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Abstract. This paper investigates whether a quantum computer can effi-
ciently simulate the transfer of excitation between a pair of quantum systems
with energy loss caused by photon or phonon emission. The main contribu-
tion of our work is an algorithm that enables the simulation of time evolution
of such a system, implemented on a standard two-input gates. The paper
examines the properties of the proposed algorithm and then compares the
obtained results with theoretical predictions.
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1. Introduction

In the near future, quantum calculations are likely to make a major contribution
to the development of informatics [1]. Nowadays, some institutions claim to have a
quantum computer and offer its computing power. Therefore, it is worth examining
the properties of such a machine.

For many years, we have known Shor [2] and Grover [3] algorithms which
are faster than their best classical counterparts. Another promising application of
a quantum computer is quantum simulation [4], i.e. the computer modeling of
behavior of physical quantum systems. It gives the possibility of effective model-
ing quantum processes, which is not possible using classical computers. Quantum
computers can simulate a wide variety of quantum systems, including fermionic
lattice models [5], quantum chemistry and quantum field theories [6].

In the present study, we consider a quantum system (the system A from Fig. 1),
which returns to the ground state with partial energy transfer to another system (the
system B). The rest of the energy is emitted as a photon or phonon (the system C).
The process described above is equivalent to operation of the quantum heat engine.
It occurs during optical pumping of the laser or during photosynthesis [7], where
the energy of an absorbed photon is transferred at a loss in many steps between
successive carriers.
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Figure 1. Energy transfer between subsystems A (hot reservoir) and B (quantum
heat engine) with emission of photon C (cold reservoir). Source: own work.

The main purpose of our work is to investigate whether this phenomenon could
be simulated in the quantum register. In the future, the ability to simulate such phe-
nomena in a quantum computer may prove useful in the process of designing new
quantum heat engines. Due to its low complexity level, the algorithm presented
here may be used as a part of a more complex simulation.

The results presented here are preliminary. The issue we are considering is
related to the optimization of the energy transport process in biological and artifi-
cial systems. It is claimed that the process of photosynthesis gains light-harvesting
efficiency by exploiting the phenomenon of quantum coherence [8]. This involves
the superpositions of electronic quantum states, which seem able to explore many
energy-transmitting pathways at once.

2. Description of the simulated system

Let us consider a complex quantum system that is composed of three parts: A,
B and C. The subsystem B (quantum heat engine) has three nondegenerate energy
levels, which are denoted as follows: |0⟩B, |1⟩B and |2⟩B. Energies of these states
are equal to E0 = 0, E1 > 0 and E2 = EB > 0, respectively. Subsystems A (hot
reservoir) and C (cold reservoir) have two nondegenerate energy levels. Stationary
states of the system A we denote by |0⟩A and |1⟩A. We assign them energies equal
to E0 = 0 and EA > 0, respectively. Analogously, stationary states of the system C
we denote by |0⟩C , |1⟩C , and we assign them energies equal to E0 = 0 and EC > 0,
respectively. Full structure of the system is shown in Fig. 2.

The free Hamiltonian of the system we can write in the following form:

Ĥ0 = EAâ†â + E1b̂†1b̂1 + E2b̂2b̂† + EC ĉ†ĉ, (1)

where increasing and decreasing energy operators are defined as follows:

â†|0⟩A = |1⟩A, b̂†1|0⟩B = |1⟩B, b̂†2|2⟩B = |1⟩B, ĉ†|0⟩C = |1⟩C , (2)
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â|1⟩A = |0⟩A, b̂1|1⟩B = |0⟩B, b̂2|1⟩B = |2⟩B, ĉ|1⟩C = |0⟩C .
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Figure 2. Scheme of the simulated systems. Source: own work.

The Hamiltonian of interaction we choose in the following form:

Ĥint = g1â†b̂1 + g∗1âb̂†1 + g2ĉ†b̂2 + g∗2ĉb̂†2, (3)

where g1 and g2 are coupling constants.
For the Hamiltonian (3) interaction between subsystems A and B generate the

transition |1⟩A|0⟩B ↔ |0⟩A|1⟩B. Analogously, interaction between subsystems B
and C generate the transition |1⟩B|0⟩C ↔ |2⟩B|1⟩C .

In the presented system resonance occurs when:

EA = E2 + EC . (4)

If we additionally assume that
EA = E1, (5)

resonances occur in AB and BC subsystems.
In this work we are also considering modification of the system presented

above. We replace the |1⟩C state with a band consisting nL − 1 excited levels with
energies given by:

ECi = ∆E · i for i = 0, . . . , nL − 1, (6)

where ∆E = 2EC/nL is the distance between adjacent levels. Now the EC is
the middle energy level of the band. For this modification the Hamiltonian of
interaction takes the form:

Ĥ′int = g1â†b̂1 + g∗1âb̂†1 +
nL−1∑

i=1

(g2ĉ†i b̂2 + g∗2ĉib̂
†
2), (7)

where ĉ†i |0⟩C = |i⟩C and ĉi|i⟩C = |0⟩C . The extended system C simulate quantum
field, which receives energy from the system B irreversibly.
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3. Algorithm simulating time evolution of the system

In order to solve the Schrödinger equation for the Hamiltonian Ĥ = Ĥ0 + Ĥint

we use the time evolution operator in the form:

Û(dt) = exp
(−iĤdt/ℏ

)
, (8)

where dt is time step. For dt → 0 operator given by Eq. (8) can be approximated
as follows:

Û(dt) = exp
(−iEAâ†âdt/ℏ

)
exp

(
−i

(
E1b̂†1b̂1 + E2b̂2b̂†2

)
dt/ℏ

)
exp

(−iEC ĉ†ĉdt/ℏ
)

× exp
(
−i

(
g1â†b̂1 + g∗1âb̂†1

)
dt/ℏ

)
exp

(
−i

(
g2ĉ†b̂2 + g∗2ĉb̂†2

)
dt/ℏ

)
. (9)

The above equation is equivalent to using the first-order Lie-Trotter formula with
Trotter error O(t2). The simulation for a large time t is obtained by dividing the
evolution into n Trotter steps (t = n · dt).

The basic version of the algorithm (simulating the system from Fig. 2) is im-
plemented in a four-qubit register, as shown in Fig 3. Stationary states of the sub-
system B are encoded in B1 and B2 qubits in the following way: |0⟩B → |0⟩B2 |1⟩B1 ,
|1⟩B → |1⟩B2 |1⟩B1 and |2⟩B → |1⟩B2 |0⟩B1 . Base state |0⟩B2 |0⟩B1 is not used.
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Figure 3. Scheme of the free evolution algorithm. Source: own work.

The free evolution of the system described by Eq. (1) is implemented by the
algorithm showed in Fig. 3. Gates σx are standard NOT gates. Gates Pϕ are
standard phase-shift gates that operate according to the scheme:

|0⟩ → |0⟩, |1⟩ → e−iϕ|1⟩, (10)

where: ϕA = EAℏ
−1dt, ϕ1 = E1ℏ

−1dt, ϕ∆E = (E2 − E1)ℏ−1dt, ϕC = ECℏ
−1dt and dt

is time step.
Implementation of the algorithm simulating interaction described by the Hamil-

tonian (3) is shown in the left drawing in Fig. 4. Three-input gates Rϕ operate as
follows:

|1⟩|1⟩|0⟩ → cos ϕ |1⟩|1⟩|0⟩ + sin ϕ |1⟩|1⟩|1⟩, (11)

|1⟩|1⟩|1⟩ → cos ϕ |1⟩|1⟩|1⟩ − sin ϕ |1⟩|1⟩|0⟩, (12)
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Figure 4. Scheme of the algorithm simulating interaction between subsystems.
The left drawing shows the case for the Hamiltonian (3), while the right one shows
the case for the Hamiltonian (7). Source: own work.

where ϕ1 = |g1|dt/ℏ and ϕ2 = |g2|dt/ℏ.
Implementation of the interaction algorithm can be obtained by expressing the

last two components from Eq. (9) in the following way:

exp
(
−i

(
g1â†b̂1 + g∗1âb̂†1

)
dt/ℏ

)
=

∞∑

j=0

1
j!

(
− i dt
ℏ

) j(
g1â†b̂1 + g∗1âb̂†1

) j
=

=

∞∑

j=0

(−1) j

(2 j)!

(dt
ℏ

)2 j(
g1â†b̂1 + g∗1âb̂†1

)2 j
+

+i
∞∑

j=0

(−1) j

(2 j + 1)!

(dt
ℏ

)2 j+1(
g1â†b̂1 + g∗1âb̂†1

)2 j+1 (13)

and using the following formulas:

(
g1â†b̂1 + g∗1âb̂†1

)2 j|0⟩A|1⟩B = |g1|2 j|0⟩A|1⟩B, (14)
(
g1â†b̂1 + g∗1âb̂†1

)2 j|1⟩A|0⟩B = |g1|2 j|1⟩A|0⟩B, (15)
(
g1â†b̂1 + g∗1âb̂†1

)2 j+1|0⟩A|1⟩B = |g1|2 jg1|1⟩A|0⟩B, (16)
(
g1â†b̂1 + g∗1âb̂†1

)2 j+1|1⟩A|0⟩B = |g1|2 jg∗1|0⟩A|1⟩F . (17)

The implementation of the algorithm simulating interaction of the extended
system (described by the Hamiltonian (7)) is shown in the right drawing in Fig. 4.
In this case, we simulate the subsystem C in nc qubit subregister (nc = nq − 3).
In each base state of the subregister, a single energy level is encoded. Therefore,
the total number of energy levels of the subsystem C is equal to nL = 2nc . The
state |0⟩C we identify with the vacuum state (lack of a photon). The transition
|1⟩B|0⟩C ↔ |0⟩B|i⟩C (the i-th component of the sum from the Hamiltonian (7)) is
implemented by Ri block. The implementation of Ri blocks can be found in [9].
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4. Simulation results

In the first part of our consideration, we examine our algorithm for the Hamil-
tonian (3) with conditions (4) and (5). As an initial state of the simulated system we
choose |1⟩A|0⟩B|0⟩C . The simulation parameters are: dt = 10−16s, EA = E1 = 2eV,
EC = 0.2eV, and E2 = 1.8eV. The results are shown in Fig. 5. We only present the
probabilities for the subsystem B, because pA∗ = pB0 and pC∗ = pB2.
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Figure 5. Probability of finding the system B in |0⟩B, |1⟩B and |2⟩B states as func-
tions of time (in 10−15s units). The left plot is made for g1 = g2 = 0.05eV, the right
one is made for g1 = 0.05eV and g2 = 0.02eV. The dotted lines shows the results
of the simulation. Solids lines represent comparative theoretical results. Source:
own work.
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Figure 6. Probability of finding the system B in |0⟩B, |1⟩B and |2⟩B states as func-
tions of time (in 10−15s units). The left plot is made for g2 = 0.005eV, the right
one is made for g2 = 0.02eV. The dotted lines shows the results of the simulation.
Solids line represents result of exponential approximation. Source: own work.

In the next part of our consideration we examine the algorithm for the Hamil-
tonian (7) for nq = 9 (nc = 6). Other parameters take the following values:
dt = 10−16s, EA = 2eV, EC = 0.2eV (center of the band), E1 = 2eV, E2 = 1.8eV
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and g1 = 0.05eV. The results of the simulation are shown in Fig. 6.

5. Conclusions

• In Fig. 5 we can see very good consistency of results obtained by the simu-
lation and by the comparative method.

• In the case of the extended system C we can observe exponential growth of
the state |2⟩B occupation probability.
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