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2 Institute of Applied Mechanics, Poznań University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
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The dynamic response of a nonlinear system with three degrees of freedom, which is excited by nonideal excitation, is investigated.
In the considered system the role of a nonideal source is played by a direct current motor, where the central axis of the rotor is
not coincident with the axis of rotation. This translation generates a torque whose magnitude depends on the angular velocity.
During the system operation a general coordinate assigned to the nonideal source grows rapidly as a result of rotation. We propose
the decomposition of the equations of motion in such a way to extract the solution which is directly related to the rotation of an
unbalanced rotor.The remaining part of the solution describes pure oscillation depending on the dynamical behaviour of the whole
system. The decomposed equations are solved numerically. The influence of selected system parameters on the rotor vibration is
examined.The presented approach can be applied to separate vibration and rotation of motions inmany other engineering systems.

1. Introduction

The behaviour of mechanical systems subjected to the exter-
nal excitation periodically changing in time belongs to clas-
sical problems of multibody dynamics. When the excitation
does not depend on the system response, it is said to be an
ideal loading. These problems are widely discussed in the
literature. In real problems the motion of a system less or
more affects the source of energy, especially in the neighbour-
hood of resonance. It is caused by a limited power supply to
external loading. Such source of energy is called nonideal.The
problem of nonideal vibrations of multibody systems leads
to a rather sophisticated mathematical description, especially
when nonlinearities are taken into account. In that case an
additional equation, which describes how the energy source
supplies energy to the system, should be added. It causes
that an additional degree-of-freedom appears. Therefore, the
nonideal system has one degree of freedom more than the
ideal counterpart.

In our investigations we used results published in a few
papers concerning such systems [1–4] and in the references
included therein. It should be emphasized that first ideas and

modelling concepts of nonideal vibrations were published by
Kononenko [5] and the first book entirely devoted to that
problem by Sommerfeld [6]. An overview of investigations
in this field is described by Balthazar et al. in [7], and
hence it is omitted here for the paper conciseness. In that
paper the authors reviewed main properties of nonideal
vibrating systems. The so-called Sommerfeld effect [1, 7]
connected with jump phenomena near the resonance is
discussed among other topics. This phenomenon suggests
that the vibrational response provides an energy sink. The
parametric resonance in the nonideal system with DCmotor
was analyzed in [1, 2]. The authors of paper [1] used an
asymptotic approach to investigate the behaviour of the
system near internal resonance.

The system investigated in the paper is shown in Figure 1.
The electric DC motor with an eccentrically mounted rotor
is assumed to be a nonideal source of vibrations. In this
case the additional degree of freedom is connected to its
rotations. The generalized coordinate describing the rotor
motion grows in time, so the whole process cannot be
considered as vibrational. A new idea proposed in the paper
consists in decomposition of the equation ofmotion related to
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Figure 1: The investigated system.

the rotor and separation of the rotations and vibrations. After
this operation a new set of equations of motion is derived
where all generalized coordinates describe the vibrations.

2. Formulation of the Problem

Let us consider planar motion of the system composed of
three elements: the support of mass 𝑚

1
which can move

only vertically, the mathematical pendulum of mass 𝑚
2
and

length 𝐿, and the DC motor. The examined system is shown
in Figure 1. It is assumed that the stator of the motor whose
mass is equal to 𝑚

3
does not move with respect to the base.

The rotor of mass 𝑚
0
is eccentrically mounted on the axis of

rotation and its mass centre lies at the crossing point of the
axes of symmetry (as shown in Figure 1). The eccentricity of
the rotor is denoted by 𝑟

𝑒
. The moment of inertia of the rotor

about its central axis is equal 𝐼
0
. The pendulum is suspended

from a support by a joint. The support, in turn, is connected
to the basis via a viscous damped elastic suspension. Both the
spring and the damper are linear. The elastic constant of the
spring is denoted by 𝑘, whereas the damping coefficient is𝐶

1
.

Length of the nonstretched spring is𝐿
0
.Moreover, at the joint

connecting the pendulum with the support, there is viscous
damping denoted by 𝐶

2
. Force 𝐹 acting in the direction of

𝑋-axis and torque 𝑀 are changing harmonically. Namely,
the magnitude of 𝐹 is given by 𝐹 = 𝐹

0
cos(Ω

1
𝑡) and 𝑀 =

𝑀
0
cos(Ω

2
𝑡). Owing to the commonly used characteristic of

a DC motor, the produced torque depends linearly on the
angular velocity, so we can write that 𝑀

𝑝
= 𝑈
1
− 𝑈
1
Λ̇(𝑡),

where 𝑈
1
and 𝑈

2
depend on the electromagnetic field of the

DC motor. Both quantities are constant for each model of
the motor considered [1]. Angular velocity Λ̇(𝑡) oscillates as a
result of the rotor unbalancing as well as the interaction with
support. Variation of the angular speed influences the torque,

so even during stationary operation of the electric motor the
torque is not constant.

The system has three degrees of freedom (DOFs). Total
spring elongation 𝑍(𝑡) and angles Φ(𝑡) and Λ(𝑡) are chosen
as generalized coordinates of the system. The kinetic energy
relative to the motionless frame and written in the Cartesian
coordinate system OXY is as follows:

𝑇 =

1

2

𝑚
1
(�̇�
2

1
+ �̇�
2

1
) +

1

2

𝑚
2
(�̇�
2

2
+ �̇�
2

2
)

+

1

2

𝑚
3
(�̇�
2

3
+ �̇�
2

3
) +

1

2

𝑚
0
(�̇�
2

0
+ �̇�
2

0
) +

1

2

𝐼
0
Λ̇
2
.

(1)

All conservative forces which are acting in the system are
represented by the potential energy

𝑉 = −𝑚
0
𝑔𝑋
0
− 𝑚
2
𝑔𝑋
1
− 𝑚
1
𝑔𝑋
2
− 𝑚
3
𝑔𝑋
3
+

1

2

𝑘𝑍
2
, (2)

where𝑋
1
(𝑡) = (𝐿

0
+𝑍(𝑡)+ℎ/2),𝑌

1
= 0 are the coordinates of

themovable support,𝑋
3
= 𝑋
2
−𝐻,𝑌

3
= 0 are the coordinates

of the stator mass centre, 𝑋
2
= 𝑋
1
+ 𝐿 cos(Φ(𝑡)), 𝑌

2
=

𝐿 sin(Φ(𝑡)) are the coordinates of the suspended pendulum,
and 𝑋

0
= 𝑋
1
− 𝐻 + 𝑟

𝑒
cos(Λ(𝑡)), 𝑌

0
= 𝑟
𝑒
sin(Λ(𝑡)) are the

coordinates of the mass centre of the eccentrically mounted
rotor and 𝑔 is the gravity of Earth.

The position of stable equilibrium of the system is deter-
mined by the following values of the generalized coordinates:

𝑍
𝑟
=

(𝑚
0
+ 𝑚
1
+ 𝑚
2
+ 𝑚
3
) 𝑔

𝑘

,

Φ
𝑟
= 0, Λ

𝑟
= 0.

(3)

The equations of motion around the equilibrium position
are obtained using Lagrange equations of the second type,
wherein the nonconservative forces acting on the system are
introduced as the generalized forces. They are as follows:
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(4)

where 𝑍
1
= 𝑍 − 𝑍

𝑟
is the dynamic elongation of the spring

(measured from the equilibrium position), 𝑚
𝑐
= 𝑚
0
+ 𝑚
1
+

𝑚
2
+𝑚
3
is the total mass of the system, and𝜔

1
= √𝑘/𝑚

𝑐
,𝜔
2
=

√𝑔/𝐿, 𝜔
3
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0
𝑟
𝑒
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0
are the characteristic frequencies.
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Figure 2: Time history of ̃𝜆 for SET1.

Let us introduce the dimensionless coordinate �̃� = 𝑍
1
/𝐿,

time 𝜏 = 𝑡𝜔
1
, and the following dimensionless parameters:

(i) eccentricity 𝛽
𝑒
= 𝑟
𝑒
/𝐿,

(ii) mass fractions 𝜇
2
= 𝑚
2
/𝑚
𝑐
and 𝜇

0
= 𝑚
0
/𝑚
𝑐
,

(iii) frequencies 𝑤
2
= 𝜔
2
/𝜔
1
, 𝑤
3
= 𝜔
3
/𝜔
1
, 𝑝
1
= Ω
1
/𝜔
1
,

𝑝
2
= Ω
2
/𝜔
1
,

(iv) amplitudes of external excitations 𝑓
1
= 𝐹
0
/𝐿𝑚
𝑐
𝜔
2

1
,

𝑓
2
= 𝑀
0
/𝐿
2
𝑚
2
𝜔
2

1
,

(v) parameters of the DC motor characteristics 𝑢
1
=

𝑈
1
/𝐼
0
𝜔
2

1
, 𝑢
2
= 𝑈
2
/𝐼
0
𝜔
1
,

(vi) damping coefficients 𝑐
1
= 𝐶
1
/𝑚
𝑐
𝜔
1
, 𝑐
2
= 𝐶
2
/𝐿
2
𝑚
2
𝜔
1
.

Then the equations of motion take the nondimensional
form:

̈
�̃� + �̃� + 𝑐

1
̇
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1
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1
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̈
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𝜑 −
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3
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2

3
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2

̇
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𝑤
2

3

𝑤
2

2

̈
�̃� sin ̃𝜆 = 0.

(5)

Now functions denoted by �̃�, 𝜑, ̃𝜆 (equivalent to gener-
alized coordinates 𝑍, Φ, Λ) depend on 𝜏. Equations (5) are
supplemented by the initial conditions: �̃�(0) = 𝑧

0
, ̇�̃�(0) = V

0
,

𝜑(0) = 𝜑
0
, ̇
�̃�(0) = 𝜔

0𝜑
, ̃𝜆(0) = 𝜆

0
, and ̇

̃
𝜆(0) = 𝜔

0𝜆
where 𝑧

0
,

V
0
, 𝜑
0
, 𝜔
0𝜑
, 𝜆
0
, and 𝜔

0𝜆
are the known quantities.

3. Decomposition of the Governing Equations

The coordinate ̃𝜆(𝜏) is equal to the angle measured from the
initial position. After each rotation of the rotor, the angle
increases by 2𝜋. This increase is dominant in time history
of ̃𝜆(𝜏) which is shown in Figure 2. This graph and several
subsequent graphs are made for chosen data included in set

SET1= {𝑓
1
= 0,𝑓

2
= 0.01,𝑝

2
= 0.77, 𝑐

1
= 0.0001, 𝑐

2
= 0.0001,

𝛽
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= 0.001, 𝜇

2
= 0.3, 𝜇

0
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1
= 0.04, 𝑢

2
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𝑤
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0
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0
= 0.1, 𝜔

0𝜑
= 0,

𝜆
0
= 0.1, 𝜔

0𝜆
= 0}. However, in the time history of ̃𝜆(𝜏) there

are also oscillations yielded by the rotor unbalance. They are
invisible in the scale of the graph due to their small amplitude
relative to the values of ̃𝜆(𝜏). Oscillations of the rotor play a
significant role in dynamics of the whole system. In order to
study the interactions between particular parts of the system,
for instance, near resonance, oscillations of the rotor should
be separated from its rotation.

Thus, it is desirable to split function ̃𝜆(𝜏) into a com-
ponent describing unlimited increase and the second one
relative to pure oscillations. We propose decomposition of
this function in the following manner:

̃
𝜆 (𝜏) = 𝛼

0
(𝜏) + 𝛼

1
(𝜏) , (6)

where function 𝛼
0
(𝜏) satisfies the initial value problem of

the linear differential equation and inhomogeneous initial
conditions:

(1 +

𝑤
2

3
𝛽
𝑒

𝑤
2

2

) �̈�
0
− 𝑢
1
+ 𝑢
2
�̇�
0
= 0,

𝛼
0
(0) = 𝜆

0
, �̇�

0
(0) = 𝜔

0𝜆
.

(7)

Decomposition (6) causes that the problem is described
now by the system of four differential equations. The Cauchy
problem governed by (7) describes the dynamics of the
rotation of the rotor under the action of linearly changing
torque and can be solved analytically.

Substituting (6)-(7) into (5), we obtain a new form of the
governing equations with unknown functions 𝑧, 𝜑, and 𝛼

1
:

�̈� + 𝑧 + 𝑐
1
�̇� − 𝛽
𝑒
𝜇
0
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0
+ �̇�
1
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0
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1
)
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2
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𝑒
𝜇
0
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0
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1
) sin (𝛼

0
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1
)
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2
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1
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1
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(8)
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2

2
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2
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2
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2
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𝑤
2
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1

−
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2

3

𝑤
2

2
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0
+ 𝛼
1
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(10)

The initial conditions for this set of differential equations
are

𝑧 (0) = 𝑧
0
, �̇� (0) = V

0
, 𝜑 (0) = 𝜑

0
,

�̇� (0) = 𝜔
0𝜑
, 𝛼
1
(0) = 0, �̇�

1
(0) = 0.

(11)

Taking into account the introduced decomposition (6),
the original initial value problem (5) is transformed into two
problems, that is, the problem of pure rotation of the rotor
and the problem of pure oscillation in the whole system.
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Figure 3: Time history of 𝑧 for data from SET1.

In the first case the term “pure” is used to emphasize that
rotation 𝛼

0
(𝜏) does not depend on the rotor unbalancing or

interactions between system parts. In the second case, it is
used to note that oscillations have been completely separated
from rotations. Let us note that in equations (8)–(10) function
𝛼
0
(𝜏) is a solution of the problem (7), and it has the following

form:

𝛼
0
= −

𝑢
1

𝑢
2

2

+

𝜔
0𝜆

𝑢
2

+ (((𝑢
2
𝜔
0𝜆
− 𝑢
1
)

×(𝑤
2

3
𝛽
𝑒
− (𝑤
2

2
+ 𝑤
2

3
𝛽
𝑒
) exp(−

𝑢
2
𝑤
2

2
𝜏

𝑤
2

2
+ 𝑤
2

3
𝛽
𝑒

)))

×(𝑢
2

2
𝑤
2

2
)

−1

) + 𝜆
0
+

𝑢
1
𝜏

𝑢
2

.

(12)

It should be noticed that function 𝛼
1
(𝜏) governs oscilla-

tions of the rotor around its rotation described by function
𝛼
0
(𝜏). In (8) and (10), trigonometric functions appear yielded

by sum 𝛼
0
(𝜏) + 𝛼

1
(𝜏). We expand them using the classical

trigonometric identities, which clearly show that the coeffi-
cients in differential equations (8) and (10) are the functions
of time.

Equations (8)–(10), yielded by the proposed decomposi-
tion of the original problem, describe pure oscillation of the
system parts. The associated time histories of 𝑧, 𝜑, and 𝛼

1
are

presented in Figures 3, 4, and 5.
Coincidence of the solutions of the initial problems (5)

and (8)–(10) together with the solution (12) is confirmed
based on the results presented in Figure 6 (Δ

𝑧
= �̃� − 𝑧,

Δ
𝜑
= 𝜑 − 𝜑, Δ

𝛼
=
̃
𝜆 − (𝛼

0
+ 𝛼
1
)), which validates our

decomposition proposal.
Very high conformity of solutions of the initial problems

(5) and (8)–(10) has been achieved numerically for various
parameters, despite the fact that the postulated form of
solution (6) is not a general solution of the problem (5).
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Figure 4: Time history of 𝜑 for data from SET1.
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Function 𝛼
0
(𝜏) for data set SET1 is presented graphically

in Figure 7. Let us observe that when time 𝜏 tends to infinity,
function 𝛼

0
(𝜏) approaches its asymptote given by

lim
𝜏→∞

(𝛼
0
(𝜏))

= −

𝑢
1

𝑢
2

2

+

𝜔
0𝜆

𝑢
2

+

(𝑢
2
𝜔
0𝜆
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1
) 𝑤
2

3
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𝑢
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𝑤
2

2

+ 𝜆
0
+

𝑢
1
𝜏

𝑢
2

= �̂�
0
(𝜏) .

(13)

Therefore, the exponential transient component
exp(−((𝑢

2
𝑤
2

2
𝜏)/(𝑤

2

2
+ 𝑤
2

3
𝛽
𝑒
))), which disappears in time, can

be omitted, apart from the initial stage of motion. Owing
to this observation we can approximate solution (8) in the
following manner:

𝛼
0
(𝜏) ≈ �̂�

0
(𝜏) . (14)

4. Properties of Function 𝛼
1

Function 𝛼
1
(𝜏) describes, in principle, the oscillation of the

nonideal source (beyond the transitional period), being an
oscillation around the rotational motion. This effect is much
more spectacular for generalized velocities. Time histories of
derivative �̇�

0
(𝜏) and the sum of derivatives �̇�

0
(𝜏) + �̇�

1
(𝜏) are

shown in Figure 8.
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The character of vibrations described by function 𝛼
1
(𝜏)

strongly depends on the values of mechanical parameters.
Depending on the parameters used, the system oscillation
can be either quasiperiodic or chaotic. For the values of
parameters collected in SET1 they are quasiperiodic. In order
to detect the frequencies of 𝛼

1
(𝜏), the Fourier analysis was

performed.
The used sampling covered time interval (0, 2500) with

the step equal to 0.005 of dimensionless time units. Figure 9
shows a few peaks corresponding to the dimensionless
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Figure 9: Discrete Fourier transform of 𝛼
1
for SET1.
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Figure 10: Time interval between two adjacent maxima of function
𝛼
1
for SET2.

frequencies equal to 1, 2, 3, and 4. The first peak represents
the frequency of support oscillation. The largest peak corre-
sponds to the value of slope 𝑢

1
/𝑢
2
of asymptote �̂�

0
(𝜏) given

by (13). The remaining ones correspond to harmonics of the
higher order.

Figure 10 displays how the interval between two neigh-
bouring extrema of function 𝛼

1
changes in time. Four regular

series of the “period,” which is determined in this way, can
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for SET1.
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Figure 12: Time interval between two adjacent maxima of function 𝛼
1
for various values of 𝜇

2
.

be observed. The series are drawn in different colours. Each
such series consists of many points. The ordinate of each of
these points is equal to the distance between two instants
at which function 𝛼

1
achieves its adjacent extrema. The

abscissa represents the instant at which the first extremum of

the given pair occurs. Time on the horizontal axis (in
Figure 10) is measured from the start of the simulation
process. Apart from the beginning of the motion, we can
observe that the series oscillate around the value Δ𝑇 ≈ 𝜋,
which is equal to 2𝜋/(𝑢

1
/𝑢
2
). Results were performed for
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Figure 13: Time interval between two adjacent maxima of function 𝛼
1
for SET3.
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Figure 14: Time interval between two adjacent maxima of function 𝛼
1
for SET3.

the following set of the values of parameters SET2 = {𝑓
1
= 0,

𝑓
2
= 0, 𝑐

1
= 0.0001, 𝑐

2
= 0.0001, 𝛽

𝑒
= 0.001, 𝜇

2
= 0.3,

𝜇
0
= 0.15, 𝑢

1
= 0.04, 𝑢

2
= 0.02, 𝑤

2
= 0.06, 𝑤

3
= 0.004,

𝑧
0
= 0, V

0
= 0, 𝜑

0
= 0.1, and 𝜔

0𝜑
= 0, 𝜆

0
= 0.1, 𝜔

0𝜆
= 0}. A

fragment of the time history of function 𝛼
1
, corresponding to

Figure 10, is shown in Figure 11.
The character of change of “period” Δ𝑇 depends, among

others, on the mass of the pendulum, and the dependence
is illustrated in Figure 12. Calculations were carried out
assuming the following values of themass fraction: 𝜇

2
= 0.05,

𝜇
2
= 0.1, 𝜇

2
= 0.2, and 𝜇

2
= 0.4. All other parameters

for the simulations are the same as in the SET2. The values
of the interval between the adjacent extrema of function 𝛼

1

change very slowly when the mass fraction of the pendulum
is small. The rate of these changes clearly accelerates with the
increasing mass of the pendulum.

The changing “period”Δ𝑇behaves less regularlywhen the
system is exposed to other external loadings. Figure 13 shows
the results of numerical simulations in which the action of
force 𝐹 and torque𝑀 is taken into account. The calculations
were obtained for the following set of the values of parameters

SET3 = {𝑓
1
= 0, 𝑓

2
= 0.01, 𝑝

2
= 0.77, 𝑐

1
= 0.0001, 𝑐

2
=

0.0001, 𝛽
𝑒
= 0.002, 𝜇

2
= 0.3, 𝜇

0
= 0.15, 𝑢

1
= 0.04, 𝑢

2
= 0.02,

𝑤
2
= 0.06, 𝑤

3
= 0.004, 𝑧

0
= 0, V

0
= 0, 𝜑

0
= 0.1, 𝜔

0𝜑
= 0,

𝜆
0
= 0.1, and 𝜔

0𝜆
= 0}.

Although four series are still observable, however, they
are not so regular as in the case when only the DC motor
excited oscillations. Point clouds forming each of these series
aremore fuzzy.Moreover, the effect of external loading causes
that the regions of irregular changes of “period” Δ𝑇 appear.
In the case presented in Figure 13, such a irregular behaviour
is observed for a few time intervals. The first of them can
be regarded as a transient state. In the middle of the second
one a gap in the point cloud is observable. It means that the
values of Δ𝑇 are bigger than the values of ordinates on the
vertical axis. The frequency of vibrations of the unbalanced
rotor is then smaller than the frequency determined by slope
𝑢
1
/𝑢
2
. The next interval is marked in Figure 13 as (𝜏

1
, 𝜏
2
). The

degree of irregularity in this range is smaller than the one
studied previously. Fragments of the time history of function
𝛼
1
, corresponding to Figure 13, are shown in Figure 14.
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The graph on the left-hand side shows the time history of
coordinate 𝛼

1
(𝜏) when changes of Δ𝑇 are irregular (for 𝜏 ∈

(𝜏
1
, 𝜏
2
)). A more regular motion is presented in the graph on

the right-hand side (for 𝜏 > 𝜏
2
).

5. Conclusions

The nonlinear system with three degrees of freedom and
excited by the DC motor with the unbalanced rotor was
studied both analytically and numerically. Many novel non-
linear effects were detected, illustrated, and described. First,
the general coordinate assigned to the nonideal source grew
rapidly as a result of the rotation of the rotor. The oscillation
caused by interaction with the excited mechanical system
was imperceptible in that scale. Second, the decomposition
of the system of equations of motion was proposed in order
to separate the infinitely growing component. Though the
decomposition carried out was an identity in the mathemat-
ical sense, it was not completely effective in each studied
case. However, it allowed the rotor oscillation to be examined
separately which essentially simplified the analysis.

Third, the equations of motion, decomposed in this way,
were solved numerically. Properties of the solution governing
pure oscillation of unbalanced rotor were analyzed. The
character of this phenomenon strongly depended on the
values of parameters of the system. In some cases the
quasiperiodic oscillations were exhibited and their main
frequency oscillated around the value equal to the slope of
the asymptote of function 𝛼

0
representing a pure rotation.
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