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Abstract. The main idea here is to demonstrate the new stochastic discrete
computational approach consisting of the generalized stochastic perturba-
tion technique based on the Taylor expansions of the random variables and,
at the same time, classical Finite Difference Method on the regular grids. As
it is documented by the computational illustrations, it is possible to deter-
mine using this approach also higher probabilistic moments and to provide
full hybrid analytical-discrete analysis for any random dispersion of input
variables unlike in the second order second moment technique worked out
before. A numerical algorithm is implemented here using the straightforward
partial differentiation of the reaction-diffusion equation with respect to the
random input quantity; all symbolic computations of probabilistic moments
and characteristics are completed by the computer algebra system MAPLE.
Keywords: reaction-diffusion problem, computer algebra system, stochastic
finite difference method, the generalized stochastic perturbation technique.

1. Introduction

The Finite Difference Method (FDM) [1, 2] plays an important role in compu-
tational engineering in all those cases, where the additional differential equations
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(ordinary or partial) may be solved straightforwardly — i.e. in the heat transfer [3],
electromagnetics [4] and geodynamics. So that, it seems to be natural that this
method is extended towards its new stochastic versions for some real systems with
random parameters solved before using the traditional FDM in deterministic cases.
One of such extension methods is the generalized perturbation-based stochastic
technique, where the Taylor series expansions of all random quantities lead to
the system of equilibrium equations of the ascending order. This method was
employed before for different stochastic versions of the Finite Element Method,
Boundary Element Method as well as even Finite Difference Method (according
to the second order second moment approach [5]) but this implementation for the
first time enables for [6] (1) any order stochastic expansion, (2) any probability
density function of the random input variable, (3) parametric study with respect
to the perturbation parameter and coeflicient of variation for the random input as
well as (4) analytical derivations of most of discrete hierarchical equations imple-
mented in the symbolic package MAPLE (the other systems like freeware Scilab
are also available for this purpose).

The major difference in the comparison to the stochastic versions of the FEM
and BEM is the necessity of double differentiation — with respect to the space
variable discretized by Ax (4th order derivatives transformed to the finite differ-
ences) as well as with respect to the input random variables. Fortunately, since an
application of the symbolic calculus, this second differentiation is performed ana-
Iytically for any available derivatives orders but in the case of a general computer
program those derivatives must be implemented into it in a form of the ready-to-
use-formulas (or we need to assure the interoperability with the MAPLE environ-
ment). The remaining implementation issues are almost the same like in the case of
the SFEM and the SBEM, but in a further perspective a comparison with the other
stochastic methods like polynomial chaos expansions or Monte-Carlo simulations
would be interesting.

Probabilistic implementation of the Finite Difference Method is displayed and
discussed here on the example of the reaction-diffusion differential equation and
seems to be quite natural because of the numerous sources of uncertainty in chem-
ical reactions and processes; such a computational methodology may essentially
influence reliability modeling in the area of chemical engineering. The other rea-
son to deal with this equation comes from various traditional and modern biotech-
nological applications related to the reaction-diffusion problems [7], which makes
them still attractive for the mathematical extensive studies also [8]. Although the
general computer program is written in the internal language of the symbolic com-
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puting environment MAPLE, the algorithm has a general character and the grid
applied to any beam may be essentially densified without any larger programming
issues, where a formation and the solution of the ascending order hierarchical
equations typical for the perturbation-based methodology will remain the same.
This methodology will be further extended towards 2 and 3-dimensional applica-
tions, also for transient and nonlinear problems with the random coeflicients. Of
course, the stochastic perturbation method is not the only one to solve the reaction-
diffusion problem with random parameters — we can use the Monte-Carlo simula-
tion [9] or the polynomial chaos expansions [10] as well, however our method fits
perfectly into the modern computer algebra systems.

2. Deterministic model

Let us consider the linear boundary value problem relevant to the steady state
concentration profiles C(x) in the reaction-diffusion problem in the domain 0 <
x <1 [11]. Schematic representation of such a random concentration, but related
to the molecules distributed in the planar domain, is given in Fig. 1 below.
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Figure 1. A simple illustration of the example of diffusion problem
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Our initial problem is constituted by the following system of equations:

d*c _

5 -C=0

Clyo =1 (D
o1 =0

This equation may be solved using the Finite Difference Method, where the
domain [0, 1] is partitioned into the certain number n of the subintervals with the
length A, so that x; = (i—1)hfori = 1, ..,n+1 and where the resulting concentration
is noted as C;. Now, we express the partial derivatives of this concentration using
the central differential approximations as

dC Ciy1 —Ciy

=) == 2

(dx),- 2h @
d* is1 —2Ci+ Ci
(o) = == g
dx- /i h

Further numerical solution needs an explicit definition of the boundary condi-
tions like

C1 =1 (4)
Cn+2 - Cn
— =0 5
7 (5)
for x,4, being a fictitious node. Therefore, we solve for C;, i = 1,...,n from the
following linear equations system:
C =1

C3—Q+h)Cr+C; =0

(6)

Cpiz = Q2+ h)Cpi1 +C, =0
Cii2—C,=0

which can be represented as the matrix equation

KC=F (N
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where the coefficients matrix is symmetric and tri-diagonal

1 0 0 0 0 1
1 —-Q2+h? 1 0 0 0
_ 2
K - 0 1 Q+h) 1 0 F- 0 ®
0 0 0 1 -C+r) 1 0
0 0 0 -1 0 1 0

As it is known, the solution to this problem by the FDM has the quadratic con-
vergence since the discretization errors for both first and second order derivatives
equal to O(h?). The solution to the non-linear boundary value problem equivalent
to the reaction-diffusion problem like

d’c 2 3
W =aC+x +ﬁC (9)
with the boundary conditions
CO)=0=C() (10)

may proceed with the discretization nxh in quite a similar way until one can get

Ci =0
{ Civ1 —2C; + Cioy — W2 (aC; + (i — 1)*h* + BC3) = 0 (11)
Cni1=0

As we will see in the next section, we can also provide for the needs of the
stochastic solution the multipoint versions of the Finite Difference Method or apply
the error analysis techniques to determine the accuracy of determination of the
particular probabilistic moments [8].

3. Reaction-diffusion with random parameter

Now, the following problem is to be solved [11]:

d2C(x,
e = Crw) =0

C(x, w)lx=0 = 1 (12)
ey = 0
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where b(w) is the Gaussian random variable with the probability density function
denoted by p(b). The mth order central probabilistic moment of any random func-
tion of this parameter, namely F(b), is defined as

+00
Hm(F(b)) = f (F(b) - E[F(D))" p(b)db (13)

The basic idea of the stochastic perturbation approach follows the classical ex-
pansion idea and is based on an approximation of all input variables and the state
functions of the problem via truncated Taylor series about their spatial expectations
in terms of a parameter £ > 0. For example, in the case of a random concentra-
tion C, the nth order truncated Taylor expansion with random coefficients may be
written as

L0kC

it 14
Obk ’ b=50 14

no ok
Cb)=CH")+ %(Ab)
k=1

The first component in this expansion, C(bY), denotes the mean value of the

concentration parameter C determined for the expectation b = E[b], where Ab =

b — b°. Traditionally, the stochastic perturbation approach to all the physical prob-

lems is entered by the respective perturbed equations of the zeroth, first and suc-

cessively higher orders being a modification of the variational integral formulation.
Hence, there holds

e one zeroth order partial differential equation

aect
—-C"=0 15
2 (15)
e nth order partial differential equation

d_z(ﬁ"_c
dx\ ob"

ocC
b:ho) — Sl = 0 (16)

Having solved those equations for C° and their higher orders, respectively,
(specifically its partial derivatives w.r.t. random input within all discrete points of
the grid), we derive the expressions for the expected values and the other moments
of the concentration function. Since we propose the Finite Difference scheme to
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solve those equations numerically, additionally we need to expand eqn (7) to ob-
tain the Stochastic Finite Difference Method scheme. There holds

e one zeroth equation

K°C? = F° (17)

e one linear equation for the each next perturbation order k

i k ai_Kak_iC‘ = 6k_F (18)
Zi\i) obt bk |y O

which need to be solved all consecutively to determine the probabilistic character-
istics of the random output. In order to calculate the expected values and higher
order probabilistic moments of the random field C(x; b) with x denoting the only
spatial coordinate in this system, the same Taylor expansion is employed for the
definitions of its probabilistic moments; there holds

n

+00 +00 k
E[C(b)] = f C(b)p(b)db = f (C(bo)+z %(Ab}k

o k=1

dc
— b)db (19
o | e (19

If there is a high random dispersion in the input random variable and the sym-
metric probability density function is chosen, then the generalized expansion sim-
plifies for n = 2m to

2k ZkC

n 0
E[C(h)] =ChH+ > =2~
; 2k! Ob2%k ‘b

Hok(b) (20)
=p0
where (o (b) denote 2kth order probabilistic moment of the variable . When the
probability density function is defined as the Gaussian one with the standard devi-
ation o(b), we obtain additionally

pors1(B) = 0, pog(b) = 2k — !0 (b) (21)

Using such an extension of the random input, a desired efficiency of the ex-
pected values can be achieved by the appropriate choice of the perturbation param-
eter and maximum order corresponding to the particular input probability density



38 Reaction-diffusion Problems with Random Parameters. . .

function type, probabilistic moments interrelations, acceptable error of the compu-
tations, etc. This choice can be made reasonably by the comparative studies with
the Monte-Carlo simulations or theoretical results obtained from the direct (i.e.
symbolic) integration. Using a definition (13) in a conjunction with the expansion
(14) one may provide the second order formula for the third order central proba-
bilistic moment u3(C(b)), where, using (19), one obtains

u3(C(b)) =
oo aC g ,0°C 3
[ § (s(Ab - EABD G|+ S b - EAB) o ‘b:bo) p(b)db =
(. ,0C & ,0°C 3
- I } (sAb% L+ S = ELAB o h:ho) p(b)db 22)

Quite similarly one derives the fourth central probabilistic moment of the ran-
dom concentration in terms of the input random variable b as

ua(C(b)) =
s

+ S—Z(Ab — E[Ab))?
o 2 ob?

= f ) (s(Ab - E[Ab])?)_i

4
\ ) p(bydb =

) b=b"

oo aC &2 2C 4

- A2 & (Ab - E[Ab 2—‘ b)db 23

f: (8 b b:b0+ 2( [AD]) P b:bo) p(b) (23)

[ee)

4. Numerical illustration

The computational domain is partitioned into 20 equal subintervals with the
random length, so that the expected values are equal to E[b] = 1 and E[h] = 0.05.
Following the properties of random variables one can easily notice that the coef-
ficients of variations of both random variables are equal — they are both assumed
to be truncated Gaussian random variables. First we consider the case, where the
perturbation parameter value is adopted as equal to 1; as one may notice from Figs.
2 and 3, the 6th order perturbation expansion appeared to be quite sufficient in this
particular case.
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Figure 2. The expected values for the concentration C
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Figure 3. The standard deviations for the concentration C

The results of the analysis are presented in Figs. 2 — 5 — the first graph contains the
expected values, next — the standard deviations of the concentration computed for
the upper boundary of the domain (x = /). The third and the fourth figures show in
turn the variability of the third and the fourth central probabilistic moments with
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Figure 4. The third central probabilistic moments for the concentration C
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Figure 5. The fourth central probabilistic moments for the concentration C

respect to the input coefficient of variation a(b) € [0.0,0.3]. The lower limit
of this interval is adequate to the deterministic solution, so that the expectations
become the deterministic solution and the remaining moments equal O for this par-
ticular value. Higher orders than the sixth are omitted here for a brevity of the pre-
sentation since they do not introduce any extra components to this analysis. As it
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Figure 7. The standard deviations for the concentration C = C(g, @)

is clear (and can be initially presumed), all central probabilistic moments increase
together with an increase of the input coefficient of variation. All those functions
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have also positive second derivative with respect to a(b); the exception is noticed
in the case of standard deviation, which (equals square root of the second central
probabilistic moment) shows almost linear dependence on a(b). Intuitive interpre-
tation of those figures is that the higher uncertainty in the upper edge location,
the larger probabilistic moments computed. As we noticed before, the probabilis-
tic convergence of this method is rather fast, at least for the first two probabilistic
moments (see Figs. 2 and 3). All of those moments as well as the probabilistic
coeflicients recovered algebraically from the values collected in Figs. 2 —5 may be
further used in reliability analysis of the first or second order.
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Figure 8. The third central probabilistic moments for the concentration
C=C(g,)

Next, the first four probabilistic moments are computed and presented with re-
spect to two parameters — the coeflicient of variation of the input random variable
(as above) and, additionally, the perturbation parameter. There are in turn — the
expected values (Fig. 6), the standard deviation (Fig. 7), the third (Fig. 8) and the
fourth central probabilistic moments (Fig. 9). All the surfaces presented in those
figures lead to the conclusion that the coefficient of variation seems to be more de-
cisive for all the probabilistic moments variations than the perturbation parameter
(for the ranges given on both figures). Further, it is apparent that the variations of
the expected values and the standard deviations with respect to the perturbation pa-
rameter are almost linear, while for the third and fourth probabilistic moments this
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Figure 9. The fourth central probabilistic moments for the concentration
C=C(gq)

interrelation become highly nonlinear. Let us note that, in the same time, the in-
terrelation between the expected values of the solution and the input coefficient of
variation remains nonlinear, while between the solution’s standard deviation and
this input coefficient — linear; therefore, the influences of those two parameters
on the final probabilistic moments remain fully independent. As one may expect,
the perturbation parameter, the coefficient of random input and the solution prob-
abilistic moments increase together and there is no exception from this rule in our
computational experiment evidence; this type of monotonous behavior follows di-
rectly the analytical relations derived above. Let us underline that the polynomial
expansions for the probabilistic moments of the FDM solution are available for the
computer algebra software applications only, unlike for the FORTRAN implemen-
tations of the SOSM methodology [12].

5. Conclusions

The generalized Stochastic Finite Difference Method seems to be the effi-
cient probabilistic computational tool to model the reaction-diffusion problems
and should be further developed for the nonlinear and unsteady problems, also
for the inhomogeneous domains [13] in 2D [14] or 3D. As it was demonstrated
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before, it can be applied to the problems with physical (mechanical or chemical)
parameters but stochastic boundary waviness, although essentially more compli-
cated, may be also modeled. It is seen that the stochastic methodology described
above may be applied directly to the implementations of the FDM on the irregular
grids also [15].

As it was documented above, the application of the symbolic algebra envi-
ronment enabled for the solution to the generalized stochastic-perturbation based
discrete equations system as well as to introduce the perturbation parameter € into
the final solution expansions and the resulting probabilistic moments. Thanks to
the very extended linear algebra tools in MAPLE (as well as the remaining CAS
programs) we can provide a solution to the linear equations systems with both
symmetric and non-symmetric coefficients matrix using the same algorithm for
the stochastic perturbation scheme. Such a dual implementation is completely un-
available for the academic software (Finite Difference Method or Finite Element
Method) coded traditionally in FORTRAN or C++, for instance.
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