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 Lódź University of Technology

Stefanowskiego 1/15, 90–924  Lódź, Poland
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In rolled sheets, non–metallic inclusions are distributed along the thickness of the sheet
as narrow lines running parallel to the rolling direction. Such inclusions are the nuclei
of lamellar cracks.

This work presents the application of the photoelastic method for study of lamellar
cracking. Photoelastic models of samples with long artificial fissures set in the area of
the sheet axis were studied along with other encountered inclusion distributions.

The studied samples were placed in a polariscope and subjected to uniform tension;
isochromatic images were obtained. Changes in the stress state in the area of the inclu-
sion were observed as the load increased. Stress concentration leads to the formation of
lamellar cracks – the joining of voids in the direction parallel to the exterior surface of
the sheet (so–called ”terraces” are formed) and at angles (so–called ”jogs” are formed).

The results of photoelastic tests were compared with the results of numerical calcu-
lations using the finite element method.

Keywords: Non–metallic inclusions, photoelastic tests, finite element method, lamellar
cracking

1. Introduction

Was performed of experimental analysis of stress and deformation of steel elements
with lamellar cracks. These cracks are formed in the rolled sheets containing non–
metallic inclusions. In cases where the existence of cracks in the vicinity of the
vertex under the influence of external loads created stress concentrations.

During the load components of stress and strain measurements around cracks is
impossible.
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Photographs of scanning electron microscopy can be obtained before and after
the destruction of the load. However, the use of scanning electron microscopy in
combination with the testing machine is impossible.

If such stress concentration indirect methods can be used such as by shaping
a similar structure photoelastic method, and then on the basis of the numerical
models of experimental form.

For experimental studies were made of similar construction models as samples
cut from sheet steel with lamellar cracks. System structure model based on pho-
tographs obtained with a scanning electron microscope. The study was conducted
using the photoelastic method. Models were prepared from optically active polymer
materials.

The photoelastic method can also be used to validate a numerical model based
on the finite element method.

This work presents the application of the photoelastic method to the study of
lamellar cracking.

In the case of adhesion between the base material and non–metallic inclusions,
changes of the stress state are observed along the direction of tension between
inclusions as well as in the vicinity of inclusions. Changes in stress distribution
occur here, which may cause an increase in shear stress along the lines connecting
the vertices of inclusions. According to hypotheses concerning strain analysis in an
elastic–plastic state, this can have an effect on the formation of cracks. Non–metallic
inclusions have a significantly lower strength and elasticity (Young’s modulus) than
(in this case) ferritic–pearlitic steel. Such inclusions may have the nature of voids
and can become crack nuclei. Fig. 1 shows a typical ferritic–pearlitic steel structure
with banding encountered after single–direction rolling. Non-metallic inclusions of
manganese sulfides can be seen in the cross–section.

Figure 1 Metallographic specimen of a sheet with visible inclusions
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Figure 2 View of the sample just before tearing

During static tensile testing of such samples, an increase in the thickness of the
fissure with non–metallic inclusions and the appearance of two characteristic ”necks”
can be observed.

Non–metallic inclusions are the nuclei of the formation of lamellar cracks. Pho-
toelastic models of samples with long artificial fissures set in the area of the sheet
axis were studied along with other encountered inclusion distributions.

2. Methods of stress measurement using the photoelastic method

General procedures for photoelastic measurements have been presented in many
text books [1, 2, 3]. Principal stresses σ1, σ2, σ3 are the primary quantities for
determining the load-bearing capacity of an element or structure (in the case of a
coplanar stress state σ1 > σ2, σ3= 0). For given stress component data in a Carte-
sian coordinate system (σx, σy and τxy), principal stresses are usually calculated
on the basis of elementary formulas used in strength of materials. The distribution
of isochromatic lines makes it possible to evaluate the stress state according to the
maximum shear stress hypothesis

2τmax = σ1 − σ2 (1)

and to immediately determine areas of stress concentration in the entire area of
the model. Studies and calculations were conducted for beams that were bent on
both sides, so that the results (stress distributions) could be applied to fatigue
calculations.
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The stress distribution in was determined using two methods: Shear Stress
Difference Procedure (SDP – evaluation a complete stress state by means the
isochromatics and the angles of the isoclines along the cuts) [3] and Method of the
characteristics (the stress distribution were determined using the isochromatics
only and the equations of equilibrium [8].

2.1. Shear stress difference procedure (SDP)

Using internal equilibrium differential equations (for a coplanar stress state) and the
results of photoelastic measurements, the components of stresses σx, σy, τxy along
any linear cross-section of the model can be determined. Based on photoelastic
measurements for a given point, the difference between principal stresses can be
determined

σ1 − σ2 = kδm (2)

along with the isoclinic line. The shear stress value is determined by the formula

τxy =
σ1 − σ2

2
sin 2α =

1

2
kδm sin 2α (3)

and the difference between normal stresses

σx − σy = (σ1 − σ2) cos 2α = kδm cos 2α (4)

The shear–difference method is based on approximated integration of internal equi-
librium equations of a plane stress state{

∂σx

∂x +
τxy

∂y = 0
∂σy

∂y +
τxy

∂x = 0
(5)

By means the angles of the isoclinics the isochromatics along the cuts ”y” et ”y+∆y”
by the aid of SDP it is possible determined a complete stress state.

σxi = σxo −
i

Σ
1
∆τxyi

∆x

∆y
(6)
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Figure 3 Components of the differential stress (a) as well as finite differences (b)
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Distribution of stresses acting on the element structure where:

σyo – stress–free boundaries

∆τxyi = τxyi(y +∆y)− τxyi(y) – shear stress difference

τxyi(y+∆y), τxyi(y) – shear stresses in points i et i’ respectivelly in cuts ”y+∆y”

and ”y”

τxy(y)i =
1
2 (σ1 − σ2)i sin 2αi =

1
2kσmi sin 2αi (7)

kσmi = σ1 − σ2 – the principal stress difference

kσ = (fσ)1.0/b – photoelastic constant

mi – the order of isochromatic

αi – the angle of isoclinic (between x and σx if σx > σy)

The distribution of the stresses alog the x - axis were determined from:

σyi = σxi − (σ1 − σ2) cos 2α
τmxy = 1

2 [τxy(y +∆y)i − τxy(y)i′ ]
(8)

The details of this method have been given in works [1, 2], among others.

2.2. Method of characteristics

The method allows to determine the characteristics of the stress distribution on the
basis of image the isochromatics. We assume that the principal stress directions
and the sum of the principal stresses are certain functions. We assume that these
functions are known. Knowing their differentials and taking into account the balance
equations we obtain a system of equations. After solving the system of equations
along the characteristics of the components of the stress get.

Because the units are operating photoelastic measurements of the isochromatics
rows and practice the stress of the final results obtained in units multiplied by
a photoelastic constant kσ of the model to simplify the method presented in the
following discussion taken kσ = 1.

Thus, the sum and difference of principal stresses can be written as follows:{
σ1 − σ2 = m
σ1 + σ2 = 2p = q

(9)

Assuming that functions and pare known, stress components are substituted into
the system of equilibrium equations: σx = p+ m

2 cos 2φ
σy = p− m

2 cos 2φ
τxy = m

2 sin 2φ

{
dp = ∂p

∂xdx+ ∂p
∂ydy

dφ = ∂φ
∂x dx+ ∂φ

∂y dy
(10)

The derivatives of the unknowns of functions and p are complete differentials. Con-
sidering the complete differentials of functions φ and p, and assuming that these
functions are known, a system of four linear algebraic equations is obtained in view
of

∂p

∂x
,

∂p

∂y
,

∂φ

∂x
,

∂φ

∂y
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the system of equations takes the form:
∂p
∂x −m sin 2φ∂φ

∂x +m cos 2φ∂φ
∂y = −1

2

(
∂m
∂x cos 2φ+ ∂m

∂y sin 2φ
)

∂p
∂y +m cos 2φ∂φ

∂x +m sin 2φ∂φ
∂y = − 1

2

(
∂m
∂x sin 2φ− ∂m

∂y cos 2φ
)

∂p
∂xdx+ ∂p

∂ydy = dp
∂φ
∂x dx+ ∂φ

∂y dy = dφ

(11)

If the characteristic determinant of the system (11) is equal to zero, then functions
φ and pare not unique and the above system of equations has an infinite number
ofsolutions.

The ”L” curves along which functions and p are assumed are called the charac-
teristics of a system of differential equations; the determinant of the system can be
written as follows: ∣∣∣∣∣∣∣∣

1 0 −m sin 2φ m cos 2φ
0 1 m cos 2φ m sin 2φ
dx dy 0 0
0 0 dx dy

∣∣∣∣∣∣∣∣ = 0 (12)

Thus the solution:

(
dy

dx

)2

− 2tg2φ

(
dy

dx

)
− 1 = 0 ⇒

(
dy
dx

)
1
= tg

(
φ+ π

4

)(
dy
dx

)
2
= tg

(
φ− π

4

) (13)
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We obtain two families of characteristics (13), which form the orthogonal grid and
are located at angles relative to the principal stresses certain angle relative to the
coordinate system (x, y). Depending on the characteristics satisfied with the align-
ment sets to zero indicators, which have been introduced or column of free terms of
the right sides of equations (11).

After solving the system of equations, two characteristic families (13) are ob-
tained; dependencies fulfilled on characteristics are determined by equating deter-
minants in which columns of free terms - that is, the right sides of the equations of
system (11) – have been introduced, to zero.∣∣∣∣∣∣∣∣∣∣

1 0 − 1
2

(
∂m
∂x cos 2φ+ ∂m

∂y sin 2φ
)

m cos 2φ

0 1 − 1
2

(
∂m
∂x sin 2φ− ∂m

∂y cos 2φ
)

m sin 2φ

dx dy dp 0
0 0 dφ dy

∣∣∣∣∣∣∣∣∣∣
= 0

⇒ dp+mdφ = −1

2

(
∂m

∂x
dy − ∂m

∂y
dx

)
(14)

∣∣∣∣∣∣∣∣∣∣
−1

2

(
∂m
∂x cos 2φ+ ∂m

∂y sin 2φ
)

0 −m sin 2φ m cos 2φ

−1
2

(
∂m
∂x sin 2φ+ ∂m

∂y cos 2φ
)

1 m cos 2φ m sin 2φ

dp dy 0 0
dφ 0 dx dy

∣∣∣∣∣∣∣∣∣∣
= 0

⇒ dp−mdφ = −1

2

(
−∂m

∂x
dy +

∂m

∂y
dx

)
(15)

By solving equations (14) and (15) through substituting the derivatives and dif-
ferentials with finite differences, a system of equations is obtained, on the basis
of which values of the sum of principal stresses pk, , and the directions of princi-
pal stresses φk are calculated, followed by the components of the stress state at
successive points k. 

(
dy
dx

)
1
= tg

(
φ+ π

4

)
dp+mdφ = −1

2

(
∂m
∂x dy −

∂m
∂y dx

) (16)


(

dy
dx

)
2
= tg

(
φ− π

4

)
dp−mdφ = −1

2

(
−∂m

∂x dy +
∂m
∂y dx

) (17)


tg

(
φ1 +

π
4

)
= yk−y1

xk−x1

pk − p1 +m1 (φk − φ1) = w1

tg
(
φ2 − π

4

)
= yk−y2

xk−x2

pk − p2 +m2 (φk − φ2) = w2

(18)



242 Jaroniek, M, Niezgodziński, T.
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where: (
∆m

∆y

)
1

∼=
mk −m1

yk − y1(
∆m

∆x

)
1

∼=
mk −m1

xk − x1

and (
∆m

∆y

)
2

∼=
mk −m2

yk − y2(
∆m

∆x

)
2

∼=
mk −m2

xk − x2

solving the system of equations (18) we get:

xk =
y2 − y1 + a1x1 − a2x2

a1 − a2
yk =

a1a2 (x1 − x2) + a1y2 − a2y1
a1 − a2

φk =
1

m1 +m2
[(w1 − w2) + (p1 − p2) + (m1φ1 +m2φ2)] (19)

pk =
1

m1 +m2
[(w1m2 − w2m1) + (p1m2 + p2m1) +m1m2 (φ1 − φ2)]

The distribution of the stresses (In trems of sum of principal stresses pk, , and the
directions of principal stresses φk) were determined from:

σxk
= pk +

mk

2
cos 2φ σyk

= pk − mk

2
cos 2φk τxyk

=
mk

2
sin 2φk (20)
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In the case of studies conducted on metal samples, analysis of the stress state using
laboratory methods (e.g. the acoustic emission or the photoelastic method as well as
optically active coatings, and the caustics method) are laborious and require the use
of the appropriate apparatus. For this reason, conducting studies on photoelastic
models (made from an optically active material) makes it possible to perform a test
in accordance with theoretical assumptions as well as with the standard guidelines,
and this makes additional stress analysis over the entire model area possible.

2.3. Determining material constants

Properties of the components of experimental model are obtained experimentally.
In the case of bending of the model, stresses are equal to:

σx = σ1 =
Mg

Iz
y and σx = σ1 = kδm,

m=6

y =10.5

sg=kd×m

P
a

Figure 6 Method of determining the model constant

From this, the value of photoelastic constant of the model is obtained (Fig. 6):

kδ =
Mg

Iz

y

m
where: My = Pa, Iz =

bh3

12

On the basis of experimental studies, the following values were obtained:

• Poisson’s ratio ν= 0.36

• photoelastic constant of the model kσ = 1.74 ÷ 1.68 [MPa/fr.] (MPa/order
of isochromatic)

• tensile strength Rm = 35 MPa

• compressive strength Rc = 120 MPa

• shear strength Rt = 25 MPa

• Young’s modulus E = 3450 MPa.
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3. Study of models with fissures

The influence of the presence of non–metallic inclusions, represented as voids, on
the distribution of stresses in the sheet was studied. Analysis of the strain process
through individual tension stages to the point of destruction inside structures such
as the metallographic specimen is practically impossible. That is why photoelastic
and numerical models have been developed and made on the basis of metallographic
analysis: these models make it possible to study stress and strain inside of the
material.

Figure 7 View of the metallographic specimen of the sheet with inclusions

Results of photoelastic studies of models of samples with inclusions have been pre-
sented below. Due to the significantly lower values of the strength properties of
inclusions in comparison to steel, the inclusions were modeled as voids and narrow
fissures. Fissures were created as strips of thin foil removed each time before the
conclusion of the resin–hardening process. Models were made from typical EP 52
epoxide resin. Properties and the method of their determination were given in the
previous section.

The placement of artificial fissures in the model was similar to the arrangement
of actual inclusions observed in views of metallographic specimens of sheets ob-
tained from scrapped overhead crane girders. The studied samples were placed in a
polariscope and subjected to uniform tension; isochromatic images were obtained.
Changes in the stress state in the area of the inclusion were observed as the load
increased.

3.1. Model with one central fissure

A single fissure in the center of the sheet thickness is often observed on metallo-
graphic specimens of overhead crane sheets. A characteristic image of an inclusion
has been presented in Fig. 1, and the manner of cracking of the sample during the
tensile test is shown in Fig. 2. It can be seen that the non–metallic inclusion does
not exhibit cohesion in the direction transverse to the direction of tension. The
assumption can therefore be made that it is modeled as a void.

Fig. 6a shows images of isochromatic lines obtained during stretching of the
sample. Studies were conducted in a polariscope under circularly polarized sodium
light. The image shows total isochromatic lines (polarizer⊥ to analyzer).
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Fig. 6b shows an analogous image of partial isochromatic lines in circularly
polarized white light (polarizer || to analyzer). Stress concentration is visible near
the ends of the fissure. Comparative calculations using the finite element method
were also conducted.

3.2. Models with many fissures

The images of metallographic specimens show the presence of inclusions as bands
irregularly distributed over the surface of the sheet cross–section. Studies of models
with inclusions distributed symmetrically relative to the neutral layer were con-
ducted. An exemplary sample is presented on Figs 9 – 12.

a) b)

Figure 8 Isochromatic images for the stretched sample with a central fissure: a) Photograph of
isochromatic lines insodium light (polarizer ⊥ to analyzer), b) (polarizer to analyzer)

Figure 9 Model with multiple non-metallic inclusions in the initial tension phase. Photograph of
isochromatic lines in circularly polarized white light

Photoelastic studies were conducted by increasing the load and analyzing the stress
state after each such increase (based on isochromatic line distribution) so as to
determine the influence of voids on changes in stress fields and their mutual inter-
action in the area surrounding voids or fissures. Successive photographs illustrate
the course of changes of material effort at increasing loads.
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A

A

Figure 10 Distribution of isochromatic lines caused by a dislocation of f = 2.4 mm (polarizer ⊥
to analyzer)

Figure 11 Finite element mesh of the model (used for numerical simulation

60 70 80 90 100 110 MPa

sx MPa

A

A

Figure 12 Distribution of stress σx obtained experimentally in cross section A-A ( in Fig. 10.)
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Fig. 10 shows an image of isochromatic lines in the initial loading phase; Fig. 11
and show isochromatic lines for a dislocation of f = 2.4 mm, which corresponds
to elastic–plastic deformation (=0.02). Studies were conducted under sodium light;
total isochromatic lines (polarizer ⊥ to analyzer) and partial isochromatic lines.
Stress concentrations around the vertices of fissures subjected to tension are visible.

Figure 13 Distribution of reduced stresses according to Huber’s hypothesis in the model studied
using the photoelastic method obtained by means of the finite element method

4. Numerical Determination of Stress Distribution

The distribution of stresses and displacements has been calculated using the finite
element method (FEM) [10, 13]. Based on the images of photoelastic models,
analogous numerical models were made and calculations were performed using the
finite element method. Calculations were made using two–dimensional models in a
coplanar stress state.

Finite element calculations were performed in order to verify the experimentally
observed the isochromatic distribution observe the stress state . The geometry and
materials of models were chosen to correspond to the actual specimens used in the
experiments. The numerical calculations were carried out using the finite element
program ANSYS 11 and by applying the substructure technique. A finite element
mesh of the model (used for numerical simulation) are presented in Fig. 11.

The numerical (from FEM) isochromatic fringes (σ1 − σ2), distribution was
shown in Fig.14

5. Results of numerical calculations of the model with fissures simulat-
ing lamellar cracks

Comparative calculations using the finite element method were conducted for the
same geometrical parameters and the same mechanical properties as the studied
models.
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Figure 14 Distribution of of isochromatic in the model using the finite element method

Calculations were made for the same loads as in photoelastic studies, the same
material data (that is, material properties), and the same load characteristics.

Stress and strain calculations were conducted for the sample dimensions, mate-
rial data (that is, material properties), and load characteristics accepted for calcu-
lations; the destructive load was determined on the basis of tests.

6. Conclusions

The photoelastic method, as a modeling method for research, is very well suited to
analysis of the formation and propagation of lamellar cracks.

This method makes it possible to determine the stress state not only at a specific
point, but also to show the entire stress field. It makes it possible to quickly
determine points of stress concentration, and thus potential places for formation
and propagation of cracks.

The application of the photoelastic method is relatively fast and inexpensive. It
is also easy to model inclusions, voids, and possible strengthening of the material
(e.g. reinforcement).

This method, like every research method, should be used along with other meth-
ods, e.g. experimental and numerical.

It is particularly effective to compare test results with results obtained using
the finite element method; this is because, using this method, a numerical image of
isochromatic lines can be made, enabling direct comparison of images.

The photoelastic method is very well suited to validation of a numerical model
based on the finite element method.

This work has been financed by funds from the National Science Centre.

Project no. 7151/B/T02/2011/40
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