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The aim of this contribution is to propose a new averaged model for stability 
analysis of thin linear-elastic cylindrical shells having the periodic structure along 
one direction tangent to the shell midsurface. In contrast with the known 
homogenized models the proposed one makes it possible to describe the effect of 
the periodicity cell size on the overall shell behavior ( a length-scale effect ). In 
order to derive the goveming equations with constant or slowly varying 
coefficients the known tolerance averaging procedurc is applied. The comparison 
between the proposed model and the model without the length-scale effect is 
presented. 

I. INTRODUCTION 

In this paper a new average model of cylindrical shells having a periodic structure 
(a periodicaily varying thickness and/or periodically varying elastic and inertial 

properties ) along one direction tangent to the undeformed shell midsurface ylf is 
presented. Shells like that are termed uniperiodic. 

The exact equations of the shell (plate) theory are too complicated to constitute the 
basis for investigations of most engineering problems because they involve highly 
oscillating and often discontinuous coefficients. Thus many different approximated 
modelling methods for periodic (locally periodic) shells and plates have been 
formulated. Structures of this kind are usually described using homogenized models 
derived by means of asymptotic methods. Unfortunately, these models neglect the effect 
of periodicity cell length dimensions on the global structure behavior (the length-scale 
effect ). The alternative nonasymptotic modelling procedure based on the notion of 
tolerance and leading to so-called the length-scale ( or tolerance) models of dynamie 
and stationary problems for micro-periodic structures was proposed by Woźniak in a 
series of papers, e.g. [2,3]. These tolerance models have constant coefficients and take 
into account the effect of a periodicity cell size on the global body behavior. This effect 
is described by means of certain extra unknowns called interna/ or fluctuation variables 
and by known functions, which represent oscillations inside the periodicity cell. The 
length-scale model for stability analysis of cylindrical shells with two-directional 
periodic structure has been proposed in [1]. However, this model is not sufficient to 
analyze stability problems of uniperiodic cylindrical shells, which are not special case 
of those with a periodic structure in both directions tangent to ylf_ 

The aim of this contribution is to derive an averaged model of uniperiodic 
cylindrical shell, which has constant coefficients in direction of periodicity and 
describes the effect of a cell size on the global shell stability. This model will be derived 
by using the tolerance averaging procedure proposed by Woźniak and Wierzbicki in 
(3].The proposed tolerance model will be compared with a simplified (homogenized) 
one in which the length-scale effect is neglected. 
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2. PRELIMINARJES 

In this paper we will investigate thin linear-elastic cylindrical shells with periodic 
structure along one direction tangent to 'M and slowly varying structure along the 
perpendicular direction tangent to 'M . 

Denote by Q C R2 a regular region of points @ '= ( €) 
1
, (9 2 

) on the oe &-piane, 
e 1

, e 2 being the Cartesian orthogonal coordinates on this piane and let E3 be the 
physical space parametrized by the Cartesian orthogonal coordinate system Ox 1x2x3 

• 

Let us introduce the orthogonal parametric representation of the undeformed smooth 
cylindrical shell midsurface 'M by means of : 
)11 :== {X= ( x1,x2,x3

) E E3 
: X= X ( €J 1,@ 2 

), @ E Q }, where x( €) 1,€) 2
) is a position 

vector of a point on 'Jvl having coordinates e 1, e 2. Throughout the paper indices a,p, ... 
run over 1,2 and are related to the midsurface parameters e 1

, e 2 
; indices A,B, .... run 

over 1,2, ... ,N, summation convention holds for all aforesaid indices. To every point 
x=x(®), ®EO we assign a covariant base vectors aa= X,a and covariant midsurface 
first and second metric tensors denoted by aap, bap , respectively, which are given as 
follows : aafl = aa · ap , bap = n · aa,fl , where n is a unit normal to .'.M. Let ~9) 
stand for the shell thickness. We also define t as the time coordinate. Taking into 
account that coordinate lines &=const. are parallel on the oe Er-plane and that €) 2 is 
an arc coordinate on .'.M we define l as the period of shell structure in e 2 -direction. The 
period l is assumed to be sufficiently large compared with the maximum shell thickness 
and sufficiently small as compared to the midsurface curvature radius R as well as the 
characteristic length dimension L of the shell midsurface along the direction of shell 
periodicity. Under given above assumptions for period l the shell under consideration 
will be referred to as a mezostructured shell, cf.[2], and the period / will be called the 
mezostructured length parameter. We shall denote by A== {O} x ( -l/2, l/2 ) the straight 
line segment on the Oe' &-piane along the Oe:: -axis direction, which can be taken as 
a representative cell of the shell pe1iodic structure (the periodicity cell). To every 
®E O an arbitrary cell on O@ &-plane will be defined by means of: A(®)=®+A, 
®E nA, nA :={®En: A(®) c n}, where the point 0EOA is a center of a cell A(®) 

and nA is a set of all the cell centers which are inside n. 
A function !(®) defined on nA will be called A-periodic if for arbitrary but fixed 

(9 
1 and arbitrary €J ::, (9 

2± / it satisfies condition: j( €J 1, (9 
2)= fi €J 1

, €J 2± /) in the 
w hole domain of its definition and it is not constant. 

It is assumed that the cylindrical shell thickness as well as its materiał and inertial 
properties are A-periodic functions of e 2 and slowly varying functions of e 1

• Shells 
like that are called uniperiodic, moreover under given above assumptions for period l 
they are referred to mezostructured shells. 

For an arbitrary integrable function cp(·) defmed on n, following [3], we define the 
averaging operation, given by 

<<p >(®)= ! f<r(@ 1,'P 2 )d'P 2
, ®=(e 1,e 2)enA. Forafunction<p,whichis 

/ A(0) 

A-periodic in e 2 this formula leads to < <p >( e 1
). If the functions <p is A-periodic in 

e 2 and is independent of e 1 
, its averaged value obtained from the above formula is 

constant. 
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Our considerations will be based on the simplified linear Kirchhoff-Love theory 
of thin elastic shells. 

Let ua(E>,t), w(®,t) stand for the midsurface shell displacements in directions 
tangent and normal to 511, respectively. We denote by &a13(0,t), Ka13(0,t) the membrane 
and curvature strain tensors and by na13(0,t), ma13(0,t) the stress resultants and stress 
couples, respectively. The properties of shell are described by 2D-shell stiffness 
tensors DapyB(E>), Baf3yo(0) and let J,i.._0) stand for a shell mass density per rnidsurface 
unit area. Let fu{0,t), 1{0,t) be external force components per midsmface unit area, 
respectively tangent and normal to :M . 

Functions µ(0), Daf3y°(0), BaJ3yS(0) and ~0) are A-periodic functions of B 2 and 
are assumed to be slowly varying functions of e 1 

. 

We denote by N af3 the compressive membrane forces in the shell rnidsurface , 
which satisfy the following equations of equilibrium 
N ap + f f3 = O b N ap + f = O ,a , ap · 

The equations of a shell theory under consideration consist of : 
1) the strain-displacement equations 

Eys = U(y.ó) - byó W , 

2) the stress-strain relations 

3) the equations of equilibrium 
af3 - O n ,a - ' 

Kys = - w,yo , 

af3 b af3 N af3 - O m ,a.J3 + af3 n - w.ap - ' 

(2.1) 

(2.2) 

(2.3) 

In the above equations the displacements u0 = uu(®, t) and w= w(0, t), Sen, are 
the basie unknowns. 

For mezostructured shells, µ(0), DaJ3y°(0) and B013Y°(0), E>eQ, are highly 
oscillating A-periodic functions; that is why equations (2.1 )-(2.3) cannot be directly 
applied to the numerical analysis of special problems. From (2.1 )-(2 .3) an averaged 
model of uniperiodic cylindrical shells having coefficients, which are independent of e 
.:>-rnidsurface parameter and are slowly varying functions of e 1 as well as describing 
the cell size effect on critical forces will be derived. In order to derive it the tolerance 
averaging procedure given by Woźniak and Wierzbicki in [3], will be applied. To make 
the analysis more elear, in the next section we shall outline the basie concepts and the 
main kinematic assumption ofthis approach, following the monograph [3]. 

3. BASIC CONCEPTS 

The fundamental concepts of the tolerance averaging approach are that of a certain 
tolerance system, slowly varying functions, periodic-like functions and periodic-like 
oscillating functions. These functions will be defined with respect to the A-periodic 
shell structure defined in the foregoing section. 
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By a toleranće system we shall mean a pair T=( P, c5( · )), where P is a set of real 

valued bounded functions F( ·) defined on n and their derivatives, which represent the 
unknowns in the problem under consideration (such as unknown shell displacements 
tangent and normal to .M) and for which the tolerance parameters t.F being positive real 
numbers and determining the admissible accuracy related to computations of values of 
F(,) are given; by &is denoted the mapping P 3 F~ &p. 

A continuous bounded differentiable function F(0,t) defined on n is called A­
slowly_varying with respect to the cell A and the tolerance system T, FE SV."-(1), if 
roughly speaking, can be treated (together with its derivatives) as constant on an 
arbitrary periodicity cell A. The continuous function (fi.._·) defined on n will be termed 
a A-periodic-like Junction, <p(-)EPLA(7) , with respect to the cell A and the tolerance 
system T, if for every 0=( e1 ,e2)EQA there exists a continuous A-periodic function 
tpe(,) such that (\i'P=( e1, P' 2)) [li e -~ li~ l => 'f\'P )= ~('P)] , 'P eA(0), and the 
similar conditions are also fulfilled by all its derivatives. It means that the values of a 
periodic-like function <p(·) in an arbitrary cell A(0), 0E QA , can be approximated, 
with sufficient accuracy, by the corresponding values of a certain A-periodic function 
q,0(·). The function <Pe() will be referred to as a A-periodic approximation of q() on 
A(0). Let p(-) be a positive value A-periodic function. The periodic-like function q, is 

called A-oscillating (with the weight p), <ri.._·)EP L~ (T), provided that the condition 

< µq, >(0) =O holds for every 0EOA. 
If FE SVA(1), <ri.._·)EPLA(7) and <A3(,) is a A-periodic approximation of <ri.._·) on 

A(®) then for every A-periodic bounded function /{·) and every continuous A-periodic 
differentiable function h( ·) such that sup { lh( «?, tp 2)1, ( «?, tp 2) EA} s; l , the following 
tolerance averaging relations determined by the pertinent tolerance parameters hold for 
every 0EOA: 
(Tl) (jF) (0) =lf)(0)F(0), (T2) (j(hF),2)(8) =<JFh,2)(0), 
(T3) lf q,) (0) =lf <Pe )(0), (T4) (h (f q,),2) (®) = -lf q, h,2 )(0). 

In the tolerance averaging procedure, the left-hand sides of formulae (Tl)-(T4) 
will be approximated by their right-hand sides, respectively - this operation will be 
called the Tolerance Averaging Assumption. 

The main kinematic assumption of the tolerance averaging method is called 
Conformability Assumption and states that in every periodic solid the displacement 
fields have to conform to the periodic structure of this solid. It means that the 
displacement fields are periodic-like functions and hence can be represented by a sum 
of averaged displacements, which are slowly varying, and by highly oscillating 
periodic-like disturbances, caused by the periodic structure of the solid. 

The aforementioned Conformability Assumption together with the Tolerance 
Averaging Assumption constitute the foundations of the tolerance averaging technique. 
Using this technique the tolerance model of stability problems for uniperiodic 
cylindrical shells will be derived in the subsequent section. 

4. GOVERNING EQUATIONS 

Let us assumed that there is a certain tolerance system T=( 'F, &(·)), where the set <F 

consists of the unknown shell displacements tangent and norma! to 'M and their 
derivatives. From the Conformability Assumption , it follows that the unknown shell 
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displacements uJ·,t), w(·,t) in Eqs.(2.1)-(2.3) have to satisfy the conditions: 
uJ· ,t) EPLA(T) , w(- ,t) EPLA(T). Hence, we obtain what is called the modelling 
decomposition 

uu(· ,t)= Ua.(· ,t)+da(· ,t), w(· ,t)= W(· ,t)+p(· ,t), 
(4.1) 

Ua(· ,t), W(- ,t) E SV.Ą(T), da(· ,t), p(· ,t)E PL~ (T), 

which becomes under the normalizing conditions <µda(· , t)> = <µp( · , t)>=O . 
It can be shown, cf. [3], that the unknown A-slowly varying averaged 

displacements Uu(· ,t), W(· ,t) in C 4.1) are given by : Uu(· ,t)=-<f.1>-1
( &)< µ uu>(· ,t) , 

W(- ,t)-=<µ>- 1
( @)<µw>(· ,t) . The unknown displacement disturbances du(· ,t), p(· ,t) 

in ( 4.1) being oscillating periodic-like functions are caused by the highly oscillating 
character of the shell mezostructure. 

Substituting the right-hand side of(4.l) into C2.3) and after the tolerance averaging 
of the resulting equatio11s, we arrive at the equations 

[<DaPr13 >(e1)CU -b W)+<Daf3yod >(0 t)+b <Daf3r13 p>(0 t)] =0 y,13 y/3 y,ó , yo , ,a , 

(4.2) 

[< saf3yo > ce 1 )W + < Bapyóp > (0 t)] -b [< Daf'>yo > ce 1 )(U -b W)+ ,y6 ,yo , ,af3 ap y,5 yo 

+ < D al~yo d > C0 t) - b < D a',3yl3 p >] - N af3 W = O y,& , y5 ,ap 

Multiplying Eqs.(2.3) 1 and (2.3)i by arbitrary A-periodic test functions d*, p*, 
respectively, such that <µd*>= <µp*>=O, integrating these equations over A(0), -E>EQ/\ , and using the Tolerance Averaging Assumption as well as denoting by da, p 
the A- periodic approximations of da , p , respectively, on A(0), we obtain the 

periodic problem on A(E>) for functions da(e1
, ł/' 2 ,t), p(e 1 ,':P 2 ,t), (&, !P)eA(E>) 

= A( e 1, e ·7), given by the following variational conditions 

- < lf,~D2f3y8 dy,o > + < d• (Dtf3yo dy,o) ,1 > -byo [- < d,; D2f3yo p > + < d*(D1pyo p) ,1 >] = 
• af3y5 • lf3yo =< d,aD > (Uy,s -by6W)-[< d D > (Uy,o -by13 W)J, 1 , 

(4.3) 

< P~22B22r6P.ro > -2 < P,2(B
21

r
6
P,y6).1 > + < p*(B

11
r
6
P,ro),11 > + 

-bap[< p*Da',',rBJy.o > -byó < p•Daf',yBP >] = bap < /Daf',yo > (U.,,5-by5W)+ 

• 2.,,_c5 2[( • B21r6 * B21yo )W • B2tyó W ] - < P.22B ~ > W'.ro + < P.2 >,1 - < P,21 > ,yo+< P.2 > ,yot + 
-{(<p*B1ly6> -2<p"BIIA.6>) +<p* Bllyó>]W +2(<p*BllyB> + ,1 ,I ,I ,11 ,y6 ,I 

- < p~B11yó >)W'.rB1+ < /B''r6 > W:ro1d+N11 < p* > W:11 

An approximate solution to this problem, which may be obtained by the 
orthogonalization method, will be assumed in the form 
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d- l 2 hA( l 2 A 1 2 a (B , lf/ ,t) = e , tp )Qa (B ,e ,t), 

'iicei, p2, t) = gA (ei, ip2 )VA cei, e2, t), A= 1,2, ... , N, 
(4.4) 

with h'\ e1 ,) , g\ e1 ,) as postulated A-periodic shape functions such that 
< µh A > ( (9 1 

) = < µg A > ( (9 I ) =O, max I h A ( (9 I , tp 2 ) I ~ / , max I g A ( (9 I , tp 2 ) I :$; z2, 
hA, lh,1, r 1gA, g,~, /g,12E 0(/) and with Q;ce1,e2,t),VA(e1,e2,t) as new 

unknowns called fluctuation variables, being A-slowly varying functions in 8 2
, i.e. 

Q; ,VA E SVA (T). 

Substituting the right-hand sides of (4.4) into (4.2) and (4.3) and setting d*= 

hA(e1,P2
), p*= gA(e1,lf/ 2

), A=l,2, ... ,N, in (4.3), on the basis of the Tolerance 

Averaging Assumption we arrive at the tolerance fluctuation variable model of stability 
problems for unperiodic cylindrical shells. Under extra denotations 

LAap =r2b <DapyógA >Baf3y6 =<Bar,y6 >KAal3 =<Baf3yogA > - yo , - , - , yo , 

K Aaf3 = z-l < Bar,115g1 >, i(Aar, = z-2 < saPll gA >, cAB/Jr =< Da/Jyó hA h~ >, 
,o ,a ,u 

cABPr =rl <Daf]ylhAhB > pABP =r2b <DapyohAgB > (4.5) - .a , y'5 ,a , 

cAB/Jr =r2 <Dl/JylhAhB >, pABf', =Z-3byó <Dlf',yóhAgB >,RAB =<Baf',yóg,!r,g,~6 >, 

LAB = r4b b . < Dar,y6gAgB > J?.AB = z-1 < B1(3y6gAgB > - ap yo ' - . ,p , yo , 

RAB = z-2 < Buro g.~6gs >,RAB = z-3 < B11311 g,~gB >, 

f?.AB =z-4 <BllllgAgB >, sAB =z-2 <Blylóg.~g.~ >, 

this model is rcpresented by : 
1} the constitutive equations 

Nar, =J5a.f3y6(U -b W)+DBaf3yQB +zDBaf',yQB -l2LBaPvB, 
y,ó yó y y,I 

Map = jjaf3yow + KBaPvB + 2/K BaPvB + [2 i(BaP vB' 
,y6 ,I ,11 

HAP = nAf3yó(U -b W)+CABf3yQB +1cABf3yQB -/2pABPvB, 
y,o 1s r r,1 

HAP =/DAf3y6(U -b W)+!CABJ3yQB +z2c;ABf3yQB -[3pABPvB (4.6) 
- y,6 yo _ r - y,1 , 

GA =-!2LAyó(U -b W)+KAaPw -/2pAByQB -/3pAByQB + 
- y ,6 y6 ,ap y . - y ,1 

+ (RAB + z 4 I AB v s + 211? AB v n + 1 z RAB v B , 
-- ,1 ,11 

GA =l2KAaPw +l2RABvB +213RABvB +l4RABvB' ,ap ,l ,ll 

G A = lK Aa/3 w + IR AB V B + 2/ 2 s AB V B + z 3 R AB V B ,a/3 __ ,l ,I I 

2) the system of three averaged partia! differentia/ equations of equilibrium for 
averaged displacements Ua(0, t ), W(0, t) 
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Na/J = O 
,a ' (4.7) 

3) the system of 3N partia! differentia! equations for the fluctuation variables 

Q(~ ( 0,t ), v8( 0,t), B=I,2, ... ,N, 

A -A --A li A 
G + G,l I - 2G,l + N < g >W,11 = o, A, B = 1,2, ... , N. (4.8) 

The above model has a physical sense provided that the basie unknowns 

U a (0, t),W(®, t),Qj (®, t),V A(®, t) E SV 11 (T), A=I ,2, ... ,N, i.e. they are A-slowly 

varying functions of @ 2 -midsurface parameter. 

Taking into account (4.1) and (4.4) the shell displacement fields can be 
approximated by means of formulae 

where the approximation 

hAOQt(·,t), gA(·)VA(,,t). 

~ depends on the number of terms 

The characteristic features of the derived model arc: 
1) The model takes into account the effect of the cell size on the overall shell 
behavior; this effect is describes by underlined coefficients dependent on the 
mezostructure length parameter / . 
2) The model equations involve averaged coefficients which are independent of 

@
2 -midsurface parameter (i.e. they are constant in direction of periodicity) and are 

slowly varying functions of e . 
Assuming that the cylindrical shell under consideration has materiał and 

geometrical properties independent of & we obtain governing equations (4.7)-(4.8) 
with constant averaged coefficients. Moreover, in this case the mode-shape functions 
h\ g/1, A=l,2, ... ,N, are also independent of e1 - midsurface parameter. 

In the ncxt section the homogenized model of uniperiodic cylindrical shells will be 
derivcd as a special case ofEqs.(4.6)-(4.8). 

5. HOMOGENIZED MODEL 

The simplified model of uniperiodic cylindrical shells can be derived directly 
from the tolerance model (4.6)-(4.8) by a limit passage !~O, i.e. by neglecting the 
underlincd terms which depend on the mezostructure length parameter l . Hence, we 
arrive at the homogenized shell model govemed by 

1) equilibrium equations 

af3ro b W) O Ba/Jrciw b DaPr6 (U b W) NaPw -O Den· (U r,sa - ro ,a = , ef! ,apyo - ap ef! r,6 - ro + ,a/J - , 
(5.1) 

405 



2) constitutive equations 

N a/J - Da/Jr<> (U b W) 
- ef! r ,o - ro , Ma/J = -Ba/Jyó W 

ef! ,ro (5.2) 

where Daf]yó = jja/Jyó _ DAafJ17 GAB DBl;yó Be~f!.r8 == safJrJ _ KAa/J EAB K Br<>, with 
ef! 17Ć, ' :11 

cAB and EAB defined by cABcBC/Jr = gr t5AC EAB RBC = 5AC 
aj] af] a , · 

The obtained above homogenized model govemed by Eqs.(5.1),(5.2) is notable to 
describe the length-scale effect on the overall shell behavior being independent of the 
mezostructure length paramcter l . 

6. FINAL REMARKS 

The subject-matter of this contribution is a thin linear-elastic cylindrical shell 
having a periodic structure in one direction tangent to the undeformed shell midsurface 
5l-t . Shells of this kind are termed uniperiodic. For these shells the equations govemed 
of the Kirchhoff-Love shell theory involve highly oscillating periodic coefficients. In 
order to simplify the Kirchhoff-Love shell theory to the form which can be applied in 
engineering problems and also takes into account the effect of a periodicity cell on the 
overall shell behavior a new model of thin uniperiodic cylindrical shells has been 
proposed. In order to derive it the tolerance averaging procedure given by Woźniak and 
Wierzbicki in [3] was applied. This model called the tolerance model is represented by a 
system of partia! differentia! equations (4.7)-(4.8) with coefficients, which arc constant 
in direction of periodicity. The basie unknowns are: the averaged dfaplacements Ua, W 

and the fluctuation variables Q; ,VA ,A= 1,2,. .. , N, which have to be slowly varying 

functions with respect to the cell and certain tolerance system. In order to obtain the 

goveming equations the periodic shape functions h A, gA ,A= 1,2, ... , N, should be 

postulated. In contrast with the homogenized models the proposed one makes it possible 
to describe the ejfect of the periodicity cell on the critical forces (the length-scale 
effect). Problems related to applications of the proposed Eqs.( 4.6)-( 4.8) to investigate 
the critical forces of uniperiodic cylindrical shells are reserved for a separate paper 
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