 8 hrs., including time needed to change the direction of load.

At the change of the direction of load, continuity if linear displacements by transducers was preserved, but the reactions were recorded from scratch.

4.2.5. Presentation of the results

Results of computer controlled measurements are prepared in the form of tables and diagrams.

The values of horizontal reaction for column under compression as well as displacements of beam axis are presented in Tables R1.1 to R6.1. Tables R1.2 to R6.2 contain displacements of column axes and change in the length of distances between the nodes. Przy małych obciążeniach w tablicach podano tylko wartości średnie z 20 zarejestrowanych przy każdym kroku obciążenia, a przy wyższych poziomach obciążenia - wartości pierwsze, ostatnie i średnie z 20 zarejestrowanych.

W Załączniku zamieszczono przykładowe tablice tylko dla jednej z ram, większość wyników przedstawiono natomiast w postaci wykresów.

W Załączniku podano też szczegółowe wyniki badania betonu i zbrojenia, rzeczywiste wymiary szkieletu zbrojeniowego oraz samych ram.

4.3. Omówienie wyników badania

4.3.1. Maksymalne obciążenie ram

W czterech ramach zbrojonych niesymetrycznie uzyskano zniszczenie przez zmiażdżenie betonu w strefie ściskanej i to zawsze w dwóch przekrojach: w słupie ściskanym i w narożu, rozciąganym od strony zewnętrznej. W dwóch pozostałych ramach, zbrojonych symetrycznie, obciążenie przerywano ze względu na bardzo duże przemieszczenia, a zwłaszcza obroty przy podporach, grożące oparciem się elementu o kozły oporowe.

Wielkości maksymalnych sił osiągniętych w badaniach, wraz z wielkościami obciążeń powtarzalnych w I i II etapie obciążenia, zestawiono w tabl. 4.4.

Tablica 4.4. Powtarzalne i maksymalne obciążenia ram

× .	Obciążenie	Obciążenie	Przyczyna
Rama	powtarzalne	maksymalne	zakończenia
	kN	kN	badania
RPW-a/b-1	20	42	zmiażdżenie
RPW-a/b-2	26	44	betonu w dwóch
RPW-b/a-1	20	42	przekrojach
RPW-b/a-2	26	43	
RPW-c/c-1	20	44	nadmierne
RPW-c/c-2	30	45	przemieszczenia
			i obroty

Przekroje słupów ściskanych, w których dochodziło do zmiażdżenia betonu, były usytuowane zawsze w tej samej odległości od węzła ramy, co można zauważyć na rysunkach przedstawiających obraz rys (por. p. 4.3.3). Przy słupach rozciąganych kruszył się beton w narożu od jego wewnętrznej strony (rys. 4.13).

Rys. 4.13. Przekroje zniszczenia ramy RPW-a/b-1 Fig. 4.13. Destroyed cross-sections in frame RPW-a/b-1

At smaller loads, only mean values of 20 recorded measurements at every loading step are given in the Tables. At higher levels of loading, first, last and mean values are given of 20 recorded.

Example tables for one frame only are presented in the Appendix; majority of results is presented in the form of graphs.

Detailed results of tests on concrete and reinforcement, real dimensions of reinforcing cage as well as frames are also presented in the Appendix.

4.3. Discussion of the results

4.3.1. Maximum load on the frames

In four unsymmetric reinforced frames, the failure was by crushing of concrete in compression zones, always at two cross-sections: in column under compression and at the corner under tension on the outer side. In two remaining frames with symmetric reinforcement, load increase was stopped in view of very large displacements and - in the first place - because rotations at supports, which risked that the element would lean on buffer stops.

Values of maximum forces attained in tests together with values of repeatable loading in 1st and 11nd loading stages are presented in Table 4.4.

	Repeatable	Maximum	Cause of
Frame	loading	loading	ending
	kN	kN	the test
RPW-a/b-1	20	42	crushing of
RPW-a/b-2	26	44	concrete at two
RPW-b/a-1	20	42	cross-sections
RPW-b/a-2	26	43	
RPW-c/c-1	20	44	excessive
RPW-c/c-2	30	45	displacements
			and rotations

Table 4.4. Repeatable and maximum loads on frames

In columns subjected to compression, the crushed cross-sections were situated always at the same distance from the node of frame. This can be seen in the Figures presenting maps of cracks (see par. 4.3.3). In columns under tension, concrete was crushed at the inner side of the corner (Fig. 4.13).

Analizując wielkości maksymalnego obciążenia ram można zauważyć, że największe obciążenie przeniosły ramy RPW-c/c, mimo nieco mniejszego łącznego stopnia zbrojenia niż pozostałe, przy czym to obciążenie nie powodowało jeszcze wyczerpania nośności przekrojów.

4.3.2. Redystrybucja sił wewnętrznych

Stopień redystrybucji sił wewnętrznych, uzyskany w badaniach, odzwierciedlają wykresy reakcji poziomych w funkcji obciążenia (rys. 4.14, 4.15 i 4.16). Na rysunkach podano wielkości reakcji pomierzone przy słupach ściskanych, a więc w zależności od kierunku obciążenia przy podporze A lub D, umieszczając je jednak na jednym wykresie, co ułatwia interpretację wyników. W tym samym celu naniesiono też liniową zależność między reakcją a obciążeniem, dla modelu liniowo - sprężystego. When analysing the values of the maximum load on frames, it can be noticed, that highest loads were carried by RPW-c/c frames, despite somewhat lower total reinforcement ratio than in the remaining frames; this load did not yet cause the exhaustion of carrying capacity of crosssections.

4.3.2. Redistribution of internal forces

The degree of internal force redistribution obtained in tests is reflects by the diagrams of horizontal reactions in function of load (Figs 4.14, 4.15 and 4.16). In these drawings reaction magnitudes are shown, measured for columns in compression, thus depending on the direction of load at support A or D. They are, however, presented in one diagram, to facilitate the interpretation of results. For the same reason, linear relationship between reaction and load for the linear-elastic model was drawn in this diagram.

Rys. 4.14.Reakcje poziome przy słupie ściskanym ram RPW-a/b-1 i RPW-a/b-2Fig. 4.14.Horizontal reactions for the compressed column in RPW-a/b-1 and RPW-a/b-2 frames

Rys. 4.15. Reakcje poziome przy słupie ściskanym ram RPW-b/a-1 i RPW-b/a-2 Fig. 4.15. Horizontal reactions for the compressed column in RPW-b/a-1 and RPW-b/a-2 frames

Rys. 4.16. Reakcje poziome przy słupie ściskanym ram RPW-c/c-1 i RPW-c/c-2Fig. 4.16. Horizontal reactions of the compressed column in RPW-c/c-1 and RPW-c/c-2 frames

Wykresy uwidaczniają bardzo wyraźną redystrybucję sił wewnętrznych w ramach zbrojonych niesymetrycznie (rys. 4.14 i 4.15). Należy też zauważyć, że przy obciążeniu w I etapie nie powodującym jeszcze uplastycznienia zbrojenia, jak w ramie RPW-a/b-1, to obciążenie ma niewielki wpływ na rozkład sił wewnętrznych w II etapie obciążenia. Inaczej jest przy wyższym poziomie obciążenia w I etapie (ramy RPW-a/b-2 i RPW-b/a-2) - ma ono wyraźny wpływ na rozkład sił wewnętrznych w II etapie. Wpływ ten jednak zanika po przekroczeniu w II etapie poziomu obciążenia z I etapu i dla obu porównywalnych ram końcowe odcinki wykresów są bardzo zbliżone. Jest to szczególnie wyraźne na rys. 4.14.

Ostateczny stopień redystrybucji, przy jednoczesnym zniszczeniu w dwu przekrojach, wyniósł około δ =0.48 w ramach RPW-a/b-1 i RPW-a/b-2 oraz δ =0.90 w ramie RPW-b/a-2 (dla ramy RPW-b/a-1 nie uzyskano wiarygod-nego wyniku).

W ramach zbrojonych symetrycznie (RPW-c/c) zauważalna redystrybucja sił wewnętrznych występowała dopiero przy obciążeniach powyżej F=35kN. Maksymalny stopień redystrybucji wyniósł około δ =0.84 w ramie RPW-c/c-1 i δ =0.87 w ramie RPW-c/c-2, przy czym w obydwu przypadkach powodem zakończenia obciążenia były bardzo duże odkształcenia, a nie stan zniszczenia materiałowego.

W tych ramach wpływ poziomu obciążenia osiągniętego w I etapie na rozkład sił wewnętrznych w II etapie obciążenia okazał się pomijalnie mały.

4.3.3. Przemieszczenia i zarysowanie ram

Przemieszczenia ram odzwierciedlały układ sił wewnętrznych, zmieniający się wraz z narastaniem obciążenia. Jest to szczególnie widoczne na wykresach przemieszczeń osi rygli (rys. 4.17, 4.18 i 4.19). Wykresy sporządzono dla maksymalnych sił w I etapie obciążenia (linia kropkowana) i odpowiadających im sił w etapie II, oraz dla największej siły obciążającej. The diagrams show very distinct redistribution of internal forces in frames with unsymmetrical reinforcement (Figs 4.14 and 4.15). It should be remarked that at a load not yet causing the plastification of reinforcement in stage I (as in frame RPW-a/b-1), this load has little influence on the distribution of internal forces in stage II of loading. With higher level of loading in the Ist stage, this is different (RPW-a/b-2 and RPW-b/a-2 frames): it has distinct influence on distribution of internal forces in the second stage. This influence, however, vanishes in the IInd stage, on exceeding the load level of the Ist stage - and the terminal segments of the diagrams of both comparable frames are very similar. This is particularly visible in Fig. 4.14.

Final degree of redistribution, at simultaneous failure of two sections, was abt. δ =0.48 in frames RPW-a/b-1 and RPW-a/b-2 and δ =0.90 in frame RPW-b/a-2. No reliable result was obtained in case of frame RPW-b/a-1.

In frames with symmetrical reinforcement (RPW-c/c), redistribution of internal forces took place only at loads over F=35kN. Maximum degree of internal force redistribution amounted to abt. δ =0.84 in frame RPW-c/c-1 and δ =0.87 in frame RPW-c/c-2. In both cases the reason for breaking off load increase were very large displacements and not the state of material destruction.

In case of these frames, the influence of loading level, reached in the Ist stage on distribution of internal forces in the IInd stage, proved to be negligible.

4.3.3. Displacements and crack formation in frames

Displacements in frames were the reflection of internal force configuration, changing with the increasing load. This is particularly visible in diagrams of displacements of beam axes (Figs 4.17, 4.18 and 4.19). The graphs have been prepared for maximum forces in the Ist stage of loading (dotted line), for corresponding forces in IInd stage, as well as for the maximum load.

W odniesieniu do przemieszczeń osi słupów można zauważyć, że w ramach z cyfrą 1 w symbolu, bezwzględne wartości przemieszczeń słupów są zbliżone w obu etapach obciążenia. Wynika to z poziomu obciążenia tych ram w I etapie, nie powodującego uplastycznienia rozciąganego zbrojenia. It can be seen with respect to column displacements, that in frames with the symbol containing numeral 1, absolute values of column displacements are close to each other in both stages of loading. This followed from the load level during Ist stage of tests on these frames, which did not cause plastification of tensile reinforcement.

Inaczej jest w ramach zbrojonych niesymetrycznie, obciążonych w I etapie większą siłą (ramy RPW-a/b-2i RPW-b/a-2). Przemieszczenia osi słupów w I i II etapie, przy tej samej sile, wyraźnie się różnią (rys. 4.17i 4.18). Różnice takie nie wystąpiły w ramie zbrojonej symetrycznie RPW-c/c-2 (rys. 4.19). Situation is different in frames with unsymmetric reinforcement, loaded by greater force in the Ist stage of test (RPW-a/b-2 and RPW-b/2). Displacements of column axes in Ist and IInd stages are differing appreciably for the same loading (Figs 4.17 and 4.18). Such differences did not occur in frame RPW-c/c-2, which had symmetric reinforcement (Fig. 4.19).

Z wykresów przemieszczeń osi słupów można też odczytać, w których przekrojach słupów doszło do zniszczenia przez zmiażdżenie betonu. Obszar zniszczenia uwidacznia się jako utrata gładkości wykresu przemieszczeń, jak w lewych słupach (SL) ram RPW-a/b-1 i RPW-b/a-1, oraz w prawych słupach (SP) ram RPW-a/b-2 i RPW-b/a-2.

From displacement graphs of column axes it can be also observed which column cross-sections failed by crushing of concrete. Destruction zone is visible as a loss of smoothness in displacement graph, as in the left-hand side columns (SL) of RPW-a/b-1 and RPW-b/a-1 frames, and right-hand side columns (SP) of RPW-a/b-2 and RPW-b/a-2 frames. Ciekawych informacji dostarcza porównanie wydłużeń przekątnych AC (lub AD) w II etapie obciążenia, przedstawione na rys. 4.20.

Przy niższym poziomie obciążenia w I etapie (rys. 4.20a) uwidacznia się korzystny wpływ zbrojenia symetrycznego, zastosowanego w ramie RPW-c/c-1, na jej sztywność. Przy obciążeniach eksploatacyjnych, rzędu 25kN, wydłużenia przekątnej tej ramy są o około 25% mniejsze niż w dwóch pozostałych ramach. Sztywności tych obu ram są przy tym prawie jednakowe.

Jeżeli w I etapie ramy były obciążane do wyższej siły (rys. 4.20b), to ramy RPW-a/b-2 i RPW-c/c-2 zachowują się bardzo podobnie, natomiast rama RPW-b/a-2 ma sztywność wyraźnie mniejszą, aż do obciążenia rzędu 30kN. Przy wyższych siłach wykres wydłużenia przekątnej tej ramy staje się równoległy do wykresu dla ramy RPW-c/c-2, co oznacza zgodność sztywności stycznych. Interesting information is obtained by comparing the extension of diagonals AC, or AD in the IInd stage of loading, shown in Fig. 4.20.

At lower load level in the Ist stage (Fig. 4.20a), advantageous influence of symmetrical reinforcement used in frame RPW-c/c-1 on its stiffness becomes visible. At operating loads of the order of 25kN, the extension of the diagonal in this frame is abt. 25% lower than in the remaining two frames. Stiffnesses of both frames are almost identical.

While the frames were loaded up to a higher load in the Ist stage (Fig. 4.20b), the frames RPW-a/b-2 and RPW-c/c-2 are behaving in a similar way, but frame RPW-b/a-2 displays distinctly lower stiffness up to the load of abt. 30kN. At higher loads, the graph of diagonal extension runs parallel to the graph for frame RPW-c/c-2, what means the equality of tangential stiffnesses.

Rys. 4.20. Wydłużenie przekątnych ram przy niższym (a) i wyższym (b) poziomie obciążenia w I etapieFig. 4.20. Extension of frame diagonals at the lower (a) and higher (b) levels of load in the first stage of loading

Obraz zarysowania ram po zakończeniu badania ilustrują rys. 4.21 i 4.22. Rysy, które powstały w I etapie obciążenia i zamykały się po zmianie kierunku obciążenia, są oznaczone cienką kreską na rozwinięciach bocznych powierzchni ram. Crack maps after ending the test are shown in Figs 4.21 and 4.22. Cracks formed in the first stage of loading, which closed after the change of load direction, are drawn using thin line in developments of frame side elevations.

Fig. 4.21. Crack map of frames loaded up to the lower load level during the first stage of tests

Fig. 4.22. Crack map of frames loaded up to the higher load level during the first stage of tests

Układ rys po zakończeniu obciążenia potwierdza wcześniejsze spostrzeżenia o pełnej redystrybucji sił wewnętrznych w ramach RPW-a/b i RPW-b/a, objawiającej się wyczerpaniem nośności jednocześnie dwu przekrojów. Obszary zmiażdżenia betonu, wyznaczające przekroje zniszczenia, są oznaczone na rysunkach.

Układ rys, a także przemieszczenia obu ram RPW-c/c, pozwalają ponadto na stwierdzenie, że maksymalne osiągnięte obciążenia tych ram były już bliskie niszczącym. W ramie RPW-c/c-1 zaobserwowano nawet początki łuszczenia się betonu w ściskanym wewnętrznym narożu (rys. 4.21). The picture of cracks after the end of loading, confirms earlier observations on full redistribution of internal forces in frames RPW-a/b and RPW-b/a, manifested by simultaneous reaching of the limit of capacity at two crosssections. Zones of crushed concrete, determining crosssections that failed, are marked in the drawings.

Beside this, crack maps and displacements of both frames RPW-c/c allow to state, that the maximum loadings on these frames were already close to destruction. In frame RPW-c/c-1 beginnings of concrete spalling at the interior angle under compression could be seen (Fig. 4.21).

We wszystkich ramach rysy powodowały oddzielenie się słupów i rygli od naroży, które wydawały się sztywne i niezdeformowane (rys. 4.23).

4.3.4. Zależność σ_c - ϵ_c określana na próbkach

Przykładowe wykresy zależności $\sigma_c - \varepsilon_c$, określone na próbkach uformowanych jednocześnie z ramami są, podane na rys. 4.24.

Jak można zauważyć, wykresy są podobne do tych, które otrzymano w badaniach słupów dla betonu z kruszywem granitowym łamanym. Zbliżone są wartości odkształceń odpowiadających maksymalnemu naprężeniu In all frames, the cracks caused separation of columns and spandrel beams from the corners, which seemed rigid and not deformed (Fig. 4.23).

4.3.4. The σ_c - ε_c relationship determined on specimens

Exsamples diagrams of $\sigma_c - \varepsilon_c$ relationship determined on specimens cast simultaneously with the frames are shown in Fig. 4.24.

As can be seen, the graphs are similar to those obtained for concrete with crushed granite aggregate in tests on columns. Similar values of strains corresponding to the maximum stress have been obtained, as well as a similar

Rys. 4.24. Przykładowe zależności $\sigma_c - \varepsilon_c$ określone na próbkach walcowych Fig. 4.24. Exsamples $\sigma_c - \varepsilon_c$ relationship determined on cylindrical specimens

oraz zakres liniowości wykresów. Można to wytłumaczyć (np. [10]) składem mineralogicznym żwiru zastosowanego w betonie ram, zawierającego skalenie i kwarc, podobnie jak granit.

range of linearity of the graphs. This can be explained (e.g. [10]) by the mineralogical composition of aggregate used in concreting the frames, containing feldspars and quartz - similar as in the granite.

Badania wykazały, że beton o wysokiej wytrzymałości odkształca się inaczej w elementach niż w próbkach, i to w sposób korzystny z punktu widzenia bezpieczeństwa konstrukcji. Ta uwaga dotyczy wszystkich rodzajów zbadanych elementów - belek, słupów i ram.

W badaniach belek zarejestrowano graniczne odkształcenia strefy ściskanej, przy zmiażdżeniu betonu, rzędu 4.2 do 6.5‰, a więc dwukrotnie większe od otrzymanych na próbkach. Charakter zniszczenia pozostał taki sam jak w przypadku próbek - gwałtowny, wręcz eksplozyjny. Nie zauważono przy tym znaczących różnic w granicznych odkształceniach strefy ściskanej belek ze zbrojeniem w tej strefie i bez niego. Zbrojenie w strefie ściskanej łagodziło jednak przebieg zniszczenia i ograniczało zasięg strefy zniszczenia.

Graniczne średnie krzywizny, określone na odcinkach czystego zginania, potwierdziły spostrzeżenia Pendyale i in. [9], Pecce i Fabbrocino [11, 12], Weiss i in. [13] o dużej odkształcalności zginanych belek z betonu wysokowartościowego, przewyższającej odkształcalność belek z betonu zwykłego. W badaniach nie wystąpił przy tym sygnalizowany w pracach [11, 12] problem ustalenia kryterium granicznej odkształcalności - czy ma to być krzywizna przy maksimum obciążenia czy też po jego przekroczeniu i spadku, np. do wartości 0.85 obciążenia maksymalnego. We wszystkich zbadanych belkach obserwowano bowiem po uplastycznieniu zbrojenia stały przyrost obciążenia, co było związane z wytrzymałościową charakterystyką zastosowanej stali.

Te duże możliwości odkształcania się elementów z betonu wysokiej wytrzymałości spowodowały, że w badanych ramach dochodziło do pełnej redystrybucji sił wewnętrznych, objawiającej się równoczesnym zniszczeniem w dwu przekrojach poprzecznych. Stopnie redystrybucji wynosiły od δ =0.48 do δ =0.90, w zależności od układu zbrojenia ram.

W słupach zarejestrowano mniejsze odkształcenia betonu ściskanego przy zmiażdżeniu, rzędu 3.5‰, co jest związane z wpływem siły podłużnej. Zastosowanie zagęszczonych strzemion o zespawanych końcach wyraźnie zwiększyło te odkształcenia, do około 5‰, nie miało to jednak wpływu na siłę niszczącą.

Praktyczne znaczenie powinny mieć obserwacje dotyczące zniszczenia słupów przez utratę stateczności. Ten sposób zniszczenia wystąpił we wszystkich słupach Sw, których smukłości i stopień zbrojenia odpowiadały stosowanym w praktyce projektowej. Oznacza to, że należy rozważyć i ewentualnie skorygować wymagania konstrukcyjne w odniesieniu do stopni zbrojenia podłużnego oraz metody uwzględniania w obliczeniach wpływu smukłości na nośność.

Rodzaj i obraz rys w belkach potwierdził przewidywania o bardzo dobrej współpracy betonu wysokowartościowego i zbrojenia oraz tendencję do powstawania rys zbiorczych, dzielących się w poziomie zbrojenia na kilka o małych szerokościach rozwarcia [14].

Istotne w aspekcie metod obliczeniowych wydaje się spostrzeżenie o pomijalnie małym wpływie powtarzalności obciążeń oraz historii obciążenia na odkształcalność i nośność elementów konstrukcyjnych z betonu o wysokiej wytrzymałości.

5. CONCLUSIONS

The test proved that there exists a difference in behaviour of High Strength Concrete (HSC) in structural elements and in specimens, favourable from point of view the structural safety. This remark applies to all types of investigated elements: beams, columns and frames.

During test on beams, at crushing of concrete, limit strains of the order of 4.2 to 6.5‰ in the compression zone have been recorded, twice as large as those obtained when testing the specimens. The character of failure remained the same as in the case of specimens: violent, sudden burst, approximating explosion. No significant differences have been found between limit stains in compression zones with or without reinforcement. Reinforcement in the compression zone was attenuating the course of destruction and limiting the extent of the crushed zone.

Mean limit curvatures, determined over the pure bending segment confirmed the observations by Pendyala & others [9], Pecce and Fabbrocino [11, 12], Weiss & others [13] on large deformability of HSC beams under bending, exceeding the deformability of beams in ordinary concrete. The problem brought up in [11, 12] whether the determination of the criterion of ultimate deformability should be the curvature at maximum load or curvature after exceeding it and lowering the load to e.g. to 85% of the maximum - did not occur in our investigations. In all investigated beams steady load increase was observed after yielding of reinforcement. This was connected with strength characteristics of the steel used.

Great deformation abilities of elements in HSC mentioned above, caused full redistribution of internal forces in investigated frames. This was manifested by simultaneous failure at two cross - sections. The degree of redistribution amounted from δ =0.48 to δ =0.90, depending on arrangement of reinforcement.

Smaller strains at failure of concrete in compression (of the order of 3.5%) were recorded in columns. This was connected with the influence of the longitudinal force. The use of closed, welded stirrups at dense spacing caused distinct increase of these strains to abt. 5%, without however, affecting the force at failure.

Of practical significance should be the observations concerning the destruction of columns due to loss of stability. This mode of failure occurred in all Sw columns in which the slenderness and reinforcement ratio corresponded to these used in design practice. This signifies that structural regulations relating to ratios of longitudinal reinforcement as well as methods of making allowance for the influence of slenderness on load carrying capacity should be re-considered and - eventually - revised.

Crack maps and their type in beams confirmed the anticipation of very good bond between HS concrete and reinforcement as well as the tendency to form "cumulative" cracks fanning out at reinforcement level into several cracks of narrow width [14].

As far as design calculations are concerned, of importance seems the observation that repeated loading and loading history have negligible influence on deformability and load carrying capacity of HSC structural elements.

ACKNOWLEDGEMENTS

This research has been developed thanks to the financial assistance of Research Grant No 7 T07E with funds given by the Polish State Committee for Scientific Research.

LITERATURA / REFERENCES

- 1. CEB, High Performence Concrete, Recommended to the Model Code 90, Research Need, Bulletin d'Information No 228, 1995
- 2. Taerwe L., Brittleness versus Ductility of High Strength Concrete, Structural Engineering Journal 4/91, s. 40-45
- 3. CEB FIP Model Code 1990 for Concrete Structures, CEB Bulletin d'Information No. 195 and 196, First Draft, March 1990
- 4. Deutsche Norm DIN 1045-1, 1997, Tragwerke aus Beton, Stahlbeton und Spannbeton, Teil 1: Bemessung und Konstruktion
- 5. Eurocode 2: Design of concrete structures, Part 1: General rules and rules for buildings, July 1999
- 6. Kamińska M.E., Doświadczalne badania żelbetowych słupów ukośnie mimośrodowo ściskanych (Experimental Investigation of RC Beams under Biaxial Bending), Zeszyt 7, Wydawnictwo Katedry Budownictwa Betonowego Politechniki Łódzkiej, Łódź 1995 [in Polish]
- 7. Kamińska M., Czkwianianc A., Badania monolitycznych ram portalowych obciążonych siłami pionowymi poziomymi (Tests of RC Portal Frames Subjected to Vertical or Lateral Force), Zeszyt 2, Wydawnictwo Katedry Budownictwa Betonowego Politechniki Łódzkiej, Łódź 1993 [in Polish]
- 8. Grimm R., Einfluß bruchmechanischer Kenngrößen auf das Biege und Schubtragverhalten hochfester Betone, DAfSt H. 477, Berlin 1997.
- 9. Pendyala R., Mendis P., Patnaikuni I., Full-Range Behavior of High-Strength Concrete Flexural Members: Comparison of Ductility Parameter of High and Normal-Strength Concrete Members, ACI Structural Journal, Jan.-Feb. 1996, s. 30-35
- 10. Aïtcin P. C., High Performence Concrete, E&FN Spon, London and New York, 1998
- 11. Pecce M., Fabbrocino G., Plastic Rotation Capacity of Beams in Normal and High Performance Concrete, ACI Structural Journal, Mar. Apr. 1999, pp. 290 296
- 12. Fabbrocino G., Pecce M., Experimental Analysis of Influence of Flexure Shear Interaction on the Rotation Capacity of HPC Beams, Proc. 5th International Symposium on Utilization of High Strength / High Performance Concrete, June 1999, Sandefjord, Norway, Vol. I, p. 243 252
- 13. Weiss W.J., Guler K., Shah S.P., An Experimental Investigation to Determine the Influence of Size on the Flexural Behavior of High Strength Reinforced Concrete Beams, Proc. 5th International Symposium on Utilization of High Strength / High Performance Concrete, June 1999, Sandefjord, Norway, Vol. I, p. 709, 718
- Bernardi S., Mesureur B., Rivvilon Ph., Cracking of Reinforced High Strength Concrete Structures, Proc. 5th International Symposium on Utilization of High Strength / High Performance Concrete, June 1999, Sandefjord, Norway, Vol. I, p. 147 - 153

Załącznik

Wyniki pomiarów

Appendix

Results of measurements

Badania zostały wykonane w Laboratorium Katedry Budownictwa Betonowego. Uczestniczyli w nich ponadto doktoranci Katedry

mgr inż. Jakub Miszczak mgr inż. Domingos Sanca oraz dyplomanci Katedry mgr inż. Piotr Ignatowski mgr inż. Grzegorz Janaszkiewicz mgr inż. Piotr Lachowicz mgr inż. Iwona Zawadzka Tests were carried out at the Laboratory of Chair of Concrete Structures. The participants were also the following:

Jakub Miszczak, M. Sc. Domingos Sanca, M. Sc. and graduate students Piotr Ignatowski, M. Sc. Grzegorz Janaszkiewicz, M. Sc. Piotr Lachowicz, M. Sc. Iwona Zawadzka, M. Sc.

W druku podano tylko przykładowe tablice zawierające wyniki badań. Pozostałe materiały, dokumentujące przebieg badań, są dostępne w Katedrze Budownictwa Betonowego Politechniki Łódzkiej. Example tables only, containing investigation results, are presented in print. Remaining materials, documenting the course of tests are available at the Department of Concrete Structures of Łódź Technical University.

Belki Beams

Lp	Belka	wiek betonu, dni	f _{c cube} ,	MPa	f _c , N	/IPa	f _{ct.sp} ,	MPa	E _c , G	Pa
•		age of concrete, days	wyniki	średnia	wyniki	średnia	wyniki	średnia	wyniki	średnia
			94, 92		85, 83		5.73		36.4, 35.0	
1	BP-1a	29	89, 92	93.2	86, 72	81.2	4.35	5.23	36.6, 34.9	35.3
			92, 97		77,81		5.63		35.5, 33.6	
			97		85				35.1	
			90, 91		77, 72		4.56		33.8, 34.2	
2	BP-1b	29	82, 82	84.6	67,78	72.8	4.75	4.73	34.3, 33.4	34.0
			73, 91		76, 65		4.87		33.6, 34.6	
					74				34.3	
			91, 89		74, 87		3.39		36.9, 36.8	
3	BP-2a	46	90, 99	91.6	72, 83	78.8	5.20	4.57	37.7, 38.8	37.0
			94, 86		75, 83		5.11		35.9, 36.1	
			81, 90		70, 87		5.32		34.5, 35.6	
4	BP-2b	32	90, 100	89.5	66, 75	73.3	3.99	5.06	37.2, 35.8	35.8
			97, 80		76, 64		5.88		34.5, 37.0	
					76				36.1	
			88, 91		65, 87		4.95		33.0, 33.1	
5	BT-1a	30	88, 93	88.6	66, 75	72.5	6.13	5.67	34.9, 33.1	33.4
			89, 84		76, 64		5.92		32.8, 32.9	
					76				33.8	
			90, 92		87, 81		5.10		36.1, 36.6	
6	BT-1b	31	88, 85	87.6	75, 71	78.0	5.43	5.18	34.4, 35.3	35.6
			84, 86		76		5.00		35.4	
			83, 83		77, 78		5.20		35.0, 36.2	
7	BT-2a	33	90, 90	87.9	71,81	73.3	4.84	5.04	34.6, 34.5	34.8
			91, 90		61,71		5.07		34.8, 33.9	
					74					
			82, 78		83, 68		5.09			
8	BT-2b	36	94, 66	78.6	73, 57	70.3	4.62	4.88		
			69, 83		76, 70		4.93			
					67					

Tablica B0.1.Wytrzymałościowe cechy betonuTableB0.1.Strength properties of concrete

Tablica B0.2.Zależności $\sigma_s - \varepsilon_s$ dla stali zbrojeniowejTableB0.2.The $\sigma_s - \varepsilon_s$ relationships of reinforcement

#	10	#12		#16		Ø6	
ε _s	σ	٤s	σ	ε _s	σ	ε _s	σ
%0	MPa	%0	MPa	%0	MPa	%0	MPa
0.00	0	0.00	0	0.00	0	0.00	0
2.05	398	2.10	412	2.10	409	1.70	342
2.36	420	2.36	433	2.70	437	2.00	353
10.20	425	8.40	433	8.20	437	10.30	353
12.20	431	11.20	447	10.00	446	15.80	377
19.00	447	14.80	472	18.30	503	24.80	411
25.00	476	21.30	515	25.10	553	37.30	445
30.00	500	29.10	558	33.40	604	51.00	462
35.00	522	35.00	590	44.70	654		
40.00	542	40.00	605	50.00	667		
50.00	580	50.00	636				

Odkształcenia / strains

Ugięcia / deflections

BP-1a

F, kN

35

30

25

20

Belki BP Beams BP

Belki BT Beams BT

Ugięcia / deflections

Szerokość rozwarcia rys Crack widths

BP-1a

	Szerokość rysy [mm] w poziomie zbrojenia											
L		Crack with	th [mm] a	t reinforcer	nent level							
Rysa		Obciążenie F [kN] / Load F [kN]										
Crack	15	15 16 17 18 22 22 2										
1	0.15	0.15	0.15	0.15	0.70	0.80	1.30					
2	0.10	0.15	0.15	0.15	0.70	0.80	1.40					
3	0.10	0.10	0.15	0.15	0.15	0.10	0.50					
4	0.05	0.10	0.10	0.10	0.10	0.10	0.60					
5	0.10	0.10	0.15	0.15	0.20	0.20	1.10					
6	0.12	0.15	0.15	0.15	0.50	0.75	1.00					
7	0.10	0.10	0.15	0.15	0.15	0.10	1.05					
8	0.05	0.15	0.15	0.15	0.50	0.50	0.95					
9		0.05	0.05	0.05	0.15	0.15	0.20					
10	-	0.05	0.10	0.10	0.10	0.10	0.15					
11	-	•	•	0.05	0.10	0.10	0.10					
12	-	•	-	0.05	0.10	0.10	0.10					
13	•	-	•	-	0.50	0.10	0.10					
14	•	-	-	-	0.10	0.15	0.10					
15	-	•	•	•	0.05	0.10	0.10					
16	-	-	-	•	0.10	0.10	0.15					
17	•	-	-	-	0.10	0.10	0.10					
18	-	-	-	•	•	-	0.40					
19						•	0.10					

BP-1b

		Szerokość	rysy [mm]	w poziomi	e zbrojenia						
		Crack wid	th [mm] at	reinforcen	nent level						
Rysa		Obciążenie F [kN] / Load F [kN] 11 14 15 18 22 23									
Crack	11										
1	0.05	0.05	0.10	0.12	0.15	0.8					
2	0.05	0.05	0.07	0.10	0.10	0.12					
3	-	0.05	0.10	0.15	0.15	0.40					
4	•	-	0.10	0.10	0.12	1.00					
5	-	-	0.07	0.15	0.18	1.10					
6	-	•	-	0.07	0.10	0.50					
7	-	•	•	0.07	0.10	0.70					
8	•	•	•	0.10	0.10	0.10					
9	•	-	-	0.05	0.10	1.20					
10	-	-	-	0.08	0.10	0.70					
11	•	•	-	0.10	0.10	0.50					
12	•	•	•	0.05	0.07	0.10	_				
13	-	-	-	-	0.10	0.10					
14	•	•	•	-	0.07	0.10					
15	-	-	•	-	0.07	0.10					
16	-	-	•	-	0.07	0.50					
17	-	-	-	-	0.07	0.10					
18	-	-	-	-	•	-					
19	-	-	-	-							
20		•	-	-	0.05	0.07					
21			•	•	0.07	0.07					

BP-2a

		Szerokość	; rysy (mm)	w poziomi	e zbrojenia	1	
		Crack wi	dth [mm] a	t reinforcer	nent level		
Rysa			Obciążeni	e F [kN] / L	oad F [kN]		
Crack	25	40	60	60	80		
1	0.05	0.10	0.15	0.15	0.20		
2	0.05	0.10	0.10	0.10	0.15		
3	0.05	0.10	0.15	0.15	0.15		
4	0.05	0.05	0.10	0.10	0.10		
5	0.05	0.10	0.10	0.10	0.35		
6	0.05	0.05	0.10	0.10	0.30		
7	•	0.05	0.10	0.10	0.13		
8	-	0.05	0.10	0.10	0.12		
9	-	0.05	0.10	0.10	0.10		
10	-	0.05	0.10	0.10	0.10		
11	-	0.05	0.05	0.05	0.12		
12	-	0.05	0.05	0.05	0.10		
13	-	0.05	0.10	0.10	0.10		
14	•	0.05	0.05	0.05	0.10		
15	-	0.05	0.10	0.10	0.10		
16	-	0.05	0.05	0.05	0.10		
17	-	0.05	0.05	0.10	0.13		
18	-	-	0.10	0.10	0.10		
19	•	-	0.05	0.05	0.08		
20	-	-	0.10	0.10	0.10		
21	-	-	0.05	0.10	0.10		
22	-	-	0.05	0.05	0.08		
23	-	-	0.05	0.05	0.08		
24	-	-	0.05	0.05	0.10		
25	-	•	0.05	0.05	0.10		
26	-	-	0.05	0.05	0.05		
27	-	-	0.05	0.05	0.13		
28	-	-	0.05	0.05	0.10		
29	-	•	-	0.05	0.13		
30	-	-	-	0.05	0.05		
31	-	•	-	0.05	0.08		
32	-	-	-	0.05	0.05		
33	-	-	•	0.05	0.10		
34	•	-	•	•	0.05		
35	-	•		-	0.05		
36	-	•	-	-	0.05		
37	-	-		-	0.05		
38	•	•	•	-	0.05		[
39	•	•	-	•	0.05		
40	•	•	•	-	0.05		
41	•	-	-	-	0.05		
42	-	-	-	-	0.05		

BP-2b

Szerokość rysy [mm] w poziomie zbrojenia											
		Crack wi	dth [mm] a	t reintorcer	nent level		<u>. </u>				
Rysa			Obciązeni	e F [kN] / L	oad F [kN]						
Crack	22	25	40	40	80						
1	0.05	0.10	0.10	0.10	0.20						
2	-	-	0.10	0.10	0.40						
3	-	-	0.10	0.10	0.20						
4		-	0.10	0.10	0.10						
5	-	•	-	0.10	0.05						
6	-	-	0.05	0.10	0.10						
7	-	-	-	0.05	0.10						
8	-	-	0.10	0.10	0.15						
9	-	•	-	-	0.05		ł				
10	-	-	0.05	0.10	0.10	ł	1				
11	-	•	0.05	0.05	0.30						
12	-	•	0.05	0.05	0.05						
13	•	•	0.10	0.10	0.10						
14	-	•	0.05	0.10	0.10						
15	-	•	-	0.05	0.05						
16	-	-	-	0.05	0.10						
17	-	-	•	0.05	0.10						
18	•		•	#	#						
19	-	-	-	0.10	0.10						
20	-	-	-	0.05	0.05						
21	-	-	-	#	#						
22	-	-	-	-	0.20						
23	-	-	•	-	0.10						
24	•	-	•	-	0.05						
25	-	•	•	•	0.10						
26	•	-	-	•	#		1				
27	-	-	-	•	0.05						
28	-	-	-	-	#		1				
29	-	-	-	-	0.05						
30	-		•	-	#						

- brak dostępu / not accesible

BT-1a

•

Sze	Szerokość rozwarcia rysy [mm] w poziomie (1/2h) i w poziomie zbrojenia (d) Crack width [mm] at half depth level (1/2h) and at reinforcement level (d)											
	Obciąz	enie F (k	(N) i pozi	om pomi	aru / Loa	d F [kN]	and mea	asureme	nt level			
Rysa	30	30	50	50	56	56						
Crack	(1/2h)	(d)	(1/2h)	(d)	(1/2h)	(d)						
1	0.24	0.10	0.27	0.20	2.25	0.55						
2	0.15	0.06	0.30	0.10	2.50	0.65						
3	0.18	0.10	0.50	0.30	3.60	0.55						
4	0.10	0.10	0.37	0.10	2.45	0.70						
5	0.10	0.05	0.28	0.15	1.70	1.00						
6	0.10	0.10	0.30	0.10	2.50	0.90						
7	0.15	0.10	0.27	0.20	1.80	1.00						
8	0.07	0.05	0.20	0.15	2.70	0.65						
9	0.10	0.05	0.26	0.12	2.50	1.00			1			
10	-	•	0.10	0.07	0.15	0.01			1			
11	-	•	0.20	0.10	0.20	0.15						
12	•	-	0.25	0.08	0.30	0.20						
13	•	-	•	0.08	-	0.10						
14	-	-	•	•	0.20	0.15						
15	•	•	-	-	0.10	0.10						

BT-1b

Szerokość rozwarcia rysy [mm] w poziomie (1/2h) i w poziomie zbrojenia (d) Crack width [mm] at half depth level (1/2h) and at reinforcement level (d)													
<u>-</u>	Obciążenie F [kN] i poziom pomiaru/ Load F [kN] and measurement level												
Rvsa	22.5	25	30	40	50	50	60		T				
Crack	(1/2h)	(1/2h) (1/2h)		(1/2h)	(1/2h)	(d)	(1/2h)		<u> </u>				
1	0.20	0.25	0.30	0.35	0.40	0.01	3.40	<u> </u>	<u> </u>				
2	-	0.15	0.20	0.25	0.35	0.15	-		t				
3	· ·	0.25	0.30	0.35	0.35	0.05	2.50		t				
4	· ·	0.20	0.20	0.25	0.30	0.10	2.40						
5	-	-	0.25	0.30	0.40	0.10	4.80	(<u> </u>				
6		•	0.25	0.30	0.35	0.07	4.20						
7			0.25	0.35	0.35	0.05	3.15		<u> </u>				
8		•	0.10	0.15	0.20	0.05	2.00		<u> </u>				
9	-	-	0.10	0.15	0.20	0.20							
10		•	0.10	0.10	0.10	0.05	<u> </u>		<u> </u>				
11	-	-	0.10	0.15	0.25	0.05		<u> </u>	t				
12	-	-	0.10	0.10	0.15	0.10							
13	-	-	0.10	0.15	0.20	0.10	4 00						
14	-		0.05	0.05	0.05	0.07							
15		-	0.05	0.05	0.00	0.03	·		i				
16				0.10	0.15	0.05	· · ·						
17			0.10	0.10	0.10	0.08	<u> </u>	<u> </u>					
18		•	0.05	0.10	0.15 0.07								
19		-	0.00	0.15	0.15	0.07							
20	-		0.10	0.15	0.15	0.07			<u> </u>				
21	-			0.20	0.10	0.07							
22				0.10	0.10	0.08							
23		-	•	0.15	0.15	0.00							
24	•	-	-	0.05	0.05	0.05							
25				0.10	0.15	0.20	3.50						
26		•		0.05	0.10	0.09							
27	•	-	-	0.10	0.15	0.10	4.50						
28	-		•	0.05	0.10	0.09							
29	-			0.05	0.10	0.01							
30	-	-	•	0.05	0.10	0.04	1.90						
31	-	-	•	0.20	0.25	0.10	2.22						
32	-	•	-	0.40	0.50	0.12	1.50						
33	-		-	0.15	0.20	0.11	•						
34	•	-	-	•	0.10	#	•						
35	-	-	-	-	0.10	0.07	-						
36	-	•	-	-	0.10	0.04	-						
37	-	-	-	-	0.05	0.02	•						
38	-	•	•	-	0.10	0.10	-						
39	•	-	-	-	0.05	0.01	•						
40	-	-	-	•	0.05	0.07	-						
41	-	-	•	-	0.15	0.04	-						
42	-	•	•	-	0.20	0.10	3.00						
43	-	-	•	-	0.05	0.04	-						
44	•	•	-	•	•	0.05	•						

- brak dostępu / not accesible

1

BT-2a

Sze	rokość r	ozwarcia	rysy (mr	n] w poz	iomie (1/	2h) i w p	oziomie	zbrojenia	a (d)		
	ack widt	n [mm] a	Mi nait de	pth level	(1/2h) ai	nd at rein	ntorceme	nt level (<u>d)</u> at lovel		
Bysa	40		100	100	140						
Crack	(1/2h)	(1/2h) $(1/2h)$ $(1/2h)$		(1/2h)	(1/2h)	(4)	(1/2h)	1/0	<u> </u>		
1	0.10	0.10	0.10		0.15		1.00	0.20	<u> </u>		
2	0.10	0.10	0.10		0.15	0.05	0.70	0.20	──		
- 2	0.10	0.13	0.15		0.30	0.05	1.00	0.40	<u> </u>		
4	0.10	0.10	0.05		0.20	0.05	1.00	0.40	┣────		
5	0.10	0.10	0.15		0.25	0.05	1.2	0.20	 		
6	0.10	0.10	0.10		0.20		0.60	0.13			
	0.05	0.10	0.20		0.20	0.05	0.00	0.00	<u> </u>		
<u>,</u>	0.05	0.10	0.10		0.20	0.05	0.80	0.30	ł		
<u>-</u>		0.10	0.10	0.05	0.20	0.10	0.70	0.30	ł		
		0.10	0.10	0.05	0.15	0.10	0.70	0.10	┫─────		
11		0.10	0.15	0.05	0.20	0.05	1.00	0.10	 		
12		0.05	0.10		0.15	<u> </u>	0.25	0.30	<u> </u>		
12			0.10	·	0.20		0.25		<u> </u>		
14			0.15		0.15	<u> </u>	0.30	·	 		
15	<u>-</u>		0.10		0.15	<u> </u>	0.22				
16			0.05		0.10	0.05	0.25	0.05			
17			0.05	•	0.10	0.05	0.15	0.05	——		
10	<u>.</u>	· ·	0.10		0.20		0.20	0.20			
10			0.10		0.10	•	0.60	0.30			
20			0.10		0.25	•	0.40				
21		.	0.05		0.15	•	0.20	0.15			
21					0.10		0.80	0.15			
- 22		•			0.10	· · ·	0.10	0.25			
23					0.10	-	0.00	0.35			
- 25				<u>`</u>	0.10		0.35		<u> </u>		
25					0.05		0.15	0.05	———		
20		·		<u> </u>	0.10		0.40	0.05			
21					0.05		0.00	0.20			
20	·	•	<u>-</u>		0.05	•	0.45	0.30			
29	.				0.05		0.50	0.05			
-31		· · ·			0.05		0.15	0.10			
-32			<u> </u>		0.05	0.05	0.00	0.25			
-12					0.05	0.05	0.05	0.05	l		
-34					0.05	0.05	0.30	0.30			
-35		-			0.05	0.05	0.30	0.30			
-36					0.05		0.10				
37			·		0.10	0.05	0.15	0.20			
30				— <u> </u>	0.05	0.05	0.20	0.30			
30		•			0.05	0.05	0.30	0.20			
40		-			0.10		0.10	-			
40					0.05	0.05	0.10				
41	·	-	·		0.05	0.05	0.10	0.00			
42			-		0.05	0.05	0.20	0.30			
-43							0.50	0.30			
44							0.00	0.10			

BT-2b

Szerokość rozwarcja rysy (mm) w poziomie (1/2h) i w poziomie zbrojenia (d)												
Szerokość rozwarcia rysy [mm] w poziomie (1/2h) i w poziomie zbrojenia (d) Crack width [mm] at half depth level (1/2h) and at reinforcement level (d)												
	Obciążenie F [kN] i poziom pomiaru/ Load F [kN] and measuremen											
Rysa	48	60	60	100	100	140	140	166	166			
Crack	(1/2h)	(1/2h)	(d)	(1/2h)	(d)	(1/2h)	(d)	(1/2h)	(d)			
1	0.06	0.12	<u> </u>	0.15	- \-/	0.25	0.08	0.30	0.10			
2	0.08	0.08	0.04	0.12	0.10	0.20	0.20	0.45	0.50			
3	0.10	0.11		0.15	•	0.24	•	0.35	0.20			
4	0.10	0.11	·	0.20	0.08	0.23	0.10	0.60	0.45			
5	0.06	0.07	-	0.12	0.03	0.15	0.12	0.60	0.40			
6	0.04	0.08	-	0.11	0.08	0.22	0.16	0.40	0.35			
7	0.11	0.15	•	0.18	-	0.25	-	0.25	0.12			
8	-	0.11	-	0.15	•	0.38	0.03	0.50	0.08			
9	•	0.09	-	0.15	0.10	0.24	0.14	0.24	0.24			
10	-	0.04	-	0.12	0.08	0.18	0.14	0.30	0.15			
11	-	0.03	-	0.12	0.04	0.18	0.08	0.50	0.12			
12	-	0.08		0.12	-	0.18	-	0.40	0.20			
13	-	0.03	-	0.12	•	0.12	0.08	0.12	0.10			
14	-	0.08	<u> </u>	0.22	0.08	0.22	0.10	0.35	0.10			
15	-	· ·	-	0.20		0.28		0.25	•			
16	•	· ·	-	0.10	·	0.26	-	0.35	0.08			
- <u>-</u>			· · ·	0.08		0.16		0.25				
18		· ·		0.05	0.05	0.08	0.10	0.08	0.10			
				0.05		0.16	0.08	0.22	0.20			
20	Ļ			0.10	0.10	0.12	0.10	0.15	0.25			
21	:		<u> </u>	0.04	0.06	0.05	0.10	0.05	0.10			
22	└	<u> </u>		0.02	0.02	0.04	0.05	0.12	0.08			
23	<u> </u>	•	<u> </u>	0.00	0.08	0.14	0.15	0.18	0.30			
24	-		<u> </u>	0.03	0.04	0.10	0.05	0.40	0.33			
26				0.00	0.12	0.08	0.26	0.08	0.12			
27				0.00	0.12	0.35	0.06	0.10	0.20			
28		<u> </u>		0.03	0.05	0.00	0.00	0.00	0.15			
29	-		•	0.10	•	0.20	0.10	0.25	0.15			
30	-	- 1		0.20	•	0.25	0.05	0.35	0.10			
31	•	•		0.08	•	0.18	•	0.18	0.20			
32	-	-	-	-	-	0.10	•	0.15	-			
33	-	-	•	-	-	0.13	-	0.25	-			
34	-			-	•	0.20	•	0.24	-			
35	•	-	•	•	•	0.08	0.06	0.20	0.08			
36	-	-	•	-	•	0.10	•	0.20	-			
37	•	•	-	•	•	0.06	-	0.12	•			
38	-	•	-	•	•	0.03	0.06	0.06	0.10			
39	-	-	· ·	· · ·	-	0.05	0.10	0.06	0.10			
40	•	-		-	-	•	0.08	0.06	0.10			
41	-		·	·	•	0.04	0.08	0.06	0.12			
42	-	· · ·			-		0.08		0.06			
43	-	-	-		-	•	0.08	0.05	0.10			
44	·	ļ	·			0.04	0.08	0.10	0.12			
45			·•	•		0.08	0.15	0.28	0.35			
46		· · ·				0.06	0.10	0.06	0.10			
4/			<u>.</u>		-	0.05	0.05	0.05	0.06			
40			· ·			0.03	0.05		0.15			
50			-	•	-	0.03	0.12	0.50	0.35			
51						0.10	0.12	0.10	0.12			
52						0.04	0.00	0.06	0.12			
53				-	<u> </u>	0.08		0.00	0 16			
54	-		.	-			0.08	-	0 10			
55	-						0.08		0 10			
56	-	-		-		0.06	0.10	0.06	0.10			
57		-			-		0.12		0.15			
58	-	•			-	0.08	0.12	0.12	0.18			
59	-	•	- 1	-	-	0.10	0.10	0.18	0.14			
60	-	-			•	0.10	0.10	0.15	0.15			
61	-	•		-	-	0.25	-	0.40	•			
62	-	•	•		•	0.12	-	0.25				
63	-	-		-	-	-	•	0.08	<u> </u>			
64	-	-		-	•	-		0.12				
65	-	-	•		-		-	-	0.08			
66	-	-	-	- 1			•	0.10	-			
67	•	-]	•	•	-	-	-	0.06	0.10			
68	-	-				-		0.20	0.15			
69	-	-		-	-	-	•	•	0.22			
70	-			-	- 1	-	-	-	0.08			

TablicaB8.1.TableB8.1.

Odkształcenia i średnia krzywizna (bazy 2L do 2P) Strains and mean curvature (bases 2L to 2P)

Nr	Siła F	Odczyt		S	trefa ścisł	kana	ε _c , 5	60			S	Strefa rozo	iagana	ε _ι , 9	ε ₁ , ‰			
	kN		3L	2L	1L	0	1P	2P	3P	3L	2L	1L	0	1P	2P	3P	1/m	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
		р	0.00	0.00	-0.01	0.00	-0.01	0.00	0.00	0.00	-0.01	0.01	0.00	0.00	-0.01	0.01	0.00001	
1	0	0 é	0.00	0.00	-0.01	0.00	0.00	-0.01	-0.01	-0.01	0.01	-0.02	-0.01	-0.01	-0.02	0.01	0.00001	
	1		0.00	-0.04	0.03	-0.06	0.05	0.03	0.01	0.06	0.06	0.11	0.03	-0.24	0.06	0.18	0.00000	
2	10	ŏ	0.02	-0.04	0.05	-0.06	0.06	0.04	0.02	0.06	0.06	0.11	0.04	-0.22	0.06	0.17	-0.00001	
		Ś	0.02	-0.04	0.05	-0.06	0.06	0.04	0.02	0.06	0.06	0.11	0.03	-0.23	0.07	0.18	-0.00001	
		р	0.00	-0.05	0.03	-0.08	0.04	0.02	0.01	0.08	0.08	0.13	0.06	-0.21	0.09	0.18	0.00008	
3	14	0 ć	0.01	-0.05	0.04	-0.07	0.05	0.03	0.01	0.07	0.07	0.12	0.05	-0.21	0.08	0.18	0.00005	
		<u> </u>	-0.01	-0.07	0.03	-0.10	0.04	0.03	0.00	0.09	0.10	0.12	0.03	-0.19	0.03	0.13	0.00017	
4	18	0	0.00	-0.06	0.02	-0.09	0.02	0.01	0.00	0.09	0.09	0.15	0.08	-0.18	0.11	0.20	0.00015	
		Ś	0.00	-0.07	0.01	-0.09	0.02	0.01	0.00	0.09	0.09	0.15	0.08	-0.19	0.11	0.20	0.00015	
		р	-0.01	-0.07	0.01	-0.10	0.02	0.00	-0.01	0.09	0.09	0.15	0.07	-0.20	0.12	0.21	0.00016	
5	18	0	0.00	-0.07	0.01	-0.09	0.02	0.01	-0.01	0.09	0.08	0.13		-0.20	0.11	0.20	0.00014	
		S D	-0.01	-0.07	-0.01	-0.09	0.02	-0.01	-0.07	0.09	0.09	0.14	0.07	-0.19	0.11	0.20	0.00013	
6	22		-0.01	-0.09	0.00	-0.11	0.00	0.00	-0.01	0.10	0.10	0.14	0.10	-0.17	0.14	0.21	0.00022	
		Ś	-0.01	-0.09	-0.01	-0.11	0.00	-0.01	-0.01	0.10	0.11	0.15	0.10	-0.17	0.14	0.21	0.00022	
		р	-0.03	-0.11	-0.03	-0.13	-0.02	-0.03	-0.03	0.10	0.12	0.17	0.12	-0.16	0.16	0.22	0.00032	
7	26	, o	-0.02	-0.11	-0.02	-0.13	-0.02	-0.03	-0.03	0.11	0.11	0.17	0.12	-0.15	0.16	0.22	0.00030	
}	<u> </u>	S	-0.03	-0.10	-0.02	-0.13	-0.02	-0.03	-0.03	0.11	0.12		0.12	-0.15	0.16	0.22	0.00031	
8	30		-0.04	-0.13	-0.04	-0.15	-0.04	-0.05	-0.03	0.12	0.13	0.20	0.17	-0.12	0.20	0.24	0.00043	
L		Ś	-0.04	-0.12	-0.05	_0.15	-0.04	-0.05	-0.04	0.13	0.13	0.20	0.16	-0.12	0.20	0.24	0.00042	
	1	р	-0.05	-0.14	-0.09	-0.17	-0.06	-0.07	-0.05	0.14	0.15	0.31	0.17	-0.11	0.25	0.25	0.00055	
9	30	o	-0.04	-0.14	-0.07	-0.16	-0.05	-0.05	-0.04	0.14	0.14	0.28	0.17	-0.10	0.24	0.24	0.00051	
 		S	-0.04	-0.13	-0.08	-0.16	-0.05	-0.06	-0.04	0.14	0.14	0.30	0.17	-0.10	0.24	0.24	0.00053	
10	34	p 0	-0.05	-0.17	-0.10	-0.18	-0.07	-0.08	-0.05	0.15	0.28	0.37	0.21	0.08	0.28	0.20	0.00072	
	"	Ś	-0.05	-0.17	-0.10	-0.19	-0.08	-0.08	-0.05	0.16	0.28	0.36	0.22	-0.05	0.29	0.25	0.00073	
	1	P	-0.07	-0.23	-0.15	-0.25	-0.15	-0.12	-0.07	0.20	0.43	0.52	0.42	0.23	0.44	0.28	0.00127	
11	40	0	-0.07	-0.23	-0.16	-0.25	-0.16	-0.13	-0.07	0.22	0.44	0.55	0.47	0.28	0.47	0.26	0.00135	
	ļ	Ś	-0.07	-0.23	-0.16	-0.25	-0.16	-0.13	-0.07	0.21	0.44	0.54	0.45	0.26	0.46	0.27	0.00132	
12	44	p 0	-0.09	-0.26	-0.20	-0.28	-0.20	-0.17	-0.09	0.23	0.48	0.57	0.49	0.34	0.51	0.27	0.00150	
1 '2		Ś	-0.08	-0.25	-0.19	-0.28	-0.20	-0.16	-0.08	0.26	0.50	0.61	0.53	0.37	0.53	0.29	0.00155	
	·	р	-0.10	-0.28	-0.21	-0.30	-0.23	-0.18	-0.10	0.32	0.56	0.67	0.58	0.43	0.59	0.31	0.00173	
13	48	0	-0.10	-0.28	-0.22	-0.30	-0.23	-0.18	-0.10	0.40	0.57	0.69	0.59	0.45	0.62	0.31	0.00176	
ļ	┢	S	-0.10	-0.28	-0.21	-0.30	-0.22	-0.18	-0.09	0.38	0.56	0.68	0.60	0.45	0.61	0.32	0.00176	
14	60	p	-0.15	-0.35	-0.31	-0.38	-0.31	-0.23	-0.18	0.62	0.72	0.85	0.76	0.65	0.80	0.40	0.00231	
1		Ś	-0.15	-0.36	-0.30	-0.38	-0.31	-0.22	-0.17	0.65	0.75	0.87	0.78	0.67	0.82	0.47	0.00234	
	1	р	-0.15	-0.37	-0.31	-0.39	-0.32	-0.21	-0.18	0.68	0.77	0.90	0.80	0.67	0.84	0.60	0.00240	
15	60	, o	-0.15	-0.36	-0.30	-0.38	-0.32	-0.21	-0.17	0.68	0.76	0.88	0.79	0.68	0.83	0.58	0.00237	
		S	-0.15	-0.36	-0.31	-0.38	-0.32	-0.21	-0.18	0.68	0.76	0.87	0.79	0.68	0.84	0.59	0.00237	
16	80		-0.24	-0.49	-0.43	-0.51	-0.46	-0.31	-0.25	1.01	1.06	1.14	1.07	1.05	1.20	0.85	0.00332	
		Ś	-0.24	-0.49	-0.44	-0.51	-0.46	-0.31	-0.25	1.01	1.06	1.16	1.07	1.05	1.20	0.85	0.00332	
		р	-0.31	-0.63	-0.60	-0.66	-0.62	-0.45	-0.39	1.31	1.35	1.41	1.35	1.43	1.53	1.16	0.00431	
17	100	0	-0.31	-0.63	-0.59	-0.66	-0.62	-0.45	-0.39	1.32	1.35	1.42	1.37	1.43	1.54	1.16	0.00432	
<u> </u>	<u> </u>	<u> </u>	-0.31	-0.63	-0.59	-0.66	+0.62	-0.45	-0.39	1.32	1.35	1.42	1.37	1.44	1.54	1.17	0.00433	
18	100	0	-0.32	-0.65	-0.61	-0.67	-0.64	-0.47	-0.40	1.33	1.36	1.40	1.38	1.40	1.55	1,18	0.00439	
		Ś	0.32	-0.65	-0.61	-0.67	-0.64	-0.47	-0.40	1.33	1.36	1.42	1.38	1.46	1.56	1.18	0.00439	
		q	-0.40	-0.78	-0.75	-0.81	-0.78	-0.59	-0.49	1.56	1.64	1.68	1.66	1.83	1.87	1.44	0.00532	
19	120	0	-0.40	-0.78	-0.75	-0.81	-0.79	-0.59	-0.49	1.56	1.63	1.66	1.66	1.84	1.89	1.44	0.00533	
<u> </u>	<u> </u>	s n	-0.40	-0.78	-0.75	-0.81	-0.79	-0.59	-0.49	1.56	1.04	1.00	1.00	2.26	1.88	1.44	0.00533	
20	140		-0.49	-0.96	-0.92	-0.98	-0.97	-0.76	-0.57	1.81	1.94	1.98	2.00	2.30	2.23	1.77	0.00642	
		Ś	-0.49	-0.96	-0.93	-0.98	-0.97	-0.76	-0.57	1.81	1.93	1.97	2.00	2.29	2.24	1.77	0.00645	
		р	-0.51	-1.00	-0.98	-1.03	-1.02	-0.81	-0.60	1.82	1.95	2.01	2.03	2.35	2.28	1.81	0.00664	
21	140	0	-0.50	-0.99	-0.97	-1.02	-1.01	-0.80	-0.59	1.81	1.93	1.99	2.03	2.34	2.28	1.80	0.00661	
<u> </u>	<u> </u>	<u> </u>	-0.50	-1.00	-0.98	-1.02	-1.01	-08.0-	-0.50	1.02	1.94	1.99	2.03	1 70	1.28	1.80	0.00662	
22	100	0	-0.37	-0.89	-0.76	-0.81	-0.78	-0.59	-0.47	1.40	1.53	1.56	1.57	1.79	1.85	1.49	0.00523	
		Ś	-0.37	-0.89	-0.77	-0.81	-0.78	-0.59	-0.48	1.48	1.53	1.57	<u>1.</u> 58	1.79	1.85	1.48	0.00522	
1		р	-0.24	-0.65	-0.52	-0.57	-0.53	-0.36	-0.42	1.11	1.10	1.13	1.12	1.14	1.37	1.13	0.00365	
23	60	0 Á	-0.23	-0.64	-0.50	-0.56	-0.52	-0.35	-0.41	1.11	1.08	1.12	1.12	1.13	1.36	1.13	0.00360	
	ł	- S	-0.23	-0.04	-0.51	-0.50	-0.52	-0.35	-0.41	0.82	1.09	0.90	0.70	1.14	1.36	1.13	0.00361	
24	30	0	-0.12	-0.44	-0.30	-0.36	-0.30	-0.16	-0.28	0.82	0.75	0.79	0.79	0.66	1.03	0.87	0.00239	
		Ś	-0.12	-0.44	-0.31	-0.36	-0.30	-0.16	-0.29	0.82	0.76	0.79	0.78	0.66	1.02	0.87	0.00240	
		p	-0.03	-0.28	-0.13	-0.20	-0.13	-0.01	-0.18	0.62	0.53	0.55	0.54	0.33	0.75	0.70	0.00147	
25	6	0	-0.03	-0.27	-0.12	-0.20	-0.12	0.01	-0.17	0.61	0.51	0.49	0.53	0.33	0.74	0.69	0.00142	
1	1	5	-0.03	-0.27	-0.13	-0.20	-0.12	0.00	⊢ •U.I/]	U.D1	1 0.52	i U.54	0.54	i 0.33	U./5	0.69	i 0.00145	
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
-------------	-----	-----------	-------	-------	-------	-------	----------------	-------	----------------	------	--------	--------------	-------	--------------	-------	-----------------------	---------	
			-0.10	-0.31	-0.26	-0.33	-0.26	-0.13	-0.18	0.72	0.70	0.74	0.74	0.54	0.97	0.79	0.00213	
26	30	o	-0.09	-0.30	-0.25	-0.32	-0.26	-0.12	-0.17	0.72	0.69	0.73	0.73	0.53	0.96	0.78	0.00210	
		Ś	-0.10	-0.31	-0.25	-0.32	-0.25	-0.12	-0.17	0.72	0.70	0.73	0.74	0.54	0.96	0.78	0.00211	
		р	-0.20	-0.50	-0.46	-0.51	-0.45	-0.30	-0.27	0.99	1.02	1.10	1.09	1.02	1.34	1.02	0.00335	
27	60	0 é	-0.19	-0.49	-0.45	-0.51	-0.45	-0.30	-0.26	0.99		1.07	1.09	1.02	1.33	1.01	0.00332	
			-0.35	-0.43	-0.72	-0.76	-0.73	-0.55	-0.20	1.40	1.01	1.56	1.56	1.70	1.81	1.40	0.00499	
28	100	0	-0.34	-0.74	-0.72	-0.76	-0.73	-0.55	-0.43	1.40	1.47	1.55	1.57	1.70	1.83	1.40	0.00499	
		_ Ś	-0.34	-0.74	-0.72	-0.76	-0.73	-0.55	-0.43	1.40	1.47	1.56	1.56	1.70	1.83	1.40	0.00499	
		P	-0.50	-1.00	-1.00	-1.02	-1.01	-0.80	-0.59	1.80	1.92	2.01	2.05	2.37	2.28	1.80	0.00665	
29	140	0	-0.49	-1.00	-1.00	-1.03	-1.02	-0.80	-0.59	1.81	1.94	2.00	2.07	2.37	2.29	1.81	0.00666	
┣──		s n	-0.50	-0.20	-0.14	-1.03	-0.12	-0.80	-0.59	1.80	1.93	1.99	2.05	2.37	2.28	1.81	0.00665	
30	6		-0.02	-0.29	-0.13	-0.20	-0.12	0.01	-0.15	0.60	0.52	0.54	0.54	0.32	0.75	0.67	0.00143	
	-	Ś	-0.03	-0.28	-0.14	-0.20	-0.12	-0.01	-0.16	0.60	0.51	0.52	0.54	0.31	0.76	0.68	0.00145	
		р	-0.50	-1.01	-1.02	-1.04	-1.03	-0.81	-0.60	1.80	1.93	1.99	2.06	2.39	2.29	1.81	0.00669	
31	140	0	-0.50	-1.01	-1.02	-1.03	-1.03	-0.81	-0.60	1.81	1.94	1.98	2.06	2.40	2.28	1.82	0.00669	
<u> </u>		\$	-0.50	-1.01	-1.02	•1.04	-1.03	-0.81	-0.60	1.81	1.93	1.98	2.06	2.40	2.29	1.81	0.00668	
32	6	p	-0.03	-0.28	-0.15	-0.21	-0.13		-0.15	0.60	0.51	0.54	0.54	0.30	0.77	0.69	0.00148	
	ľ	Ś	-0.02	-0.28	-0.14	-0.20	-0.12	0.00	-0.14	0.60	0.52	0.54	0.54	0.30	0.77	0.69	0.00146	
		P	-0.50	-1.01	-1.01	-1.04	-1.03	-0.80	-0.60	1.82	1.95	2.02	2.08	2.42	2.31	1.84	0.00674	
33	140	ò	-0.50	-1.01	-1.01	-1.04	-1.03	-0.81	-0.60	1.83	1.95	2.00	2.08	2.42	2.31	1.82	0.00673	
<u> </u>		<u>Ś</u>	-0.49	-1.01	-1.01	-1.04	-1.03	-0.80	-0.59	1.82	1.95	2.01	2.08	2.42	2.31	1.84	0.00673	
24	6	p	-0.03	-0.28	-0.14	-0.21	-0.13	0.00	-0.14	0.61	0.53	0.56	0.54	0.31	0.79	0.70	0.00150	
54	Ŭ	Ś	-0.02	-0.28	-0.14	-0.20	-0.12	0.01	-0.14	0.60	0.52	0.53	0.54	0.29	0.78	0.69	0.00146	
		p	-0.49	-1.02	-1.03	-1.05	-1.04	-0.81	-0.60	1.81	1.93	2.00	2.06	2.42	2.30	1.83	0.00673	
35	140) o	-0.48	-1.02	-1.01	-1.04	-1.03	-0.80	-0.60	1.83	1.94	1.99	2.08	2.44	2.31	1.84	0.00673	
<u> </u>		Ś	-0.48	-1.02	-1.02	-1.04	-1.03	-0.80	-0.60	1.82	1.94	2.02	2.08	2.43	2.31	1.84	0.00674	
20	100	p	-0.36	-0.91	-0.80	-0.83	-0.80	-0.59	-0.49	1.47	1.53	1.62	1.62	1.83	1.92	1.50	0.00535	
36		é	-0.35	-0.91	-0.79	-0.82	-0.80	-0.59	-0.48	1.47	1.52	1.59	1.59	1.82	1.91	1.49	0.00530	
<u> </u>		<u> </u>	-0.22	-0.66	-0.53	-0.58	-0.53	-0.35	-0.37	1.07	1.06	1.13	1.13	1.11	1.43	1.11	0.00365	
37	60	0	-0.21	-0.65	-0.52	-0.57	-0.52	-0.34	-0.37	1.07	1.07	1.13	1.13	1.11	1.43	1.11	0.00364	
L	L	Ś	-0.22	-0.65	-0.52	-0.57	-0.53	-0.34	-0.36	1.07	1.08	1.13	1.13	1.11	1.43	1.11	0.00365	
		р	-0.11	-0.45	-0.31	-0.37	-0.31	-0.16	-0.23	0.79	0.76	0.80	0.78	0.61	1.07	0.85	0.00241	
38	30	0	-0.10	-0.45	-0.31	-0.37	-0.30	-0.14	-0.23	0.79	0.74	0.78	0.78	0.60	1.06	0.84	0.00237	
		<u> </u>	-0.02	-0.45	-0.31	-0.37	-0.30	-0.15	-0.23	0.79	0.75	0.78	0.78	0.60	1.06	0.84	0.00238	
39	6		-0.02	-0.28	-0.13	-0.20	-0.12	0.00	-0.13	0.60	0.52	0.53	0.54	0.29	0.79	0.69	0.00147	
	-	ś	-0.02	-0.28	-0.14	-0.20	-0.12	0.01	-0.14	0.60	0.51	0.53	0.54	0.29	0.78	0.68	0.00145	
		р	-0.09	-0.32	-0.27	-0.34	-0.27	-0.11	-0.15	0.72	0.72	0.77	0.77	0.54	1.04	0.80	0.00221	
40	30	0	-0.08	-0.32	-0.27	-0.33	-0.26	-0.12	-0.15	0.72	0.71	0.75	0.76	0.52	1.02	0.77	0.00217	
		<u>s</u>	-0.09	-0.32	-0.27	-0.33	-0.26	-0.12	-0.15	0.72	0.71	0.75	0.76	0.53	1.03	0.79	0.00218	
41	60		-0.18	-0.50	-0.46	-0.53	-0.47	-0.28	-0.27	1.01	1.05	1.13	1.12	1.04	1.44	1.00	0.00345	
		Ś	-0.19	-0.51	-0.47	-0.52	-0.47	-0.29	-0.26	1.02	1.05	1.12	1.13	1.04	1.44	1.06	0.00345	
		P	-0.34	-0.77	-0.74	-0.78	-0.75	-0.54	-0.43	1.45	1.51	1.62	1.61	1.77	1.92	1.47	0.00516	
42	100	o	-0.34	-0.77	-0.73	-0.78	-0.75	-0.54	-0.42	1.46	1.51	1.61	1.62	1.77	1.92	1.47	0.00515	
		<u>s</u>	-0.34	-0.77	-0.73	-0.78	-0.75	-0.54	-0.42	1.45	1.51	1.61	1.61	1.77	1.91	1.47	0.00515	
43	140	p	-0.49	-1.02	-1.01	-1.04	-1.03	-0.79	-0.59	1.86	1.95	2.05	2.08	2.45	2.33	1.80	0.00677	
-0	140	Ś	-0.49	-1.02	-1.01	-1.04	-1.03	-0.79	-0.59	1.86	1.95	2.02	2.08	2.45	2.32	1.85	0.00675	
		р	-0.51	-1.05	-1.04	-1.07	-1.07	-0.82	-0.61	1.90	2.01	2.10	2.14	2.53	2.37	1.90	0.00696	
44	144	0	-0.51	-1.05	-1.05	-1.08	-1.07	-0.83	-0.62	1.90	1.99	2.06	2.12	2.51	2.36	1.88	0.00693	
		<u>\$</u>	-0.51	-1.05	-1.04	-1.07	-1.07	-0.82	-0.61	1.91	2.00	2.08	2.14	2.52	2.37	1.90	0.00694	
15	149	p	-0.53	-1.08	-1.09	•1.11	-1.11	-0.86	-0.64	1.94	2.04	2.12	2.17	2.59	2.40	1.93	0.00713	
-3	140	Ś	-0.52	-1.08	-1.09	-1.11	-1.10	-0.86	-0.63	1.94	2.04	2.11	2.19	2.60	2.41	1.92	0.00713	
			-0.55	-1.11	-1.12	-1.14	-1.14	-0.89	-0.66	1.99	2.09	2.18	2.23	2.68	2.47	1.98	0.00733	
46	152	o	-0.54	-1.11	-1.12	-1.14	-1.14	-0.90	-0.65	2.00	2.10	2.18	2.25	2.70	2.47	1.96	0.00736	
		<u> </u>	-0.54	-1.11	-1.12	-1.14	-1.14	-0.89	-0.65	1.99	2.10	2.17	2.25	2.69	2.47	1.98	0.00734	
47	160	p	-0.57	•1.19	-1.20	-1.22	-1.22	-0.97	-0.69	2.10	2.27	2.38	2.43	2.97	2.63	2.09	0.00794	
, <i>''</i>	.50	Ś	-0.57	-1.20	-1.21	-1.23	-1.23	-0.98	-0.69	2.12	2.33	2.43	2.49	3.06	2.67	2.10	0.00809	
		P	-0.60	-1.46	-1.53	-1.54	-1.56	-1.27	-0.74	2.13	3.71	3.69	3.61	6.21	3.38	2.14	0.01202	
48	166	<u> </u>	-0.60	-1.47	-1.54	-1.55	-1.57	-1.28	-0.73	2.12	3.76	3.73	3.64	6.33	3.41	2.13	0.01216	
		Ś	-0.60	-1.46	-1.53	-1.54	-1.56	-1.27	-0.73	2.13	3.75	3.72	3.64	6.29	3.41	2.14	0.01210	
49	166	p	-0.64	-1.57	-1.68	-1.65	•1.67 •1.67	-1.38	-0.76	2.08	4.03	4.06	3.82	0.74 6.76	3.65	2.11	0.01301	
40	.00	Ś	-0.63	-1.56	-1.67	-1.65	-1.67	-1.38	-0.75	2.09	4.03	4.07	3.83	6.74	3.72	2.11	0.01304	
		р	-0.65	-1.61	-1.71	-1.69	-1.71	-1.41	-0.77	2.13	4.12	4.19	3.91	6.86	4.62	2.16	0.01369	
50	172	o	-0.64	-1.61	-1.72	-1.69	-1.71	-1.42	-0.77	2.13	4.14	4.31	3.94	6.92	4.65	2.15	0.01381	
		Ś	-0.64	-1.61	-1.71	-1.69	-1.71	-1.42	-0.77	2.13	4.13	4.24	3.93	6.89	4.64	2.15	0.01374	
51	176	p	-0.66	-1.66	-1.79	-1.74	-1.77	-1.47	-0.79	2.15	4.30	4.62 5.17	4,14	7.19 8.14	4.85	2.19	0.01442	
51	170	ś	-0.66	-1.71	-1.84	-1,78	-1.82	-1.57	-0.80	2.15	4.75	4.86	4.49	7.57	5.03	2.18	0.01510	
		p	-0.70	-2.00	-2.19	-2.10	-2.19	-1.83	-0.83	2.14	5.56	6.53	6.36	10.18	6.47	2.17	0.01952	
52	180	, o	-0.71	-2.31	-2.53	-2.42	-2.45	-2.15	-0.84	2.18	7.61	8.60	8.84	11.76	8.73	2.20	0.02469	
		Ś	-0.71	-2.16	-2.39	-2.29	-2.33	-1.98	-0.83	2.17	6.53	7.81	7.81	11.16	7.40	2.18	0.02229	
52	194	p	-0.73	-2.52	-2.66	-2.56	-2.62	-2.35	-0.86	2.22	8.88	9.06	9.68	12.35	10.08	2.25	0.02699	
55	104	ś	-0.74	-2.07	-2.82	-2.69	-2.05	-2.53	-0.87	2.20	9,70	9.68	10.42	13.09	10.75	2.35	0.02890	
		p	-0.77	-3.01	-3.04	-2.88	-2.98	-2.74	-0.90	2.31	10.58	10.53	11.34	14.12	11.59	2.56	0.03132	
54	188	O	-0.79	-3.19	-3.22	-3.03	-3.14	-2.90	-0.91	2.49	11.37	11.33	12.13	15.02	12.41	2.66	0.03343	
		Ś	-0.78	-3.11	-3.13	-2.97	-3.07	-2.83	-0.91	2.41	11.05	11.02	11.82	14.67	12.09	2.64	0.03258	
	100	р	-0.80	-3.39	-3.42	-3.19	-3.32	-3.29	-0.94	3.03	12.04	11.97	12.81	15.79	13.12	2.86	0.03541	
55	199	O é	-0.66	-3.24	-3.11	-2.90	-3.01	-2.99	-0.87 -0 02	2.99	12.00	11.69	12.27	15.28	13.00	2.51	0.03393	
		 	-0.66	-3.25	-3.11	-2.90	-3.00	-3.00	-0.88	2.98	11.64	11.55	12.27	15.29	12.75	2.50	0.03392	
56	140	ő	-0.66	-3.24	-3.11	-2.90	-3.00	-2.99	-0.87	3.02	11.66	11.70	12.29	15.30	12.77	2.52	0.03396	
		Ś	-0.66	-3.24	-3.11	-2.90	-3.00	-2.99	-0.87	3.00	11.66	11.70	12.29	15.31	12.77	2.52	0.03396	
		р	-0.51	-2.91	-2.77	-2.58	-2.65	-2.67	-0.74	2.61	11.16	11.25	11.68	14.69	12.24	2.09	0.03208	
57	100	0 é	-0.50	-2.89	-2.75	-2.56	-2.64	-2.65	-0.72	2.63	11.17	11.28	11.70	14.71	12.26	2.12	0.03208	
		э	-0.00	-2.3U	-2.70	-2.31	-2.04	-2.00	-0.73	4.02	- 1.17	11.20	11.09	14.71	12.20	Z . Z	0.00209	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	D	-0.33	-2.50	-2.35	-2.19	-2.23	-2.27	-0.54	2.19	10.66	10.79	11.08	14.08	11.70	1.70	0.03004
58	60	ò	-0.32	-2.48	-2.32	-2.17	-2.20	-2.25	-0.53	2.21	10.68	10.81	11.09	14.10	11.72	1.72	0.03002
		Ś	-0.32	-2.49	-2.33	-2.17	-2.21	-2.25	-0.53	2.21	10.68	10.82	11.09	14.10	11.71	1.72	0.03004
		a l	-0.19	-2.13	-1.96	-1.84	-1.83	-1.91	-0.40	1.90	10.28	10.46	10.59	13.61	11.28	1.42	0.02834
59	30	0	-0.18	-2.11	-1.94	-1.82	-1.81	-1.89	-0.39	1.92	10.30	10.49	10.60	13.63	11.29	1.44	0.02833
1		Ś	-0.18	-2.11	-1.95	-1.83	-1.82	-1.89	-0.39	1.92	10.30	10.49	10.61	13.62	11.29	1.44	0.02834
	[р	-0.02	-1.61	-1.41	-1.37	-1.27	-1.40	-0.23	1.60	9.83	10.13	10.02	13.12	10.77	1.17	0.02620
60	0	0	-0.04	-1.59	-1.39	-1.35	-1.26	-1.38	-0.23	1.60	9.84	10.16	10.02	13.13	10.77	1.17	0.02619
		Ś	-0.04	-1.60	-1.40	-1.36	-1.27	-1.39	-0.23	1.60	9.84	10.17	10.02	13.13	10.78	1.17	0.02620
		p	-0.23	-1.95	-1.91	-1.83	-1.79	-1.59	-0.30	2.17	10.55	10.78	10.92	14.06	11.53	1.70	0.02877
61	60	0	-0.23	-1.95	-1.91	-1.83	-1.80	-1.59	-0.30	2.20	10.58	10.83	10.94	14.09	11.55	1.72	0.02884
		Ś	-0.23	-1.95	-1.91	-1.83	-1.80	-1.59	-0.30	2.19	10.57	10.82	10.94	14.08	11.55	1.72	0.02883
		P	-0.53	-2.68	-2.65	-2.51	-2.56	-2.28	-0.62	3.08	11.61	11.84	12.13	15.39	12.67	2.59	0.03282
62	140	0	-0.53	-2.70	-2.67	-2.52	-2.57	-2.29	-0.62	3.09	11.61	11.84	12.14	15.40	12.69	2.59	0.03287
_		Ś	-0.53	-2.69	-2.66	-2.52	-2.57	-2.29	-0.62	3.09	11.61	11.84	12.13	15.40	12.69	2.59	0.03286
		P	-0.71	-3.15	-3.14	-2.97	-3.07	-2.75	-0.82	3.53	12.27	12.48	12.91	16.28	13.49	3.02	0.03548
63	188	0	-0.71	-3.18	-3.17	-3.00	-3.10	-2.78	-0.81	3.58	12.34	12.59	13.02	16.43	13.66	3.08	0.03581
		Ś	-0.71	-3.17	-3.16	-2.99	-3.09	-2.77	-0.82	3.57	12.32	12.56	12.99	16.38	13.60	3.06	0.03570
		p	-0.73	-3.23	-3.22	-3.04	-3.15	-2.83	-0.83	3.63	12.40	12.63	13.10	16.53	13.74	3.13	0.03607
64	192	0	-0.74	-3.26	-3.26	-3.08	-3.20	-2.88	-0.84	4.05	12.54	12.80	13.34	16.85	14.12	3.47	0.03670
		Ś	-0.74	-3.25	-3.24	-3.06	-3.17	-2.86	0.84	3.80	12.48	12.73	13.23	16.70	13.95	3.28	0.03641
		р	-0.76	-3.31	-3.31	-3.14	-3.27	-2.96	-0.86	4.42	12.70	12.98	13.62	17.24	14.54	3.70	0.03745
65	196	0	-0.79	-3.52	-3.54	-3.36	-3.54	-3.22	-0.86	5.88	14.06	14.45	15.38	19.33	16.49	5.09	0.04167
		Ś	-0.78	-3.43	-3.45	-3.28	-3.44	-3.13	0.86	5.34	13.47	13.87	14.71	18.56	15.81	4.45	0.04005
		ρ	-0.81	-3.65	-3.66	-3.48	-3.66	-3.34	-0.88	6.25	14.73	15.06	16.05	20.08	17.13	5.45	0.04337
66	200	0	-0.83	-3.86	-3.87	-3.67	-3.88	-3.54	-0.89	7.06	16.00	16.36	17.29	21.53	18.39	6.00	0.04661
		Ś	-0.82	-3.78	-3.79	-3.59	-3.79	-3.47	-0.89	6.75	15.55	15.90	16.84	21.02	17.95	5.80	0.04545
		р	-0.85	-3.95	-3.97	-3.76	-3.99	-3.64	-0.91	7.36	16.38	16.73	17.68	22.00	18.82	6.19	0.04771
67	204	0	-0.88	-4.18	-4.22	-3.99	-4.24	-3.87	-0.93	8.42	17.63	18.03	18.90	23.45	20.25	6.95	0.05108
		Ś	-0.87	-4.09	-4.12	-3.90	-4.14	-3.78	-0.93	8.01	17.19	17.58	18.46	22.94	19.72	6.67	0.04985
		р	-0.90	-4.27	-4.32	-4.07	-4.34	-3.95	-0.95	8.61	17.92	18.33	19.20	23.80	20.64	7.10	0.05197
68	208	0	-0.93	-4.55	-4.62	-4.35	-4.63	-4.24	-0.98	9.42	19.20	19.69	20.47	25.26	22.27	7.98	0.05559
		Ś	-0.91	-4.43	-4.50	-4.23	-4.51	-4.13	-0.97	9.12	18.75	19.21	20.01	24.73	21.67	7.61	0.05427
	212	1	-0.96	-4.75	-4.84	-4.54	-4.85	-4.45	-1.00	9.93	20.08	20.49	21.28	26.26	23.21	8.42	0.05795
	212	13	-0.96	-4.82	-4.93	-4.62	-4.93	-4.56	-1.01	10.13	20.42	20.80	21.58	26.66	23.61	8.59	0.05889
69	212	15	-0.98	-4.88	-5.00	-4.68	-4.99	-4.70	-1.02	10.26	20.64	21.01	21.80	26.93	23.94	8.75	0.05959
	212	37	-0.99	-4.95	-5.07	-4.75	-5.06	-4.88	-1.03	10.35	20.78	21.14	21.92	27.09	24.29	8.91	0.06018
	212	50	-1.00	-5.01	-5.14	-4.81	-5.12	-5.15	-1.04	10.43	20.92	21.25	22.02	27.20	24.60	9.08	0.06073

BT-2b

Tablica	B8.2.	Ugięcia
Table	B8.2.	Deflections

Nr	Sila F	Odczvt			i	Jgięcia, mr	n		
	kN		3L	2L	1L	0	1P	2P	3P
1	2	3	4	5	6	7	8	9	10
		р	-0.01	-0.01	-0.01	0.01	0.01	0.01	0.02
	<u>ں</u>	o ś	-0.01	0.00	0.01	0.00	-0.01	0.01	0.01
		D	0.12	0.21	0.28	0.34	0.29	0.24	0.26
2	10	ō	0.12	0.20	0.27	0.32	0.28	0.22	0.26
		Ś	0.12	0.20	0.27	0.32	0.28	0.22	0.27
		р	0.25	0.40	0.51	0.61	0.52	0.39	0.40
3	14	O é	0.26	0.40	0.51	0.60	0.50	0.40	0.39
<u> </u>		 	0.32	0.40	0.69	0.83	0.70	0.40	0.50
4	18	0	0.35	0.55	0.69	0.82	0.69	0.55	0.50
ļ		Ś	0.35	0.55	0.69	0.82	0.69	0.55	0.50
	1.0	р	0.36	0.57	0.72	0.87	0.73	0.58	0.53
5	81	Ó	0.37	0.58	0.72	0.87	0.73	0.58	0.53
<u>├</u> ───		, p	0.46	0.73	0.90	1.08	0.89	0.70	0.63
6	22	6	0.47	0.72	0.90	1.06	0.90	0.71	0.62
		Ś	0.47	0.72	0.90	1.08	0.90	0.71	0.63
_		р	0.59	0.91	1.14	1.35	1.12	0.89	0.73
7	26	0	0.60	0.93	1.15	1.36	1.13	0.89	0.74
		<u> </u>	0.59	1.12	1.39	1.64	1.36	1.07	0.87
8	30	ō	0.74	1.16	1.41	1.67	1.38	1.09	0.89
	ļ	Ś	0.74	1.15	1.41	1.66	1.37	1.08	0.88
		p	0.88	1.36	1.69	2.05	1.72	1.38	1.06
А	30	0 é	0.88	1.36	1.68	2.03	1.72	1.36	1.05
	<u> </u>	p	0.98	1.57	1.95	2.40	2.05	1.62	1.23
10	34	l o	1.07	1.67	2.08	2.56	2.17	1.71	1.28
	L	Ś	1.03	1.60	1.99	2.46	2.09	1.66	1.24
	40	p	1.52	2.39	2.99	3.72	3.13	2.45	1.77
11	40	O Ś	1.60	2.50	3.13	3.91	3.27	2.57	1.82
		р р	1.80	2.80	3.53	4.39	3.66	2.88	2.02
12	44	0	1.83	2.84	3.56	4.43	3.69	2.90	2.05
		Ś	1.81	2.83	3.54	4.40	3.67	2.88	2.04
10	10	p	1.98	3.11	3.89	4.83	4.02	3.19	2.23
	40	Ś	2.04	3.19	3.99	4.90	4.10	3.29	2.29
		p	2.71	4.20	5.28	6.53	5.49	4.36	3.00
14	60	o	2.81	4.36	5.43	6.67	5.59	4.43	3.05
	ļ	Ś	2.76	4.28	5.35	6.59	5.54	4.39	3.03
15	60	p	2.80	4.40	5.48	6.73	5.67	4.49	3.10
		Ś	2.81	4.39	5.47	6.72	5.66	4.49	3.09
		p	2.80	6.04	7.61	9.31	7.84	6.21	4.23
16	80	o	2.81	6.10	7.67	9.39	7.92	6.27	4.28
	 	S	2.80	6.07	10.07	9.35	10.40	0.25	4.26
17	100	0	2.81	8.12	10.27	12.44	10.45	8.38	5.60
		Ś	2.80	8.16	10.31	12.41	10.53	8.36	5.59
		р	2.80	8.34	10.55	12.69	10.78	8.57	5.72
18	100	0	2.80	8.35	10.57	12.71	10.79	8.58	5.72
	<u> </u>	n s	2.80	0.35	12.83	15.36	13.12	10.48	6.96
19	120	0	2.78	10.36	13.04	15.55	13.26	10.60	7.03
		Ś	2.80	10.29	12.96	15.47	13.20	10.55	7.00
		р	2.80	12.48	15.67	18.68	15.85	12.69	8.37
20	140	0	2.79	12.63	15.86	18.90	16.03	12.83	8.47
	<u> </u>	<u> </u>	2.00	12.57	16.27	19.38	16.44	13.15	8.67
21	140	0	2.79	12.96	16.30	19.41	16.45	13.16	8.68
		Ś	2.79	12.96	16.29	19.40	16.45	13.16	8.67
	100	р	2.78	10.08	12.75	15.13	12.94	10.32	6.83
22	100	<u>ہ</u>	2.79	10.07	12.73	15.10	12.92	10.30	6.82
			2.79	7.11	8.97	10.68	9.13	7.27	4.92
23	60	6	2.79	7.07	8.91	10.62	9.07	7.21	4.88
		Ś	2.79	7.08	8.93	10.63	9.09	7.23	4.89
		р	2.79	4.99	6.17	7.37	6.35	5.09	3.51
24	30	0 é	2.79	4.97 4 98	6.17	7.30	6.34	5.08	3.50
	 		2.26	3.58	4.39	5.20	4.49	3.61	2.54
25	6	6	2.22	3.50	4.30	5.08	4.39	3.54	2.48
	L	Ś	2.24	3.54	4.34	5.13	4.44	3.57	2.51

	1 2			c .	<u> </u>	7	0	0	10
<u> </u>	2	3	4	5	6		8	9	10
1		P	2.97	4.63	5.72	6.81	5.84	4.67	3.24
26	30	0	2.97	4.62	5.71	6.80	5.83	4.67	3.24
	1	Ś	2.97	4.63	5.71	6.81	5.83	4.67	3.24
	<u> </u>	<u> </u>	4 42	6.92	8 5 9	10.24	0A R	6 02	4 70
07	60		1 12	6.02	9.50	10.24	8.03	6 01	4.70
21	00	<u>↓</u>	4,40	0.01	0.00	10.20	0.72	0.91	4.70
L	L	S	4.43	6.82	8.59	10.25	8./1	6.93	4.69
		p p	6.37	9.83	12.43	14.76	12.59	10.03	6.65
28	100	0	6.40	9.87	12.48	14.82	12.63	10.06	6.67
1	1	Ś	6.39	9.86	12.46	14.80	12.61	10.04	6.66
			9.00	12.00	16.25	10.46	16.50	12.19	9.67
		P	0.42	12.99	10.35	19.40	10.50	13.10	0.07
29	140	0	8.46	13.05	16.43	19.54	16.57	13.23	8.70
	1	Ś	8.45	13.03	16.40	19.51	16.54	13.21	8.69
		D	2.23	3.54	4.35	5.15	4.46	3.58	2.50
30	6		221	349	4 29	5.09	4 4 1	3 54	2 45
	Ĭ	Ś	2.21	2.51	4.20	5.00	4.42	2.54	2.40
ļ	ł	5	2.22	3.51	4.32	5.11	4.43	3.50	2.40
		P	8.48	13.07	16.48	19.59	16.62	13.26	8.70
31	140	0	8.52	13.14	16.56	19.69	16.69	13.32	8.73
		Ś	8.50	13.11	16.52	19.64	16.65	13.29	8.72
	1	<u> </u>	2.24	3.55	4 37	5 17	1 18	3.60	2.50
0.0			2.24	0.55	4.07	5.17	4.40	3.00	2.50
32	0	, o	2.22	3.52	4.34	5.13	4.44	3.55	2.48
		Ś	2.23	3.53	4.35	5.15	4.46	3.58	2.49
		p	8.50	13.14	16.54	19.67	16.68	13.30	8.74
33	140	o	8.55	13.20	16.63	19.76	16.76	13.37	8.77
		é	9.53	13.18	16.59	19 72	16 72	13.34	876
	<u> </u>		0.00	10.10	10.09	13.12	10.72	13,34	0.70
	1	d b	2.25	3.58	4.40	5.20	4.51	3.62	2.52
34	6	o .	2.22	3.55	4.38	5.17	4.50	3.60	2.50
1		Ś	2.24	3.56	4.39	5.20	4.51	3.61	2.51
	1	n	8.56	13.21	16.66	19.79	16.80	13.40	8 77
25	140		0.50	12.25	16.00	10.04	16.00	12.40	0.77
35	1 140		0.30	13.25	10.70	19.84	10.83	13.42	0.01
	 	S	8.57	13.24	16.68	19.82	16.82	13.41	8.80
	1	P	6.65	10.35	13.11	15.52	13.28	10.55	6.94
36	100	0	6.65	10.34	13.10	15.50	13.26	10.53	6.93
		Ś	6.65	10.34	13 10	15 50	13.26	10.54	6 94
	<u> </u>		4.64	7.04	0.10	10.00	0.20	7.07	4.04
		p	4.04	7.24	9.10	10.88	9.31	7.37	4.94
37	60	0	4.63	7.22	9.14	10.85	9.27	7.34	4.93
		Ś	4.64	7.23	9.15	10.86	9.29	7.35	4.93
		α	3.21	5.07	6.29	7.48	6.42	5.13	3.51
38	30		3.21	5.04	6.27	7 45	6.40	5 10	3 /0
		, i	3.00	5.04	6.00	7.45	£ 44		3 50
			0.22		0.20	1.47	0.41	5.11	3.50
		P	2.24	3.57	4.40	5.21	4.52	3.62	2.51
39	6	0	2.24	3.56	4.38	5.19	4.50	3.60	2.50
4	l	Ś	2.24	3.56	4.39	5.19	4.51	3.61	2.50
	1	n	3.06	4 79	5.95	7.08	6.07	4 84	3 33
40	20		3.06	1.70	5.00	7 00	6.05	4.04	2 22
1 40		i i	3.00	4.70	5.94	7.00	0.05	4.04	3.32
	 	<u>s</u>	3.06	4.79	5.94	1.08	0.06	4.84	3.32
		р	4.55	7.04	8.91	10.61	9.04	7.15	4.83
41	60	0	4.55	7.06	8.90	10.61	9.03	7.15	4.83
1		Ś	4.55	7.06	8.91	10.61	9.03	7.15	4.83
	t · · · · · ·		6.55	10.19	12.97	15.05	13.02	10.25	6.94
1	100		0.00	10.10	10.00	15.20	10.02	10.33	0.04
42	001	, o	0.56	10.19	12.89	15.28	13.05	10.36	6.84
L		S	6.56	10.19	12.87	15.26	13.04	10.35	6.84
1	I	р	8.54	13.22	16.64	19.78	16.78	13.38	8.79
43	140	0	8.57	13.26	16.71	19.86	16.85	13.43	8.81
1		Ś	8 56	13.24	16.68	19.83	16.82	13.41	8.80
	 		0.00	10.24	10.00		17.02	40.77	0.00
		р	0.79	13.00	17.13	20.37	1/2/	13.//	9.04
44	144	O I	8.81	13.60	17.16	20.40	17.30	13.79	9.03
		Ś	8.80	13.60	17.14	20.37	17.28	13.77	9.03
		p	9.02	13.92	17.58	20.88	17.71	14.11	9.22
45	148		9.06	13.96	17.64	20.95	17 77	14 15	9 26
		i i	0.00	12.04	17 61	20.00	17 79	14.10	0.20
		3	9.04	13.94	17.01	20.92	11.13	14.12	9.20
		р	9.28	14.31	18.09	21.48	18.21	14.50	9.49
46	152	0	9.35	14.39	18.21	21.63	18.34	14.59	9.55
1	1	Ś	9.32	14.36	18.16	21.57	18.29	14.55	9.53
	l	n	9 93	15 20	19.36	23.08	10 / 9	15.45	10.12
1 47	160		10.00	15.23	10.00	22.00	20.11	15.45	10.12
*/	100		10.23	15.74	19.90	23.09	20.11	15.93	10.43
L		S	10.12	15.56	19.74	23.58	19.87	15.76	10.32
	ł	р	12.94	19.97	25.65	31.87	25.67	20.15	13.05
48	166	0	13.07	20.18	25.94	32.24	25.95	20.36	13.18
1	1	Ś	13.01	20.09	25.80	32.06	25.81	20.26	13 13
├ ───┤	11		12 70	21 17	27.21	24 47	27.00	01 40	12.01
		Р	13.70	21.17	21.31	34.47	27.38	21.43	13.81
49	166	0	13.70	21.19	27.32	34.48	27.38	21.43	13.83
		Ś	<u>13.</u> 70	21.18	27.32	34.47	27.38	21.43	13.82
		D	13.96	21.60	27.84	35.10	27.91	21.84	14.08
50	170	5	14.06	21 76	28.06	35 30	28.16	22 02	1/ 10
	, '' ²	J Á	14.00	21.75	20.00	25.39	20.10	22.03	14.15
J		5	14.01	21.00	21.95	35.25	20.04	21.94	14.14
		Р	14.53	22.52	29.07	36.67	29.22	22.82	14.69
51	176	0	15.85	24.58	31.90	40.39	32.19	24.96	16.06
		Ś	15.12	23.45	30.35	38.35	30.59	23.80	15.32
52	180	n	18 77	29.09	38.07	48 13	38 27	29.55	18 02

.

.

Słupy Columns

Tablica S0.1.Rzeczywiste wymiary szkieletu zbrojeniaTableS0.1.Real dimensions of reinforcing cage

			Miejsce	pomiaru		
Element		I		II	I	II
Element Sw-1A Sw-1A Sw-1B Sw-2A Sw-2B Sk-1A Sk-1B Sk-2A Sk-2B	b _{s1}	h _{s1}	b _{s1}	h _{s1}	b _{s1}	h _{s1}
	b _{s2}	h _{s2}	b _{s2}	h _{s2}	b _{s2}	h _{s2}
	mm	mm	mm	mm	mm	mm
Sw-1A	94	204	97	207	98	206
	94	204	98	205	97	205
Sw-1B	98	205	97	205	97.5	203
	98	206	98	204	98	204
Sw-2A	97	205	98	205	97	202
	94	202	97	206	96	207
Sw-2B	94	206	97	204	97	205
	98	203	97	207	96	205
Sk-1A	97	202	97	204	94.5	204
	98	205	97	207	96	206
Sk-1B	96.5	204	98	207	96.5	205
	96.5	205	98.5	206	97	206
Sk-2A	95	205	97	205	98	206
	94	204	99	206	98	205
Sk-2B	94	205	97	206	96	206
	97	207	97	207	97	206

Tablica S0.2.Zależności $\sigma_s - \varepsilon_s$ dla stali zbrojeniowejTableS0.2.The $\sigma_s - \varepsilon_s$ relationships of reinforcement

#	14	Q	<i>0</i> 6
ε _s	σ_{s}	ε _s	σ
%00	MPa	%0	MPa
0	0	0.00	0
2.19	428	2.16	437
8.00	428	16.60	440
14.00	441	20.00	445
20.00	463	25.00	452
26.50	495	30.00	459
32.20	520	40.00	469
40.00	551		

Tablica S0.3. Rzeczywiste wymiary słupówTableS0.3. Real dimensions of columns

Part - Reconstruction and the second			I]	I		III		Tactiful 1
Lp	Słup	b ₁	h ₁	bı	h ₁	b ₁	h ₁] L	
		b ₂	h ₂	b ₂	h ₂	b ₂	h ₂	$f(\tau)(\bar{\tau})$	
	a a chuir ann ann ann. Dhfa	mm							
1	Sk 1A	140	250	140	250	140	250	2080	
	SK-IA	140	250	142	250	142	250	2500	± 1 - \sim
2	Sk 1D	139	252	140	252	139	252	2080	
	SK-ID	140	252	139	252	141	252	2980	
3	SF 24	140	251	140	250	141	250	2085	
	SK-2A	142	250	140	250	140	252	2965	
4	SK 2B	140	251	140	250	142	251	2080	ě. H.
	SK-2D	141	252	140	252	142	251	2900	
5	Sw 1A	140	250	142	250	142	250	2085	([]+)
	Sw-IA	139	249	140	250	141	249	2905	
6	Sw 1B	141	252	140	252	141	252	2085	
	5w-1D	141	252	141	252	141	252	2905	
7	Sw 2A	140	251	140	251	140	251	2080	
	5w-2A	140	251	140	251	141	251	2980	
8	Sw 2B	142	251	141	250	142	250	2008	
	5w-2D	141	250	140	249	143	250	2990	
9	Sw 2Ac	141	251	140	250	141	250	2084	
	Sw-2AC	140	250	141	250	141	250	2904	
10	Sk-2Ac	141	250	141	250	141	251	2080	
	SK-2AU	141	250	141	250	141	250	2900	

Tablica	a S0.4.	Wytrzymałościowe cechy betonu
Table	S0 4	Concrete mechanical narameters

Lp	Rama	wiek betonu, dni	f _{c,cube}	, MPa	f _c , 1	MPa	f _{et,sp} ,	MPa
		age of concrete, days	wyniki	średnia	wyniki	średnia	wyniki	średnia
			91, 98		65, 64		4.8	
1	Sw-1A	28	102, 101	98	62, 70	66	4.8	4.6
			103, 94		68		4.1	
			97, 93		83		4.4	
2	Sw-1B	28	91, 99	95	78	81	4.1	4.4
			96, 94		81		4.7	
			106, 95		90, 73		4.8	
3	Sw-2A	33	102, 102	100	87	81	5.0	4.9
			99, 97		75			
			96, 102		77,77		4.5	
4	Sw-2B	30	99, 102	100	73, 78	76	4.7	4.7
			105, 97		72		4.9	
			97, 93		89		4.2	
5	Sk-1A	28	107, 79	96	77	84	4.1	4.6
			108, 92		84		5.4	
			95, 93		69, 64		4.3	
6	Sk-1B	28	94, 86	91	64, 66	65	3.8	4.3
			89, 97		60		4.9	
			106, 96		88, 79		4.9	
7	Sk-2A	28	102, 97	99	80	84	4.3	4.4
			107, 87		88		4.1	
			109, 101		83, 77		5.1	
8	Sk-2B	28	109, 95	102	83, 76	79	4.6	4.7
			108, 89		78		4.5	
			103, 108		81,78		5.9	
9	Sw-2Ac	212	109, 110	107	78,77	80	5.4	5.7
			104, 108		84		5.7	
			111, 114		101, 98		5.0	
10	Sk-2Ac	198	111, 114	110	101, 97	99	5.2	5.2
			112,96		100		5.3	

.

 $\int \alpha$

900

Sw-2B

Tablica S4.1.

Przemieszczenia osi słupa, kąt skręcenia przekroju α i sieczny kąt orientacji płaszczyzny zginania δ

Displacement of column axis, cross -section Table S4.1. rotation angle α and secant angle defining the direction of plane of flexure δ

Nr	Sila	Pomiar pierwszy		Prze	krój l			Prze	krój II			Przel	crój III	
obciążenia		ostatni		····-					- 			r <u> </u>	· · · · · · · · · · · · · · · · · · ·	
	kN	średni	V _x	vy mm	α dea	ð deg	v _x		α dea	ð deg	v _x	l vy mm	dea	dea
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	Ś	0.00	0.00	-0.001	-0.03	0.00	0.00	0.001	38.78	0.00	0.00	0.001	85.97
2	50	Ś	-0.27	0.33	-0.008	-38.85	-0.28	0.51	-0.056	-29.15	-0.21	0.38	-0.025	-29.08
3	100	Ś	-0.42	0.66	-0.004	-32.70	-0.49	0.91	-0.040	-28.27	-0.33	0.73	-0.026	-24.53
4	150	Ś	-0.57	1.00	-0.003	-29.52	-0.68	1.32	-0.025	-27.29	-0.45	1.10	-0.034	-22.20
6	250	Ś	-0.78	1.66	-0.004	-25.28	-0.96	2.13	-0.029	-24.40	-0.63	1.45	-0.040	-19.30
7	300	Ś	-0.88	1.99	-0.004	-23.88	-1.08	2.53	-0.032	-23.08	+0.71	2.17	-0.048	-18.21
8	350	Ś	-0.97	2.32	-0.005	-22.76	-1.19	2.93	-0.033	-22.12	-0.79	2.52	-0.054	-17.32
9	400	Ś	-1.07	2.67	-0.009	-21.81	-1.30	3.33	-0.023	-21.30	-0.87	2.89	-0.059	-16.69
10	450	Ś	-1.17	3.03	-0.011	-21.08	-1.42	3.77	-0.021	-20.70	-0.94	3.28	-0.067	-16.04
	500	S	-1.26	3.38	-0.013	-20.47	-1.54	4.19	-0.018	-20.19	-1.02	3.65	-0.073	-15.03
13	600	Ś	-1.30	4 10	-0.020	-19.50	-1 77	5.08	-0.018	-19.25	•1.18	4.44	-0.085	-14.89
14	650	Ś	-1.56	4.48	-0.023	-19.17	-1.90	5.53	-0.014	-18.91	-1.27	4.84	-0.089	-14.69
15	700	Ś	-1.67	4.87	-0.031	-18.92	-2.03	5.99	-0.010	-18.70	-1.37	5.25	-0.095	-14.58
16	750	Ś	-1.80	5.29	-0.037	-18.78	-2.19	6.48	-0.010	-18.65	-1.47	5.69	-0.102	-14.44
17	800	Ś	-1.98	5.75	-0.042	-18.96	-2.40	7.07	-0.016	-18.77	-1.65	6.22	-0.112	-14.84
18	850	Ś	-2.23	6.29	-0.048	-19.54	-2.73	6 90	-0.024	-19.38	-1.91	6.83	-0.125	-16.85
20	450	é	-1.83	5.50 4.44	+0.069	-20.00	-2.30	5 47	-0.076	-22.21	-1.60	4.83	-0.112	-18.29
21	250	Ś	-1.51	3.12	-0.063	-25.88	-1.84	3.84	-0.072	-25.58	-1.32	3.38	-0.088	-21.28
22	50	Ś	-0.94	1.34	-0.063	-35.23	-1.15	1.65	-0.080	-34.84	-0.85	1.42	-0.057	-30.95
23	250	Ś	-1.42	2.55	-0.023	-29.13	-1.73	3.21	-0.033	-28.34	-1.21	2.82	-0.062	-23.23
24	450	Ś	-1.74	3.84	-0.028	-24.38	-2.12	4.78	-0.029	-23.97	-1.48	4.19	-0.080	-19.43
25	650	S A	-2.08	5.11	-0.039	-22.13	-2.53	6.27	-0.009	-21.96	-1.78	5.55	-0.097	-17.75
20	50	Ś	-1.03	1.36	-0.050	-37.03	-1.24	1.68	-0.077	-36.42	-0.93	1.46	-0.053	-32.59
28	850	Ś	-2.83	6.71	-0.057	-22.90	-3.49	8.27	-0.034	-22.89	-2.51	7.31	-0.137	-18.95
29	50	Ś	-1.11	1.47	-0.071	-37.09	-1.38	1.82	-0.086	-37.18	-1.02	1.56	-0.061	-33.18
30	850	Ś	-2.98	6.78	-0.054	-23.70	-3.68	8.36	-0.032	-23.72	-2.67	7.41	-0.136	-19.83
31	50	Ś	-1.16	1.51	-0.075	-37.60	-1.44	1.86	-0.085	-37.74	-1.08	1.61	-0.063	-33.81
32	850	Ś	-3.09	6.85 5.06	-0.053	-24.27	-3.81	8.44	-0.033	-24.27	-2.79	6.52	-0.130	-20.43
34	450	Ś	-2.03	4 84	-0.081	-27.24	-3.07	5.95	-0.070	-27.30	-2.30	5.30	-0.118	-23.46
35	250	Ś	-2.06	3.50	-0.078	-30.46	-2.54	4.28	-0.065	-30.63	-1.87	3.81	-0.096	-26.15
36	0	Ś	-0.61	0.81	-0.070	-37.00	-0.74	0.98	-0.083	-37.02	-0.55	0.84	-0.052	-33.07
zmiana usytu	iowania sił	y normalne	į								T		1	
37	0	Ś	-0.50	0.65	-0.035	-37.48	-0.60	0.85	-0.074	-35.26	-0.42	0.71	-0.041	-30.17
38	15	S é	-0.15	0.68	-0.054	16.21	0.17	0.85	-0.083	17 16	-0.04	0.73	-0.049	-2.78
40	45	Ś	0.52	0.85	-0.085	31.64	0.57	0.83	-0.073	34.56	0.79	0.72	-0.056	47.61
41	60	Ś	0.84	0.85	-0.092	44.57	1.00	0.88	-0.082	48.56	1.15	0.77	-0.063	56.34
42	75	Ś	1.20	0.86	-0.097	54.32	1.45	0.89	-0.084	58.41	1.53	0.78	-0.066	63.03
43	90	Ś	1.56	0.87	-0.102	60.76	1.90	0.92	-0.087	64.32	1.91	0.80	-0.069	67.38
44	105	S	1.95	0.89	-0.110	65.40	2.38	0.94	-0.093	68.45	2.32	0.82	-0.074	70.60
45	135	Ś	2.29	0.94	-0.125	70.67	3.28	1.00	-0.109	72.97	3.08	0.87	-0.089	74.26
47	150	Ś	3.02	0.96	-0.136	72.33	3.71	1.03	-0.115	74.44	3.45	0.89	-0.097	75.51
48	165	Ś	3.41	1.00	-0.150	73.68	4.20	1.06	-0.124	75.88	3.86	0.92	-0.104	76.59
49	180	Ś	3.82	1.01	-0.158	75.13	4.69	1.08	-0.131	77.08	4.28	0.93	-0.111	77.71
50	195	Ś	4.22	1.03	-0.165	76.27	5.19		-0.139	78.01	4.69	0.94	-0.116	78.65
52	150	s é	4.90	1.07	-0.181	77 9/	0.05 1 07	0.12	-0.150	79.49	5.45 4.57	0.90	-0.128	80.57
53	90	Ś	2.94	0.33	-0.068	74.87	3.50	0.80	-0.061	77.12	3.32	0.63	-0.046	79.20
54	15	Ś	0.55	0.68	-0.040	38.79	0.55	0.63	-0.021	41.05	0.82	0.51	-0.007	58.40
55	90	Ś	2.24	0.80	-0.112	70.26	2.76	0.82	-0.088	73.54	2.66	0.70	-0.062	75.31
56	150	Ś	3.69	0.91	-0.146	76.14	4.56	0.94	-0.113	78.36	4.19	0.80	-0.089	79.17
57	210	S	5.19	1.04	-0.183	78.62	6.39	1.08	+0.150	80.42	5.74	0.91	-0.119	81.03
59	210	s é	0.52	1.03	-0.045	79.06	0.50	1.05	-0.044	80.86	5.91	0.52	-0.011	81.45
60	15	Ś	0.66	0.67	-0.043	44.50	0.66	0.59	-0.019	48.07	0.94	0.47	-0.009	63.22
61	210	Ś	5.38	1.02	-0.186	79.23	6.63	1.04	-0.150	81.06	5.96	0.87	-0.120	81.67
62	15	Ś	0.61	0.66	-0.043	42.78	0.65	0.62	-0.041	46.53	0.91	0.50	-0.014	61.33
63	210	Ś	5.41	1.02	-0.185	79.36	6.67	1.03	-0.150	81.25	6.00	0.86	-0.119	81.85
64	150	Ś.	4.54	0.83	-0.108	79.61	5.51	0.86	-0.103	81.18	5.04	0.69	-0.083	82.18
20	90	S é	0.31	0.74	-0.072	43.58	0.97	0.75	-0.064	19.25 47.04	3.70	0.59	-0.047	61.80
67	90	ś	2.49	0.79	-0.127	72.35	3.07	0.77	-0.089	75.96	2.94	0.64	-0.062	77.67
68	150	Ś	4.00	0.90	-0.162	77.27	4.95	0.89	-0.118	79.84	4.55	0.75	-0.093	80.68
69	210	Ś	5.47	1.04	-0.195	79.29	6.77	1.03	-0.154	81.38	6.07	0.86	-0.123	81.95
		р	5.94	1.04	-0.201	80.08	7.31	1.04	-0.165	81.89	6.53	0.87	-0.126	82.45
70	225	0	5.98	1.04	-0.202	80.15	7.37	1.05	-0.165	81.91	6.58	0.86	-0.126	82.53
1		I S	1 5.96	1.04	-0.202	80.12	/.35	1.05	J -0.165	81.90	6.56	0.87	i -0.126	82.49

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
·	+ <u>-</u>	<u> </u>	6.46	1 07	-0.211	80.59	7 95	1.05	-0.174	82.45	7.09	0.97	0 121	02.01
	0.00	μ	0.40	1.07	-0.211	00.39	1.95	1.03	-0.174	02.45	7.00	0.07	-0.131	03.01
	240	0	6.53	1.07	-0.212	80.70	8.05	1.07	-0.180	82.45	7.16	0.87	-0.131	83.07
		Ś	6.50	1.07	-0.212	80.66	8.01	1.07	-0.178	82.42	7.12	0.87	-0.132	83.03
		p	7.09	1.10	-0.222	81.22	8.75	1.08	-0.191	82.98	7.74	0.88	-0.139	83.49
72	255	ō	7.18	1.08	-0.219	81.43	8.88	1.08	-0.191	83.07	7.84	0.87	-0.137	83.67
		Ś	7.14	1.09	-0.221	81.34	8 82	1.08	-0.190	83.04	7 80	0.88	-0 138	83 58
		<u> </u>	7.00	1.00	0.005	80.00	0.02	1.00	0.100	00.04	0.60	0.00	0.100	00.00
-		P	7.63	1.10	-0.225	82.00	9.00	1.07	-0.199	83.72	8.52	0.87	-0.144	84.15
73	270	0	7.95	1.10	-0.225	82.16	9.85	1.06	-0.197	83.87	8.66	0.86	-0.141	84.33
		Ś	7.90	1.10	-0.227	82.07	9.77	1.07	-0.197	83.77	8.60	0.87	-0.143	84.24
		p	8.71	1.11	-0.241	82.75	10.79	1.06	-0.210	84.41	9.47	0.83	-0.144	84.98
74	285		8 87	1.09	-0.238	82.98	10.99	1.05	-0.210	84 54	9.63	0.81	-0 143	85.16
	200	é	9 70	1 10	0.200	92.00	10.00	1.00	0.210	04.04	0.55	0.01	0.140	05.10
	<u> </u>		0.79	1.10	-0.238	82.90	10.90	1.06	-0.210	64.45	9.55	0.82	-0.145	85.08
		р	9.72	1.10	-0.249	83.57	12.05	1.03	-0.220	85.12	10.53	0.80	-0.153	85.66
75	300	0	9.95	1.10	-0.250	83.70	12.33	1.04	-0.227	85.18	10.77	0.77	-0.150	85.90
		Ś	9.85	1.10	-0.251	83.63	12.20	1.04	-0.225	85.13	10.66	0.78	-0.152	85.79
		n	10.41	1 10	-0 257	84.00	12.91	1.03	-0.238	85.45	11 27	0.76	-0.153	86.14
76	306		10.60	1.09	-0.257	84.20	12.01	1.00	-0.235	95 50	11.46	0.74	0.150	06.14
/0	300	Ŭ,	10.00	1.00	-0.257	04.20	10.15	1.02	-0.235	65.59	11.40	0.74	-0.155	00.31
		S	10.51	1.08	-0.256	84.11	13.04	1.02	-0.236	85.52	11.38	0.75	-0.155	86.23
		р	10.98	1.07	-0.259	84.45	13.63	1.00	-0.238	85.82	11.87	0.72	-0.153	86.55
77	312	0	11.17	1.08	-0.260	84.50	13.85	0.99	-0.240	85.89	12.08	0.71	-0.155	86.66
		Ś	11.08	1.07	-0.258	84.49	13.75	1.00	-0.240	85.84	11.99	0.71	-0.154	86.61
	 		11.53	1.07	-0.262	84 71	14 31	0.00	-0.245	86.05	12.46	0.70	0.150	96.90
70	0.10		44 74	1.07	-0.202	04.71	44.51	0.99	-0.245	00.00	12.40	0.70	-0.159	00.00
1 18	318	, o	11./1	1.05	-0.263	04.87	14.55	0.98	-0.248	00.15	12.65	0.68	-0.156	86.92
L	ļ	s	11.62	1.05	-0.261	84.82	14.43	0.99	-0.247	86.08	12.56	0.69	-0.158	86.86
1		р	12.16	1.05	-0.267	85.07	15.11	0.96	-0.256	86.35	13.13	0.66	-0.160	87.10
79	324	ō	12.36	1.04	-0.265	85.21	15.36	0.96	-0.256	86.44	13.35	0.66	-0.161	87.18
		Ś	12 27	1 04	-0.265	85 15	15.24	0.96	-0.255	86.39	13 25	0.66	-0.161	87 14
			12.27	1.04	0.200	85.20	15.80	0.00	0.200	00.00	12.01	0.00	0.101	07.14
		P	12.00	1.03	-0.209	05.59	15.09	0.95	-0.201	00.00	13.01	0.03	-0.160	87.38
80	330	0	13.04	1.02	-0.269	85.52	16.21	0.94	-0.264	86.68	14.06	0.61	-0.159	87.50
		Ś	12.93	1.02	-0.269	85.48	16.07	0.95	-0.262	86.63	13.94	0.62	-0.158	87.44
		D	13.49	1.03	-0.280	85.63	16.75	0.94	-0.268	86.80	14.53	0.62	-0.173	87.54
81	336		13.81	1 00	-0 278	85.84	17 16	0.92	-0.273	86.92	14.88	0.62	-0 184	87.63
	000	é	13.66	1.00	-0.279	85.76	16.97	0.02	-0.271	86.85	14.71	0.62	-0.170	87.59
			13.00	1.01	-0.279	05.70	10.37	0.93	-0.271	00.00	14.71	0.02	-0.179	07.50
1		р	14.28	1.01	-0.293	85.95	17.76	0.91	-0.279	87.08	15.38	0.62	-0.196	87.68
82	342	0	14.66	0.99	-0.296	86.13	18.23	0.89	-0.289	87.19	15.77	0.61	-0.202	87.80
		Ś	14.47	1.00	-0.294	86.05	18.00	0.91	-0.288	87.12	15.57	0.61	-0.199	87.75
		p	15.20	0.99	-0.308	86.29	18.88	0.91	-0.300	87.25	16.34	0.60	-0.211	87.91
83	348	5	15.66	0.96	+0.304	86.50	19.43	0.91	-0.309	87.31	16.83	0.55	-0.200	88 14
	040	Ó	15.00	0.00	0.004	96.40	10.40	0.01	-0.003	07.00	16.00	0.55	-0.200	00.14
	l		10.44	0.97	-0.300	80.40	19.17	0.91	-0.303	07.20	10.59	0.57	-0.203	00.04
		p p	16.17	0.96	-0.314	86.61	20.06	0.91	-0.312	87.39	17.36	0.53	-0.192	88.24
84	354	0	16.81	0.95	-0.330	86.75	20.85	0.88	-0.298	87.57	18.00	0.50	-0.175	88.40
		Ś	16.51	0.95	-0.322	86.70	20.48	0.90	-0.304	87.50	17.70	0.52	-0.182	88.33
		p	17.46	0.97	-0.352	86.82	21.67	0.85	-0.299	87.74	18.69	0.47	-0.162	88.55
85	360	6	18 14	0.96	-0.364	86 97	22 53	0.81	-0.293	87 94	19.40	0.42	-0 143	88 76
	000	é	17.92	0.00	-0.360	86.00	22.00	0.83	-0.207	97.94	10.10	0.44	0.152	99.66
			17.02	0.97	-0.300	00.50	22.12	0.03	-0.237	07.04	19.00	0.44	-0.132	00.00
		р	18.97	0.94	-0.367	87.15	23.50	0.76	-0.282	88.15	20.28	0.37	-0.140	88.95
86	366	0	19.77	0.91	-0.362	87.36	24.57	0.74	-0.287	88.29	21.10	0.31	-0.125	89.15
L	l	Ś	19.41	0.92	-0.368	87.28	24.11	0.75	-0.285	88.23	20.72	0.34	-0.130	89.07
		p	21.02	0.88	-0.341	87.60	26.17	0.69	-0.286	88.50	22.45	0.25	-0.127	89.37
87	372		21.78	0.86	-0.326	87.75	27.16	0.67	-0.299	88.58	23.26	0.20	-0.124	89.51
1		é	21 44	0.87	-0.333	87 68	26.72	89.0	-0 203	88 54	22 90	0.22	-0 124	89.45
<u> </u>	t		02.00	0.07	0.000	07.00	00.00		0.210	00.04	04.04	0.22	0.124	00.00
		P	23.09	0.84	-0.326	07.92	28.82	0.66	-0.316	88.69	24.64	0.16	-0.125	89.63
88	378	0	24.41	0.84	-0.339	88.02	30.43	0.64	-0.340	88.79	25.98	0.10	-0.131	89.79
		Ś	23.80	0.84	-0.334	87.99	29.70	0.66	-0.335	88.73	25.37	0.13	-0.133	89.70
		a	26.21	0.83	-0.362	88.18	32.68	0.61	-0.345	88.93	27.88	0.07	-0.173	89.85
89	384	Ö	28.34	0.85	-0.411	88.28	35.26	0.48	-0.331	89.22	30.07	0.01	-0.199	89.98
	1	é	27 31	0.84	-0.386	88.24	34.02	0.55	-0 342	80 07	20.02	0.05	1 102	80.01
	1 070			0.04	0.000	00.24	40.55	0.00	0.042	00.07		0.03	0.132	00.30
90	378		32.05	0.73	-0.433	88.70	40.55	0.40	-0.343	89.43	33.94	-0.14	-0.1/3	-89.76
	360	2	34.02	0.70	-0.437	88.83	43.58	0.40	-0.378	89.47	35.91	-0.21	-0.159	-89.67
1	338	3	36.54	0.63	-0.422	89.02	47.39	0.35	-0.385	89.57	38.47	-0.28	-0.163	-89.58
ł	315	4	38.46	0.63	-0.448	89.06	50.25	0.29	-0.358	89.67	40.38	-0.32	-0.179	-89.54
I	306	5	38.91	0.64	-0.463	89.05	50.98	0.27	-0.356	89.69	40.86	-0.32	-0.192	-89.55
1	302	6	39.10	0.65	-0 469	89.05	51 28	0.30	-0.367	89.67	41.05	-0.30	-0 195	-89.58
1	200	Ĭž	30.20	0.65	-0.469	80.04	51 /6	0.00	-0.262	80.67	1 11 14	-0.30	-0.102	00.00
ł	200		39.20	0.05	-0.400	05.04	51.45	0.30	-0.000	09.07	41.14	-0.30	-0.193	-09.09
1	29/	N N	39.26	0.66	-0.4//	89.03	51.55	0.29	-0.362	89.67	41.20	-0.29	-0.195	-89.60
1	295	9	39.30	0.66	-0.477	89.03	51.62	0.29	-0.361	89.68	41.25	-0.30	-0.194	-89.58
1	294	10	39.31	0.67	-0.478	89.03	51.66	0.28	-0.360	89.69	41.26	-0.30	-0.194	-89.58
	293	11	<u>39.</u> 33	0.67	-0.482	89.02	51.68	0.29	-0.362	89.68	41.27	-0.30	-0.195	-89.58

Sw-2B

Tablica	S
Table	S

S4.2. Odkształcenia skrajnych włókien przekrojuS4.2. Strains of cross - section extreme fibres

Nr obciązenia	Sila	Pomiar pierwszy ostatni		Baza 1			Baza 2			Baza 3			Baza 4			Baza 5	
	kN	średni	δ deg	Eg ‰	٤ _d ‰	δ deg	Eg ‰	€d ‰	δ deg	Eg ‰	€d ‰	δ deg	ε _g ‰	€₁ ‰	δ deg	Eg ‰	Ed ‰
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	Ś	0.00	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.000
2	50	Ś	-38.57	-0.125	0.042	-10.99	-0.141	0.001	49.24	-0.115	0.098	20.66	-0.075	0.032	54.93	-0.183	0.113
3	100	Ś	-38.09	-0.240	0.067	-18.43	-0.283	0.013	24.04	-0.194	0.087	-7.83	-0.163	0.033	41.24	-0.259	0.112
4	150	\$	-34 92	-0.346	0.086	-21 70	-0.411	0.025	8.91	-0.272	0.075	-16.70	-0.269	0.056	31.18	-0.334	0.111
5	200	é	-33 54	-0.453	0.100	-24 74	-0.531	0.038	-0.12	-0.348	0.058	-19.09	-0.366	0.066	25.16	-0.414	0.104
5	250	é	-32 50	-0.560	0.100	-24 72	-0.637	0.047	5.81	-0.451	0.068	-22 30	-0.470	0.080	18 74	-0.492	0.095
0	200	5	-32.30	-0.500	0.110	24.72	-0.741	0.047	-8.20	-0.541	0.000	-22 13	-0.563	0.000	15 55	-0.565	0.005
	300	5	-31.19	-0.002	0.132	-20.92	0.741	0.037	10.05	0.541	0.070	-21.10	-0.505	0.030	12.06	-0.641	0.000
	350	S	-30.22	-0.765	0.140	-23.53	-0.639	0.000	10.00	0.037	0.007	01.10	0.034	0.101	10.00	0.702	0.001
9	400	S	-29.38	-0.867	0.167	-22.54	-0.939	0.076	-10.82	-0.725	0.095	-21.18	-0.753	0.113	10.94	-0.723	0.090
10	450	Ś	-29.54	-0.980	0.184	-23.02	-1.054	0.088	-12.45	-0.828	0.105	-22.10	-0.859	0.126	8.14	-0.801	0.081
11	500	Ś	-29.16	-1.090	0.206	-21.86	-1.150	0.097	-13.26	-0.924	0.117	-21.90	-0.954	0.140	7.39	-0.881	0.085
12	550	Ś	-28.58	-1.192	0.228	-21.91	-1.257	0.114	-13.85	-1.022	0.132	-21.27	-1.048	0.154	5.30	-0.959	0.082
13	600	Ś	-28.23	-1.304	0.254	-20.90	-1.359	0.126	-13.96	-1.114	0.147	-20.31	-1.140	0.167	4.86	-1.042	0.088
14	650	Ś	-28.16	-1.419	0.283	-20.63	-1.468	0.141	-13.99	-1.211	0.161	-20.10	-1.243	0.186	4.07	-1.127	0.093
15	700	Ś	-28.06	-1.535	0.315	-20.40	-1.574	0.160	-14.36	-1.310	0.180	-20.25	-1.347	0.210	3.39	-1.209	0.099
16	750	Ś	-28.80	-1.673	0.353	-20.89	•1.703	0.180	-15.23	-1.422	0.202	-20.60	-1.460	0.233	1.75	-1.295	0.091
17	800	Ś	-28.30	-1.796	0.403	-20.58	-1.821	0.221	-14.93	-1.521	0.241	-20.29	-1.572	0.282	0.64	-1.382	0.122
18	850	Ś	-29.45	-1.954	0.478	-21.50	-1.974	0.274	-16.07	-1.655	0.295	-21.51	-1.718	0.351	-2.31	-1.510	0.177
19	650	Ś	-31.08	-1.724	0.444	-22.23	-1.732	0.249	-16.45	-1.416	0.263	-24.11	-1.524	0.344	-2.32	-1.306	0.166
20	450	Ś	-33 63	-1.387	0.387	-23.00	-1.404	0.201	-17.90	-1.116	0.226	-26.50	-1.226	0.296	-0.42	-1.009	0.139
21	250	é	-37.61	-0.995	0.325	-24 76	-1.031	0.151	-19.06	-0 765	0 185	-29.96	-0.869	0.243	3.53	-0 703	0.136
55	50	L é	-07.01	-0 454	0.100	-28.81	-0.455	0.061	-17 58	-0.305	0.008	-39 72	-0.394	0 137	19 19	-0.315	0.115
22	250	5	20.50	0.434	0.150	.07.00	0.400	0.001	-21.66	-0.697	0.000	-31 72	-0.769	0.106	1 00	.0.628	0.105
23	250	5	-39.59	1.050	0.204	21.20	-0.920	0.114	-10.67	-1.007	0.100	25.02	-1.009	0.190	1.99	-0.020	0.103
24	450	S I	-34.34	-1.256	0.333	-24.32	-1.293	0.103	-19.07	-1.031	0.201	-25.93	-1.090	0.235	-0.05	-0.927	0.111
25	650	S	-32.33	-1.641	0.414	-23.32	-1.651	0.221	-18.99	-1.300	0.253	-24.38	-1.438	0.295	-2.83	-1.244	0.144
26	850	S	-31.61	-2.050	0.540	-23.45	-2.049	0.316	-19.10	-1./2/	0.343	-23.96	-1.803	0.403	-5.56	-1.584	0.224
27	50	Ś	-48.44	-0.472	0.205	-31.20	-0.466	0.069	-22.17	-0.317	0.110	-41.92	-0.412	0.148	12.67	-0.311	0.107
28	850	Ś	-33.25	-2.125	0.591	-25.30	-2.122	0.355	-21.65	-1.791	0.391	-25.91	-1.872	0.446	-8.86	-1.652	0.269
29	50	Ś	-49.52	-0.504	0.217	-31.96	-0.488	0.071	-27.52	-0.353	0.123	-44.83	-0.449	0.166	8.68	-0.318	0.098
30	850	Ś	-34.03	-2.160	0.617	-26.49	-2.101	0.381	-22.76	-1.820	0.413	-26.82	-1.905	0.469	-10.05	-1.677	0.291
31	50	Ś	-49.87	-0.511	0.228	-35.98	-0.448	0.085	-28.35	-0.353	0.130	-44.53	-0.461	0.171	7.34	-0.317	0.100
32	850	Ś	-34.41	-2.182	0.635	-27.13	-2.115	0.399	-23.86	-1.846	0.436	-27.59	-1.932	0.486	-11.21	-1.703	0.309
33	650	Ś	-36.17	-1.885	0.578	-27.66	-1.810	0.350	-24.66	-1.557	0.384	-29.64	-1.678	0.452	-10.98	-1.439	0.279
34	450	Ś	-38.60	-1.546	0.513	-28.72	-1.477	0.294	-25.90	-1.243	0.330	-31.98	-1.375	0.395	-9.83	-1.139	0.235
35	250	é	-42.89	-1 143	0.429	-31 42	-1 091	0.228	-28 72	-0.882	0.272	-35.81	-1 009	0.325	-7.94	-0 786	0.182
36		é	-53.00	-0.261	0.137	-27 70	-0.120	0.024	-3.02	-0 105	0.058	-31 14	-0 187	0.054	31.64	-0.204	0 107
zmiana usvtu	Inwania sił	normaine	1 00.00	1 0.201		1 27.79	1 0.720		1		1 0.000	1 0////	1.0			1	
27		i iomane	-51 01	-0.240	0 122	-32.60	0.100	0.024	9.87	1-0.004	0.064	17.71	-0.152	0.032	50.54	-0.208	0 152
30	15	5	-31.51	-0.243	0.122	-5.24	-0.100	-0.024	33.06	-0.136	0.004	-9.53	-0.175	0.002	55 78	-0.200	0.133
30	10	5	40.07	-0.233	0.003	05.04	0.110	0.021	11 70	0.100	0.030	20.14	0.175	0.003	52.00	.0.240	0.100
39	30	s é	-49.07	-0.313	0.003	10 74	0.204	0.070	10.42	0.203	0.024	-20.14	-0.204	-0.044	15 02	-0.230	-0.045
40	45	s	-54.55	-0.380	-0.050	-42.74	-0.290	-0.104	-10.43	0.202	1.002	•34.25	-0.304	-0.003	40.02	-0.320	-0.045
41	60	S	-35.05	-0.353	-0.104	-12.01	-0.302	-0.134	17.34	-0.306	-0.087	5.90	-0.283	-0.114	57.64	•0.307	-0.027
42	/5	s	2.72	-0.330	-0.150	21.22	-0.338	-0.129	41.31	+0.345	-0.062	45.32	-0.325	-0.079	03.52	-0.404	-0.003
43	90	S	39.41	-0.374	-0.122	39.16	-0.392	-0.108	54.58	-0.380	-0.040	61.39	-0.369	-0.045	67.94	-0.442	0.022
44	105	s	58.35	-0.422	-0.098	52.03	-0.451	-0.082	62.30	-0.421	-0.022	70.82	-0.416	-0.004	70.97	-0.483	0.043
45	120	S	65.67	-0.464	-0.083	57.33	-0.499	-0.068	67.21	-0.458	-0.008	/4.55	-0.455	0.022	/2.5/	+0.519	0.056
46	135	Ś	71.56	-0.511	-0.055	62.55	-0.549	-0.044	70.71	-0.500	0.010	17.73	-0.497	0.057	74.21	-0.560	0.073
47	150	Ś	74.58	-0.554	-0.029	66.29	-0.596	-0.020	73.04	-0.537	0.027	79.63	-0.539	0.092	75.03	-0.596	0.089
48	165	Ś	77.05	-0.601	-0.006	68.98	-0.643	0.003	75.35	-0.579	0.046	81.10	-0.584	0.127	76.43	-0.634	0.111
49	180	Ś	78.96	-0.645	0.025	71.15	-0.688	0.028	77.11	-0.618	0.068	82.20	-0.629	0.162	77.57	-0.672	0.132
50	195	Ś	80.37	-0.693	0.053	72.99	-0.732	0.049	78.34	-0.660	0.090	83.07	-0.674	0.197	78.37	-0.714	0.154
51	210	Ś	81.82	-0.755	0.095	75.72	•0.797	0.094	80.29	-0.721	0.128	84.63	-0.743	0.286	80.40	-0.775	0.205
52	150	Ś	80.30	-0.634	0.058	73.30	-0.675	0.065	78.28	-0.601	0.091	83.62	-0.621	0.221	78.98	-0.663	0.173
53	90	Ś	75.30	-0.493	-0.004	67.24	-0.521	0.011	73.53	-0.463	0.037	80.40	-0.471	0.111	76.25	-0.524	0.108
54	15	Ś	-57.70	-0.331	-0.032	-51.50	-0.244	-0.063	-16.81	-0.226	-0.064	-46.69	-0.280	-0.054	45.00	-0.284	-0.022
55	90	Ś	68.99	-0.419	-0.071	62 14	-0.442	-0.051	70.31	-0.410	-0.004	76.63	-0.411	0.024	74.81	-0.482	0.079
56	150	ė	79.83	-0.593	0.026	72.62	-0.634	0.037	78 42	-0.571	0.074	83.24	-0 584	0 174	78.52	-0.638	0 161
57	210	é	82 04	-0.770	0.124	77.05	-0.812	0.119	81.26	-0.735	0.148	85.41	-0.757	0.320	81 19	-0.789	0.233
59	15	5	.56.39	-0.320	-0.022	-51.06	-0.237	-0.066	.10.49	.0.218	-0.060	.45.05	-0.276	-0.054	10.10	-0.287	-0.013
50	210	Ś	-30.30	0.320	-0.000	77.70	0.237	0.000	01.04	0.210	0.162	-45.05	0.769	0.004	91 43	0.207	0.010
59	210	S	64.00	0.110	0.130	11.19	0.020	0.133	01.04	-0.743	0.103	. AD EE	0.700	-0.005	62.00	-0.000	0.240
60	15	S I	-54.39	-0.319	-0.041	-40.30	-0.236	-0.0/1	-0.36	-0.210	-0.0//	-40.55	-0.268	-0.065	53.89	-0.289	-0.007
01	210	S	03.44	-0.778	0.138	/8.1/	-0.819	0.139	02.07	-0.744	0.16/	05.83	-0.767	0.340	01.09	-0.802	0.255
62	15	Ś	-54.39	-0.315	-0.038	-46.18	-0.223	-0.071	-0.36	-0.206	-0.074	-40.55	-0.265	-0.062	54.91	-0.287	0.000
63	210	Ś	83.72	-0.776	0.139	78.17	-0.819	0.139	82.37	-0.742	0.169	86.02	-0.765	0.342	82.00	-0.801	0.261
64	150	Ś	82.65	-0.658	0.098	76.15	-0.694	0.101	81.06	-0.621	0.128	85.49	-0.639	0.269	80.94	-0.682	0.212
65	90	Ś	79.46	-0.510	0.046	71.52	-0.531	0.051	77.73	-0.471	0.075	83.12	-0.483	0.163	78.63	-0.539	0.156
66	15	Ś	-55.41	-0.312	-0.041	-48.47	-0.223	-0.067	-0.38	-0.204	-0.077	-41.08	-0.262	-0.062	56.38	-0.288	0.001
67	90	Ś	74.65	-0.427	-0.050	66.84	-0.449	-0.028	74.69	-0.421	0.018	80.40	-0.419	0.053	77.53	-0.495	0.112
68	150	Ś	81.69	-0.612	0.045	75.01	-0.649	0.063	80.30	-0.586	0.092	84.93	-0.598	0.204	80.70	-0.657	0.194
69	210	Ś	83.80	-0.781	0.144	78.62	-0.818	0.148	82.46	-0.747	0.173	86.17	-0.768	0.355	82.27	-0.807	0.270
	<u> </u>	n	84 54	-0.824	0 187	79.54	-0.866	0 186	83.26	-0 784	0 208	86.63	-0.815	0 4 1 9	82.62	-0.843	0.307
70	225		84 43	-0.830	0 184	79.31	-0.864	0 181	83.22	-0 784	0 204	86.59	-0.817	0 403	82 62	-0.847	0.303
	22.5	é	8/ 57	-0.820	0 1 9 9	70 54	-0.966	0.196	83.26	-0.799	0.204	CA 38	-0.819	0 411	82 /8	-0.8/6	0.302
L		3	07.07	0.020	0.100	10.04	1 0.000	0.100	00.20	L 9.700		1.00.02	1. 0.010	1 0.711	L	1 0.040	1 0.002

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	85 15	-0.877	0.221	80.37	-0.913	0.209	83.58	-0.837	0.231	87.05	-0.868	0.465	83.41	-0.896	0.333
71	240		84 95	-0.883	0.220	80.19	-0.922	0.205	83.68	-0.841	0.224	87.06	-0.872	0.465	83.41	-0.896	0.333
	240	é	85.05	-0.880	0.220	80.28	-0.916	0.209	83.68	-0.838	0.228	87.06	-0.872	0.465	83.29	-0.896	0.332
		<u> </u>	85.51	.0.031	0.268	81 13	-0.969	0.252	84.49	-0.882	0.276	87.48	-0.926	0.543	84 10	-0.942	0.389
72	255		85.55	-0.936	0.200	81 13	-0.969	0.252	84.61	-0.886	0.273	87.50	-0.932	0.552	83.94	-0.945	0.392
12	255	é	85.53	-0.935	0.269	81.30	-0.970	0.257	84 59	-0.882	0.272	87.49	-0.930	0.544	83.91	-0.945	0.388
	+		96.04	.0.002	0.200	82.24	1 026	0.206	85.05	-0.945	0.325	87.91	-0.992	0.635	84 57	-1.003	0.446
72	070		96.05	-0.000	0.322	02.24	1.020	0.300	05.00	-0.943	0.324	97.09	-1 001	0.000	84.72	1.000	0.440
1 13	270		86.05	-0.000	0.313	82.24	-1.030	0.300	95.20	-0.930	0.327	87.09	-0.007	0.637	84.61	-1.007	0.450
	<u> </u>	3	00.00	1 050	0.020	02.24	1.000	0.303	05.20	1 000	0.327	07.30	1 064	0.007	06.00	1.007	0.401
1 74	005		00.09	1 065	0.300	03.10	1 005	0.302	05.00	1 000	0.305	00.00	1 071	0.755	95.20	-1.000	0.510
14	205	Ó	00.04	-1.005	0.390	93.00	-1.095	0.309	00.10	1 009	0.399	00.40	-1.067	0.755	95.25	-1.009	0.520
	<u> </u>		00.02	-1.000	0.354	03.17	1 1 0 7	0.370	00.00	1.000	0.393	00.09	-1.007	0.750	05.21	1 1 1 2 2	0.525
76		р	87.14	-1.120	0.400	04.00	1 1 1 00	0.453	80.03	1.077	0.470	88.68	-1.140	0.007	00.77	1 1 1 40	0.597
/5	300	o Á	07.12	-1.130	0.475	04.17	1 1 7 4	0.403	00.04	1.009	0.400	00.74	-1.134	0.091	05.94	1 1 1 4 9	0.010
	<u> </u>	s	07.17	-1.134	0.471	04.00	1 014	0.456	00.73	-1.002	0.476	88.74	-1.140	0.001	00.11	1.144	0.607
-		Р	87.52	-1.109	0.522	84.45	-1.214	0.500	87.07	-1.120	0.530	88.94	-1.191	0.957	86.11	-1.180	0.057
/6	306	O I	87.50	-1.178	0.538	84.54	-1.220	0.517	87.24	-1.125	0.548	89.04	-1.198	0.988	86.18	-1.184	0.681
	_	S	87.47	-1.173	0.530	84.50	-1.210	0.509	87.15	-1.123	0.539	88.99	-1.194	0.971	86.13	-1.181	0.000
		р	87.64	-1.204	0.5/1	84.87	-1.247	0.550	87.42	-1.155	0.585	89.15	-1.232	1.042	86.37	-1.214	0.710
1 11	312	, o	87.59	•1.214	0.564	84.94	-1.255	0.545	87.50	-1.105	0.588	89.19	-1.241	1.041	86.43	-1.225	0.701
J		s	87.66	-1.212	0.572	84.89	-1.251	0.551	87.43	-1.160	0.590	89.15	-1.237	1.047	86.39	-1.218	0.715
		р	87.87	-1.240	0.614	85.21	-1.282	0.585	87.67	-1.192	0.636	89.26	-1.273	1.110	86.63	-1.250	0.750
78	318	0	87.95	-1.245	0.635	85.24	-1.289	0.609	87.87	-1.195	0.658	89.34	-1.280	1.140	86.51	•1.254	0.768
	. <u> </u>	s	87.88	-1.242	0.626	85.25	-1.284	0.597	87.74	-1.191	0.648	89.34	-1.2/4	1.127	86.55	-1.250	0.764
·		P	88.04	-1.282	0.672	85.49	-1.318	0.631	87.90	-1.231	0.694	89.47	-1.317	1.200	86.91	-1.289	0.809
79	324	, o	88.06	-1.292	0.686	85.60	-1.325	0.645	88.00	-1.240	0.720	89.51	-1.324	1.214	86.90	-1.296	0.829
	<u> </u>	s	88.10	-1.284	0.677	85.53	-1.323	0.640	87.98	-1.239	0.712	89.47	-1.322	1.209	86.88	-1.290	0.820
		р	88.22	-1.319	0.719	85.87	-1.360	0.680	88.13	-1.275	0.762	89.62	-1.362	1.282	87.11	-1.327	0.863
80	330	0	88.30	-1.328	0.745	85.89	-1.367	0.704	88.30	-1.278	0.788	89.66	-1.372	1.312	87.06	-1.334	0.891
		Ś	88.24	-1.322	0.735	85.86	1.362	0.695	88.24	-1.276	0.779	89.66	-1.366	1.303	87.03	-1.328	0.882
		р	88.40	-1.358	0.778	86.18	-1.399	0.739	88.33	-1.320	0.833	89.73	-1.412	1.379	87.34	-1.366	0.923
81	336	0	88.49	-1.376	0.809	86.21	-1.414	0.764	88.50	-1.331	0.865	89.83	-1.427	1.423	87.35	-1.380	0.960
	ļ	Ś	88.43	-1.365	0.799	86.17	-1.405	0.755	88.44	-1.325	0.855	89.77	-1.417	1.400	87.32	-1.370	0.946
		р	88.59	-1.407	0.854	86.40	-1.450	0.810	88.60	-1.364	0.918	89.89	-1.461	1.497	87.44	-1.411	1.005
82	342	0	88.66	-1.418	0.888	86.52	-1.460	0.840	88.77	-1.377	0.957	89.97	-1.481	1.554	87.54	-1.423	1.043
		Ś	88.65	-1.412	0.875	86.48	-1.454	0.827	88.67	-1.373	0.943	89.92	-1.470	1.523	87.51	-1.415	1.022
		р	88.72	-1.459	0.946	86.79	-1.498	0.892	88.78	-1.423	1.026	-89.95	-1.526	1.639	87.68	-1.460	1.097
83	348	0	88.83	-1.478	0.982	86.85	-1.515	0.922	88.93	-1.444	1.067	-89.92	-1.555	1.702	87.81	-1.479	1.129
		Ś	88.77	-1.467	0.967	86.78	-1.508	0.908	88.92	-1.429	1.049	-89.95	-1.540	1.673	87.75	-1.468	1.115
		р	88.91	-1.511	1.035	87.01	-1.552	0.972	89.05	-1.475	1.129	-89.85	-1.599	1.793	87.97	-1.511	1.187
84	354	0	89.02	-1.541	1.108	87.13	-1.586	1.036	89.19	-1.505	1.202	-89.81	-1.639	1.899	87.95	-1.531	1.244
		Ś	88.97	-1.526	1.073	87.11	-1.566	1.006	89.14	-1.492	1.172	-89.83	-1.620	1.850	87.92	-1.523	1.219
		р	89.13	-1.580	1.166	87.34	-1.621	1.091	89.27	-1.551	1.285	-89.73	-1.693	2.007	88.13	-1.573	1.293
85	360	o	89.23	-1.611	1.228	87.49	-1.652	1.145	89.39	-1.585	1.355	-89.70	-1.737	2.110	88.26	-1.602	1.359
		S	89.15	-1.597	1.201	87.43	-1.639	1.122	89.35	-1.567	1.324	-89.72	-1.718	2.065	88.20	-1.589	1.332
		р	89.30	-1.659	1.319	87.65	-1.702	1.232	89.52	-1.637	1.467	-89.65	-1.800	2.247	88.37	-1.647	1.434
86	366	, o	89.39	-1.693	1.396	87.81	-1.738	1.318	89.62	-1.6/1	1.561	-89.59	-1.850	2.377	88.45	-1.676	1.503
		s	89.35	-1.678	1.362	87.74	-1.723	1.283	89.59	-1.655	1.518	-89.60	-1.830	2.320	88.43	-1.664	1.4//
	0.00	р	89.48	-1./64	1.531	88.05	-1.816	1.462	89.70	-1.750	1.724	-89.52	-1.940	2.583	88.63	-1./39	1.626
87	372	O ź	89.53	-1.795	1.615	88.10	-1.852	1.545	89.85	-1.778	1.822	-89.49	-1.987	2.713	88.64	-1.766	1.696
		S	89.52	-1.781	1.581	88.09	-1.835	1.508	89.79	-1.700	1.779	-89.50	-1.966	2.000	88.62	-1.753	1.663
	070	ρ	89.64	-1.865	1.742	88.31	-1.928	1.675	89.95	-1.859	1.982	-89.43	-2.082	2.928	88.83	-1.833	1.813
88	378	0	89.73	-1.918	1.878	88.43	1.988	1.818	-90.00	-1.923	2.143	-89.40	-2.155	3.129	88.96	-1.880	1.934
	<u> </u>	S	89.67	-1.695	1.010	88.37	-1.901	1.754	89.95	-1.893	2.070	-89.40	2.121	3.038	88.85	-1.860	1.8//
	004	p	89.82	-2.008	2.0/1	88.61	-2.082	2.012	-89.90	-2.035	2.395	-89.34	-2.2/3	3.416	89.07	-1.962	2.098
89	384	0 é	09.89	-2.090	2.290	00.70	-2.183	2.25/	-89.79	-2.103	2.707	-89.32	-2.392	3.748	89.18	-2.036	2.289
		5	09.00	-2.048	2.100		-2.133	2.143	-09.04	-2.094	2.001	-09.32	-2.335	3.388	09.13	-2.001	2.204
90	378		89.98	-2.183	2.563	88.81	-2.34/	2.734	-89.64	-2.490	4.007	-89.34	-2.56/	4.364	89.32	-2.123	2.543
	360	2	09.94	-2.1/8	2.011	00.90	-2.405	3.078	-09.51	-2.041	4.///	-89.38	-2.099	5.126	69.33	-2.107	2.583
	338	د ا	09.90	-2.158	2.0/5	09.22	-2.4/3	3.586	-09.51	-2.828	2.945	-89.34	-2.804	5.764	89.37	-2.083	2.020
	315	4 E	09.90	-2.119	2.095	09.30	-2.499	3.945	-09.55	-2.908	7.010	-09.30	-2.805	0.208	09.34	-2.048	2.020
l	306	2	03.90	-2.099	2.092	09.4Z	-2.495	4.028	-09.33	-2.998	7.310	-09.31	-2.0//	0.307	09.34	-2.02/	2.01/
	200	7	80.00	-2.00/	2.031	09.40 80.45	-2.492	4.072	-09.34	-3.012	7 620	-09.32	-2.000	6 / 50	80.30	-2.014	2.000
	299	ρ	80.00	-2.000	2.093	09.40 80 47	-2.491	4.000	-09.50	-3.010	7 500	-09.33	-2.0/0	6 465	03.33 90.25	2.009	2.002
	206	0	80.06	-2.070	2.009	80 47	-2.409	4.102	-09.57	-3.025	7 636	-09.00	-2.075	6 / 65	80.33	-2.002	2 600
	200	10	80 04	-2.070	2 692	89.47	-2 495	4.112	-89.57	-3.023	7 671	-80.34	-2.000	6 450	89.33	.1 004	2 501
	207	11	80.06	-2 065	2 679	89.47	-2 482	4.115	-89 56	-3.034	7 694	-80.33	-2 861	6 451	89.33	-1 000	2 587
L	L 200	L	L 00.00	<u> </u>	2.070	<u> </u>	1 2.402	<u> </u>	00.00	1 0.004	1.004		1. 2.001	0.401		1.000	2.007

Ramy Frames

Tablica R0.1.Rzeczywiste wymiary szkieletu
zbrojeniaTableDo la bala

Table R0.1. Real dimensions of	of	reinforcing cag	ze
--------------------------------	----	-----------------	----

Element	Wymiar			Miejsce	pomiaru		
	mm	Ι	II	III	IV	v	VI
	b _{sz}		99.0	78.5	84.0	99.0	
RPW-a/b-1	b _{sw}		101.3	89.3	94.2	101.3	
	h _s		208.0	208.5	209.1	209.6	
	b _{sz}	99.0	101.5	86.5	89.8	98.7	98.7
RPW-a/b-2	b _{sw}	101.2	100.2	91.0	89.8	99.8	99.8
	h _s	208.1	208.1	208.3	209.0	208.6	208.6
	b _{sz}	99.4	99.4	98.6	93.6	98.4	97.4
RPW-b/a-1	b _{sw}	96.8	95.6	90.5	94.9	96.8	97.4
	hs	209.0	209.0	209.0	208.6	209.5	208.0
	b _{sz}	98.0	100.0	99.4	100.0	99.0	101.5
RPW-b/a-2	b _{sw}	98.7	99.7	92.2	92.2	97.4	94.6
	h _s	208.1	208.1	208.5	209.2	209.0	209.0
>	b _{sz}	97.8	96.7	98.7	98.4	97.3	99.0
RPW-c/c-1	b _{sw}	100.8	100.0	91.5	92.8	100.8	93.0
	h _s	209.0	209.0	209.5	209.6	209.6	207.0
	b _{sz}	98.1	97.1	100.0	98.0	98.5	98.2
RPW-c/c-2	b _{sw}	98.6	99.6	91.1	95.1	98.1	93.0
	hs	209.8	209.8	209.8	210.5	210.0	209.2

Tablica R0.2. Zależności $\sigma_s - \varepsilon_s$ dla stali zbrojeniowej Table R0.2. The $\sigma_s - \varepsilon_s$ relationships

			14	10.2.	The os	esteracionsmps					
#	8	#	10	#	12	#	14	Q	ð6		
ε _s	σ	ε _s	σ_{s}								
%0	MPa	%0	%0	MPa	MPa	%0	MPa	%0	MPa		
0.00	0	0.00	0	0.00	0	0.00	0	0.00	0		
1.91	378	2.10	410	2.09	405	2.20	429	1.60	328		
2.22	400	2.30	424	2.42	439	16.80	445	1.90	343		
13.20	400	9.90	427	11.60	448	24.20	488	7.40	345		
25.80	415	11.50	435	15.00	475	25.00	493	18.00	355		
35.60	452	20.00	450	20.00	503	36.60	545	30.00	368		
43.40	490	30.00	498	30.00	563	50.00	592	40.00	380		
54.80	528	40.00	540	40.00	607			50.00	392		
		50.00	572	50.00	644						

Tablica R0.3.Rzeczywiste wymiary przekrojów ramyTableR0.3.Real dimensions of frame cross - sections

	Wymiar					Miej	isce pon	niaru				
Element	mm	II	III	IV	V	VI	VII	VIII	Narc	oże B	Narc	oże C
									słup	rygiel	słup	rygiel
RPW-a/b-1	b	146	145	144	144	143	144	143				
	h	252	252	254	250	250	251	251	249	250	248	248
RPW-a/b-2	b	144	144	146	145	144	146	143				
	h	253	253	252	251	251	251	252	251	251	249	250
RPW-b/a-1	b	142	143	142	143	142	146	142				
	h	253	254	253	251	250	247	249	252	251	246	250
RPW-b/a-2	b	144	144	144	144	144	144	144				
	h	252	252	253	250	250	250	250	251	251	249	249
RPW-c/c-1	b	145	144	145	144	144	145	143				
	h	254	259	254	251	252	250	251	253	253	248	252
RPW-c/c-2	b	144	144	144	144	144	144					
	h	250	250	252	252	252	255	253	246	252	252	252

Tablica R0.4.Początkowe osiowe wymiary ramyTableR0.4.Initial axial dimensions of frame

Element	Wymiary początkowe, mm										
	AB	BC	CD	AC	BD	AD					
RPW-a/b-1	1857	3000	1861	3521		3004					
RPW-a/b-2	1851	2998	1851		3527	3000					
RPW-b/a-1	1860	2998	1860	3519		2998					
RPW-b/a-2	1861	2995	1855		3535	2996					
RPW-c/c-1	1859	2995	1856	3513		2999					
RPW-c/c-1	1858	2996	1855		3535	3001					

				Table I	RU.5. Prope	erties of conc	rete mix
		Konsys	masa	objętość	gęstość	zawartość	
Lp	Rama	opad stożka	VeBe, czas wibrowania	próbki	próbki	density	powietrza
	Frame	slump test	VeBe test of	mass of	volume of		air
				specimen	specimen		content
		mm	S	kg	m^3	kg/m ³	%
1	RPW-a/b-1	35.0	6.5	12.7	0.00565	2248	1.65
2	RPW-a/b-2	40.0	6.0	12.7	0.00535	2374	2.00
3	RPW-b/a-1	48.0	6.0	12.6	0.00548	2318	1.20
4	RPW-b/a-2	55.0	5.0	12.7	0.00540	2352	1.90
5	RPW-c/c-1	75.0	6.0	12.6	0.00535	2374	1.40
6	RPW-c/c-2	45.0	7.0	12.7	0.00535	2374	1.00

Tablica R0.5.Cechy mieszanki betonowejTableR0.5.Properties of concrete mix

Tablica R0.6.Wytrzymałościowe cechy betonuTableR0.6.Strength properties of concrete

	· · · · · · · · · · · · · · · · · · ·			1000	<u> </u>	<u> </u>	in proper			
Lp	Rama	wiek betonu, dni	f _{c.cube} ,	MPa	f _c , N	/IPa	f _{ct,sp} ,	MPa	E _c , G	Pa
		age of concrete, days	wyniki	średnia	wyniki	średnia	wyniki	średnia	wyniki	średnia
			103, 109		89, 98		5.4		32.4, 33.0	
1	RPW-a/b-1	136	103, 112	107	89, 85	91	4.7	5.3	31.4, 32.5	32.6
			108, 109		96		5.7		33.5	
			118, 114		97, 86		4.8		33.0, 33.8	
2	RPW-a/b-2	144	109, 98	110	92, 80	87	5.8	5.3	33.3, 32.0	33.0
			112, 110		89, 81		5.2		32.4, 33.4	
			94, 97		84, 87	_	3.6		31.2, 31.9	
3	RPW-b/a-1	44	99, 94	97	83,	85	4.2	3.9	32.2	32.0
ļ			101, 97		84		4.1		32.5	
			123, 121		89, 84		4.8		30.8, 32.4	
4	RPW-b/a-2	163	123, 110	119	88, 82	85	4.6	4.9	35.7, 32.6	32.9
			118, 117		82, 83		5.2		31.9, 33.5	
			104, 107		89, 89		4.4		31.7, 31.5,	
5	RPW-c/c-1	116	95, 107	102	87, 92	88	5.5		32.4, 31.9	32.0
			102, 99		93				32.5, 31.7	
			117, 109		86, 94		5.2		32.4, 33.7,	
6	RPW-c/c-2	169	98, 108	106	88, 86	87	4.8	4.9	32.4, 33.1	33.1
			109, 97		83, 84		4.6		33.6, 33.0	

Zależności σ_c - ε_c określane na próbkach walcowych The σ_c - ε_c relationship determined on cylindrical specimens

111

111

Obciążenie			Pomiar	Reakcja, kN		Przemieszczenia, mm													
etap	nr	Sila F	pierwszy ostatni środni	VA	VD	R6L	R5L	R4L	R3L	R2L	R1L	R1P	R2P	R3P	R4P	R5P	R6P		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
	1 2	2 4	ŚŚ	1.0 2.0		-0.01 -0.02	-0.03 -0.06	-0.03 -0.06	-0.04 -0.07	-0.06	-0.04 -0.04	-0.05 -0.04	-0.03 0.00	-0.01 0.03	0.00 0.04	0.00 0.03	0.00 0.02		
	3	6	Ś	2.7		-0.03	-0.09	-0.09	-0.09	-0.08	-0.04	-0.02	0.02	0.07	0.08	0.07	0.04		
	4	8	Ś	3.6		-0.06	-0.12	-0.12	-0.12	-0.10	-0.03	0.00	0.06	0.11	0.13	0.11	0.06		
	6	12	Ś	5.5		-0.14	-0.26	-0.24	-0.21	-0.14	-0.03	0.04	0.15	0.24	0.26	0.23	0.11		
	7	14	Ś	6.0		-0.23	-0.36	-0.32	-0.26	-0.15	0.00	0.12	0.26	0.37	0.41	0.36	0.17		
	8	16	Ś	6.8		-0.28	-0.43	-0.37	-0.29	-0.15	0.02	0.18	0.35	0.49	0.54	0.48	0.23		
	10	20	Ś	8.0		-0.44	-0.77	-0.67	-0.46	-0.18	0.12	0.40	0.69	0.91	0.99	0.85	0.39		
	11	20	Ś	8.0		-0.45	-0.79	-0.69	-0.47	-0.19	0.12	0.41	0.71	0.94	1.02	0.87	0.40		
	12	18	s ś	8.0		-0.43	-0.82	-0.66	-0.50	-0.20	0.14	0.39	0.69	0.98	0.93	0.88	0.41		
	14	10	ś	5.2		-0.32	-0.64	-0.50	-0.43	-0.22	0.06	0.21	0.44	0.71	0.75	0.64	0.30		
	15	6	Ś	3.4		-0.25	-0.53	-0.39	-0.36	-0.20	0.04	0.13	0.31	0.54	0.58	0.49	0.23		
1 '	16	6	Ś	2.8		-0.18	-0.41	-0.29	-0.29	-0.16	0.03	0.09	0.24	0.44	0.47	0.40	0.19		
	18	10	Ś	4.5		-0.25	-0.52	-0.37	-0.32	-0.14	0.09	0.20	0.38	0.61	0.64	0.54	0.25		
	19	14	Ś	6.0		-0.32	-0.63	-0.47	-0.37	-0.13	0.14	0.30	0.53	0.78	0.82	0.69	0.32		
	20	20	Ś	8.0		-0.39	-0.81	-0.63	-0.46	-0.16	0.19	0.44	0.74	1.02	1.10	0.92	0.43		
	22	2	Ś	1.8		-0.19	-0.41	-0.30	-0.28	-0.16	0.01	0.07	0.21	0.38	0.41	0.35	0.17		
	23	20	Ś	8.0		-0.44	-0.82	-0.65	-0.47	-0.15	0.19	0.45	0.75	1.03	1.11	0.93	0.43		
	24	20	Ś	8.0		-0.44	-0.84	-0.65	-0.48	-0.16	0.19	0.44	0.75	1.05	1.13	0.94	0.44		
	26	2	Ś	1.9		-0.19	-0.42	-0.29	-0.29	-0.16	0.01	0.07	0.20	0.40	0.43	0.35	0.17		
	27	20	Ś	8.0		-0.44	-0.84	-0.65	-0.48	-0.16	0.20	0.46	0.77	1.07	1.14	0.95	0.44		
	20	14	ś	6.4		-0.39	-0.74	-0.57	-0.43	-0.15	0.18	0.39	0.67	0.95	1.00	0.83	0.39		
	30	10	Ś	5.0		-0.32	-0.64	-0.47	-0.38	-0.15	0.12	0.28	0.52	0.77	0.82	0.68	0.32		
	31	6	Ś	3.3		-0.25	-0.52	-0.38	-0.33	-0.15	0.07	0.17	0.36	0.58	0.62	0.36	0.25		
	33	0	ś	1.0		-0.16	-0.37	-0.25	-0.28	-0.17	-0.02	0.01	0.12	0.30	0.33	0.27	0.14		
	34	0	Ś		0.0	-0.14	-0.33	-0.21	-0.24	-0.14	-0.02	0.00	0.10	0.26	0.29	0.24	0.12		
	35	4	Ś		2.0	-0.09	-0.25	-0.14	-0.20	-0.12	-0.05	-0.06	0.01	0.13	0.16	0.14	0.00		
	37	6	Ś		3.0	-0.06	-0.20	-0.10	-0.17	-0.12	-0.07	-0.11	-0.07	0.04	0.07	0.05	0.04		
	38	8	Ś		4.0	-0.02	-0.12	-0.01	-0.10	-0.07	-0.04	-0.11	-0.10	-0.01	-0.03	-0.01	-0.03		
	40	12	ś		5.6	0.13	0.17	0.31	0.20	0.17	0.13	-0.01	-0.07	-0.06	-0.12	-0.18	-0.13		
	41	12	Ś		5.5	0.14	0.19	0.33	0.21	0.18	0.13	-0.02	-0.09	-0.09	-0.16	-0.22	-0.15		
	42	14	Ś		6.2	0.18	0.29	0.44	0.29	0.24	0.15	-0.03	-0.13	-0.17	-0.26	-0.32	-0.20		
	44	18	ś		7.4	0.34	0.65	0.85	0.68	0.55	0.36	0.10	-0.11	-0.25	-0.43	-0.55	-0.36		
	45	20	Ś		7.9	0.41	0.81	1.05	0.86	0.68	0.44	0.13	-0.14	-0.34	-0.59	-0.73	-0.44		
	46	18	Ś		7.9	0.44	0.89	1.15	0.98	0.79	0.51	0.19	-0.10	-0.35	-0.62	-0.75	-0.44		
	48	14	Ś		6.0	0.39	0.80	1.07	0.93	0.77	0.56	0.27	0.02	-0.20	-0.45	-0.59	-0.36		
	49	10	Ś		4.3	0.32	0.66	0.93	0.81	0.69	0.53	0.29	0.09	-0.08	-0.31	-0.45	-0.28		
	51	2	Ś		1.5	0.20	0.33	0.59	0.51	0.49	0.43	0.30	0.22	0.17	0.02	-0.12	-0.10		
	52	6	Ś		2.5	0.19	0.37	0.60	0.49	0.45	0.38	0.24	0.13	0.07	-0.09	-0.21	-0.15		
	53	10	S		4.0	0.26	0.50	0.73	0.59	0.50	0.36	0.16	-0.05	-0.12	-0.29	-0.40	-0.25		
	55	18	ś		7.1	0.41	0.81	1.06	0.88	0.70	0.46	0.15	-0.13	-0.35	-0.60	-0.72	-0.42		
	56	20	Ś		7.9	0.45	0.89	1.15	0.98	0.77	0.50	0.16	-0.14	-0.40	-0.67	-0.79	-0.47		
	57	20	Ś		7.9	0.17	0.35	1.18	1.01	0.48	0.43	0.30	-0.13	-0.39	-0.67	-0.80	-0.47		
	59	2	Ś		1.5	0.17	0.36	0.60	0.51	0.50	0.43	0.31	0.22	0.15	0.00	-0.13	-0.10		
	60	20	Ś		7.9	0.46	0.93	1.19	1.02	0.81	0.53	0.18	-0.13	-0.39	-0.68	-0.80	-0.47		
	62	20	ś		7.8	0.46	0.94	1.20	1.03	0.82	0.53	0.19	-0.12	-0.40	-0.69	-0.81	-0.48		
	63	18	Ś		7.4	0.47	0.96	1.24	1.08	0.88	0.61	0.27	-0.05	-0.31	-0.61	-0.75	-0.45		
	64 65	14	Ś		6.0	0.41	0.84	1.13	0.99	0.83	0.61	0.30	0.04	-0.18	-0.45	-0.60	-0.37		
	66	6	Ś		3.0	0.27	0.55	0.82	0.71	0.64	0.52	0.32	0.16	0.05	-0.15	-0.30	-0.20		
	67	2	Ś		1.5	0.18	0.37	0.62	0.53	0.52	0.45	0.32	0.22	0.16	0.01	-0.13	-0.10		

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	69	10	Ś		40	0.27	0.53	0.75	0.61	0.51	0.37	0.15	-0.02	-0.13	-0.32	-0.43	-0.27
	70	14	Ś		5.7	0.35	0.70	0.95	0.79	0.65	0.45	0.17	-0.06	-0.23	-0.47	-0.59	-0.35
	71	18	é		71	0.43	0.87	1 14	0.96	0.78	0.52	0.19	-0.10	-0.34	-0.61	-0.74	-0.44
	72	20	ě		79	0.46	0.93	1 20	1 01	0.81	0.53	0.17	-0.15	-0.41	-0.69	-0.82	-0.48
	73	22	é		8.5	0.51	1 03	1.32	1 13	0.89	0.57	0.19	-0.16	-0.46	-0.78	-0.90	-0.53
	74	24	ś		-8.6	0.63	1.33	1 72	1.56	1.28	0.88	0.42	-0.02	-0.41	-0.84	-1.07	-0.77
			<u> </u>		8.8	0.77	1.69	2 18	2 11	1.80	1.33	0.82	0.29	-0.19	-0.72	-1.04	-0.83
	75	26			8.8	0.77	1.00	2 21	2 14	1.84	1.35	0.85	0.31	-0.18	-0.71	-1.03	-0.84
	1 13	20	é		9.0	0.77	1.71	2.21	2.14	1.04	1 34	0.83	0.30	-0.18	-0.71	-1.04	-0.04
	<u> </u>		3		0.0	0.77	1.70	2.20	2.12	0.15	1.62	1.06	0.00	0.10	0.66	1.04	-0.00
	76		Р		9.2	0.87	1.94	2.01	2.40	2.10	1.02	1.00	0.49	-0.00	-0.00	1.04	-0.07
	/0	28			9.2	0.00	1.90	2.00	2.51	2.20	1.09	1.11	0.52	-0.03	-0.04	•1.03	-0.00
			5		9.2	0.07	1.95	2.55	2.49	2.10	1.05	1.00	0.50	-0.05	-0.65	-1.04	-0.07
			р		9.0	0.92	2.06	2.68	2.68	2.38	1.84	1.20	0.65	0.07	-0.58	•1.01	-0.89
1		28	, o		9.0	0.92	2.05	2.69	2.67	2.36	1.86	1.24	0.64	0.07	-0.57	-1.00	-0.88
	L		<u> </u>		9.0	0.92	2.05	2.69	2.67	2.37	1.85	1.24	0.65	0.07	-0.58	-1.01	-0.89
			р		9.5	1.01	2.24	2.93	2.94	2.63	2.07	1.42	0.76	0.14	-0.57	-1.04	-0.95
	78	30	0		9.4	1.02	2.26	2.97	2.99	2.69	2.12	1.45	0.80	0.14	-0.56	-1.04	-0.96
			Ś		9.5	1.01	2.25	2.95	2.96	2.66	2.10	1.43	0.78	0.14	-0.56	1.04	-0.95
1			р		9.6	1.07	2.38	3.11	3.15	2.85	2.27	1.58	0.89	0.22	-0.52	-1.05	-0.99
	79	31	0		9 .5	1.10	2.43	3.20	3.24	2.96	2.37	1.67	0.96	0.25	-0.50	-1.04	-1.02
1			Ś		9.6	1.09	2.41	3.17	3.21	2.92	2.34	1.64	0.93	0.25	-0.51	-1.04	-1.01
1			р		9.5	1.15	2.56	3.36	3.43	3.17	2.54	1.81	1.07	0.31	-0.47	-1.05	-1.05
1	80	32	Ó		9.6	1.17	2.59	3.41	3.48	3.22	2.60	1.86	1.10	0.35	-0.46	-1.06	•1.07
			Ś		9.7	1.16	2.58	3.39	3.46	3.20	2.57	1.84	1.09	0.34	-0.46	-1.06	-1.06
1			D		9.7	1.23	2.76	3.62	3.72	3.48	2.83	2.06	1.26	0.44	-0.42	-1.07	-1.11
1 11	81	33	ō		9.7	1.25	2.78	3.69	3.78	3.56	2.90	2.12	1.31	0.46	-0.40	-1.06	-1.12
			Ś		9.7	1.24	2.77	3.66	3.76	3.52	2.87	2.09	1.28	0.46	-0.40	-1.06	-1.12
		<u> </u>	<u> </u>		9.9	1 29	2.89	3.83	3.93	3.71	3.04	2 23	1 39	0.51	-0.38	-1.07	-1 15
	82	34	6		10.0	1.32	2.92	3 90	3.99	3.78	3 12	2 28	1 41	0.56	-0.37	-1.08	•1 17
			Ś		10.0	1.31	2.90	3.87	3.96	3.75	3.09	2.26	1.40	0.54	-0.37	-1.08	-1.16
			n		10.2	1.36	3.03	4 05	4 15	3.95	3.26	2 4 1	1.51	0.59	-0.36	-1 11	-1 24
	83	35			10.1	1 40	3.08	4 17	4 27	4 10	3.40	2.54	1.61	0.66	-0.31	-1 10	-1 27
1			Ś		10.1	1.38	3.06	4.13	4.22	4.04	3.35	2.48	1.57	0.63	-0.33	-1.11	-1.26
			n		10.3	1 4 9	3.21	4.32	4 4 1	4 24	3.51	2.62	1.65	0.66	-0.35	-1 16	-1.34
	84	36	6		10.3	1.51	3.24	4.36	4.46	4.29	3.54	2.63	1.65	0.65	-0.39	-1.23	-1.42
	-		Ś		10.3	1.50	3.23	4.34	4.45	4.27	3.54	2.63	1.66	0.66	-0.37	-1.20	-1.38
			n		10.5	1.55	3.33	4.45	4.57	4.39	3.61	2.67	1.64	0.58	-0.50	-1.38	-1.57
	85	37	6		10.5	1.56	3.35	4.47	4.59	4.40	3.62	2.65	1.62	0.55	-0.55	-1.45	-1.63
			Ś		10.5	1.56	3.34	4.47	4.58	4.39	3.62	2.66	1.63	0.57	-0.52	-1.41	-1.60
			D		10.4	1.64	3.47	4.62	4.72	4.50	3.66	2.61	1.50	0.34	-0.85	-1.84	-2.01
	86	38	ō		10.5	1.80	3.75	4.83	4.93	4.73	3.85	2.68	1.54	0.40	-0.90	•1.99	-2.23
			Ś		10.5	1.68	3.53	4.65	4.75	4.53	3.67	2.59	1.46	0.31	-0.91	-1.93	-2.10
			р		10.5	1.94	3.94	5.02	5.08	4.83	3.90	2.66	1.47	0.28	-1.06	-2.17	-2.41
	87	39	o		10.5	2.05	4.10	5.16	5.19	4.92	3.96	2.69	1.46	0.23	-1.16	-2.31	-2.58
			Ś		10.5	2.00	4.03	5.10	5.15	4.88	3.93	2.68	1.46	0.25	-1.11	-2.25	-2.50
			q		10.5	2.12	4.20	5.24	5.25	4.95	3.97	2.68	1.43	0.19	-1.24	-2.41	-2.69
ł	88	39	Ö		10.4	2.14	4.26	5.28	5.28	4.97	3.96	2.67	1.41	0.15	-1.27	-2.45	-2.73
			Ś		10.4	2.13	4.23	5.26	5.26	4.95	3.96	2.66	1.41	0.16	-1.26	-2.43	-2.71
1			р		10.5	2.22	4.43	5.44	5.42	5.08	4.02	2.71	1.41	0.10	-1.35	-2.55	-2.83
	89	40	0		10.4	2.77	5.39	6.37	6.25	5.83	4.66	3.31	1.80	0.37	-1.21	-2.52	-2.97
1			Ś		10.4	2.52	4.97	5.95	5.88	5.50	4.39	3.02	1.63	0.26	-1.26	-2.53	-2.90
			р		10.3	3.26	6.21	7.13	6.85	6.32	5.02	3.51	1.90	0.30	-1.42	-2.85	-3.44
	90	41	0		10.2	3.65	6.90	7.79	7.41	6.76	5.37	3.77	2.05	0.31	-1.49	-3.00	-3.69
L	I,	l	Ś		10.2	3.48	6.60	7.50	7.17	6.56	5.21	3.66	1.99	0.31	-1.46	-2.93	-3.59
···	·						· · · · · ·									·	
		42			10.3	3.89	7.36	8.22	7.78	7.09	5.61	3.93	2.13	0.31	-1.57	-3.16	-3.90
	91*	42	2		10.3	3.96	7.50	8.35	7.89	7.17	5.68	3.97	2.14	0.33	-1.60	-3.20	-3.96
		42	3		10.3	4.02	7.63	8.46	8.00	7.26	5.75	4.02	2.17	0.32	-1.62	-3.25	-4.01
		42	4		10.2	4.07	7.74	8.57	8.09	7.35	5.81	4.06	2.18	0.32	-1.64	-3.29	-4.07
		42	5		10.2	4.09	7.81	8.61	8.14	7.39	5.83	4.08	2.20	0.32	-1.66	-3.31	-4.10
		42	6		10.2	4.11	7.85	8.65	8.17	7.41	5.85	4.10	2.20	0.32	-1.67	-3.33	-4.12
1		42	7		10.2	4.13	7.88	8.68	8.19	7.43	5.86	4.10	2.20	0.31	-1.68	-3.35	-4.14
1		42	8		10.2	4.14	7.92	8.71	8.22	7.45	5.88	4.10	2.19	0.29	•1.70	•3.38	-4.17
		42	9		10.2	4.16	7.95	8.75	8.25	7,47	5.89	4.11	2.20	0.28	-1.71	-3.40	-4.20
		42	10		10.2	4.18	7.98	8.78	8.27	7.48	5.90	4.11	2.19	0.28	-1.73	-3.42	-4.22
		42			10.2	4.19	8.01	8.79	8.28	7.50	5.90	4.11	2.19	0.26	-1.75	-3.45	-4.25
		42	12		10.3	4.14	7.85	8.58	8.05	7.26	5.65	3.88	1.97	0.06	-1.93	-3.60	-4.37
		42	13		10.2	4.15	7.86	8.59	8.04	7.24	5.63	3.84	1.92	-0.01	-2.04	-3.72	-4.52
1		42	14		10.1	4.16	7.87	8.60	8.04	7.23	5.62	3.81	1.88	-0.06	-2.09	-3.78	-4.59
		42	15		10.1	4.16	7.88	8.61	8.04	7.22	5.61	3.79	1.85	-0.10	-2.14	-3.85	-4.0/
		42	16		10.1	4.16	7.88	8.61	8.05	7.22	5.59	3.//	1.82	-0.14	-2.20	-3.32	-4.74
		42			10.1	4.1/	7.89	8.62	8.05	7.22	5.58	3.74	1./0	-0.19	2.20	-0.50	-4.01
		42	10		10.0	4.17	7.89	0.01	8.04	7.21	5.5/ EFE	3.13	1.70	-0.22	.2.36	-4.00	-4.07
		42	20		0.0	4.17 1 17	7.09	0.01	8.05	7.20	5.55	3.70	1.72	-0.28	-2.38	-4.13	-5.10
			<u> </u>		3.6	4.17	1.31	0.00	0.00	1.61	1 0.00	0.10		0.20			

*) wszystkie pomiary przy tym obciążeniu; odczyty co 1.5s

*) all results under this load; 1.5s interval

~

RPW – a/b – 1

nodes length

 Tablica R1.2. Przemieszczenia geometrycznej osi słupów i zmiany długości odcinków łączących węzły ramy
Table R1.2. Axial displacements of columns and change of

															Zmiany długości, mm						
Obcia	żenie		Pomiar				P	rzemieszo	zenia, mi	m					Zman	y alugost	a, mm				
etap	nr	Siła F	pierwszy ostatni	S1L	S2L	S3L	S4L	S5L	S5P	S4P	S3P	S2P	S1P	AB	вС	CD	AC	AD			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19			
	1	2	Ś	-0.04	-0.04	-0.04	-0.02	0.00	0.10	0.14	0.15	0.16	0.15	-0.11	-0.01	0.00	-0.41	0.15			
	2	4	Ś	-0.09	-0.09	-0.09	-0.06	-0.02	0.11	0.17	0.20	0.21	0.19	-0.09	-0.02	0.01	-0.85	0.16			
	3	6	S é	-0.13	-0.15	-0.14	-0.10	-0.04	0.13	0.22	0.20	0.27	0.24	-0.20	-0.02	0.02	-2.09	0.08			
	5	10	ś	-0.28	-0.31	-0.30	-0.24	-0.10	0.19	0.34	0.41	0.41	0.36	-0.24	-0.01	0.05	-2.89	0.01			
	6	12	Ś	-0.38	-0.42	-0.42	-0.34	-0.15	0.22	0.42	0.51	0.52	0.44	-0.26	0.03	0.06	-3.99	-0.06			
	7	14	Ś	-0.50	-0.58	-0.60	-0.51	-0.23	0.29	0.58	0.69	0.68	0.57	-0.25	0.12	0.10	-5.95	-0.17			
	8	16	Ś	-0.70	-0.85	-0.90	-0.78	-0.34	0.36	1.00	1.21	1 17	0.73	-0.08	0.19	0.14	-10.10	-0.20			
	10	20	Ś	-1.06	-1.30	-1.39	-1.22	-0.56	0.54	1.25	1.53	1.49	1.18	0.02	0.45	0.29	-12.52	-0.22			
	11	20	Ś	-1.11	-1.37	-1.46	-1.26	-0.58	0.56	1.29	1.59	1.55	1.22	0.04	0.47	0.30	-12.86	-0.23			
	12	18	Ś	-1.08	-1.34	-1.42	-1.23	-0.56	0.57	1.30	1.60	1.57	1.24	0.03	0.47	0.30	-12.62	-0.25			
	13	14	Ś	-0.94	-1.16	-1.23	-1.07	-0.48	0.52	1.19	1.47	1.45	0.98	-0.04	0.43	0.29	-9.18	-0.20			
	14	6	Ś	-0.58	-0.73	-0.77	-0.67	-0.29	0.37	0.81	1.00	1.00	0.80	-0.17	0.33	0.19	-7.14	-0.08			
1	16	2	Ś	-0.42	-0.52	-0.55	-0.48	-0.20	0.30	0.63	0.77	0.78	0.64	-0.12	0.29	0.14	-5.07	0.05			
	17	6	Ś	-0.50	-0.62	-0.64	-0.55	-0.23	0.32	0.69	0.85	0.85	0.69	-0.12	0.29	0.16	-5.83	0.06			
	18	10	Ś	-0.67	-0.83	-0.87	-0.75	-0.32	0.40	0.87	1.07	1.06	0.85	-0.13	0.34	0.19	-7.74	-0.13			
	20	18	Ś	-1.02	-1.26	-1.33	-1.15	-0.52	0.55	1.25	1.53	1.50	1.18	-0.01	0.45	0.28	-11.86	-0.16			
	21	20	Ś	-1.12	-1.38	-1.47	-1.27	-0.57	0.60	1.35	1.66	1.62	1.28	0.04	0.49	0.31	-12.99	-0.18			
-	22	2	Ś	-0.44	-0.55	-0.57	-0.49	-0.21	0.30	0.63	0.78	0.79	0.66	-0.12	0.29	0.14	-5.17	0.02			
	23	20	S é	-1.13	-1.40	-1.49	-1.29	-0.58	0.61	0.64	0.79	0.80	0.66	-0.13	0.29	0.32	-5.22	-0.01			
	24	20	Ś	-1.14	-1.42	-1.50	-1.30	-0.58	0.62	1.40	1.72	1.68	1.33	0.06	0.52	0.32	-13.25	-0.12			
	26	2	Ś	-0.48	-0.59	-0.61	-0.52	-0.23	0.31	0.65	0.80	0.82	0.68	-0.14	0.30	0.14	-5.30	-0.02			
	27	20	Ś	-1.15	-1.43	-1.52	-1.32	-0.59	0.63	1.42	1.74	1.70	1.34	0.06	0.53	0.32	-13.38	-0.11			
47	28	18	S ć	-1.14	-1.41	-1.50	-1.30	-0.58	0.62	1.41	1.75	1.54	1.22	-0.04	0.47	0.31	-11.66	-0.21			
	30	10	Ś	-0.82	-1.03	-1.08	-0.94	-0.42	0.48	1.06	1.31	1.30	1.04	-0.13	0.42	0.25	-9.57	-0.13			
	31	6	Ś	-0.63	-0.79	-0.83	-0.72	-0.32	0.40	0.86	1.05	1.06	0.86	-0.18	0.35	0.20	-7.36	-0.01			
	32	2	Ś	-0.47	-0.59	-0.62	-0.53	-0.23	0.32	0.66	0.81	0.82	0.68	-0.15	0.30	0.15	-5.29	0.05			
	33	0	Ś	-0.23	-0.34	-0.38	-0.34	-0.15	0.28	0.44	0.51	0.47	0.33	0.31	0.30	0.06	-3.16	-0.26			
	35	2	ś	-0.11	-0.18	-0.22	-0.21	-0.09	0.18	0.32	0.36	0.33	0.21	0.53	0.26	0.01	-1.78	-0.22			
	36	4	Ś	-0.09	-0.16	-0.20	-0.19	-0.08	0.17	0.29	0.32	0.29	0.19	0.53	0.26	0.01	-1.49	-0.23			
	37	6	Ś	-0.01	-0.07	-0.10	-0.10	-0.04	0.13	0.19	0.20	0.18	0.10	0.50	0.24	0.03	-0.62	-0.25			
	39	10	ś	0.26	0.26	0.24	0.18	0.09	-0.03	-0.12	-0.16	-0.14	-0.14	0.43	0.26	0.16	2.09	-0.27			
	40	12	Ś	0.40	0.44	0.44	0.36	0.16	-0.10	-0.28	-0.34	-0.30	-0.26	0.42	0.34	0.22	4.24	-0.24			
	41	12	Ś	0.45	0.50	0.51	0.41	0.18	-0.13	-0.34	-0.41	-0.36	-0.30	0.42	0.37	0.25	4.84	-0.20			
	42	14	S ć	0.57	0.66	0.67	0.55	0.24	-0.20	-0.48	-0.94	-0.49	-0.64	0.45	0.41	0.23	8.66	-0.22			
	44	18	ś	0.93	1.13	1.16	0.94	0.41	-0.43	-1.05	-1.27	-1.14	-0.86	0.50	0.57	0.51	11.12	-0.22			
	45	20	Ś	1.12	1.36	1.41	1.14	0.50	-0.53	-1.28	-1.58	-1.45	-1.09	0.54	0.68	0.62	13.40	-0.23			
	46	20	Ś	1.18	1.43	1.48	1.19	0.52	-0.55	-1.33	-1.64	-1.51	-1.13	0.56	0.74	0.65	14.05	-0.24			
	47	18	S é	1.17	1.42	1.47	1.18	0.52	-0.53	-1.29	-1.30	-1.40	-0.91	0.58	0.74	0.63	11.76	-0.22			
	40	10	Ś	0.87	1.04	1.05	0.84	0.37	-0.32	-0.84	-1.04	-0.95	-0.72	0.51	0.66	0.57	9.61	-0.21			
11	50	6	Ś	0.68	0.81	0.81	0.63	0.28	-0.22	-0.60	-0.75	-0.68	-0.52	0.51	0.63	0.56	7.29	-0.25			
	51	2	Ś	0.48	0.55	0.54	0.41	0.18	-0.11	-0.34	-0.43	-0.38	-0.30	0.54	0.64	0.49	4.73	-0.23			
	52	10	S é	0.55	0.63	0.63	0.48	0.21	-0.16	-0.40	-0.87	-0.52	-0.40	0.52	0.62	0.49	8.21	-0.38			
	54	14	Ś	0.93	1.12	1.13	0.90	0.39	-0.36	-0.96	-1.20	-1.11	-0.85	0.55	0.69	0.64	10.62	-0.35			
	55	18	Ś	1.11	1.34	1.37	1.10	0.48	-0.48	-1.21	-1.50	-1.40	-1.06	0.57	0.75	0.71	13.01	-0.30			
	56	20	Ś	1.22	1.47	1.51	1.21	0.53	-0.54	-1.35	-1.67	-1.56	-1.17	0.59	0.79	0.75	14.29	-0.30			
	57	20	Ś	1.23	1.49	1.53	1.23	0.18	-0.15	-1.38	-1.71	-1.60	-1.20	0.59	0.80	0.78	14.50	-0.33			
	59	2	Ś	0.50	0.56	0.55	0.42	0.18	-0.13	-0.38	-0.48	-0.44	-0.36	0.57	0.68	0.53	4.94	-0.36			
	60	20	Ś	1.24	1.49	1.54	1.24	0.54	-0.56	-1.39	-1.73	-1.61	-1.21	0.59	0.81	0.79	14.59	-0.36			
	61 62	20	Ś	1.25	1.50	0.55	1.24	0.19	-0.14	-0.39	-0.49	-0.45	-1.22	0.50	0.81	0.52	14.66	-0.35			
	63	18	Ś	1.24	1.49	1.53	1.23	0.54	-0.54	-1.34	-1.66	-1.55	-1.16	0.60	0.81	0.79	14.32	-0.31			
	64	14	Ś	1.08	1.30	1.33	1.06	0.47	-0.43	-1.11	-1.38	-1.28	-0.97	0.57	0.76	0.76	12.33	-0.32			
	65	10	Ś	0.91	1.09	1.10	0.87	0.39	-0.34	-0.88	-1.09	-1.01	-0.78	0.53	0.68	0.69	9.98	-0.41			
	67	2	Ś	0.51	0.58	0.56	0.43	0.19	-0.14	-0.39	-0.50	-0.46	-0.38	0.56	0.68	0.53	5.06	-0.38			
	68	6	ś	0.57	0.67	0.66	0.51	0.23	-0.19	-0.53	-0.66	-0.61	-0.49	0.53	0.65	0.52	6.09	-0.42			

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	10
	69	10	é	0.70	0.93	0.03	0.73	0.32	-0.28	-0.77	.0.07	-0.90	-0.71	0.52	0.66	0.64		0.52
	70	1 14	6	0.00	1 19	1 10	0.05	0.41	-0.40	1.04	1 20	1.21	-0.71	0.52	0.00	0.04	0.70	-0.52
	71	1 10	- 3 - 6	1 17	1.10	1.13	1 16	0.50	-0.40	1 20	1.50	1 40	-0.93	0.55	0.72	0.70	11.25	-0.42
	72	20	5	1.17	1.41	1.44	1.10	0.50	0.51	-1.20	-1.59	-1.40	-1.12	0.57	0.78	0.70	13.64	-0.37
1 1	72	20	Ś	1.20	1.52	1.50	1.20	0.55	-0.56	-1.40	-1.74	-1.62	-1.22	0.59	0.81	0.78	14.77	-0.38
	73	22	5	1.39	1.00	1.70	1.30	0.60	-0.63	-1.50	-1.93	-1.80	-1.36	0.61	0.86	0.83	16.23	-0.38
	····	24	5	1.70	2.00	2.02	1.64	0.71	-0.65	•1.60	-1.98	-1.84	-1.38	0.67	1.19	0.87	19.59	-0.39
1			р	2.02	2.36	2.35	1.90	0.82	-0.87	-1.90	-2.27	-2.08	-1.56	0.74	1.37	1.04	23.15	-0.39
1	75	26	0	2.04	2.38	2.37	1.92	0.83	-0.89	-1.92	-2.29	-2.10	-1.57	0.75	1.38	1.05	23.34	-0.40
1			Ś	2.03	2.37	2.36	1.91	0.83	-0.88	-1.91	·2.28	-2.09	-1.56	0.75	1.37	1.05	23.26	-0.39
}			р	2.24	2.62	2.60	2.10	0.91	-1.04	-2.13	-2.49	-2.27	-1.70	0.80	1.47	1.17	25.66	-0.40
	76	28	0	2.28	2.65	2.64	2.13	0.92	-1.06	-2.15	-2.52	-2.30	-1.73	0.81	1.49	1.19	26.00	-0.40
			Ś	2.26	2.64	2.62	2.12	0.92	-1.05	-2.14	-2.51	-2.29	-1.71	0.80	1 48	1 18	25.86	-0.40
			р	2.36	2.74	2.72	2.20	0.95	-1.11	-2.25	-2.64	-2.45	-1.84	0.83	1.55	1.10	20.00	0.40
	77	28	ō	2.37	2.75	2 72	2 20	0.95	-1 11	-2.25	-2.64	-2 44	-1.84	0.00	1.55	1.24	20.02	-0.39
			ś	2.37	2 75	2 72	2 20	0.00	.1 11	-2.25	-2.64	-2.44	-1.04	0.04	1.55	1.24	26.82	-0.39
1			<u> </u>	2.55	2.06	2.04	2.26	1.02	1 22	0.42	0.04	2.44	1.04	0.03	1.55	1.24	26.83	-0.39
1	79	30		2.55	2.30	2.54	2.00	1.00	1.20	-2.43	-2.01	-2.59	-1.90	0.87	1.66	1.34	29.11	-0.40
	10		6	2.50	2.37	2.50	2.00	1.00	1.24	-2.45	-2.02	-2.00	-1.97	0.88	1.69	1.35	29.39	-0.40
1				2.50	2.91	2.95	2.37	1.03	-1.24	-2.44	•2.81	-2.59	-1.96	0.88	1.67	1.35	29.27	-0.40
	70		P	2.66	3.09	3.07	2.46	1.07	•1.30	-2.53	-2.91	-2.68	-2.02	0.90	1.76	1.40	30.52	-0.40
	79	31	, o	2.70	3.13	3.11	2.50	1.09	-1.32	-2.56	-2.92	-2.69	-2.03	0.92	1.81	1.42	31.13	-0.41
		<u> </u>	S	2.69	3.12	3.09	2.48	1.08	-1.31	-2.55	-2.91	-2.68	-2.03	0.91	1.79	1.41	30.91	-0.40
1			Р	2.81	3.26	3.24	2.60	1.14	-1.39	-2.66	-3.02	-2.78	-2.09	0.95	1.89	1.49	32.45	-0.41
	80	32	0	2.85	3.29	3.27	2.62	1.15	-1.40	-2.67	-3.02	-2.79	-2.10	0.96	1.92	1.50	32.83	-0.41
		L	Ś	2.83	3.28	3.26	2.61	1.15	-1.40	-2.66	-3.02	-2.79	2.09	0.96	1.91	1.49	32.67	-0.41
		1	p	2.98	3.44	3.42	2.74	1.20	-1.50	-2.80	-3.14	-2.89	-2.17	1.00	2.02	1.58	34 46	-0 42
	81	33	0	3.01	3.48	3.46	2.77	1.22	-1.53	-2.85	-3.18	-2.92	-2.20	1.01	2 06	1.00	34 00	-0.42
1			Ś	3.00	3.47	3.44	2.76	1.22	-1.52	-2.83	-3.16	-2.91	-2.19	1.01	2 04	1.01	34 70	-0.42
1			α	3.11	3.59	3.57	2.86	1.26	-1.59	-2.94	3.28	-3.01	-2.26	1.04	2.04	1.00	20 40	-0.42
	82	34	ō	3.15	3.64	3.61	2.90	1.29	-1.61	-2.97	-3.30	-3.03	-2.28	1.04	2.11	1.00	30.10	-0.43
			Ś	3.14	3.62	3.60	2 89	1.28	-1.60	-2.96	-3.29	-3.02	-2.20	1.00	2.10	1.09	30.78	-0.43
1 1			<u></u>	3.27	3.77	3.76	3.04	1 35	-1.67	2.50	2.40	-0.02	0.04	1.05	2.14	1.68	36.54	-0.43
	83	36		3.47	4.04	1.06	2 20	1.53	-1.07	-3.00	-0.40	-3.11	-2.34	1.09	2.25	1.73	38.25	-0.43
	00		é	3 20	2.02	4.00	2.05	1.04	1.04	-3.50	-3.87	-3.50	-2.60	1.26	2.32	1.91	41.12	-0.43
				0.39	3.93	3.94	3.25	1.40	-1.70	•3.32	-3.65	-3.31	-2.48	1.19	2.30	1.83	39.92	-0.43
			р	3.71	4.34	4.39	3.74	1.//	-2.03	-4.00	-4.27	-3.84	-2.84	1.43	2.45	2.08	44.55	-0.42
	04	36	, o	3.84	4.50	4.59	3.95	1.95	-2.14	-4.22	-4.49	-4.04	-2.97	1.57	2.55	2.17	47.02	-0.42
	ŀ		S	3.79	4.44	4.51	3.87	1.88	-2.10	-4.14	-4.41	-3.97	-2.92	1.51	2.50	2.14	46.04	-0.42
			р	4.16	4.91	5.07	4.48	2.28	-2.36	-4.66	-4.91	-4.39	-3.23	1.84	2.73	2.36	51.99	-0.42
	85	37	0	4.38	5.19	5.41	4.88	2.51	-2.55	-5.11	-5.28	-4.69	-3.46	2.05	2.80	2.54	55.37	-0.44
			Ś	4.28	5.06	5.25	4.69	2.40	-2.47	-4.91	-5.11	-4.55	-3.35	1.95	2.77	2.46	53.81	-0.43
			р	5.07	6.06	6.44	6.05	3.06	-2.75	-5.49	-5.60	-4.95	-3.66	2.52	3.30	274	63.98	-0.50
1	86 38	38	0	5.61	6.74	7.25	6.99	3.48	-3.02	-6.06	-6.16	-5.38	-3.96	3.03	3.86	2.87	71 94	0.01
1			Ś	5.26	6.31	6.74	6.40	3.21	-2.85	-5.66	-5.75	-5.07	-3.74	2.68	3 47	2.80	66 73	-0.43
			р	6.23	7.55	8.23	8.13	4.01	-3.58	•7.07	•7.25	-6.29	-4.57	3.53	4 10	2 20	90.07	-0.40
	87	39	ō	6.50	7.89	8.66	8.67	4.25	-3.75	-7.44	-7.59	-6.58	-4 76	3.75	4.33	2.50	05.37	-0.12
(Ś	6.39	7.75	8.48	8.44	4.15	-3.68	-7.29	-7.46	-6.47	-4.68	3.66	4.00	3.50	03.17	-0.13
			ρ	6.63	8.05	8.87	8.93	4.37	-3.82	-7 59	.7 74	-6.73	-4.85	3.80	4.20	3.51	03.47	-0.12
	88	39	ō	6.66	8.08	8 90	8.98	4 40	-3.85	-7.64	7 79	-6.76	-1.88	2.03	4.51	3.09	93.17	-0.08
			Ś	6.65	8 07	8.89	8.96	4 39	-3.83	.7.62	-7 77	-6.75	-4.87	2.00	4.57	3.72	93.94	-0.09
1			p	6 78	8 24	9.00	9 18	4 4 8	.3 04	.7.82	.7 09	-6.02	-5.00	2 07	4.00	3./1	33.60	-0.08
	89	40	6	7 13	8 70	9.65	9.85	4 79	-4 70	-7.02	-9.76	-7.56	-5.44	3.97	4.72	3.81	96.34	-0.10
			Ś	6.97	8 40	0.00 0 10	Q 55	4.65	.4 27	.9.21	-0.70	-7.30	-0.44	4.20	5.34	4.46	107.66	-0.10
		<u> </u>	n n	8.00	0.45	11 20	11 70	5.55	-5.00	10.01	0.41	0.50		4.12	5.05	4.18	102.48	-0.11
	<u>مہ</u>	1 41		9 20	10.00	11.20	12.10	5.55	-5.60	-10.03	-9.99	-8.59	+0.15	4.93	6.15	5.21	124.57	-0.10
		, '	é	0.30	10.20	11.00	11.04	5./5	-5.90	10.57	-10.48	-9.01	-6.43	5.11	6.70	5.52	132.31	-0.07
L	L	<u> </u>	3	0.22	10.11	11.40	11.94	0.07	-5.81	- 10.35	-10.27	-8.84	-6.32	5.04	6.47	5.39	129.09	-0.08
·		1 40 1	· · · · · · · · · · · · · · · · · · ·		10.45		10.11											
		42		8.49	10.45	11.81	12.41	5.91	-6.17	-10.92	-10.81	-9.32	-6.64	5.24	7.07	5.71	137.62	-0.08
	91,	42	2	8.54	10.50	11.87	12.48	5.95	-6.21	-10.99	-10.88	-9.38	-6.68	5.28	7.17	5.76	138.98	-0.09
		42	3	8.58	10.56	11.94	12.57	6.00	-6.26	-11.08	-10.96	-9.44	-6.71	5.31	7.26	5.80	140.28	-0.10
1		42	4	8.62	10.62	12.01	12.65	6.04	-6.28	-11.16	-11.04	•9.50	-6.76	5.36	7.34	5.84	141.51	-0.12
		42	5	8.64	10.63	12.04	12.71	6.07	-6.29	-11.19	-11.07	-9.53	-6.77	5.39	7.39	5.86	142.21	-0.12
1 1		42	6	8.66	10.66	12.08	12.78	6.09	-6.31	-11.22	-11.10	-9.56	-6.79	5.42	7.43	5.88	142.78	-0.12
		42	7	8.69	10.69	12.11	12.83	6.11	-6.32	-11.25	-11.12	-9.58	-6.80	5.44	7.46	5.90	143.30	-0.13
1		42	8	8.72	10.73	12.16	12.89	6.14	-6.34	-11.29	-11.16	-9.61	-6.82	5.47	7.50	5.91	143.90	-0.13
		42	9	8.75	10.77	12.21	12.95	6.17	-6.36	-11.32	-11.19	-9.64	-6.85	5.50	7.53	5.93	144.52	-0 13
		42	10	8.77	10.80	12.26	13.01	6.20	-6.38	-11.35	-11.22	-9.67	-6.87	5.52	7.56	5.95	145.14	-0.13
1		42	11	8.79	10.83	12.29	13.16	6.26	-6.46	-11.41	-11.28	-9.71	-6.89	5.51	7.60	5.97	145 93	-0 14
		42	12	8.98	11.09	12.59	13.88	6.50	-6.50	-11.47	-11.34	-9.77	-6.94	5.19	7 66	5 99	147 79	-0.22
1		42	13	9.23	11.44	13.00	14.52	6.73	-6.72	-11.79	-11.67	-10.07	-7.17	5.13	7 79	6.07	151 10	-0.32
		42	14	9.44	11.73	13.36	15.02	6.93	-6.94	-12.14	-12.04	-10.43	-7.46	5.16	7.84	6 15	153 04	-0.40
1		42	15	9.64	12.02	13.69	15.45	7.10	-7.09	-12.39	-12.30	-10.69	-7.66	5.23	7 90	6 10	156 27	-0.55
1		42	16	9.82	12.26	13.98	15.82	7.25	-7.21	-12.58	-12.51	-10.89	-7.82	5 28	7 96	6.24	158 27	-0.31
		42	17	9.97	12.47	14.23	16.13	7.39	-7.32	-12.76	-12.70	-11.08	-7.96	5.33	9.50	6.24	160 11	-0.40
		42	18	10.11	12.65	14.44	16.39	7.49	-7.41	-12.90	-12 85	-11 23	-8.08	5.38	9.01	6 22	161 56	-0.45
ş		42	19	10.26	12.83	14.67	16.67	7.61	-7 49	-13.03	-13.00	-11 37	-8 20	5 44	8 10	6 25	162.05	-0.43
		41	20	10.39	13.01	14.88	16.91	7,70	-7.47	-12 94	-12 88	-11 25	-8 10	5 47	8.10	6 20	164 46	-0.40
<u> </u>				······							.2.00		0.10	<u> </u>	0.20	0.30	104.40	-0.38

*) wszystkie pomiary przy tym obciążeniu; odczyty co 1.5s

*) all results under this load; 1.5s interval

•

- Czkwianianc A., Kamińska M., Badania monolitycznych węzłów żelbetowych ram portalowych (Tests of RC Portal Frames Corners), Ulańska D., Badania jednoprzęsłowych tarcz ze wspornikami (Research on Single Span Deep Beams with Brackets), Badania doświadczalne elementów i konstrukcji żelbetowych, Z. 1, Wydawnictwo Katedry Budownictwa Betonowego Politechniki Łódzkiej, Łódź 1991 [in Polish]
- Czkwianianc A., Kamińska M., Badania monolitycznych ram portalowych obciążonych siłami pionowymi lub poziomymi (Tests of RC Portal Frames Subjected to Vertical or Lateral Force), Badania doświadczalne elementów i konstrukcji żelbetowych, Z. 2, Wydawnictwo Katedry Budownictwa Betonowego Wydziału Budownictwa i Architektury Politechniki Łódzkiej, Łódź 1993 [in Polish]
- Urban T., Nośność na przebicie w aspekcie proporcji boków słupa (Punching Capacity in Aspect of Column Cross Section Ratio), Badania doświadczalne elementów i konstrukcji żelbetowych, Z. 3, Wydawnictwo Katedry Budownictwa Betonowego Wydziału Budownictwa, Architektury i Inżynierii Środowiska Politechniki Łódzkiej, Łódź 1994 [in Polish]
- 4. Ulańska D., Przenoszenie sił ścinających przez zbrojenie osiowo rozciągane w zarysowanych przekrojach elementów żelbetowych (Transfer of Shear Forces Through the Axially Tension Reinforcement in Cracked Reinforced Concrete Sections Experimental Investigations), Badania doświadczalne elementów i konstrukcji żelbetowych, Z. 4, Wydawnictwo Katedry Budownictwa Betonowego Wydziału Budownictwa i Architektury Politechniki Łódzkiej, Łódź 1995 [in Polish]
- Kozicki J., Urban T., Sitnicki M., Badania modelu stropu płytowo-słupowego poddanego działaniu obciążeń krótko i długotrwałych (Tests on Model of Slab - Column Structure Subject to Short- and Long - Lasting Loads), Badania doświadczalne elementów i konstrukcji żelbetowych, Z. 5, Wydawnictwo Katedry Budownictwa Betonowego Wydziału Budownictwa i Architektury Politechniki Łódzkiej, Łódź 1995 [in Polish]
- 6. Czkwianianc A., Badania doświadczalne płaskich i przestrzennych węzłów monolitycznych ustrojów prętowych (Experimental Investigations of Beam Column Joints), Urban T., Kosińska A., Czkwianianc A., Badania doświadczalne węzłów płytowo ściennych (Experimental Investigation of Slab Wall Joints), Badania doświadczalne elementów i konstrukcji żelbetowych, Z. 6, Wydawnictwo Katedry Budownictwa Betonowego Wydziału Budownictwa i Architektury Politechniki Łódzkiej, Łódź 1995 [in Polish]
- Kamińska M.E., Doświadczalne badania żelbetowych słupów ukośnie mimośrodowo ściskanych (Experimental Investigations of RC Columns under Biaxial Bending), Badania doświadczalne elementów i konstrukcji żelbetowych, Z. 7, Wydawnictwo Katedry Budownictwa Betonowego Wydziału Budownictwa i Architektury Politechniki Łódzkiej, Łódź 1995 [in Polish]