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Preface

Lie algebroids appear in many structures related to geometry. Although
the motivations for de�ning the concept of Lie algebroid come from Lie
groupoids [74], on the one hand, we can view them as some general-
izations of a tangent bundle or integrable distribution on a di¤erential
manifold, and on the other hand, as a generalization of Lie algebra.
Further, the structures of the Lie algebroid can be generalized to, for
example, structures in which the Lie bracket does not satisfy the Ja-
cobi condition or at all the structure without the Lie bracket, however,
equipped with a morphism acting from a given vector bundle into a
tangent bundle (called an anchor). A vector bundle equipped with an
anchor allows us to introduce the concept of connection. Our consid-
erations focus on linear connections and their properties, and on the
existence of a connection in a given vector bundle compatible with an
existing metric structure.
The �rst part contains examples of Lie algebroids necessary to de-

scribe the discussed concepts. In the second part, we examine linear
connections on Lie algebroids. We remark that linear connections can
be considered even on anchored vector bundles. We de�ne an exte-
rior derivative operator related to a given connection in the case of an
anchored structure equipped with a skew-symmetric bracket. We also
note that the torsion of a connection is closely related to the exterior
derivative operator, the square of which, in turn, is related to the cur-
vature of the connection. This leads immediately to the �rst Bianchi
identity. As the Bianchi identity, we interpret the Jacobi identity for
the skew-symmetric bracket being simultaneously the skew-symmetric
part of the connection. The considerations regarding the characteris-
tic classes are related to metric structures. Therefore, the subject of
our research are also connections compatible with metric structures. In
particular, we present a generalization of the fundamental theorem of
Riemannian geometry, which shows the importance of determining the
torsion tensor for the uniqueness of such connections as, for example,
the Levi-Civita connection. The �nal goal of our considerations is to



de�ne the secondary characteristic classes as elements from the image
of some characteristic homomorphism. The given construction of the
characteristic homomophisms generalizes some known approaches to
pairs of Lie algebroids equipped with �at connections to connections
with the speci�c curvature tensor with values in the kernel of given
reduction.
We study the properties of the secondary characteristic homomor-

phism. In particular, we also study a certain universal homomorphism
for pairs of Lie algebroids and connections of Lie algebroids. The im-
portance of the considered characteristic classes consists in providing
obstructions to the compatibility of the connection with the structure
of the subalgebroid. In the case of the Lie algebroid of vector bundle al-
gebroid and its Riemannian reduction, the non-triviality of a secondary
characteristic homomorphism is simply an obstruction to compatibility
of the connection with a given Riemannian metric.

×ód́z, Autumn 2021 Bogdan Balcerzak
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Part I

Lie algebroids





1. Lie algebroids. De�nitions. Examples

This section discusses the concept of a Lie algebroid. We will give
basic examples of Lie algebroids and their properties. Simultaneously,
we will also discuss more general structures such as an anchored vec-
tor bundle or an almost Lie algebroid structure. We show that some
geometric objects can be considered on these generalized structures.

1.1 Lie algebroid. The Atiyah sequence

De�nition 1.1.1. An anchored vector bundle (A; %A) over a manifold
M is a vector bundle A over M equipped with a homomorphism of
vector bundles

%A : A �! TM

over the identity, which is called an anchor.

De�nition 1.1.2. Let (A; %A) be an anchored vector bundle over a
manifold M . If in the space � (A) of smooth sections of A we have
R-bilinear skew-symmetric mapping [�; �] : � (A) � � (A) �! � (A)
associated with the anchor with the following Leibniz type derivation
law

[X; f � Y ] = f � [X; Y ] + (%A �X)(f) � Y (1.1)

for X; Y 2 � (A), f 2 C1(M), we say that (A; %A; [�; �]) is a skew-
symmetric algebroid over M .

De�nition 1.1.3. A skew-symmetric algebroid (A; %A; [�; �]) over M
with the anchor preserving [�; �] and the Lie bracket [�; �]TM of vector
�elds on M , i.e.,

%A � [X; Y ] = [%A �X; %A � Y ]TM
for X; Y 2 � (A), is called an almost Lie algebroid.
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De�nition 1.1.4. The Jacobiator of the bracket [�; �] in a skew-symmetric
algebroid (A; %A; [�; �]) is a map Jac[�;�] : � (A)�� (A)�� (A) �! � (A)
given by

Jac[�;�](X; Y; Z) = [[X; Y ]; Z] + [[Z;X]; Y ] + [[Y; Z]; X]

for X;Y; Z 2 � (A). We say that [�; �] satis�es the Jacobi identity if its
Jacobiator is identically zero.

De�nition 1.1.5. Any skew-symmetric algebroid (A; %A; [�; �]) over a
manifold M in which [�; �] satis�es the Jacobi identity is called a Lie
algebroid over M .

De�nition 1.1.6. By a homomorphism of Lie algebroids (A; %A; [�; �]A)
and (B; %B; [�; �]B), both over the same manifold M , we mean a homo-
morphism of vector bundles H : A! B satisfying

H � [X; Y ]A = [H �X;H � Y ]B

for any X; Y 2 � (A), and

%B �H = %A;

i.e., the following diagram commutes

A B-H

TM:

%A
@
@
@@R

%B
�

�
��	

De�nition 1.1.7. We say that a homomorphism H of Lie algebroids
(A; %A; [�; �]A) and (B; %B; [�; �]B), both over the same manifold M , is
their isomorphism if H is simultaneously isomorphism of vector bun-
dles A and B. If there exists an isomorphism of Lie algebroids A and
B, we say that these Lie algebroids are isomorphic.

Using the Jacobi and the Leibniz identities, Herz, cf. [38], [39],
showed that the representation

� : C1(M) �! EndC1(M)(� (A))

given by

�(f)(X) = f �X
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for f 2 C1(M); X 2 � (A), is faithful, and, in consequence, the anchor
induces a homomorphism of Lie algebras

Sec %A : � (A) �! � (TM); X 7�! %A �X

(cf. [30]). Therefore, %A is a homomorphism of Lie algebroids (A; %A; [�; �]A)
and TM with the identity as an anchor and the Lie bracket of vector
�elds on M .
If a Lie algebroid (A; %A; [�; �]A) over a manifold M is regular, then

ker %A and Im %A are vector bundles. It follows that

0 ���! ker %A ���! A
%A
���! Im %A ���! 0 (1.2)

is a short exact sequence.

De�nition 1.1.8. A Lie algebroid (A; %A; [�; �]A) over a manifoldM is
called regular over (M; Im %A) if the anchor is a constant rank.

De�nition 1.1.9. The short exact sequence (1.2) for a given regular
Lie algebroid is called its Atiyah sequence.

De�nition 1.1.10. A Lie algebroid is called transitive if its anchor is
an epimorphism of the vector bundles.

Lemma 1.1.1. Let (A; %; [�; �]) be a Lie algebroid over a manifold M .
If X;X 0; Y 2 � (A) and XjU = X 0

jU for some open subset U �M , then

[X; Y ]jU = [X
0; Y ]jU :

Proof. Let x 2 U . Take f 2 C1(M) that separates x in U , i.e., there is
an open set B � U such that x 2 B, f � 0, f jB = 1, and f j(M nU) =
0. Then,

0 = [0; Y ](x) = [f � (X �X 0); Y ] (x)

= f(x) � [X �X 0; Y ] (x)� (% � Y )x(f) � (X �X 0)(x)

= [X �X 0; Y ] (x)

= [X; Y ] (x)� [X 0; Y ] (x):

Corollary 1.1.1. Let (A; %; [�; �]) be a Lie algebroid over a manifold
M . If X;X 0; Y; Y 0 2 � (A), XjU = X 0

jU and YjU = Y 0
jU for some open

subset U �M , then

[X;Y ]jU = [X
0; Y 0]jU :
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Lemma 1.1.2. Let (A; %; [�; �]) be a Lie algebroid over a manifold M ,
x 2M , and let ker %x denote the kernel of %x : Ax �! TxM . In ker %x
there exist a Lie algebra structure with a Lie bracket [�; �]x de�ned in
such a way that

[�; �]x = [X; Y ] (x)

if �; � 2 ker %x satisfy � = X(x), � = Y (x) for some X; Y 2 � (A).

Proof. Let x 2M , �; � 2 ker %x � Ax. Take sections X;X 0; Y of A such
that

� = X(x) = X 0(x) and Y (x) 2 ker %x:

There are f1; : : : ; fk 2 C1(M), X1; : : : ; Xk 2 � (A) satisfying

(X �X 0)jU =
 

kX
j=1

fj �Xj

!
jU

for some open subset U � M such that x 2 U and fj(x) = 0 = gj(x)
for any j = 1; : : : ; k. Lemma 1.1.1 implies

[X �X 0; Y ](x) =

"
kX
j=1

fj �Xj; Y

#
(x)

=
kX
j=1

fj(x) � [Xj; Z] (x)�
kX
j=1

(% � Y )x (fj) �Xj(x) = 0

since fj(x) = 0 for j = 1; : : : ; k and Y (x) 2 ker %x. Hence,

[X;Y ](x) = [X 0; Y ](x)

for any Y 2 � (A) such that Y (x) 2 ker %. Consequently, if Y; Y 0 2
� (A) and additionally Y (x) = Y 0(x) = �, we have

[X;Y ](x) = [X 0; Y ](x) = �[Y 0; X 0](x) = [X 0; Y 0](x):

De�nition 1.1.11. Let (A; %; [�; �]A) be a Lie algebroid over a manifold
M , x 2 M . The Lie algebra (ker %x; [�; �]x) is called the isotropy Lie
algebra of (A; %; [�; �]A) at x.
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Let us recall the de�nition of Lie algebra bundle.

De�nition 1.1.12. A Lie algebra bundle (LAB) is a vector bundle
L

p�! M over a manifold M together with a skew-symmetric map
[�; �] : � (L) � � (L) �! � (L) such that each [�; �]x : Lx � Lx �! Lx
is a Lie algebra bracket and L admits a set of local trivializations
f i : Ui � g �! LUig in which each  i;x : g ! Lx is a Lie algebra
isomorphism.

Theorem 1.1.1. (cf. [61, Theorem 1.4]) Let (A; %A; [�; �]A) be a tran-
sitive Lie algebroid over a manifold M , i.e., a Lie algebroid with the
Atiyah sequence

0 ���! g ���! A
%A
���! TM ���! 0;

then g is a Lie algebra bundle.

The notion of Lie algebroid was discovered as the in�nitesimal part
of a di¤erentiable groupoid by Pradines [74]. Note that Lie algebroids
are simultaneous generalizations of integrable distributions (in partic-
ular, tangent bundles) on the one hand, and Lie algebras on the other.
We will present some Lie algebroids in the following sections.
Some geometric objects, such as connections, can be de�ned on

vector bundles with an attached anchor. Hence some considerations
will be carried out in anchored bundles. Anchored bundles equipped
with additional structures such as a bracket in the module of sections
of a given bundle have been the subject of studies by Marcela Popescu
and Paul Popescu, [69], [70], [71], [73] (these are only some of them).
In the latest, cf. [72], they also propose Chern classes for almost Lie
algebroids. Let us recall that a skew-symmetric bracket in almost Lie
algebroids does not necessarily satisfy the Jacobi identity, which is the
main di¢ culty in de�ning the appropriate classes.
The idea of skew-symmetric algebroids was presented by Kosmann-

Schwarzbach and Magri in [46] in the case of �nitely generated pro-
jective modules over commutative and associative algebras with unit
under the name pre-Lie algebroids. Skew-symmetric algebroids (under
the name pre-Lie algebroids) were examined by Grabowski and Ur-
bański in [33], [34], where a concept of generalized algebroids, which
play an important role in analytical mechanics, was also introduced.
Using general algebroids instead of Lie algebroids, one can describe
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a larger family of systems, both in the Lagrangian and Hamiltonian
formalisms [29], [28].
There are several equivalent approaches to Lie algebroids in the

sense that the existence of one structure determines the existence of
the other (cf. [33], [34], [35], [31]). In particular, the structure of the
Lie algebroid (A; %A; [�; �]A) is equivalent to the existence of a linear
Poisson structure on A� [16] (see [57] for the linear Poisson structure
on g� where g is a �nite dimensional Lie algebra).

1.2 Lie algebroid of a principal bundle

The structure of the algebroid described here was actually introduced
by Atiyah in his a study on the existence theory of complex analytic
connections [2]. This structure in the context of Lie algebroids was
initially studied independently by Mackenzie [61] and Kubarski [49],
and next by Grabowski, Kotov, and Poncin [32].
Let (P; �;M;G;R) be a smooth principal G-bundle over a smooth

manifold M with the projection � : P �! M and the right action
R : P �G �! P of G on P . Denote the Lie algebra of G by g. Let Rg

denotes the right multiplication by g 2 G. Then

RT : TP �G �! TP; (v; g) 7�! (Rg)� v

is a right action of G on TP . Let us denote by

A(P ) = TP=G

the space of all orbits of this action. Let [v] denote the orbit of RT

through v2 TP . In the space A(P ) we have a structure of a vector
bundle with the projection

p : A(P ) �!M; [v] 7�! �(z); v 2 TzP:

Let �P : TP �! P be the tangent bundle projection. For any x 2
M , in the �bre p�1(x) there is a unique real vector space structure
satisfying

[v] + [w] = [v+ w]

and

r � [v] = [r � v]
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if v,w2 TP , �P (v) = �P (w), r 2 R. Let

�A : TP �! A(P ); v 7�! [v]

be the mapping which to v2 TP assigns the orbit [v] of the action RT .
For any z 2 P the mapping

�Aj z : TzP �! A (P )�(z) ; v 7�! [v]

is an isomorphism of vector spaces [49].

Lemma 1.2.1. [49] A local trivialization ' : U � G ! ��1(U) of P
determines a dyfomorphism 'A : TU � g �! p�1(U) given by

(v; a) 7�!
�
'� (x;e)(v; a)

�
for (v; a) 2 TxU � g: (1.3)

Lemma 1.2.2. [49] The following diagram commutes

TP A(P )-
�A

TU � TG TU � g-idTU ��R

?

'�

?

'A

where �R 2 
1(G; g) is the cannonical right-invariant 1-form on G,
i.e., �R

g : TgG �! TeG (g 2 G, TeG = g) is given by

�R
g (v) =

�
r�1g
�
� e (v) for v 2 TgG;

where rg : G �! G is the right translation by g 2 G in the group G.

Lemma 1.2.3. [49] Let 'j : Uj � G �! ��1(Uj) (j = 1; 2) be lo-

cal trivializations in the bundle P . Then
�
'A1
��1

(p�1(U1 \ U2)) and�
'A2
��1

(p�1(U1 \ U2)) are open subsets of T (U1 \ U2)� g. Moreover,��
'A1
��1 � 'A2 � (v; a) = �v; �R(h�v) + AdG(h(x))(a)

�
;

where x 2 U1 \ U2, (v; a) 2
�
'A2
��1

(p�1(U1 \ U2)), h : U1 \ U2 �!
��1(U1\U2) is a smooth mapping such that ·ze '2(x; e) = '1(x; e) �h(x)
and AdG : G �! GL (g) is de�ned by AdG(g) = (� g)� e (� g : G �! G
is given by x 7�! g � x � g�1).
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Corollary 1.2.1. The above lemma shows that the transition func-
tions for 'Aj are smooth. From the above considerations we conclude
that there is exactly one di¤erential manifold structure in A(P ) and
(A(P ); p;M) is a vector bundle with a system of local trivializations
'A : TU � g �! p�1(U) de�ned by (1.3).

Next, consider

%A(P ) : A(P ) �! TM; [v] 7�! ��(v); v 2 TP:

For every section � of the vector bundle A(P ) there exists exactly one
right-invariant vector �eld �0 2 XR(P ) such that

[�0(z)] = ��(z):

The map

H : � (A(P )) �! XR(P ); � 7�! �0

is an isomorphism of C1(M)-modules. The inverse mapping to it is

H�1 : XR (P ) �! � (A(P )); X 7�! X0;

where X0 (x) = [X (z)] for x 2M; z 2 Px [49].
In � (A(P )) we have the structure of a real Lie algebra with the

bracket [[�; �]] given in such a way that

[[�1; �2]]
0 = [�01; �

0
2] for �1; �2 2 � (A(P ));

i.e.,

[[�1; �2]] = H�1([�01; �
0
2]) for �1; �2 2 � (A(P )):

The triple
�
A(P ); %A(P ); [[�; �]]

�
is a Lie algebroid over M called a Lie

algebroid of the principal bundle, and the Atiyah sequence of�
A(P ); %A(P ); [[�; �]]

�
is

0 ���! ker %A ���! A(P )
%A(P )

���! TP ���! 0

where ker %A is isomorphic to the adjoint bundle P �G g associated to
the principal G-bundle P with the adjoint action of G on P via the
mapping

� : P �G g �! ker %A; [z; v] 7�! [Az�(v)] ;

and where Az : G! P , Az(a) = za (cf. [61], [49]).
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1.3 Lie algebroid of a vector bundle

In this section we will discuss the Lie algebroid of a vector bundle. We
present a construction of the appropriate vector bundle indicating local
trivializations [49], [51]. Moreover, we give other equivalent approaches
to the Lie algebroid of a vector bundle.
Let E be any real vector bundle of rank r over a base manifold M

of dimension m with the standard �bre V and the bundle projection
p : E �! M . For x 2 M , let A(E)x be the space of all linear homo-
morphism l : � (E) �! Ex such that there exists a vector u 2 TxM
with the property

l(f � �) = f(x) � l(�) + u(f) � �x (1.4)

for any � 2 � (E) and f 2 C1(M). Remark that the vector u 2 TxM
is uniquely determined by l 2 A(E)x. In fact: Let u1; u2 2 TxM satisfy

l(f � �) = f(x) � l(�) + u1(f) � �x;
l(f � �) = f(x) � l(�) + u2(f) � �x

for any � 2 � (E) and f 2 C1(M). Thus,

0 = l(f � �)� l(f � �) = u1(f) � �x� u2(f) � �x = (u1(f)� u2(f)) � �x

for any � 2 � (E) and f 2 C1(M). Taking � 2 � (E) satisfying �x 6= 0
we obtain u1 = u2.
Take the disjoint union

A(E) =
G
x2M

A(E)x

and

� : A(E) �!M

such that �(l) = x if and only if l 2 A(E)x.
Let  : U � V �! p�1(U) be a local trivialization of the bundle E.

For � 2 � (E), let � denote the mapping

� : U �! V; x 7�!  �1x (�x): (1.5)

Let x 2 M . Remark that if sections �; � 2 � (E) are equal on some
open set O � M , and x 2 O, then for any l 2 A(E)x, we have the
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equality l(�) = l(�). For each u 2 TxU and a 2 End(V ), de�ne the
mapping

 (u; a) : � (E) �! Ex,  (u; a)(�) =  x(u(� ) + (a � � )(x)): (1.6)

One can check that  (u; a) 2 A(E)x. Thus we obtain a well-de�ned
map

 : TU � End(V ) �! A(E)U where A(E)U := ��1(U):

Using the identi�cation TU �= U � Rm, we will show that  is a local
trivialization of A(E).
It is showed in [50] that for any x 2 M the mapping  x : TxU �

End(V ) �! A(E)x given by

 x(u; a) =  (u; a) for u 2 TxU; a 2 End(V );

is a linear isomorphism. We recall the arguments: Let (u; a) 2 TxU �
End(V ) and  x(u; a) = 0. Then

0 =  x(u; a)(f � �) = f(x) �  x(u; a)(�) + u(f) � �x = u(f) � �x

for any f 2 C1(M) and � 2 � (E). If we take � 2 � (E) such that
�x 6= 0, then we deduce immediately that u is the zero tangent vector.
Consider the family

f�! 2 � (E) j �!(x) =  x(!)g!2V

of global sections of E. On account of (1.6), for each ! 2 V , we have
a(!) =  �1x ( (0; a)(�

!)). Hence a = 0. Therefore the map  x is a
monomorphism.
Now take l 2 A(E)x, and let u 2 TxM be the tangent vector which

satis�es (1.4) for l. The element  �1x (l(�))�u(� ) of V depends only on
the value of � 2 � (E) at x. In fact, let " 2 � (E) and "x = �x. There
exist functions f 1; : : : ; fk 2 C1(M) and sections �1; : : : ; �k 2 � (E)
such that f j(x) = 0 for any j = 1; : : : ; k and

("� �)jO =
 

kX
j=1

f j � �j

!�����
O

for a certain neighborhood O �M of x. Therefore

 �1x (l("))� u(" ) =  �1x (l(�))� u(� ):
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For ! 2 V , we will denote by a(!) the element of the form  �1x (l(�))�
u(� ) where � 2 � (E) is an arbitrary taken section such that �(x) =
 x(!). Now de�ne a mapping a : V �! V by ! 7�! a(!). Clearly, a is
linear. According to the obvious equality �x =  x(� (x)), we see that

 x(u; a)(�) =  x(u(� ) +  �1x (l(�))� u(� )) = l(�):

Thus we have proved that the map  x is an epimorphism.

Theorem 1.3.1. [4] Let  1 : U1 � V �! EU1,  2 : U2 � V �! EU2
be local trivializations of the bundle E with U1 \ U2 6= ?, and let
 1 : TU1 � End(V ) �! A(E)U1,  2 : TU2 � End(V ) �! A(E)U2
be determined by  1 and  2, respectively, via (1.6). Moreover, let � :
U1\U2 �! GL(V ) be the mapping given by y 7! ( 1)

�1
y � ( 2)y. Then,��

 2
� �1
x

�
�
 1
�
x

�
(u; a) =

�
u; �(x)�1 � (��x(u) + a � �(x))

�
(1.7)

for u 2 TxU , a 2 End(V ).

Let  1 : U1�V �! EU1,  2 : U2�V �! EU2 be local trivializations
of the bundle E with U1 \ U2 6= ?. From (1.7) in Theorem 1.3.1 we
conclude that the map

 
�1
2 �  1 : T (U1 \ U2)� End(V ) �! T (U1 \ U2)� End(V )

is smooth. From the theorem on the construction of a vector bundle, we
have that A(E) is a vector bundle with the standard �bre Rm�End(V )
and the projection �. Moreover,  : TU � End(V ) �! A(E)U is an
isomorphism of vector bundles.

It remains to introduce in A(E) the structure of a Lie algebroid.

Let l 2 A(E). There exists a point x 2M such that a linear homo-
morphism l : � (E) �! Ex is an element of the vector space A(E)x.
Let us denote by ul (determined by l uniquely) a tangent vector to the
manifold M at x, satisfying (1.4). We de�ne a mapping

% : A(E) �! TM; l 7�! ul: (1.8)

Certainly, the maps %x : A(E)x �! TxM (x 2M) are linear. Moreover,
since the diagrams
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M M-
idM

A(E) TM-%

?

�

?

�M

TU TM-
�

TU � End(V ) A(E)U- 

?

pr1
?

%jA(E)U

commute, % is an epimorphism of vector bundles.

Lemma 1.3.1. [4] Let L :M �! A(E) be a function such that ��L =
idM . If, for each � 2 � (E), the mapping �� :M �! E, ��(x) = Lx(�),
is a smooth section of the vector bundle E, then L is a smooth section
of the vector bundle A(E).

Proof. The problem is local. Therefore we need only consider a trivial
vector bundle E = M � V . Then TM � End(V ) �= A(E) via the
isomorphism  de�ned for the identical trivialization  = idM�V . Let
� 2 � (M � V ), x 2M , and take e� = pr2 �� 2 C1(M ;V ). There exist
functions X :M �! TM and � :M ! End(V ) (whose smoothness is
to be proved) for which

��(x) = Lx(�)
= idM�V (Xx; �(x))

=
�
x;Xx(� idM�V ) + �(x)(� idM�V (x))

�
= (x;Xx(e�) + �(x)(e�(x)))
=
�
idM ; X(e�) + eT � (�;e�)� (x):

Therefore, the map X(e�) + eT � (�;e�) is smooth for arbitrary taken
smooth function e� 2 C1(M ;V ).
Let (ej)

r
j=1 be a base of the linear space V and let �j 2 � (M�V ) be

the constant sections of the vector bundle M � V , de�ned by �j(x) =
(x; ej). Observe that there exist functions �

i
j 2 C1(M) such that�

X(e�j) + eT � (�;e�j)� (x) = �(x)(ej) =

rX
i=1

�ij(x)ei: (1.9)

From the above in (1.9) it follows that

�(x) =
rX

i;j=1

�ij(x)
j
i

where the maps ji form a base of the space End(V ) determined by
(ej)

r
j=1 in such a way that 

j
i (ek) = �jkei. Hence it is appears that � is
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smooth. Since the mappings X(e�) + eT � (�;e�) ; eT ;e� and � are smooth,
it follows that X(e�) 2 C1(M ;V ). From this we conclude that X is a
smooth vector �eld on M .

A section L of the vector bundle A(E) determines a covariant di¤er-
ential operator LL : � (E) �! � (E) by LL(�)(x) = Lx(�) for x 2 M ,
� 2 � (E). Moreover, each covariant di¤erential operator in E is of the
form LL for exactly one section L of the vector bundle A(E). In fact, a
covariant di¤erential operator L is equal to LL for Lx(�) = (L(�))(x),
x 2 M , � 2 � (E). The smoothness of L now follows from Lemma
1.3.1.
The Lie bracket [[�; �]] in � (A(E)) is de�ned in the classical way, like

that for di¤erential operators. For K;L 2 � (A(E)) we de�ne [[K;L]] 2
� (A(E)) in such a way that L[[K;L]] = LK�LL�LL�LK noticing that the
right-hand side of the last formula is a covariant di¤erential operator.
This also shows that Sec % : � (A(E)) �! � (TM), L 7! % � L, is a
homomorphism of Lie algebras. Moreover,

[[K; f � L]]x(�) = f(x) � [[K;L]]x(�) + (% � K)x(f) � Lx(�)

for any K;L 2 � (A(E)), f 2 C1(M), x 2M , � 2 � (E).
Thus we have demonstrated that in the vector bundle A(E) we have

a structure of a transitive Lie algebroid with the introduced Lie bracket
[[�; �]] on the space of global sections of A(E) and the anchor % de�ned
by (1.8).
The Atiyah sequence of A(E) is

0 ���! End(E) ���! A(E)
%

���! TM ���! 0:

The approach presented here, described in [4], consists mainly in
the construction of a vector bundle, which is additionally equipped
with an anchor and a Lie bracket in the module of section of A(E).
Other approaches are related to the notion of the Lie groupoid or
the covariant di¤erential operator, jets bundles and the symbol [75],
[56],[79], [61], [48], [55]. For the �rst time the structure of the Lie
algebroid of a vector bundle was presented by Ngô Van Quê in [75].
Each Lie groupoid � on a manifoldM has a vector bundle A(�) (called
the Lie algebroid of �) of all �-vertical vectors on � tangent at units of
� [74]. The construction of the vector bundle A(�) was based on some
generalization of the fundamental relations between the Lie groupoid
�kM of all invertible k-jets ofM and the vector bundle JkTM of all k-
jets of the tangent bundle TM [59]. The functor � 7�! A(�) is called
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the Lie functor for Lie groupoids. Let E be any vector bundle and
GL(E) the Lie groupoid of all isomorphisms between �bres of E. In
the language of exponential mappings for Lie groupoids the Lie algebra
of sections of the Lie algebroid A(GL(E)) was discovered by Ngô Van
Quê [75] (cf. [54], [55], [48]) and can be brie�y described as follows: Let
�(E) contain any di¤erential operator L : � (E) �! � (E) for which
there exists a vector �eldX onM such that L(f ��) = f �L(�)+X(f)��
for any � 2 � (E) and f 2 C1(M). The rank of such an operator L is at
most 1 and �(L) = X
Id 2 � (TM
E�
E) is its symbol. It is called,
by Mackenzie [61], a covariant di¤erential operator. The space of all of
them forms an R-Lie algebra with respect to the natural commutator
of di¤erential operators. For � 2 � (A(GL(E))), the formula

L(�)(�)(x) =
d

dt

����
0

[(Exp t�) (x)]�1 � [� � exp(tX)(x)]

determines a covariant di¤erential operator, and the mapping

L : � (A(GL(E))) �! �(E); � 7�! L(�)

is a C1(M)-linear isomorphism of real Lie algebras. Mackenzie gives
an equivalent de�nition of the Lie algebroid A(GL(E)) as a subbun-
dle CDO(E) � Hom(J1E;E) of the vector bundle of linear homo-
morphisms from the bundle of 1-jets of E to E containing elements
d 2 Hom(J1E;E)x such that the value �(d) of the symbol map

� : Hom(J1E;E) �! Hom(T �M;End(E)) = TM 
 End(E)

is equal to u 
 Id for some vector u 2 TxM (cf. [75] for the symbol
map). Thus, CDO(E) = ��1(TM) with TM considered as a subbundle
of Hom(T �M;End(E)). From the above interpretation one can show
that the �bre A(GL(E))x over x 2M may be identi�ed with the space
of linear homomorphisms l : � (E) �! Ex for which there exists a
vector u 2 TxM satisfying (1.4).

An interesting approach to the Lie algebroid of a vector bundle
E

p�! M from the point of view of a reduction to its subalgebroid
was described by Teleman in [79], where this algebroid is understood
as the Lie algebroid of the principal bundle LE of all frames of E.
A similar up to isomorphism interpretation of the corresponding Lie
algebroids was also remarked by Mackenzie in [61] and by Kubarski
in [50]. Namely, Lie algebroids A(E) and A(LE) are isomorphic. The
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isomorphism considered in [50] is de�ned as follows: Since the frames
of a vector bundle E with a standard �bre V can be treated as linear
isomorphisms from V to Ex (x 2M), any section � of E determines a
smooth map

e� : LE �! V; e�(u) = u�1(�(�(u)));

where � : LE �! M is the projection in LE. Then, arbitrarily taken
' 2 � (A(LE)) and � 2 � (E) determine the mapping

L'(�) :M �! E; L'(�)(x) = u('0u(e�)); u 2 (LE)x;

which is a section of the bundle E. Next, for any ' 2 � (A(LE)) the
map

L̂' : � (E) �! � (E); L̂'(�) = L'(�)

is a covariant di¤erential operator in the sense of [61] with

L̂f �' = f � L̂'; L̂[[';�]] = L̂' � L̂� � L̂� � L̂'

for f 2 C1(M), '; � 2 � (A(LE)). Thus, we have an isomorphism

Sec�E : � (A(LE)) �! � (A(E)); ' 7�! L̂'

at the level of C1(M)-modules, which is also an isomorphism of Lie
algebroids, i.e., it commutes with the anchors and preserves the Lie
brackets. Thus, the corresponding isomorphism

�E : A(LE) �! A(E)

of Lie algebroids is de�ned by

�E([w])(�) = u(w(e�)); w 2 Tu(LE); u 2 LE; � 2 � (E):

1.4 Restriction of a Lie algebroid to an open
subset

In this section we describe the Lie algebroid induced by a given alge-
broid and an open set (cf. [61], [63]) understood as the restriction of
structures given in the starting algebroid.
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Let (A; %A; [�; �]) be a Lie algebroid over a manifold M and let U
be an open subset of M . Moreover, let AU denote the restriction of a
vector bundle to U .
Consider sections �1, �2 of AU . For any x 2M there exists an open

set B � U such that x 2 B and sections �1, �2 of A such that �1jB = �1
and �2jB = �2. To be more precise, let f 2 C1(M) be a function that
separates x in U . There is thus an open set B � U satisfying x 2 B,
f jB = 1, and f j(M n U) = 0. Then actually sections �1, �2 2 � (A)
de�ned by

�i(x) ,
�
f(x) � �i(x) for

0 for
x 2 U
x 2M n U (i 2 f1; 2g)

meet the required conditions. By Corollary 1.1.1, if sectionsX,X 0; Y; Y 0 2
� (A) satisfy XjO = X 0

jO and YjO = Y 0
jO for an open subset O � M ,

then [X; Y ]jO = [X 0; Y 0]jO . Thus, we can correctly de�ne the skew-
symmetric bracket in � (AU) in such a way that

[[�1; �2]]x =
�
�1; �2

�
x
for x 2 U:

Now, we de�ne

% , %AjAU : AU �! TU

as an anchor in AU . Let �; � 2 � (AU), f 2 C1 (U) and x 2 U . Then
there are sections �; � 2 � (A), g 2 C1(M) and an open set B � U
such that x 2 B, �jB = �, �jB = � and gjB = f jB. From the Leibniz
identity for the Lie bracket in � (A) we get

[[�; f � �]]x =
�
�; g � �

�
x
= g(x) �

�
�; �

�
x
+
�
 � �

�
x
(g) � �x

= f(x) � [[�; �]]x + ( � �)x (f) � �x
= (f � [[�; �]] + ( � �) (f) � �)(x):

Thus, we remarked that the restriction AU of the bundle A has a
Lie algebroid structure (AU ; %; [[�; �]]) induced from the Lie algebroid
(A; %A; [�; �]).

1.5 Trivial Lie algebroid

Let M be a smooth manifold and g be a �nitely dimensional real Lie
algebra with a Lie bracket [�; �] and dim g = p 2 N. Let us take any
basis (vi)

p
i=1 of the vector space g. We de�ne
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LX� =
pX
i=1

X(f i) � vi

for X 2 � (TM), � 2 C1(M ; g) such that �(x) =
pP
i=1

f i(x)�vi for x 2

M , and where f i 2 C1(M). This de�nition is correct because the value
of LX� does not depend on the choice of the basis of the vector space
g. Moreover, we have

Lemma 1.5.1. For �; � 2 C1(M ; g), f 2 C1(M) and X; Y 2
� (TM) the following equalities hold:

(a) Lf �X� = f � LX�;

(b) LX(f � �) = f � LX� +X(f) � �;
(c) L[X;Y ]� = LX(LY �)� LY (LX�);
(d) LX([�; �]) = [LX�; �] + [�;LX�] :

De�ne

[[ (X; �) ; (Y; �) ]] = ([X; Y ] ;LX� � LY � + [�; �])

for X; Y 2 � (TM), and �; � 2 C1(M ; g). The map [[�; �]] is bilinear
over R and skew-symmetric. Moreover, applying the properties from
Lemma 1.5.1, we have

[[(X; �); f � (Y; �)]] = f � [[(X; �); (Y; �)]] + ( � (X; �))(f) � (Y; �);

where

 = pr1 : TM � g �! TM; (v,w) 7�! v

has the role of an anchor, and

Jac[[�;�]]((X; �); (Y; �); (Z; �)) = [[(X; �);[[(Y; �); (Z; �)]]]] + cycl = 0

for X; Y; Z 2 � (TM), and �; �; � 2 C1(M ; g). Based on the obtained
results, we conclude that (TM � g, [[�; �]], pr1) is a transitive Lie alge-
broid with the Atiyah sequence

0 ���! g ���! TM � g
pr1
���! TM ���! 0:
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Remark 1.5.1. Let E be a vector bundle over M with a projection
p : E �! M , and let  : U � V �! p�1(U) be its local trivialization.
We demonstrate that

 : TU � End(V ) �! A(E)U

de�ned in Section 1.3 by (1.6) is an isomprphism of the trivial Lie alge-
broid TU �End(V ) and the restriction A(E)U of A(E) to U [50]. The
map  is an isomorphism of vector bundles (cf. Section 1.3). It remains
to show that  preserves the Lie brackets of considered algebroids.
Let X; Y 2 X (U), �; � 2 C1(U ; End(V )), x 2 U , and � 2 � (E).

We �rst observe that��
 � (X; �)

�
(�)
�
 
= X(� ) + T � (�; � ) ;��

 � (Y; �)
�
(�)
�
 
= Y (� ) + T � (�; � ) ;

where � : U �! V is de�ned in (1.5), and T : End(V ) � V �! V
is a bilinear map given by T (L; z) = L(z) for (L; z) 2 End(V ) � V .
Moreover,

Xx(T � (�; � )) = T (�x; Xx(� )) + T (Xx(�); � (x))

= �x(Xx(� )) + (Xx(�)) (� (x))

and

Yx(T � (�; � )) = T (�x; Yx(� )) + T (Yx(�); � (x))

= �x(Yx(� )) + (Yx(�))(� (x)):

Hence,

[[ � (X; �) ;  � (Y; �) ]]x(�)

=
�
 � (X; �)

�
x

��
 � (Y; �)

�
(�)
�
�
�
 � (Y; �)

�
x

��
 � (X; �)

�
(�)
�

=  x (Xx; �x)
��
 � (Y; �)

�
(�)
�
�  x (Yx; �x)

��
 � (X; �)

�
(�)
�

=  x

�
Xx

���
 � (Y; �)

�
(�)
�
 

�
+ �x

���
 � (Y; �)

�
(�)
�
 
(x)
��

� x
�
Yx

���
 � (X; �)

�
(�)
�
 

�
+ �x

���
 � (X; �)

�
(�)
�
 
(x)
��

=  x (Xx (Y (� ) + T � (�; � )) + �x (Yx(� ) + �x(� (x))))

�  x (Yx (X(� ) + T � (�; � )) + �x (Xx(� ) + �x(� (x))))
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=  x (Xx (Y (� ))� Yx (X (� )))

+  x (Xx (T � (�; � ))� Yx (T � (�; � )))

+  x (�x(Yx(� ))� �x(Xx(� )))

+  x (�x(�x(� (x)))� �x(�x(� (x))))

=  x([X;Y ]x(� )+Xx(�)(� (x))�Yx(�)(� (x))+[�x; �x](� (x)))

=  x ([X; Y ]x(� ) + (LX(�)� LY (�) + [�; �])x (� (x)))

=
�
 � ([X; Y ];LX(�)� LY (�) + [�; �])

�
x
(�)

=
�
 � [[ (X; �) ; (Y; �) ]]

�
x
(�):

So, indeed Sec : � (TU � End(V )) �! � (A(E)U) preserves the
Lie brackets. Moreover, from the de�nition of the mapping  it follows
that %A(E)U ( (u; a)) = u for (u; a) 2 TU � End(V ), which means that
the diagram

TU � End(V ) A(E)U- 

TU

pr1

@
@
@
@@R

%A(E)U

�
�

�
��	

is commutative. Thus,  as a bundle isomorphism is also an isomor-
phism of Lie algebroids TU � End(V ) and A (E)U .
In the special case of the trivial bundle E = M � V , we have the

following isomorphism of Lie algebroids:

A(M � V ) �= TM � End(V ):

1.6 Cartesian product of Lie algebroids

Let (A; %A; [[�; �]]) and (A0; %A0 ; [[�; �]]0) be Lie algebroids over manifolds
M and M 0, respectively. By the Cartesian product of Lie algebroids A
and A0 we mean the Lie algebroid
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A� A0; %A � %A0 ; [[�; �]]�

�
over the manifold M �M 0, and where the Lie bracket [[�; �]]� is de�ned
in such a way that for any e� = (e�1;e�2), e� = (e�1;e�2) 2 � (A � A0),
(x; x0) 2M �M 0 we have

[[e�;e� ]]� = �[[e�;e� ]]1; [[e�;e� ]]2� ;
where

[[e�;e� ]]1(x;x0)
= [[e�1(�; x0);e�1(�; x0)]]x + (%A0 � e�2)(x;x0)(e�1(x; �)))� (%A0 � e�2)(x;x0)(e�1(x; �));
and

[[e�;e� ]]2(x;x0)
= [[e�2(x; �);e�2(x; �)]]0x0 + (%A � e�1)(x;x0)(e�2(�; x0))� (%A � e�1)(x;x0)(e�2(�; x0)):
For the Cartesian product of Lie algebroids we refer to [51].

1.7 The inverse-image of a Lie algebroid

Let (A; %A; [[�; �]]) be a regular Lie algebroid over a manifoldM , Im %A =
F , and let f : (M 0; F 0) �! (M;F ) be a smooth function between
foliated manifolds, i.e., F 0 � TM 0 is such a subbundle of TM 0 that
f�[F

0] � F . Then, there is a regular Lie algebroid, cf. [50],

(f^A; [[�; �]]^; pr1)

called the inverse-image of A by f , in which:

1. f^A = F 0 �(f�;%A) A = f(v;w) 2 F 0 � A : f�(v) = %A(w)g
� F 0 � f �A,

2. an anchor is the projection pr1 : F
0 �(f�;%A) A �! F 0 given by

(v;w) 7�! v,
3. the bracket [[�; �]]^ in � (f^A) is de�ned as follows: Let (X1; �1),
(X2; �2) 2 � (f^A), where X1; X2 2 � (F 0), �1; �2 2 � (f �A). Then,
for any x 2M 0 there is an open set U �M 0 such that x 2 U and

�1jU =
X
j

gj1 �
�
�j1 � f

������
U

; �2jU =
X
j

gj1 �
�
�j1 � f

������
U
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for some gji 2 C1 (M 0) and �ji 2 � (A). Set
[[
�
X1; �1

�
;
�
X2; �2

�
]]^jU

=

 
[X1; X2] ;

X
j;k

gj1 � gk2 �
�
[[�j1; �

k
2]] � f

�
+
X
k

X1

�
gk2
�
�
�
�k2 � f

�
�
X
j

X2

�
gj1
�
�
�
�j1 � f

�!
jU

:

The Atiyah sequence of f^A is

0 ���! f �(ker %A) ���! f^A
pr1
���! F 0 ���! 0:

1.8 Transformation Lie algebroid

Let g be a �nite real Lie algebra with a Lie bracket [�; �], which acts on
a manifold M . Let

� : g �! � (TM)

be a homomorphism of Lie algebras g and the Lie algebra of vector
�elds onM equipped with the classical Lie bracket of vector �elds. Set

A =M � g

as the trivial bundle with the anchor

% :M � g �! TM;

%(x; �) = �(�)(x)

Taking the identi�cation � (M�g) �= C1(M ; g), we de�ne the bracket

[[�; �]] : � (M � g)� � (M � g) �! � (M � g)

in � (M � g) by

[[f; g]](x) = [f(x); g(x)] + ((� � f) (g))(x)� ((� � g) (f))(x)

for f; g 2 C1(M ; g), x 2M . The triple (M � g; %; [[�; �]]) is a transitive
Lie algebroid over M called the transformation Lie algebroid induced
by � (cf. [62]).
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1.9 Lie algebroid of a Poisson manifold

In this section we describe the structure of the Lie algebroid on the
cotangent bundle that any Poisson structure induces, in particular any
symplectic manifold determines such an algebroid. In the literature,
this structure appears in articles of several authors independently. For
the �rst time this structure was introduced by Fuchssteiner in [26], and
by Magri and Morosi in [64], by Dazord and Sondaz in [21], and by
Weinstein in [81] (cf. [46]).
Let M be a Poisson manifold with a Poisson bracket

f�; �g : C1(M)� C1(M) �! C1(M).

Recall that f�; �g yields the structure of a real Lie algebra on C1(M)
and satis�es the following the Leibniz rule of derivation:

ff; g � hg = g � ff; hg+ ff; gg � h

for any f; g; h 2 C1(M).
There exists a unique smooth section � 2 � (

V2 TM), called the
Poisson bivector, such that

ff; gg = �(df; dg) (1.10)

and

[�;�]S-N = 0, (1.11)

where [�; �]S-N is the Schouten-Nijenhuis bracket ([60]). Let us recall
here that the Schouten-Nijenhuis bracket is de�ned on the multivector
�elds, i.e., on sections of vector bundles

Vp TM . Let

V(M) =
M
p�0

Vp(M) where Vp(M) = � (
Vp TM):

Then [�; �]S-N : V(M)�V(M)! V(M) is an R-bilinear map of a degree
�1 de�ned in such a way that

[P;Q]S-N 2 Vp+q�1(M) for P 2 Vp(M); Q 2 Vq(M);

[P;Q]S-N = (�1)
pq [Q;P ]S-N for P 2 Vp(M); Q 2 Vq(M);

[X; Y ]S-N = [X; Y ] for X; Y 2 V1(M);
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[X; f ]S-N = X(f) for any X 2 V1(M) and f 2 V0(M) = C1(M);

[X1 ^ : : : ^Xp; Y ]S-N =

pX
i=1

(�1)i+1X1^ : : :^ bXi^ : : :^Xp^ [Xi; Y ] ;

[P;Q ^R]S-N = [P;Q]S-N ^R + (�1)
(p+1)qQ ^ [P;R]S-N

for X1; : : : ; Xp; Y 2 V1(M), P 2 Vp(M); Q 2 Vq(M), R 2 V(M), and
where the symbol bXi means thatXi is omitted (cf. [82]). The Schouten-
Nijenhuis bracket is therefore an extension of the Lie bracket of vector
�elds on M . Remark that (1.11) is equivalent to the Jacobi identity of
the Poisson bracket f�; �g because [�;�]S-N (df; dg; dh) is equal up to
a constant to the Jacobiator Jacf�;�g(f; g; h) for f; g; h 2 C1(M).
In a local coordinate system (x1; : : : ; xn) we have

� =
X

1�i<j�n
�ij

@

@xi
^ @

@xj
;

and where �ij = fxi; xjg = �(dxi; dxj). Therefore, for f; g 2 C1(M)
we have

ff; gg = �(df; dg) =
nX

i;j=1

�ij
@f

@xi

@g

@xj
:

The anchor in the cotangent bundle is the vector bundle map

] : T �M �! TM

given by

h](�); �i = �(�; �)

for �; � 2 
1(M) = � (T �M). Therefore,

](df)(g) = ff; gg

for f; g 2 C1(M). The Lie algebra structure on 
1(M) = � (T �M) is
de�ned by the bracket

[[�; �]] : 
1(M)�
1(M)! 
1(M)

which is uniquely given by

[[df; dg]] = dff; gg
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and

[[�; f � �]] = f � [[�; �]] + ](�)(f) � �

for all f; g 2 C1(M) and �; � 2 
1(M). Explicitly, the skew-symmetric
bracket [[�; �]] is given by the formula

[[�; �]] = L](�)(�)� L](�)(�)� d (�(�; �)) (1.12)

for �; � 2 
1(M). Therefore, ] de�nes the Lie algebra homomorphism

Sec ] : 
1(M)! � (TM); � 7! ]�;

i.e., ][[�; �]] = [](�); ](�)] for �; � 2 
1(M). The Jacobi identity of
[[�; �]] is equivalent to (1.11) because (cf. [46]) 2 Jac[[�;�]](df; dg; dh) is equal
to d([�;�]S-N (df; dg; dh)) for any f; g; h 2 C1(M). Summarizing, we
have a vector bundle monomorphism ] such that the following diagram
commutes

M M-
idM

T �M TM-]

?

pT �M

?

pTM

where pTM : TM ! M and pT �M : T �M ! M are projections of the
tangent and the cotangent bundle, respectively. Moreover, we see at
once that Sec ] is a homomorphism of Lie algebras.
The Lie algebroid (T �M; ]; [[�; �]]) de�ned in this way is called the

Lie algebroid of a Poisson manifold M .

Every symplectic manifold (M;!), where ! is a closed nondegener-
ate 2-form, has a Poisson structure with the bracket de�ned by

ff; gg = !(Xf ; Xg)

where the Hamiltonian vector �eld Xf is given by

iXf! � !(Xf ; �) = �df:

In particular, ifM = R2m with coordinates (q1; : : : ; qm; p1; : : : ; pm) and

! =
mX
i=1

@
@pi
^ @

@qj
, then
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ff; gg =
mX
i=1

�
@f

@qi

@g

@pi
� @f

@pi

@g

@qi

�
for f; g 2 C1(M).
In the cotangent bundle of a manifoldM with a symplectic form !,

we can de�ne the Lie algebroid structure with the bracket de�ned as in
(1.12) and with an anchor which is the isomorphism of vector bundles
]! : T

�M �! TM given by

! h]!(�); Y i = �(Y )

for � 2 � (T �M), Y 2 � (TM). Consequently, in this case

0 ���! 0 ���! T �M
]!

���! TM ���! 0

is the Atiyah sequence of (T �M; ]!; [[�; �]]), so it is a transitive Lie alge-
broid in which the anchor has a trivial kernel.

1.10 Structures of Lie algebroids on cotangent
bundles determined by vector �elds

In this section we present a family of Lie algebroids determined by spe-
ci�c vector �elds on a given manifold, de�ned in [22] by Dobrogowska
and Jakimowicz. In [22] the authors also note that the starting point
can be replaced by any Lie algebroid and corresponding vector �elds
by sections.
Let M be a di¤erential manifold and let [�; �] denote the classical

Lie bracket of vector �elds on M . We choose the vector �elds X;Y on
M related to each other in such a way that

[X;Y ] = cY for some c 2 R:

Next, in the cotangent bundle of M we introduce the structure of
the Lie algebroid in which the anchor is the homomorphism of vector
bundles

%X;Y : T
�M ! TM

such that

%X;Y (�) = ��(Y )X for � 2 � (T �M);
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while the Lie bracket [�; �]X;Y in the space of 1-di¤erential forms
� (T �M) is given by

[�; �]X;Y = �(Y )LX�� �(Y )LX�

for �; � 2 � (T �M). In particular, each vector �eld X on M de-
�nes in the cotangent bundle of M the structure of Lie algebroid
(T �M;%X;X ; [�; �]X;X).
In Section 2.4 below we observe that the de�ned Lie bracket on 1-

di¤erential forms is in fact a skew-symmetric part of some torsion-free
and �at connection. This observation gives us the immediate ful�llment
of the Jacobi identity by the given bracket of section in the cotangent
bundle. Moreover, in Section 2.4, we remark that the introduced Lie
bracket can be generalized to a pair of vector �elds X; Y on M such
that [X; Y ] = fY for some f 2 C1(M).
Some linear combination of Lie algebroids de�ned in this way again

creates a new Lie algebroid as shown by the following theorem.

Theorem 1.10.1. [22] Let � 2 R and X; Y 2 � (TM) be such that
[X; Y ] = 0, then a structure (T �M;%�X;Y ; [�; �]X;Y ) is a Lie algebroid,
where the anchor and the Lie bracket is given by

[�; ��]�X;Y = [�; ��]X;Y + � [�; ��]Y;X ; %�X;Y = %X;Y + � � %Y;X ;

explicitly,

[�; �]�X;Y = �(Y )LX�� �(Y )LX� + � � (�(X)LY �� �(X)LY �) ;

and

%�X;Y (�) = ��(Y )X � � � �(X)Y

for any �; � 2 � (T �M).

In the special case when � = �1 the bracket [�; ��]�X;Y is related to
the structure of Poisson manifold determined by the Poisson bivector
� = X ^ Y . Namely, if f�; �g is a Poisson bracket determined by �,

[df; dg]�1X;Y = dff; gg

for any f; g 2 C1(M):
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2. Linear connections on Lie algebroids

2.1 Linear connections in a vector bundle

Let (A; %A; [�; �]) be a Lie algebroid over a manifold M .

De�nition 2.1.1. A linear connection in a vector bundle E ! M is
any an R-bilinear map

r : � (A)� � (E) �! � (E)

satisfying the following properties:

rf �X(u) = f � rX(u);

rX(f � u) = f � rX(u) + (%A �X)(f) � u
for X; Y 2 � (A); f 2 C1(M), u 2 � (E).

De�nition 2.1.2. Let E be a vector bundle over a manifold M . The
module of all sections of the Lie algebroid A(E) is denoted by

CDO(E):

Remark 2.1.1. We recall that CDO(E) is the space of all such R-linear
operators

` : � (E) �! � (E)

that there exist unique X` 2 � (TM) with the property

`(f � u) = f � `(u) +X`(f) � u

for f 2 C1(M) and u 2 � (E).
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Remark 2.1.2. Let E be a vector bundle over a manifold M and let

r : � (A)� � (E) �! � (E)

be a connection in E. Setbr : � (A) �! EndC1(M)(� (E))

by br(X) = rX for X 2 � (A):

Sincebr(X)(r � u) = r � br(X)(u),br(X)(u1 + u2) = br(X)(u1) + br(X)(u2);
andbr(X)(f � u) = f � br(X)(u) + (%A �X)(f) � u (2.1)

for X 2 � (A), r 2 R, u; u1; u2 2 � (E), f 2 C1(M), we observe thatbr(X) 2 CDO(E) for any X 2 � (A).

Moreover, (2.1) implies thatbr : � (A) �! CDO(E)

is a homomorphism of C1(M)-modules � (A) and CDO(E) such that
the diagram

� (A) CDO(E)-br

� (TM)

Sec %A

@
@
@
@@R

Sec %A(E)

�
�

�
��	

commutes. This observation leads to the generalization of the concept
of a linear connection given in the de�nition below as vector bundles
homomorphism acting from a Lie algebroid into a Lie algebroid that
commutes with anchors (cf. [9]), or homomorphism of modules acting
from the module of sections of the �rst Lie algebroid into the module of
sections of the second Lie algebroid, which commutes with the anchors
at the level of sections.
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De�nition 2.1.3. Let (A; %A; [�; �]A) and (B; %B; [�; �]B) be Lie alge-
broids, both over the same manifold M . By an A-connection in the
Lie algebroid B we mean any homomorphism of C1(M)-modules

r : � (A) �! � (B)

for which the diagram

� (A) � (B)-r

� (TM)

Sec %A

@
@
@
@@R

Sec %B

�
�

�
��	

is commutative.

Lemma 2.1.1. Let (A; %A; [�; �]A) and (B; %B; [�; �]B) be Lie algebroids,
both over the same manifold M , and let %B be a constant rank, i.e.,
(B; %B; [�; �]B) is a regular Lie algebroid. Then, for any A-connection
r : � (A) �! � (B) in B we have

r � [X; Y ]A � [r �X;r � Y ]A 2 � (ker %B)

for any X; Y 2 � (A).
Proof. LetX; Y 2 � (A). Then, since %B�r = %A and anchors preserves
the Lie brackets, we have

%B � (r � [X;Y ]A � [r �X;r � Y ]B)
= (%B � r) � [X; Y ]A � [(%B � r) �X; (%B � r) � Y ]TM
= %A � [X; Y ]A � [%A �X; %A � Y ]TM
= %A � [X; Y ]A � %A � [X; Y ]A
= 0:

De�nition 2.1.4. Let (A; %A; [�; �]A) and (B; %B; [�; �]B) be Lie alge-
broids over a manifold M . By the curvature of an A-connection
r : � (A) �! � (B) in B we mean the following skew-symmetric 2-
form

Rr 2 � (
V2A� 
B)

given by

RrX;Y = r � [X; Y ]A � [r �X;r � Y ]B
for X; Y 2 � (A).
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Remark 2.1.3. Observe that if (A; %A; [�; �]A) is a Lie algebroid overM ,
(B; %B; [�; �]B) is a regular Lie algebroid over M , r : � (A) �! � (B) is
an A-connection in B, then from Lemma 2.1.1 it follows that

Rr 2 � (
V2A� 
 ker %B):

De�nition 2.1.5. Let (A; %A; [�; �]A) and let (B; %B; [�; �]B) be Lie al-
gebroids over the same manifold M . We say that an A-connection
r : � (A) �! � (B) in B is �at if Rr = 0.

Hence, the following obvious characterization of �at connections in
the language of commutative diagrams:

Theorem 2.1.1. Let (A; %A; [�; �]A) and (B; %B; [�; �]B) be Lie algebroids
over a manifold M . Then, a homomorphism of C1(M)-modules r :
� (A) �! � (B) is a �at A-connection in B if and only if the diagrams

� (A) � (A)-r

� (TM)

Sec %A

@
@
@
@@R

Sec %B

�
�

�
��	

� (A)� � (A) � (B)� � (B)-
r�r

� (A) � (B)-r
6

[�; �]A
6
[�; �]B

are commutative.

Example 2.1.1. Every homomorphism H : A �! B of Lie algebroids
(both over the same manifold M) is a �at A-connection in B.

Remark 2.1.4. Let (A; %A; [�; �]A) be a Lie algebroid over M and let E
be a vector bundle over M . Since the Lie algebroid A(E) of the vector
bundle E is transitive (in particular A(E) is regular) with the Atiyah
sequence

0 ���! End(E) ���! A(E)
%A(E)

����! TM ���! 0;

we can consider the curvature of an A-connection r in A(E) as the
2-form

Rr 2 � (
V2A� 
 End(E))

given by

RrX;Y (u) = rX(rY u)�rX(rY u)�r[X;Y ]A
u

for X; Y 2 � (A), u 2 � (E).
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The so-called representations in a given vector bundle, which are in
fact some �at connections (cf. [61], [50]) are important for determining
the characteristic classes.

De�nition 2.1.6. Let (A; %A; [�; �]A) be a Lie algebroid overM and let
E be a vector bundle over M . By a representation of A in E we mean
any homomorphism of Lie algebroids

H : A �! A(E):

Example 2.1.2. (Adjoint representation) Let (A; %A; [�; �]A) be a regular
Lie algebroid over M and g = ker %A. The homomorphism of vector
bundles

adA : A �! A(g)

de�ned by

adA(X)� = [X; �]A ; X 2 � (A); � 2 � (g)

is an A-connection in A(g) called the adjoint representation of A.

Example 2.1.3. (Trivial representation) Given an arbitrary Lie alge-
broid (A; %A; [�; �]A) one can observe that %A : A �! TM is a �at
A-connection in TM because at the level of sections, the anchor can
be treated as a mapping Sec %A : � (A) �! CDO(M � R).

Example 2.1.4. (Contragredient representation) Let

r : � (A) �! CDO(E)

be an A-representation in E where (A; %A; [�; �]A) is a Lie algebroid over
M and E is a vector bundle over M . Then,

r\ : � (A) �! CDO(E�)

given byD
r\
X (u

�) ; u
E
= (%A �X) (hu�; ui)� hu�;rXui

for X 2 � (A), u 2 � (E), u� 2 � (E�), is an A-representation in the
dual bundle E�. The representation r\ is called the contragredient to
r.
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Example 2.1.5. (Induced representation in the bundle of homomor-
phism) Let r : � (A) �! CDO(E) be an A-connection in A(E) where
(A; %A; [�; �]A) is a Lie algebroid over M and E is a vector bundle over
M . Set in the A-module Homn (E;R) ;

Homn(r) : � (A) �! CDO(Homn (E;R));

by

(Homn (r)X (�)) (u1; : : : ; un)

= (%A �X)(�(u1; : : : ; un))�
nX
i=1

�(u1; : : : ; ui�1;rXui; : : : ; un)

for n 2 N, � 2 Homn (A;R), X 2 � (A), u1; : : : ; un 2 � (E). For n = 0
we set

Hom0(r) = Sec %A : � (A)! CDO(M � R):

The map Hom(r) : � (A)! CDO(Hom (E;R)) de�ned by

Hom(r)X =
M
n�0

Homn (r)X

for X 2 � (A) is an A-connection in Hom (E;R) =
M
n�0

Homn (E;R).

Lemma 2.1.2. Let (A; %A; [�; �]A) be a Lie algebroid overM and E is a
vector bundle over M . If r : � (A) �! CDO(E) is a �at A-connection
in A(E), then the connection Hom(r) is �at.

Proof. Let r be a �at A-connection in A(E), n 2 N, � 2 Homn (A;R),
X 2 � (A), u1; : : : ; un 2 � (E). Let us denote by r the connection
Hom(r). Then,��

rX ;rY

�
(�)
�
(u1; : : : ; un)

=
��
rX � rY �rY � rX

�
(�)
�
(u1; : : : ; un)

= (%A �X)
�
(rY �)(u1; : : : ; un)

�
�

nX
i=1

(rY �)(u1; : : : ;rXui; : : : ; un)

�(%A � Y )
�
(rX�)(u1; : : : ; un)

�
+

nX
i=1

(rX�)(u1; : : : ;rY ui; : : : ; un)
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= (%A �X)((%A � Y )((rX�)(u1; : : : ; un)))

�(%A �X)
 

nX
i=1

�(u1; : : : ; ui�1;rY ui; : : : ; un)

!

�
nX
i=1

(%A � Y )(�(u1; : : : ; ui�1;rXui; : : : ; un))

+
X
j<i

� (u1; : : : ; uj�1;rY uj; : : : ; ui�1;rXui; : : : ; un)

+
nX
i=1

�(u1; : : : ; ui�1;rY (rXui); : : : ; un)

+
X
i<j

�(u1; : : : ; ui�1;rXui; : : : ; uj�1;rXui; : : : ; un)

�(%A � Y )((%A �X)(�(u1; : : : ; un)))

+(%A � Y )
 

nX
i=1

�(u1; : : : ; ui�1;rXui; : : : ; un)

!

+
nX
i=1

(%A �X)(�(u1; : : : ; ui�1;rY ui; : : : ; un))

�
X
j<i

� (u1; : : : ; uj�1;rXuj; : : : ; ui�1;rY ui; : : : ; un)

�
nX
i=1

�(u1; : : : ; ui�1;rX(rY ui); : : : ; un)

�
X
i<j

� (u1; : : : ; ui�1;rY ui; : : : ; uj�1;rY uj; : : : ; un)

= [(%A �X; %A � Y ]TM (�(u1; : : : ; un))

�
nX
i=1

�(u1; : : : ; ui�1; (rX � rY �rY � rX)ui; : : : ; un)

= (%A � [X; Y ])(�(u1; : : : ; un))�
nX
i=1

�(u1; : : : ; [rX ;rY ]ui; : : : ; un)

= (%A � [X;Y ])(�(u1; : : : ; un))�
nX
i=1

�(u1; : : : ;r[X;Y ]ui; : : : ; un)

= (r[X;Y ]�)(u1; : : : ; un):

Therefore, r = Hom(r) is a �at A-connection in Hom (E;R) which is
a consequence of the �atness of r.
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Example 2.1.6. Let (A; %A; [�; �]A) be a regular Lie algebroid over M
and g = ker %A. The adjoint representation adA : A �! A(g) is a �at
A-connection. Now Lemma 2.1.2 shows that Hom(adA) is �at. Conse-
quently, Hom(adA) is a representation of A in Hom(g;R).

Theorem 2.1.2. Let (A; %A; [�; �]A), (B; %B; [�; �]B), and (C; %C ; [�; �]C)
be Lie algebroids, all over the same manifold M . If

0 ���! A
F

���! B
G

���! C ���! 0

is an exact sequences of Lie algebroids, then any of its splitting H :
C �! B is a C-connection in B.

Proof. Let H : C �! B be a homomorphism of vector bundle such
that G �H = idC . Since G commutes with anchors, i.e., %C �G = %B,
we obtain

%B �H = (%C �G) �H = %C � (G �H) = %C � idC = %C :

Corollary 2.1.1. Let (A; %A; [�; �]A) be a regular Lie algebroid over M .
Then, any splitting H : Im %A �! A of the Atiyah sequence

0 ���! ker %A ���! A
%A

����! Im %A ���! 0

is a connection in A.

De�nition 2.1.7. The torsion of an A-connectionr in A is the tensor
Tr 2 � (

V2A� 
 A) de�ned by

Tr(X; Y ) = rXY �rYX � [X; Y ]

for X; Y 2 � (A).

De�nition 2.1.8. We say that an A-connection in A is torsion-free if
its torsion equals zero.

In the following sections we consider the torsion-free connections
related to Lie algebroids equipped with metric structures.
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2.2 Exterior derivative operator

Let (A; %A; [�; �]) be a skew-symmetric algebroid over a manifoldM and
let E be a vector bundle over M .

De�nition 2.2.1. Let X 2 � (A). The substitution operator

iX : � (
Nk A� 
 E) �! � (

Nk�1A� 
 E)

is de�ned by

(iX�)(X1; : : : ; Xk�1) = �(X;X1; : : : ; Xk�1)

for � 2 � (
Nk A� 
 E), X1; : : : ; Xk�1 2 � (A).

Let

rE : � (A) �! CDO(E)

be an A-connection in A(E).

De�nition 2.2.2. The Lie derivative

LrEX : � (
Nk A� 
 E) �! � (

Nk A� 
 E)

for X 2 � (A) is de�ned by

(LrEX 
)(X1; : : : ; Xk) =rE
X(
(X1; : : : ; Xk))

�
kP
i=1


(X1; : : : ; [X;Xi] ; : : : ; Xk)

for 
 2 � (
Nk A� 
 E), X1; : : : ; Xk 2 � (A).

Remark 2.2.1. Observe that LrEX (�) 2 � (
V
A�
E) if � 2 � (

V
A�
E).

Moreover, let

r : � (A) �! CDO(A)

be an A-connection in A(A). We de�ne the A-connection �r in the dual
bundle in a classical way by the following formula

( �rX!)Y = (%A �X)(!(Y ))� !(rXY )

for ! 2 � (A�), X; Y 2 � (A) (cf. contragredient representation in Ex-
ample 2.1.4). Next, we take the tensor product of connections rE and
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r; by the Leibniz rule, we extend this connection to the A-connection
in the whole tensor bundle

N
A� 
 E, which will also be denoted by

r. Then, for � 2 � (
Nk A� 
 E), X;X1; : : : ; Xk 2 � (A), we have

(rX�)(X1; : : : ; Xk) =rE
X(�(X1; : : : ; Xk))

�
kX
j=1

�(X1; : : : ;rXXj; : : : ; Xk):

De�nition 2.2.3. We de�ne the connection operator

r : � (
Nk A� 
 E) �! � (

Nk+1A� 
 E)

by

(r�)(X1; X2 : : : ; Xk+1) = (rX1�)(X2; : : : ; Xk+1)

for � 2 � (
Nk A� 
 E), X1; : : : ; Xk+1 2 � (A).

We recall that the exterior derivative operator

dr
E

: � (
Vk A� 
 E) �! � (

Vk+1A� 
 E)

on the Lie algebroid (A; %A; [�; �]) is de�ned by�
dr

E

�
�
(X1; : : : ; Xk+1) (2.2)

=
k+1P
j=1

(�1)j+1rE
Xj

�
�(X1; : : : bXj : : : ; Xk+1)

�
+
P
i<j

(�1)i+j �
�
[Xi; Xj] ; X1; : : : bXi : : : bXj : : : ; Xk+1

�
for � 2 � (

Vk A� 
 E), X1; : : : ; Xk+1 2 � (A).
If r is torsion-free A-connection in A, then dr

E
can be written as

the alternation of the operator r (cf. [8], [12], [40]), i.e.,

dr
E

= (k + 1) � (Alt �r) on � (
Vk A�);

where Alt is the alternator given by

(Alt �)(X1; : : : ; Xk) =
1

k!

P
�2Sk

sgn� �(X�(1); : : : ; X�(k))

for � 2 � (
Nk A� 
 E). Equivalently,
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dr

E

�
�
(X1; : : : ; Xk+1) =

k+1X
j=1

(�1)j+1
�
rE
Xj
�
��
X1; : : : bXj : : : ; Xk+1

�
for � 2 � (

Vk A� 
 E), X1; : : : ; Xk+1 2 � (A).
Here, we recall the classical Cartan�s formulas:

Lemma 2.2.1. For any X; Y 2 � (A) we have

(a) LrEX = iXd
rE + dr

E

iY ;

(b) LrEX iY � iYLr
E

X = i[X;Y ]:

2.3 The Bianchi identity

Let (A; %A; [�; �]) be a Lie algebroid over a manifold M and let E be a
vector bundle over M . Moreover, let

rE : � (A) �! CDO(E)

be an A-connection.

De�nition 2.3.1. We de�ne A k(A;E) to be � (
Vk A� 
 E).

Recall that

dr
E � drE = RrE Z (�); (2.3)

where

(RrEZ�)(X1; : : : ; Xk+2) =
P
i<j

(�1)i+jRrE
Xi;Xj

(�(X1; : : :bi : : :bj : : : ; Xk+2))

for � 2 A k(A;E), X1; : : : ; Xk+2 2 � (A) (e.g. cf. [42], [83]).
Now, let

r = rA : � (A)� � (A) �! � (A)

be a connection in A. Then we can consider the di¤erential operator
dr : A k(A;A) �! A k+1(A;A) given by

�
dr�

�
(X1; : : : ; Xk+1) =

k+1P
j=1

(�1)j+1rXj

�
�(X1; : : : bXj : : : ; Xk+1)

�
+
P
i<j

(�1)i+j �
�
[Xi; Xj] ; X1; : : : bXi : : : bXj : : : ; Xk+1

�
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for � 2 A k(A;A), X1; : : : ; Xk+1 2 � (A).
Observe that

(dr(idA))(X; Y ) =rX(idA(Y ))�rY (idA(X))� idA([X; Y ])
=rXY �rYX � [X; Y ]
= Tr(X; Y )

for any X; Y 2 � (A). Consequently, the torsion of r is the di¤erential
of the identity:

Lemma 2.3.1. Tr = dr(idA):

Combining (2.3) with the equality in Lemma 2.3.1 we get the �rst
Bianchi identity.

Theorem 2.3.1. (The �rst Bianchi identity.)

dr(Tr) = Rr Z idA :

The �rst Bianchi identity can be written directly as in the following
corollary.

Corollary 2.3.1. (The �rst Bianchi identity.) For any X; Y; Z 2
� (A), we have

Rr
X;YZ �Rr

X;ZY +Rr
Y;ZX

=rX(T
r(Y; Z))�rY (T

r(X;Z)) +rZ(T
r(X;Y ))

�Tr([X;Y ] ; Z) + Tr([X;Z] ; Y )� Tr([Y; Z] ; X):

Corollary 2.3.2. If r is torsion-free, for any X; Y; Z 2 � (A) we have

Rr
X;YZ +Rr

Z;XY +Rr
Y;ZX = 0:

2.4 The Jacobi identity as the Bianchi identity

Let A be a vector bundle equipped with an anchor %A : A �! TM .
Moreover, let

r : � (A)� � (A) �! � (A)

be a connection in a vector bundle A, i.e., r is R-bilinear and satis�es
the following properties:
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rf �X(Y ) = f � rX(Y );

rX(f � Y ) = f � rX(Y ) + (%A �X)(f) � Y
for any X; Y 2 � (A); f 2 C1(M).
De�ne

[[X; Y ]] = rXY �rYX

for any X; Y 2 � (A).
Observe that [[�; �]] : � (A) � � (A) �! � (A) is bilinear over R and

skew-symmetric. Moreover,

[[X; fY ]] =rX(fY )�rfYX

= frX(Y ) + (%A �X)(f) � Y � frYX

= f [[X;Y ]] + (%A �X)(f) � Y
for X; Y 2 � (A) and f 2 C1(M). It follows that [[�; �]] introduces the
structure skew-symmetric algebroid into A. Theorem 2.4.1 presents
the relationship between the Jacobi identity of [[�; �]] and the Bianchi
identity for r in the skew-symmetric algebroid (A; %A; [[�; �]]).
Theorem 2.4.1. For any X; Y; Z 2 � (A) we have

Jac[[�;�]](X; Y; Z) = �
X
cycl
X;Y;Z

RrX;YZ:

Proof. Let X; Y; Z 2 � (A). Since
[[[[X;Y ]]; Z]] = [[rXY �rYX;Z]]

=rrXY�rYX(Z)�rZ(rXY �rYX)

=rZ(rYX)�rZ(rXY ) +r[[X;Y ]](Z);

we have

Jac[[�;�]](X; Y; Z) = [[[[X; Y ]]; Z]] + [[[[Z;X]]; Y ]] + [[[[Y; Z]]; X]]

=rZ(rYX)�rZ(rXY ) +r[[X;Y ]](Z)

+rY (rXZ)�rY (rZX) +r[[Z;X]](Y )

+rX(rZY )�rX(rYZ) +r[[Y;Z]](X)

= �rX(rYZ) +rY (rXZ) +r[[X;Y ]](Z)

�rZ(rXY ) +rX(rZY ) +r[[Z;X]](Y )

�rY (rZX) +rZ(rYX) +r[[Y;Z]](X)

= �RrX;YZ �RrZ;XY �RrY;ZX:
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We show that the family of examples of Lie algebroids on the cotan-
gent bundle considered in Section 1.10 and introduced in [22] come
from some �at linear connections in skew-symmetric algebroids de-
�ned by these connections. We notice that the de�ned Lie brackets on
1-di¤erential forms are in fact skew-symmetric parts of some torsion-
free and �at connections. Moreover, we obtain a slight generalization
of considered relations between vector �elds.
Let M be a di¤erential manifold and let X;Y 2 � (TM) be vector

�elds on M such that

[X; Y ] = fY for some f 2 C1(M):

De�ne

%X;Y : T
�M �! TM

such that

%X;Y (�) = ��(Y )X for � 2 � (T �M):

Next, de�ne r by

r : � (T �M)� � (T �M) �! � (T �M);

r�� = ��(Y ) � LX�
for �; � 2 � (T �M).

Lemma 2.4.1. For g 2 C1(M), X 2 � (TM), ! 2 � (T �M), we have

(a) Lg�X! = g � LX! + !(X) � dg,
(b) LX(g � !) = g � LX! +X(g) � !.

Lemma 2.4.2. r is a linear connection in T �M .

Proof. It is evident that r is bilinear over R and that rg�� = gr��
for �; � 2 � (T �M), g 2 C1(M). The property (b) in Lemma 2.4.1
implies that

r�(g�) = ��(Y ) � LX(g�)
= ��(Y ) � (gLX� +X(g) � �)
= g (��(Y ) � LX�) + (��(Y ) �X) (g) � �
= gr�� + %X;Y (�)(g) � �

for any �; � 2 � (T �M), g 2 C1(M).
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Recall the bracket [�; �]X;Y : � (T �M)� � (T �M) �! � (T �M) from
Section 1.10:

[�; �]X;Y = �(Y )LX�� �(Y )LX�

for �; � 2 � (T �M). Observe that [�; �]X;Y can be written as follows

[�; �]X;Y = r�� �r��

for �; � 2 � (T �M). It follows immediately that [�; �]X;Y speci�es a
skew-symmetric R-bilinear bracket. We show that the Jacobi identity
is a consequence of the �atness the considered connection.

Lemma 2.4.3. r is �at with respect to the bracket [�; �]X;Y .

Proof. Let �; �;  2 � (T �M). Then

(I) ,r� (r�)

= r� (��(Y ) � LX)
= ��(Y ) � r� (LX) +r� (��(Y ) � LX)
= ��(Y ) � r� (LX) + (%X;Y � �) (��(Y )) � LX
= �(Y ) � �(Y ) � LX (LX) + �(Y ) �X (�(Y )) � LX:

Likewise,

(II) , r� (r�) = �(Y ) ��(Y ) � LX (LX)+�(Y ) �X (�(Y )) � LX:

Subtracting (II) from (I), we conclude that

r� (r�)�r� (r�) = (�(Y ) �X (�(Y ))� �(Y ) �X (�(Y ))) �LX:

Furthermore, observe that

(III) ,r[�;�]X;Y
 = r�(Y )�LX���(Y )�LX�

= �(Y ) � rLX� � �(Y ) � rLX�

= ��(Y ) � (LX�)(Y ) � LX + �(Y ) � (LX�)(Y ) � LX
= (��(Y ) � (LX�)(Y ) + �(Y ) � (LX�)(Y )) � LX
= �(Y ) � (�X(�(Y )) + �([X; Y ])) � LX
+�(Y ) � (X(�(Y ))� �([X;Y ])) � LX:

The result is
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Rr�;� = (I)� (II)� (III)
= (�(Y ) �X (�(Y ))� �(Y ) �X (�(Y ))) � LX
+�(Y ) � (X(�(Y ))� �([X; Y ])) � LX
��(Y ) � (X(�(Y )) + �([X;Y ])) � LX

= (�(Y ) � �([X; Y ])� �(Y ) � �([X; Y ])) � LX:

Since [X; Y ] = fY , we conclude that

Rr�;� = (�(Y ) � �(fY )� �(Y ) � �(fY )) � LX
= f (�(Y ) � �(Y )� �(Y ) � �(Y )) � LX
= 0:

Since r is a torsion-free and �at connection, by Theorem 2.4.1 the
Jacobi identity follows from the Bianchi identity:

Jac[�;�]X;Y (�; �; ) = �
�
Rr�;� +Rr;�� +Rr�;�

�
= 0:

As mentioned in [22], the starting point can be not only a special
Lie algebroid, which is the tangent bundle, but any Lie algebroid. Now
take a �nite-dimensional real Lie algebra g. Then in g� for x; y 2 g
satisfying [x; y] = cy for some c 2 R, we can consider the connection
r in g such that

r�� = ��(y) � Lx� = �(y) � (� � ad(x))

for �; � 2 g�, where ad denotes the adjoint representation of the Lie
algebra g. The related Lie bracket for �; � 2 g� is then given by the
formula

[�; �]x;y =r�� �r��

= (�(y) � � � �(y) � �) � ad(x):

2.5 Exterior derivative on a Lie algebroid

Let (A; %A; [�; �]) be a Lie algebroid over a manifold M . Consider the
anchor of the algebroid A as an A-connection in the trivial vector
bundle M � R. Then

d = dSec %A : � (
Vk A�) �! � (

Vk+1A�)
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is the exterior derivative operator on the Lie algebroid (A; %A; [�; �]),
and is given by

(d�)(X1; : : : ; Xk+1)

=
k+1P
j=1

(�1)j+1 (%A �Xj)
�
�(X1; : : : bXj : : : ; Xk+1)

�
+
P
i<j

(�1)i+j �([Xi; Xj] ; X1; : : : bXi : : : bXj : : : ; Xk+1)

for � 2 � (
Vk A�), X1; : : : ; Xk+1 2 � (A).

Since the bracket [�; �] satis�es the Jacobi identity, i.e., Jac[�;�] = 0,
d � d = 0

(cf. [42], [66]). For the �rst time in the context of Lie algebroids, this
operator was discussed in [66].

De�nition 2.5.1. The cohomology of the chain complex

(
L
k�0

� (
Vk A�); d)

is called the Lie algebroid cohomology of A and denoted by H�(A).

Lemma 2.5.1. For any X 2 � (A), we have
ad\A(X) = d � �X + �X � d

where d = d%A is the exterior di¤erential operator in A.

Proof. Let X; Y 2 � (A), � 2 � (A�). Then,
h(d � �X + �X � d)�; Y i

= hd(h�;Xi ; Y i+ h(�X(d�); Y i
= (d(h�;Xi)(Y ) + (d�)(X; Y )
= (%A � Y )(h�;Xi) + (%A �X)(�(Y ))� (%A � Y )(�(X))� �([X; Y ])

= (%A �X)(h�; Y i)� h�; adA(X)(Y )i
=
D
ad\A(X)(�); Y

E
:

Similarly, the connection Homn(adA) can be written in the language
of the di¤erential operator d and the substitution operator. By Lemma
2.2.1, we have immediately the following corollary.

Corollary 2.5.1. For any X 2 � (A),
Homn(adA)(X) = d � �X + �X � d

where d = d%A is the exterior di¤erential operator on A.
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2.6 Connections associated with metric structures

2.6.1 Symmetric products and the symmetrized covariant
derivative

In this section we discuss symmetric products on skew-symmetric alge-
broids. We note that linear connections on skew-symmetric algebroids
are the source of such objects. Such symmetric products appeared in
the expansion of the symmetrized connection, and this is the subject
of our considerations. In particular, we remark that symmetric prod-
ucts have similar properties to the exterior derivative operator. We
depend on our paper [7]. Some proofs has been supplemented here and
presented for the sake of clarity and completeness.
Let (A; %A; [�; �]) be a skew-symmetric algebroid over a manifold M .

De�nition 2.6.1. A symmetric bracket on the anchored vector bundle
(A; %A) is an R-bilinear symmetric mapping

h� : �i : � (A)� � (A) �! � (A)

satisfying the following Leibniz-kind rule:

hX : f � Y i = f � hX : Y i+ (%A �X)(f) � Y

for X; Y 2 � (A), f 2 C1(M).

Example 2.6.1. Let r : � (A)� � (A) �! � (A) be a connection in A.
Then, h� : �ir : � (A)� � (A) �! � (A) given by

hX : Y ir = rXY +rYX (2.4)

for X; Y 2 � (A), is a symmetric bracket on A.

De�nition 2.6.2. Let r : � (A)� � (A) �! � (A) be a connection in
A. The symmetric bracket on A de�ned by (2.4) is called the symmetric
product induced by r.

Remark 2.6.1. The symmetric product in the case A = TM was �rst
introduced by Crouch in [20]. However, the symmetric product for Lie
algebroids was �rst considered in the context of control systems by
Cortés and Martínez in [15]. Lewis in [58] gives some geometrical in-
terpretation of the symmetric product associated with the geodesically
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invariant property of a distribution. Namely, we say that a smooth dis-
tribution D on a manifoldM with an a¢ ne connection rTM is geodes-
ically invariant if for every geodesic c : I !M satisfying the property
c0(s) 2 Dc(s) for some s 2 I, we have c0(s) 2 Dc(s) for every s 2 I.
Lewis proved in [58] that a distribution D on a manifold M equipped
with an a¢ ne connection rTM is geodesically invariant if and only if
the symmetric product h� : �irTM induced by rTM is closed under D,
i.e.,

hD : Dir
TM

� D:

Let us assume that the skew-symmetric algebroid (A; %A; [�; �]) is
equipped with a symmetric bracket h� : �i : � (A)� � (A) �! � (A).
We de�ne ds : � (

Nk A�) �! � (
Nk+1A�) on the whole tensor

bundle by

(ds
)(X1; : : : ; Xk+1) =
k+1P
j=1

(%A �Xj)
�

(X1; : : : bXj : : : ; Xk+1)

�
�
P
i<j



�
X1; : : : bXi : : : ; hXi : Xji ; : : : ; Xk+1

�
for 
 2 � (

Nk A�), X1; : : : ; Xk+1 2 � (A). We denote the restriction of
ds to the symmetric power bundle S(A) by the same symbol.
The symmetric Lie derivative LsX : � (

Nk A�) �! � (
Nk A�) for

X 2 � (A) is de�ned by
(LsX
)(X1; : : : ; Xk) = (%A �X)(
(X1; : : : ; Xk))

�
kP
i=1


(X1; : : : ; hX : Xii ; : : : ; Xk)

for 
 2 � (
Nk A�), X1; : : : ; Xk 2 � (A). Remark that the image LsX(�)

of a symmetric tensor � is also a symmetric tensor.
By using de�nitions, one can prove that the symmetric Lie derivative

satis�es the following Cartan�s identities analogous to these Cartan
identities on exterior forms:

Theorem 2.6.1. For any X; Y 2 � (A) we have:

(a) LsX = iXd
s � dsiX ;

(b) LsXiY � iYLsX = ihX:Y i:
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Proof. Let X;Y;X1; : : : ; Xk 2 � (A) and 
 2 � (
Nk A�). Observe that

(iXd
s
)(X1; : : : ; Xk)

= (%A �X)(
(X1; : : : ; Xk)) +
kP
i=1

(%A �Xi)(
(X;X1; : : : ; bXi; : : : ; Xk))

�
kP
i=1


(X1; : : : ; hX : Xii ; : : : ; Xk)

�
kP
i<j


(X;X1; : : : ; bXi; : : : ; hXi : Xji ; : : : ; Xk)

and

(dsiX
)(X1; : : : ; Xk) =
kP
i=1

(%A �Xi)(
(X;X1; : : : ; bXi; : : : ; Xk))

�
kP
i<j


(X;X1; : : : ; bXi; : : : ; hXi : Xji ; : : : ; Xk):

Hence, we obtain (a) in Theorem 2.6.1.
Moreover,

(LsXiY
)(X1; : : : ; Xk�1)

= (%A �X)(
(Y;X1; : : : ; Xk�1))�
k�1P
i=1


(Y;X1; : : : ; hX : Xii ; : : : ; Xk�1)

and

(iYLsX
)(X1; : : : ; Xk�1) = (%A �X)(
(Y;X1; : : : ; Xk�1))

�
(hX : Y i ; X1; : : : ; Xk�1)�
k�1P
i=1


(Y;X1; : : : ; hX : Xii ; : : : ; Xk�1);

which give immediately (b) in Theorem 2.6.1.

Lemma 2.6.1. For f 2 C1(M), X 2 � (A), � 2 � (A�), we have:

(a) Lsf �X� = f � LsX� � (iX�) � dsf;

(b) LsX(f � �) = f � LsX� + (%A �X)(f) � �:

When the symmetric bracket comes from a connection, i.e., is the
symmetric part of a linear connection r : � (A) � � (A) �! � (A),
ds on symmetric tensors is simply a symmetrization of the connection
operator. We have the following theorem.
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Theorem 2.6.2. Let r : � (A)� � (A) �! � (A) be an A-connection
and ds is induced by the symmetric product hX : Y ir = rXY +rYX,
i.e.,

(ds�)(X1; : : : ; Xk+1) =
k+1P
j=1

(%A �Xj)
�
�(X1; : : : bXj : : : ; Xk+1)

�
�
P
i<j

�
�
hXi : Xjir ; X1; : : : bXi : : : bXj : : : ; Xk+1

�
for � 2 � (SkA�), X1; : : : ; Xk+1 2 � (A). Then

ds = (k + 1) � (Sym �r) : � (SkA�) �! � (Sk+1A�);

where Sym is the symmetrizer de�ned by

(Sym �)(X1; : : : ; Xk) =
1

k!

P
�2Sk

�(X�(1); : : : ; X�(k))

for � 2 � (
Nk A�). Equivalently,

(ds�)(X1; : : : ; Xk+1) =
k+1P
j=1

�
rXj�

�
(X1; : : : bXj : : : ; Xk+1) (2.5)

for � 2 � (SkA�), X1; : : : ; Xk+1 2 � (A).

De�nition 2.6.3. We call ds the symmetrized covariant derivative.

Remark 2.6.2. The mapping ds in the case of tangent bundles was
introduced by Sampson in [76], where a symmetric version of Chern�s
theorem is proved. The Koszul-type shape of ds for tangent bundles was
�rst obtained by Heydari, Boroojerdian, and Peyghan in [40], and next
under the study of generalized gradients on Lie algebroids in the sense
of Stein-Weiss in [12]. Thus, the symmetrized covariant derivative is a
symmetric counterpart of the exterior derivative operator, except that
the role of the skew-symmetric bracket is taken over by the symmetric
product.
The symmetrized covariant derivative was also considered by Mike�,

Rovenski, Stepanov and Tsyganok in the study of the Lichnerowicz-
type Laplacian on symmetric tensors [77], [67].



58 2. Linear connections on Lie algebroids

2.6.2 Connections compatible with Riemannian
pseudometrics

Let (A; %A; [�; �]) be a skew-symmetric algebroid over a manifold M
equipped with a pseudo-Riemannian metric g 2 � (S2A�) in the vector
bundle A and an A-connection r in A. Let h� : �ir be the symmetric
product induced by r, i.e.,

hX : Y ir = rXY +rYX

for X; Y 2 � (A), and let ds be the symmetrized covariant derivative.

De�nition 2.6.4. A connection r in is said to be compatible with the
metric g if rg = 0.

The pseudo-Riemannian metric de�nes two homomorphisms of vec-
tor bundles

[ : A �! A�; ] : A� �! A

by

[(X) = iXg; g(](!); X) = !(X)

for X 2 � (A), ! 2 � (A�), respectively.

De�nition 2.6.5. LetX 2 � (A). We will use the symbolX[ to denote
the 1-form iXg = g(X; �), i.e.,

X[ = iXg:

De�nition 2.6.6. We say that r is a connection with totally skew-
symmetric torsion with respect to a pseudo-Riemannian metric g if

the tensor T g 2 � (
O3

A�) given by

T g(X; Y; Z) = g(Tr(X; Y ); Z)

for X; Y; Z 2 � (A), is a 3-form on A, i.e., T g 2 � (
V3A�).

In the following theorem we show the relationship determined by the
metric tensor between the connection, its torsion, and the symmetrized
covariant derivative of the metric.
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Theorem 2.6.3. [7] Let X;Z 2 � (A). Then,
g(rXX;Z) = g(](L%AX X[ � 1

2
d(g(X;X))); Z) (2.6)

�g(Tr(X;Z); X)
+(rg)(Z;X;X)� 1

2
(dsg)(X;X;Z):

Proof. [7] Let X;Z 2 � (A). Observe that
(dsg)(X;X;Z) = (rXg)(X;Z) + (rXg)(X;Z) + (rZg)(X;X)

= 2(rg)(X;X;Z) + (rg)(Z;X;X):
Therefore,

(rg)(Z;X;X)� 1
2
(dsg)(X;X;Z)

= (rg)(Z;X;X)� 1
2
(2(rg)(X;X;Z) + (rg)(Z;X;X))

= 1
2
(rg)(Z;X;X)� (rg)(X;X;Z):

Now observe that
1
2
(rg)(Z;X;X)� (rg)(X;X;Z)

= 1
2
(rZg)(X;X)� (rXg)(X;Z)

= 1
2
%A(Z)(g(X;X))� g(rZX;X)� %A(X)(g(X;Z))

+g(rXX;Z) + g(X;rXZ)

= 1
2
%A(Z)(g(X;X)) + g(rXZ �rZX � [X;Z] ; X)
�%A(X)(g(X;Z)) + g([X;Z] ; X) + g(rXX;Z):

Since

%A(Z)(g(X;X)) = d(g(X;X))(Z) = g(](d(g(X;X))); Z)

and�
L%AX X[

�
(Z) = %A(X)(g(X;Z))� g(X; [X;Z]);

we have
1
2
(rg)(Z;X;X)� (rg)(X;X;Z)

= 1
2
d(g(X;X))(Z) + g(Tr(X;Z); X)�

�
L%AX X[

�
(Z) + g(rXX;Z):

In consequence, we obtain the formula given in (2.6). This completes
the proof.

Moreover, if r is a metric connection with totally skew-symmetric
torsion, then rg = 0, dsg = 0, and

g(Tr(X;Z); X) = �g(Tr(X;X); Z) = 0
for X; Y; Z 2 � (A). In consequence, we obtain the following conclusion
for connections compatible with the metric.
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Corollary 2.6.1. If r is a connection with totally skew-symmetric
torsion compatible with g, then

rXX = ](L%AX X[ � 1
2
d(g(X;X))) (2.7)

for X 2 � (A):

Applying Theorem 2.6.3, we obtain the aforementioned relationship
between the connection, its torsion, and the symmetrized covariant
derivative of the metric:

Theorem 2.6.4. [7] Let h� : �ir be the symmetric bracket of sections
induced by r. Then,

g(hX : Y ir ; Z) = g(](L%AX Y [ + L%AY X[ � d(g(X; Y ))); Z) (2.8)

�g(Tr(X;Z); Y )� g(Tr(Y; Z); X)

+2(rg)(Z;X; Y )� (dsg)(X; Y; Z)
for X;Y; Z 2 � (A).

Proof. [7] Using the following polarization formula

hX : Y ir = rX+Y (X + Y )�rXX �rY Y

and Theorem 2.6.3, we obtain

g(hX : Y ir ; Z) = g(](L%AX+Y (X + Y )[ � 1
2
d(g(X + Y;X + Y ))); Z)

�g(Tr(X + Y; Z); X + Y )

+(rg)(Z;X + Y;X + Y )

�1
2
(dsg)(X + Y;X + Y; Z)

�g(](L%AX X[ � 1
2
d(g(X;X))); Z)

+g(Tr(X;Z); X)� (rg)(Z;X;X)
+1
2
(dsg)(X;X;Z)

�g(](L%AY Y [ � 1
2
d(g(Y; Y ))); Z)

+g(Tr(Y; Z); Y )� (rg)(Z; Y; Y ) + 1
2
(dsg)(Y; Y; Z):

First, observe that

L%AX+Y (X + Y )[ � L%AX X[ � L%AY Y [ = L%AX Y [ + L%AY X[

and

�1
2
d(g(X+Y;X+Y ))+ 1

2
d(g(X;X))+ 1

2
d(g(Y; Y )) = �d(g(X; Y )):
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Since g is a symmetric tensor and Tr is skew-symmetric, we conclude
that

�g(Tr(X + Y; Z); X + Y ) + g(Tr(X;Z); X) + g(Tr(Y; Z); Y )

is equal to

�g(Tr(X;Z); Y )� g(Tr(Y; Z); X):

Moreover,

2(rg)(Z;X; Y ) = (rg)(Z;X + Y;X + Y )

�(rg)(Z;X;X)� (rg)(Z; Y; Y )

and

(dsg)(X; Y; Z) = 1
2
(dsg)(X; Y; Z) + 1

2
(dsg)(Y;X;Z)

= 1
2
(dsg)(X + Y;X + Y; Z)� 1

2
(dsg)(X;X;Z)

� 1
2
(dsg)(Y; Y; Z):

Hence, it is clear that some terms of hX : Y i cancel themselves. In fact,
we obtain

g(hX : Y ir ; Z) = g(](L%AX Y [ + L%AY X); Z)
�g(](�d(g(X; Y ))); Z)
�g(Tr(X;Z); Y )� g(Tr(Y; Z); X)

�(dsg)(X; Y; Z):

This proves (2.8).

The formula in Theorem 2.6.4 gives an explicit one of symmetric
bracket de�ned by any metric connection with totally skew-symmetric
torsion.

Corollary 2.6.2. Let r be any metric A-connection in A with totally
skew-symmetric torsion with respect to a pseudo-Riemannian metric
g. Then,

hX : Y ir = ](L%AX Y [ + L%AY X[ � d(g(X; Y )))

for X; Y 2 � (A).
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2.6.3 Fundamental theorem of pseudo-Riemannian geometry
and the Levi-Civita connection

In this section we want to present the fundamental theorem of pseudo-
Riemann geometry. In particular, we want to demonstrate the unique-
ness of the torsion-free and compatible with the given metric structure
connection. The starting point is a skew-symmetric algebroid with a
given metric and additionally equipped with a symmetric bracket.
Let (A; %A; [�; �]) be a skew-symmetric algebroid equipped with a

metric g 2 � (S2A�) and a symmetric bracket h� : �i in � (A), i.e., an R-
bilinear symmetric mapping h� : �i : � (A)� � (A) �! � (A) satisfying

hX : fY i = f hX : Y i+ (%A �X)(f) � Y

for X; Y 2 � (A), f 2 C1(M).
With the given symmetric bracket h� : �i we associate the symmetric

Lie derivative Ls and the symmetrized covariant derivative ds.

Theorem 2.6.5. [7] Let r be an A-connection in A with totally skew-
symmetric torsion with respect to a pseudo-Riemannian metric g on A
given by

rXY =
1
2
([X; Y ] + hX : Y i) + 1

2
T (X; Y ) (2.9)

for X;Y 2 � (A), and some T 2 � (
V2A� 
 A). Then,

(iX � r)g = 1
2
(L%AX + LsX) g for X 2 � (A):

Proof. [7] Let X; Y; Z 2 � (A). Since T 2 �
�^2

A� 
 A
�
is a 2-skew-

symmetric tensor with the property that

g(Y; T (X;Z)) = g(T (X;Z); Y ) = �g(T (X;Y ); Z);

we have

(rXg) (Y; Z) = �A(X)(g(Y; Z))� g(rXY; Z)� g(Y;rXZ)

= 1
2
(�A(X)(g(Y; Z))� g([X; Y ]; Z)� g(Y; [X;Z]))

+1
2
(�A(X)(g(Y; Z))� g(hX : Y i ; Z)� g(Y; hX : Zi))

�1
2
g(T (X; Y ); Z)� 1

2
g(Y; T (X;Z))

= 1
2
(LaXg + LsXg) (Y; Z):
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We conclude with the following condition ensuring that a connection
with totally skew-symmetric torsion is a metric connection.

Corollary 2.6.3. If r is an A-connection in A with totally skew-
symmetric torsion with respect to g given by (2.9), then r is metric
with respect to g if and only if

L%AX g = �LsXg for any X 2 � (A):

Now, we recall some properties of the classical Lie derivative.

Lemma 2.6.2. For f 2 C1(M), X 2 � (A), ! 2 � (A�), we have

(a) L%Af �X! = f � L%AX ! + (iX!) � df;

(b) L%AX (f � !) = f � L%AX ! + (%A �X)(f) � !:

Theorem 2.6.6. [7] Given a skew-symmetric algebroid (A; %A; [�; �]),
we de�ne

hX : Y is : � (A)� � (A) �! � (A)

by

hX : Y is = ](L%AX Y [ + L%AY X[ � d(g(X; Y ))) (2.10)

for X; Y 2 � (A). Then, h� : �is is a symmetric bracket that de�nes the
symmetric Lie derivative Ls satisfying LsXg = �L

%A
X g.

The following conclusion immediately follows from Theorem 2.6.5.

Corollary 2.6.4. The torsion-free connection r given by

rXY =
1
2
([X; Y ] + hX : Y is) ;

where

hX : Y is = ](L%AX Y [ + L%AY X[ � d(g(X; Y ))) (2.11)

for X; Y 2 � (A), is compatible with g.

Now, we show that for the skew-symmetric algebroid structure
equipped with additional pseudometric g, the following generalization
of the fundamental theorem of Riemannian geometry holds:
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Theorem 2.6.7. [7] Let g be a pseudo-Riemannian metric in the vec-
tor bundle A and 
 2 � (

V2A� 
 A) be a 2-form on A with values in
A. Then, there exists a unique connection r on A compatible with g
such that its torsion tensor equals 
, i.e.,

rg = 0 and Tr = 
:

The connection r is given by the formula

rXY =
1
2
([X; Y ] + hX : Y is) + 1

2

(X; Y ) + S(X; Y );

where

hX : Y is = ](L%AX Y [ + L%AY X[ � d(g(X; Y ))); (2.12)

and S 2 � (S2A� 
 A) is the symmetric 2-tensor on A with values in
A determined uniquely by

g(S(X; Y ); Z) = g(
(Z;X); Y ) + g(
(Z; Y ); X)

for X; Y; Z 2 � (A):

Proof. (cf. [7]) Let X; Y 2 � (A). To prove the existence of the suitable
connection, take the linear connection rg de�ned by

rg
XY =

1
2
([X; Y ] + hX : Y is) ;

where

hX : Y is = ](L%AX Y [ + L%AY X[ � da(g(X; Y ))):

Let r be a linear connection compatible with g and with torsion Tr

equals 
. There exists some 2-tensor � 2 � (
2A� 
 A) such that

rXY = rg
XY + �(X; Y ):

Hence


(X; Y ) = Tr(X; Y )

=rg
XY + �(X; Y )�rg

YX + �(Y;X)� [X;Y ]
= �(X; Y )� �(Y;X)

because rg
XY �r

g
YX = [X; Y ] (rg is torsion-free). Therefore,

rXY =rg
XY +

1
2
(�(X; Y )� �(Y;X)) + 1

2
(�(X; Y ) + �(Y;X))

=rg
XY +

1
2

(X; Y ) + 1

2
(�(X; Y ) + �(Y;X)) :
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It follows that there exists some symmetric tensor S 2 � (S2A� 
 A)
such that

rXY = rg
XY +

1
2

(X; Y ) + 1

2
S(X;Y ):

Thus we get

hX : Y ir =rXY +rYX (2.13)

=rg
XY +

1
2

(X; Y ) + 1

2
S(X; Y ) +rg

YX + 1
2

(Y;X) + 1

2
S(Y;X)

= (rg
XY +r

g
YX) +

1
2
� 0 + S(X;Y )

= hX : Y is + S(X; Y ):

This shows immediately that S is determined uniquely. Since rg = 0,
Theorem 2.6.4 and (2.13) now lead to

g(hX : Y is + S(X; Y ); Z)

= g(hX : Y ir ; Z)
= g(hX : Y is ; Z)� g(Tr(X;Z); Y )� g(Tr(Y; Z); X)

= g(hX : Y is ; Z) + g(Tr(Z;X); Y ) + g(Tr(Z; Y ); X)

= g(hX : Y is ; Z) + g(
(Z;X); Y ) + g(
(Z; Y ); X)

where the last equalities are the consequence of skew-symmetricity of
the torsion and the equality Tr = 
. From what has already been
proved, we see that

g(S(X; Y ); Z) = g(
(Z;X); Y ) + g(
(Z; Y ); X):

One can immediately see that Theorem 2.6.7 allows us to write
formulas of some connections related to the given 2-skew-symmetric
form on A with values in A. In the case, if r is a metric connection
in the bundle A with torsion T 2 � (

V2A�
A) which is totally skew-
symmetric with respect to g. The connection is given by the formula

rXY =
1
2
([X; Y ] + hX : Y is) + 1

2
T (X; Y );

where hX : Y is is given in (2.10).
As a special case of Theorem 2.6.7, we obtain Theorem 2.6.8 below

when the considered connection is torsion-free and compatible with g
(i.e., Tr = 0 and rg = 0).

Theorem 2.6.8. Given a bundle metric g on A, there is a unique
connection in A which is torsion-free and metric-compatible.
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De�nition 2.6.7. We call such a unique torsion-free connection in A
compatible with g the Levi-Civita connection with respect to g.

The explicit formula of the Levi-Civita connection compatible with
g is provided by Corollary 2.6.4.

2.6.4 Dual connection with respect to a metric tensor

Let (A; %A; [�; �]) be a skew-symmetric algebroid over a manifold M
equipped with a pseudo-Riemannian metric g 2 � (S2A�) in the vector
bundle A. Let r : � (A) � � (A) �! � (A) be a connection in the
bundle A.

De�nition 2.6.8. The dual connection r�g to r with respect to g is
given by

r�g : � (A)� � (A) �! � (A);

g(r�g
X Y; Z) = (%A �X)(g(Y; Z))� g(Y;rXZ)

for X; Y; Z 2 � (A).

De�nition 2.6.9. The a¢ ne combination of two connections r0;r1 :
� (A) � � (A) �! � (A) in A is the connection ra�;t given by the
formula

ra�;t = (1� t)r0 + tr1

where t 2 C1(M).

Theorem 2.6.9. If r0;r1 are two connections in A, t 2 C1(M),
X 2 � (A), then

(a) Tr
a�;t

= (1� t)Tr
0

+ tTr
1

;

(b) ra�;tg = (1� t) �
�
r0g

�
+ t �

�
r1g

�
;

(c) Lra�;tX = (1� t) � Lr0X + t � Lr1X :

Proof. (c) Let X;X1; : : : ; Xk 2 � (A), � 2 A k(A;A). Then,
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(Lra�;tX �)(X1; : : : ; Xk)

=ra�;t
X (�(X1; : : : ; Xk))�

kX
i=1

�(X1; : : : ; [X;Xi]; Xi+1; : : : ; Xk)

= (1� t)r0
X(�(X1; :::; Xk))� (1� t)

kX
i=1

�(X1; :::; [X;Xi]; :::; Xk)

+t � r1
X(�(X1; : : : ; Xk))� t

kX
i=1

�(X1; : : : ; [X;Xi]; : : : ; Xk)

= ((1� t) � Lr0X � + t � Lr1X �)(X1; : : : ; Xk):

Important for secondary characteristic classes are the a¢ ne combi-
nations of a given connection and a connection dual to it with respect
to the metric g. It turns out that the only a¢ ne combination of the r
and r�g compatible with the pseudo-metric is the connection ra�;t for
t = 1

2
. We have the following theorem.

Theorem 2.6.10. Let t 2 C1(M). If ra�;t = (1� t)r + tr�g, then
we have

ra�;tg = (1� 2t)rg:

Proof. Let X; Y; Z 2 � (A). Then,
(ra�;tg)(X; Y; Z)

= (%A �X) (g(Y; Z))� g(ra�;t
X Y; Z)� g(Y;ra�;t

X Z)

= (%A �X) (g(Y; Z))� g((1� t)rXY; Z)� g(tr�g
X Y; Z)

�g(Y; (1� t)rXZ)� g(Y; tr�g
XZ)

= (%A �X) (g(Y; Z))
� (1� t) g(rXY; Z)� t (%A �X) (g(Y; Z)) + tg(Y;rXZ)

� (1� t) g(Y;rXZ)� t (%A �X) (g(Z; Y )) + tg(rXY; Z)

= (1� 2t) ((%A �X) (g(Y; Z))� g(rXY; Z)� g(Y;rXZ))

= ((1� 2t)rg)(X; Y; Z):

Corollary 2.6.5. If r�g is the dual connection to r with respect to g,
then we have�

1

2
(r+r�g)

�
g = 0:
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2.7 Characterization of regular Lie algebroids by a
splitting of the Atiyah sequence

Let (A; %A; [�; �]) be a regular Lie algebroid over M with the Atiyah
sequence

0 ���! g ���! A
%A

���! F ���! 0: (2.14)

We note that A is isomorphic with the direct sum g � F, where the
structure of a Lie algebroid is determined by some splitting of the
Atiyah sequence (cf. [61], [53]).
Let

� : F! A

be a splitting of the Atiyah sequence (2.14), i.e., � is a homomorphism
of vector bundles with

%A � � = idF :

Recall form Theorem 2.1.2 and Corollary 2.1.1 that � commutes
with the anchors of F and A. De�ne the following homomorphism
of C1(M)-modules

r� : � (F) �! CDO(g); r�
Y (u) = [�(Y ); u]

for Y 2 � (F), u 2 � (g). r� is an F-connection in g. Let

R� 2 � (
V2 F � 
 g)

given by

R� (X; Y ) = [�(X); �(Y )]� � [X;Y ]F ;

be the curvature of �. Observe that the curvature

Rr
� 2 � (

V2 F � 
 End(g))

of r� is given by

Rr
�

X;Y u =
�
R� (X; Y ) ; u

�
(2.15)

for X; Y 2 � (F), u 2 � (g). Moreover, r� has the property:
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r�
X([u; �]) =

�
r�
X(u); �

�
+
�
u;r�

X(�)
�

forX 2 � (F), u; � 2 � (g).r� induces the covariant exterior derivative
dr

�
on A k(F;g). There is (well-known) the following second Bianchi

identity

dr
�

(R�) = 0: (2.16)

Since�
dr

�

dr
�

(a)
�
(X; Y ) = Rr

�

X;Y a

for all a 2 � (g) = A 0(F;g), X;Y 2 � (F), (2.15) shows a generalized
Ricci identity:�

dr
�

dr
�

(a)
�
(�; �) =

�
R�(�; �); a

�
(2.17)

for all a 2 � (g). In the direct sum g � F we have the structure of an
R-Lie algebra with the bracket [�; �]� de�ned by

[(a;X) ; (b; Y )]� =
�
[a; b] +R�(X; Y ) +r�

Xb�r�
Y a; [X; Y ]

�
for a; b 2 � (g), X; Y 2 � (F). It is evident that [�; �]� is R-multilinear
and skew-symmetric. Moreover, [�; �]� satis�es the Jacobi identity. In
fact, let a; b; c 2 � (g) and X; Y; Z 2 � (F). One can check using the
Jacobi identity in g and reduction of similar terms that

[[(a;X) ; (b; Y )] ; (c; Z)] + cyclic

=
�
R�(X; Y ); c

�
� (dr�dr�c)(X; Y )� (dr�R�)(X;Y; Z)

�
�
R�(X;Z); b

�
� (dr�dr�b)(X;Z)

+
�
R�(Y; Z); a

�
� (dr�dr�a)(Y; Z)

= 0

which equals zero because of the Bianchi and the Ricci identities (2.16),
(2.17).
The vector bundle g � F is a Lie algebroid with the bracket [�; �]�

and the projection to the second factor

% = pr2 : g � F �! F

as an anchor. This Lie algebroid is denoted by g�� F. We call g�� F
the semidirect sum of g and F. Note that the mapping
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 : g � F! A

given by

 (a;X) = a+ �(X)

is an isomorphism of vector bundles. Moreover, Sec is a homomor-
phism of R-Lie algebras (Sec preserves the Lie brackets [�; �]� and
[�; �]) and  commutes with anchors % and %A. It follows that Lie alge-
broids A and g �� F are isomorphic,

A �= g �� F:



Part III

Secondary characteristic classes of Lie
algebroids





3. Relative cohomology

3.1 The di¤erential ��

We consider a real Lie algebra g and its Lie subalgebra h. In the spaceV
(g=h)� of forms on the quotient space g=h, we can de�ne the rela-

tion � , which after restriction to invariant forms is a function such that
� �� = 0. We make elementary proofs for the properties of this relation
because h does not have to be an ideal of the Lie algebra g, and we
generally do not use properties of the exterior derivative operator in g.
In proofs showing that some relation � is anti-di¤erentiation and sat-
is�es the condition � � � = 0, we use some properties of permutations.
We show some useful properties at the beginning.

Some properties of permutations.

De�nition 3.1.1. Let m;n 2 N. Write

N(m;n) = N \ [m;n] .

De�nition 3.1.2. Let m;n; p 2 N. Denote by Sm;n the set of (m;n)-
shu es, that is, the set of permutations � 2 Sm+n satisfying

�(1) < � � � < �(m) and �(m+ 1) < � � � < �(m+ n):

De�nition 3.1.3. Let m;n; p 2 N. Let Sm;n;p denote the set of all
permutations � 2 Sm+n+p such that functions

�jN(1;m); �jN(m+ 1;m+ n); and �jN(m+ n+ 1;m+ n+ p)

are increasing, i.e., �(1) < � � � < �(m), �(m + 1) < � � � < �(m + n),
and �(m+ n+ 1) < � � � < �(m+ n+ p):

Theorem 3.1.1. For any r; s; t 2 N sets Sr;s+t � St;s and Sr;t;s are
bijective. The mapping

�r;s;t : Sr;s+t � St;s
1�1�! Sr;t;s;

(�; �) 7�! � � (r + �)



74 3. Relative cohomology

is a bijection, where r + � 2 Sr;t;s � Sr+s+t is de�ned by

(r + �)(i) =

�
i if i 2 N(1; r);
r + �(i� r) if i 2 N(r + 1; r + t+ s):

Moreover,

sgn(�r;s;t(�; �)) = sgn(� � (r + �)) = sgn� � sgn �:

Proof. Let �; �0 2 Sr;s+t, �; �0 2 St;s, and let

� � (r + �) = �0 � (r + �0) :

Observe that (r + �)jN(1; r) = idN(1;r) = (r + �0)jN(1; r). Thus,
�jN(1; r) = �0jN(1; r). Due to the fact that �jN(r + 1; r + t + s)
and �0jN(r + 1; r + t + s) are increasing, it follows that � = �0. The
equality ��(r+�) = ��(r+�0) and injectivity of � imply r+� = r+�0.
In particular,

(r + �)jN(r + 1; r + t+ s) = (r + �0)jN(r + 1; r + t+ s):

Therefore,

� = (r + �)jN(r + 1; r + t+ s) � (j 7! j + r)� r

= (r + �0)jN(r + 1; r + t+ s) � (j 7! j + r)� r

= �0:

Thus �r;s;t is injective.
Now, let � 2 Sr;t;s, i.e., � 2 Sr+t+s satis�es the conditions �(1) <

� � � < �(r), �(r+1) < � � � < �(r+t), and �(r+t+1) < � � � < �(r+t+s).
We denote by K the set �(N(r + 1; r + t+ s)).
De�ne � 2 Sr;t+s in such a way that

�jN(1; r) = � jN(1; r); �(N(r + 1; r + t+ s)) = K;

and �jN(r + 1; r + t+ s) is increasing. Take an injective mapping

� : N(1; t+ s) �! N

given by

�(j) = ��1(�(r + j))� r for j 2 N(1; t+ s):

The injectivity of � implies
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N(r + 1; r + t+ s) = ��1(�(N(r + 1; r + t+ s)))

= ��1(�(N(r + 1; r + t+ s))):

Therefore,

�(N(1; t+ s)) = N((r + 1)� r; (r + t+ s)� r) = N(1; t+ s);

which means that � is a permutation, i.e., � 2 St+s.
Since the mapping �jK : K

1�1�! K is increasing, we conclude that
(�jK)�1 : K 1�1�! K is also increasing. Hence, since

� jN (r + 1; r + t) and � jN (r + t+ 1; r + t+ s)

are increasing, it follows that

(�jN(r + 1; r + t+ s))�1 � � jN(r + 1; r + t)� r;

(�jN(r + 1; r + t+ s))�1 � � jN(r + t+ 1; r + t+ s)� r

are also increasing. From this we deduce that

�(1) < � � � < �(t) and �(t+ 1) < � � � < �(t+ s):

Consequently, � 2 St;s.
It is clear that

(r + �)(i) =

�
i if i 2 N(1; r);
r + �(i� r) if i 2 N(r + 1; r + t+ s)

=

�
i if i 2 N(1; r);
��1(�(i)) if i 2 N(r + 1; r + t+ s):

Therefore, �r;s;t(�; �) = � � (r + �) = � . This shows that �r;s;t is
surjective.

Corollary 3.1.1. (t = 2) For r; s 2 N sets Sr;s+2 � S2;s and Sr;2;s are
bijective. Let (r + �) 2 Sr;2;s be given by

(r + �)(i) =

�
i if i 2 N(1; r);
r + �(i� r) if i 2 N(r + 1; r + s+ 2):

The mapping

�r;s;2 : Sr;s+2 � S2;s
1�1�! Sr;2;s;

(�; �) 7�! � � (r + �)

is bijective.
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Corollary 3.1.2. (r = 2) For s; t 2 N the sets S2;s+t � St;s and S2;t;s
are bijective. The mapping

�2;s;t : S2;s+t � St;s
1�1�! S2;t;s;

(�; �) 7�! � � (2 + �);

where (2 + �) 2 S2;t;s � S2+t+s de�ned by

(2 + �)(i) =

�
i if i 2 N(1; 2);
r + �(i� 2) if i 2 N(3; 2 + s+ t);

is bijective.

Theorem 3.1.2. For r; s; t 2 N the mapping

�r;t
s : Sr;t;s

1�1�! St;r;s;

� 7�! � � �r;ts ;

where �r;ts 2 St;r;s � Sr+t+s, given by

�r;ts (i) =

8<:
r + i if i 2 N(1; t);
i� t if i 2 N(t+ 1; t+ r);
i if i 2 N(t+ r + 1; t+ r + s);

is a bijection between sets Sr;t;s and St;r;s. Moreover,

sgn�r;t
s (�) = (�1)

r�t sgn�:

Corollary 3.1.3. For r; s; t 2 N the sets Sr;s+t � St;s and St;r;s are
bijective. The mapping

�r;t
s � �r;s;t : Sr;s+t � St;s

1�1�! St;r;s

is bijective. Moreover,

sgn(�r;t
s � �r;s;t)(�; �) = (�1)r�t sgn� � sgn �

for � 2 Sr;s+t; � 2 St;s.
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Corollary 3.1.4. Let r; s 2 N, � 2 S2;r, and let (�+ s) 2 S2;r;s be a
permutation de�ned by

(�+ s)(j) =

�
�(j) if j 2 N(1; r + 2);
j if j 2 N(r + 3; r + 2 + s):

Then, the mapping

� r;2s : Sr+2;s � S2;r �! S2;r;s

given by

� r;2s (�; �) = � � (�+ s)

for � 2 Sr+2;s and � 2 S2;r, is a bijection between sets Sr+2;s � S2;r
and S2;r;s. Moreover, sgn (� r;2s (�; �)) = sgn� � sgn � for � 2 Sr+2;s and
� 2 S2;r.

Proof. Let �p;q0 2 Sq;p be given by

�p;q0 (i) =

�
p+ i if i 2 N(1; q);
i� q if i 2 N(q + 1; q + p):

The mapping � r;2s is a composition of the bijections:

(� 7! � � �2s;r) ��s;2
r � �s;2;r �

�
� 7! � � �r+2;s0

�
� idS2;r ;

where �kp;q 2 Sk;q;p is given by

�kp;q(i) =

8<:
i if i 2 N(1; k);
p+ i if i 2 N(k + 1; k + q);
i� q if i 2 N(k + q + 1; k + q + p);

i.e., the following diagram

Ss;s+2 � S2;r Ss;2;r-
�s;2;r

Sr+2;s � S2;r S2;r;s-� r;2s

?

(� 7! � � �r+2;s0 )� idS2;r

6

�s;2
r

is commutative. In fact, let (�; �) 2 Sr+2;s � S2;r: Then,
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� 7! � � �2s;r

�
��s;2

r � �s;2;r �
�
� 7! � � �r+2;s0

�
� idS2;r

�
(�; �)

=
��
� 7! � � �2s;r

�
��s;2

r � �s;2;r
� �
� � �r+2;s0 ; �

�
=
��
� 7! � � �2s;r

�
��s;2

r

� �
� � �r+2;s0 � ((s+ �))

�
=
��
� 7! � � �2s;r

�� �
� � �r+2;s0 � (s+ �) � �s;2r

�
= � � �r+2;s0 � (s+ �) � �s;2r � �2s;r
= � � (�+ s)

= � r;2s (�; �):

The relation � . Let g be a vector bundle over a manifold M and let
h be a subbundle of g such that � (h) is a real Lie subalgebra of � (g)
and hx is a Lie subalgebra of a Lie algebra gx for any x 2M . Let [�; �]
denote the Lie bracket in � (g). We de�ne a relation

� : � (
V
(g=h)�) �! � (

V
(g=h)�)

by

( � �)([u1]; : : : ; [un+1])

=
X
i<j

(�1)i+j+1 �([[ui; uj]] ; [u1] ; : : : ; {̂; : : : ; |̂; : : : ; [un+1])

=
X

�2S2;n�1

sgn� � �(
�
[u�(1); u�(2)]

�
;
�
u�(3)

�
; : : : ;

�
��(n+1)

�
)

for � 2 � (
Vn(g=h)�), u1; : : : ; un+1 2 � (g).

� is an antiderivation.

Theorem 3.1.3. � : � (
V
(g=h)�) �! � (

V
(g=h)�) is an antideriva-

tion, i.e.,

� (	 1 ^ 	 2) = � 	 1 ^ 	 2 + (�1)p 	 1 ^ � 	 2

for 	 1 2 � (
Vp(g=h)�), 	 2 2 � (

V
(g=h)�).

Proof. Let 	 1 2 � (
Vp(g=h)�), 	 2 2 � (

Vq(g=h)�) and u1; : : : ; up+q�1 2
� (g). We de�ne u to be the class [u] represented by u 2 � (g). Then,
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� (	 1 ^ 	 2)(u1 ^ : : : ^ up+q+1)
=
X
i<j

(�1)i+j+1 (	 1 ^ 	 2)([ui; uj]; u1; : : : ; {̂; : : : ; |̂; : : : ; up+q+1)

=
X

�2S2;p+q�1

sgn�(	 1 ^ 	 2)([u�(1); u�(2)]; u�(3); :::; u�(n+1))

=
X

�2S2;p+q�1

sgn�
X

�2Sp�1;q

sgn � 	 1([u�(1); u�(2)]; u�(2+�(1)); : : : ; u�(2+�(p�1)))

� 	 2(u�(2+�(p)); : : : ; u�(2+�(p+q�1)))
+

X
�2S2;p+q�1

sgn�
X

�2Sp;q�1

(�1)p sgn � 	 1(u�(2+�(1)); u�(2+�(2)); : : : ; u�(2+�(p)))

� 	 2([u�(1); u�(2)]; u�(2+�(p+1)); :::; u�(2+�(p+q�1)))
= (I) + (II) ;

where

(I) =
X

�2S2;p+q�1

sgn�
X

�2Sp�1;q

sgn � 	 1([u�(1); u�(2)]; u�(2+�(1)); : : : ; u�(2+�(p�1)))

� 	 2(u�(2+�(p)); : : : ; u�(2+�(p+q�1)))
and

(II) =
X

�2S2;p+q�1

sgn�
X

�2Sp;q�1

(�1)p sgn � 	 1(u�(2+�(1)); u�(2+�(2)); : : : ; u�(2+�(p)))

� 	 2([u�(1); u�(2)]; u�(2+�(p+1)); :::; u�(2+�(p+q�1))):
Write

(III) , (� 	 1 ^ 	 2)(u1 ^ : : : ^ up+q+1)

and

(IV ) , (	 1 ^ � 	 2)(u1 ^ : : : ^ up+q+1):

Then (III) is equal toX
�2Sp+1;q

sgn� (� 	 1)(u�(1); u�(2); : : : ; u�(p+1)) � 	 2
�
u�(p+2); : : : ; u�(p+q+1)

�
=

X
�2Sp+1;q

sgn�
X

�2S2;p�1

sgn � 	 1([u�(�(1)); u�(�(2))]; u�(�(3)); : : : ; u�(�(p+1)))

� 	 2(u�(p+2); : : : ; u�(p+q+1)):
Corollary 3.1.4 yields � p�1;2q is a bijection between sets Sp+1;q � S2;p�1
and S2;p�1;q. Observe that
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� p�1;2q (�; �) =

0BB@
1 : : : p+ 1 p+ 2 : : : p+ q + 1

�(�(1)) : : : �(�(p+ 1)) �(p+ 2) : : : �(p+ q + 1)

1CCA
and sgn(� p�1;2q (�; �)) = sgn� � sgn � for � 2 Sp+1;q, � 2 S2;p�1. There-
fore, (III) is equal toX
�2S2;p�1;q

sgn � 	 1([u�(1); u�(2)]; u�(3); : : : ; u�(p+1))�	 2(u�(p+2); : : : ; u�(p+q+1)):

By Theorem 3.1.1, the mapping �2;q;p�1 is a bijection between sets
S2;p+q�1�Sp�1;q and S2;p�1;q. Moreover, for � 2 S2;p+q�1 and � 2 Sp�1;q,
�2;q;p�1(�; �) is the permutation � � (2+ �), which we can illustrate as
follows0BB@

1 2 3 : : : p+ 1 : : : p+ q + 1

�(1) �(2) �(2 + �(1)) : : : �(2 + �(p� 1)) : : : �(2 + �(p+ q � 1))

1CCA :

Hence, (I) is equal to

(I) =
X

�2S2;p+q�1

sgn�
X

�2Sp�1;q

sgn � 	 1([u�(1); u�(2)]; u�(2+�(1)); : : : ; u�(2+�(p�1)))

� 	 2(u�(2+�(p)); : : : ; u�(2+�(p+q�1)))

=
X

�2S2;p�1;q

sgn � 	 1([u�(1); u�(2)]; u�(3); : : : ; u�(p+1))

�	 2(u�(p+2); : : : ; u�(p+q+1))
= (III):

By de�nition,

(IV ) =
X

�2Sp;q+1

sgn� 	 1(u�(1); u�(2); : : : ; u�(p+1))

� (� 	 2)
�
u�(p+2); : : : ; u�(p+q+1)

�
=

X
�2Sp;q+1

sgn�
X

�2S2;q�1

sgn � 	 1(u�(1); u�(2); : : : ; u�(p))

� 	 2([u�(p+�(1)); u�(p+�(2))]; u�(p+�(3)); : : : ; u�(p+�(q+1)))

The mapping �p;q�1;2 : Sp;q+1 � S2;q�1
1�1�! Sp;2;q�1 given in Theorem
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3.1.1 is a bijection between sets Sp;q+1 � S2;q�1 and Sp;2;q�1 (cf. �r;s;t

in Theorem 3.1.1 for r = p, s = q � 1, and t = 2). Observe that

�r;s;2(�; �) =

0BB@
1 2 � � � p p+ 1 � � � p+ q + 1

�(1) �(2) � � � �(p) �(2 + �(1)) � � � �(p+ �(q + 1))

1CCA
for � 2 Sp;q+1 and � 2 S2;q�1. Moreover, form Corollary 3.1.3 (for r = 2,
s = q � 1, and t = p) we conclude that �2;pq�1 � �2;q�1;p is a bijection
between sets S2;p+q�1� Sp;q�1 and Sp;2;q�1. For � 2 S2;p+q�1; � 2 Sp;q�1
we have:

sgn(�2;pq�1 � �2;q�1;p)(�; �) = (�1)r�t sgn� � sgn �

and (�2;pq�1 � �2;q�1;p)(�; �) can be illustrate as follows0BB@
1 � � � p p+ 1 p+ 2 p+ 3 � � � p+ q + 1

�(2 + �(1)) � � � �(2 + �(p)) �(1) �(2) �(2 + �(p+ 1)) � � � � (2 + � (p+ q � 1))

1CCA:
Using bijections �p;q�1;2 and �2;pq�1 � �2;q�1;p, we conclude that

(�1)p � (II) = (IV ):

Combining the equalities (I) = (II) and (�1)p � (II) = (IV ) we get

� (	 1^	 2)(u1; : : : ; up+q+q) = (� 	 1^	 2+(�1)p 	 1^� 	 2)(u1; : : : ; up+q+q):

Theorem 3.1.4. � � � = 0:

Proof. Let 	 2 � (
Vn(g=h)�), u0; u1; : : : ; un+1 2 � (g). Let us denote

by u the class [u] represented by u 2 � (g). Observe that
(� ( � 	))(u0; u1; : : : ; un+1)

=
X

0�p<q�n+1
(�1)p+q+1 (� 	)([up; uq]; u0; : : : ; p̂; : : : ; q̂; : : : ; un+1)

= fAg+ fBg ;
where fAg and fBg denote the sums of these terms, in which the
bracket [up; uq] appears in one and in two arguments, respectively.
Therefore,
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fAg=

=
X
r<p<q

(�1)(p+q+1)+(r+1) 	([[up; uq]; ur]; u0; :::r̂:::p̂:::q̂:::; un+1)

+
X
p<r<q

(�1)(p+q+1)+((r�1)+1) 	([[up; uq]; ur]; u0; :::p̂:::r̂:::q̂:::; un+1)

+
X
p<q<r

(�1)(p+q+1)+((r�2)+1) 	([[up; uq]; ur]; u0; :::p̂:::q̂:::r̂:::; un+1)

=
X
r<p<q

(�1)p+q+r 	
�
[[up; uq]; ur]; u0; :::r̂:::p̂:::q̂:::; un+1

�

+
X
r<p<q

(�1)p+q+r+1 	
�
[[ur; uq]; up]; u0; :::r̂:::p̂:::q̂:::; un+1

�

+
X
r<p<q

(�1)p+q+r 	
�
[[ur; up]; uq]; u0; :::r̂:::p̂:::q̂:::; un+1

�

=
X
r<p<q

(�1)p+q+r 	
�
Jac[�;�](up; uq; ur); u0; :::r̂:::p̂:::q̂:::; un+1

�
= 0;

since in the one before last inequality we use the skew-symmetricity of
the Lie bracket [�; �], while in the last one the Jacobi identity. Moreover,
fBg=

=
X

r<s<p<q

(�1)(p+q+1)+((s+1)+(r+1)+1) 	([ur; us]; [up; uq]; u0; :::r̂:::ŝ:::p̂:::q̂:::; un+1)

+
X

r<p<s<q

(�1)(p+q+1)+((r+1)+s+1) 	([ur; us]; [up; uq]; u0; :::r̂:::p̂:::ŝ:::q̂:::; un+1)
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+
X

r<p<q<s

(�1)(p+q+1)+((r+1)+(s�1)+1) 	([ur; us]; [up; uq]; u0; :::r̂:::p̂:::q̂:::ŝ:::; un+1)

+
X

p<r<s<q

(�1)(p+q+1)+(r+s+1) 	([ur; us]; [up; uq]; u0; :::p̂:::r̂:::ŝ:::q̂:::; un+1)

+
X

p<r<q<s

(�1)(p+q+1)+(r+(s�1)+1) 	([ur; us]; [up; uq]; u0; :::p̂:::r̂:::q̂:::ŝ:::; un+1)

+
X

p<q<r<s

(�1)(p+q+1)+((r�1)+(s�1)+1) 	([ur; us]; [up; uq]; u0; :::p̂:::q̂:::r̂:::ŝ:::; un+1)

= 0;

because the suitable terms cancel themselves. In fact, the sum of the
�rst and sixth terms is equal toX

r<s<p<q

(�1)p+q+s+r 	([ur; us]; [up; uq]; u0; :::r̂:::ŝ:::p̂:::q̂:::; un+1)

+
X

p<q<r<s

(�1)p+q+r+s 	([ur; us]; [up; uq]; u0; :::p̂:::q̂:::r̂:::ŝ:::; un+1)

=
X

r<s<p<q

(�1)p+q+s+r 	([ur; us]; [up; uq]; u0; :::r̂:::ŝ:::p̂:::q̂:::; un+1)

X
r<s<p<q

(�1)p+q+r+s 	([up; uq]; [ur; us]; u0; :::r̂:::ŝ:::p̂:::q̂:::; un+1)

= 0

since 	 is skew-symmetric. Similarly, we show that the sum of the
second and �fth terms is equal to zero, as is the sum of the third and
fourth terms.

Relative Lie algebra cohomology. Let g be the Lie algebra of a
Lie group G and let H � G be a closed Lie subgroup of G with the
corresponding Lie algebra h. We recall [43] that H�(g; H), called the
relative Lie algebra cohomology, is the cohomology space of the com-
plex

�V
(g=h)�H ; dH

�
where

V
(g=h)�H is the space of invariant elements

with respect to the adjoint representation of the Lie group H (cf. [43])
and the di¤erential dH is de�ned by the formula
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dH( ); [w0] ^ ::: ^ [wk]

�
=
X
i<j

(�1)i+jh ; [[wi; wj]] ^ [w1] ^ :::̂{:::|̂::: ^ [wk]i

for  2
Vk(g=h)�H and w0; : : : ; wk 2 g. We will introduce here a coun-

terpart of this di¤erential for the regular Lie algebroid and its subal-
gebroid.
Let (A; %A; [[�; �]]) be a regular Lie algebroid over a manifold M with

the Atiyah sequence

0 ���! ggg ���! A
%A
���! F ���! 0

and let B its subalgebroid with the Atiyah sequence

0 ���! hhh ���! B
%AjB
���! F ���! 0:

Consider the adjoint representation of B in A(ggg=hhh) given by

adB;hhh : � (B) �! � (A(ggg=hhh)) = CDO(ggg=hhh);

adB;hhh (Y ) ([�]) = [[[Y; �]]]

for Y 2 � (B), � 2 � (ggg).

De�nition 3.1.4. A section 	 2 � (
V
(ggg=hhh)�) is invariant with re-

spect to the representation

ad^B;hhh = Hom(adB;hhh) : � (B) �! CDO(Hom(ggg=hhh;R))

if

Hom(adB;hhh)(Y )(	) = 0

for all Y 2 � (B).

By de�nition we have the following characterization of invariant
sections.

Lemma 3.1.1. (cf. [52]) A section 	 2 � (
Vp(ggg=hhh)�) is invariant with

respect to the representation ad^B;hhh if and only if

(%B � Y ) (h	; [�1] ^ : : :^ [�p]i)

=

pX
j=1

(�1)j�1 h	; [[[Y; �j]]] ^ [�1] ^ : : : |̂ : : :^ [�p]i

for all Y 2 � (B) and �1; : : : ; �p 2 � (ggg).
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De�nition 3.1.5. The set of all sections of the bundle
Vp(ggg=hhh)� in-

variant with respect to the representation ad^B;hhh is denoted by

(� (
Vp(ggg=hhh)�))� (B):

Remark 3.1.1. Since

ad^B;hhh(Y )(	 ^ �) = ad^B;hhh(Y )(	) ^ �+ 	 ^ ad^B;hhh(Y )(�)

for all Y 2 � (B), 	; � 2 � (
V
(ggg=hhh)�), the exterior multiplication intro-

duces the structure of a C1(M)-algebra to the set (� (
V
(ggg=hhh)�))� (B).

In the algebra (� (
V
(ggg=hhh)�))

� (B) of all invariant sections

�� : (� (
Vp(ggg=hhh)�))� (B) �! (� (

Vp+1(ggg=hhh)�))� (B)

de�ned by

��	; [�0] ^ ::: ^ [�k]

�
=
X
i<j

(�1)i+j+1h	; [[[�i; �j]]] ^ [�1] ^ :::̂{:::|̂::: ^ [�k]i

for 	 2 (� (
Vp(ggg=hhh)�))� (B), �0; : : : ; �p 2 � (ggg), is a mapping being a

di¤erential (�� � �� = 0), cf. Theorem 3.1.4 and [52], and in this way ��
determines the cohomology algebra

H�(ggg;B) , H�
��

�
�^

(ggg=hhh)�
��� (B)

; ��

�
:





4. Secondary characteristic
homomorphism

In this chapter, we present a construction of the secondary character-
istic homomorphism for a pair of regular Lie algebroids (A;B) and
a connection which curvature has values in the kernel of the reduc-
tion B. In particular, it generalizes the secondary characteristic classes
previously formulated for �at connections [52], [10], [11].
In addition to the construction of the secondary characteristic ho-

momorphism, in this chapter we discuss the functorial properties of
this homomorphism and note that the characteristic classes from its
image generalize other approaches, including those introduced by Kam-
ber and Tondeur in [43] and the exotic classes de�ned by Crainic and
Fernandes [18], [19].

4.1 Construction of the secondary characteristic
homomorphism

Let (A; %A; [[�; �]]) be a regular Lie algebroid over a manifoldM with the
Atiyah sequence

0 ���! ggg
�

���! A
%A
���! F ���! 0 (4.1)

and let B its subalgebroid with the Atiyah sequence

0 ���! hhh ���! B
%AjB
���! F ���! 0: (4.2)

Moreover, let (L; %L; [[�; �]]L) be a Lie algebroid over M and let

r : � (L) �! � (A)

be an L-connection in A with the curvature tensor in values in hhh.
Let � : F ! B be any splitting of (4.2), i.e., � is a vector bundle

homomorphism satisfying
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%B � � = idF ; (4.3)

where %B = %AjB. Consequently, � is an F -connection in B (cf. The-
orem 2.1.2). Thus, j � � : F ! A is an F -connection in A. Let us
denote by �� the connection form of j � �, i.e., a homomorphism of
vector bundles �� : A! ggg such that

� � ��+ (j � �) � %A = idA :

Thus, we have an L-connection r : � (L) ! � (A) in A with the
curvature

Rr 2 � (
V2 L� 
 hhh)

and the following commutative diagram

0 ggg- A- -%A

�
�

F 0-

0 hhh-
[

B- F-%B
0:-

�
6

[

6

�
��

�

j

Lemma 4.1.1. The homomorphism

�B;r : L �! ggg=hhh; �B;r(u) = [�(�� � r)(u)]

does not depend on the choice of an auxiliary connection � : F ! A,
and �B;r = 0 if r takes values in B.

Proof. Let �0 : F ! B also be a splitting of (4.2). Thus,

%B � �0 = idF
and j � �0 : F ! A is a splitting of the sequence (4.1). Since

%B � (�0 � �0) � %A � r = (idF � idF ) � %A � r = 0

and

� �
�
��� ��0

�
� r = j � (�0 � �) � %A � r;

it is follows that

(�� � r � ��0 � r)(u) 2 � (hhh)

for all u 2 � (L). Hence the independence of the de�nition of �B;r from
the choice of the connection �. Thus, indeed, �B;r is a well-de�ned
function.
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Let us de�ne a homomorphism of algebras

�(A;B;r) : (� (
V
(ggg=hhh)�))� (B) �! � (

V
L�)

by

(�(A;B;r)	)x(u1 ^ : : : ^ up) = h	x; �B;r(u1) ^ : : : ^ �B;r(up)i

for 	 2 (� (
Vp(ggg=hhh)�))� (B), x 2M , u1; : : : ; up 2 � (L).

De�nition 4.1.1. We use the convention that � = [�] for � 2 � (ggg).

Theorem 4.1.1. The homomorphism �(A;B;r) commutes with the dif-
ferentials �� and dL, where dL = d%L is the di¤erential in � (

V
L�) for

the Lie algebroid L.

Proof. Take any 	 2 (� (
Vp(ggg=hhh)�))� (B), u0; u1; : : : ; up 2 � (L). Then,

((dL ��(A;B;r))	)(u0; u1; : : : ; up)

=

pX
s=0

(�1)s (%L � us)((�(A;B;r)	)(u0; : : : ŝ : : : ; up))

�
X
s<t

(�1)s+t (�(A;B;r)	)([[us; ut]]L; u0; : : : ŝ : : : t̂ : : : ; up)

=

pX
s=0

(�1)s (%L � us)
�
	
�
���ru0; : : : ŝ : : : ;���rup

��
+
X
s<t

(�1)s+t 	
�
���r[[us; ut]]L;���ru0; : : : ŝ : : : t̂ : : : ;���rup

�
:

Using the equalities

%L = %A � r; %B � � = idF ; j � � � %A = idA�� � ��;

and the invariance of 	 , we obtain
pX
s=0

(�1)s (%L � us)
�
	
�
���ru0; : : : ŝ : : : ;���rup

��
=

pX
s=0

(�1)s (idF �%A � r � us)
�
	
�
���ru0; :::ŝ:::;���rup

��
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=

pX
s=0

(�1)s (%B � � � %A � r � us)
�
	
�
���ru0; :::ŝ:::;���rup

��
=
X
t<s

(�1)s+t 	
�
[[�%Arus;���rut]];���ru0; :::t̂:::ŝ:::;���rup

�
+
X
s<t

(�1)s+t+1 	
�
[[�%Arus;���rut]];���ru0; : : : ŝ : : : t̂ : : : ;���rup

�
=
X
s<t

(�1)s+t 	
�
[[�%Arut;���rus]];���ru0; :::ŝ:::t̂:::;���rup

�
+
X
s<t

(�1)s+t+1 	
�
[[�%Arus;���rut]];���ru0; : : : ŝ : : : t̂ : : : ;���rup

�
=
X
s<t

(�1)s+t 	
�
[[��rus;rut]];���ru0; :::ŝ:::t̂:::;���rup

�
�
X
s<t

(�1)s+t 	
�
[[��rus; ��rut]];���ru0; :::ŝ:::t̂:::;���rup

�
+
X
s<t

(�1)s+t 	
�
[[rus; ��rut]];���ru0; : : : ŝ : : : t̂ : : : ;���rup

�
+
X
s<t

(�1)s+t+1 	
�
[[��rus; ��rut]];���ru0; : : : ŝ : : : t̂ : : : ;���rup

�
=
X
s<t

(�1)s+t 	
�
[[��rus;rut]];���ru0; :::ŝ:::t̂:::;���rup

�
+
X
s<t

(�1)s+t 	
�
[[rus; ��rut]];���ru0; : : : ŝ : : : t̂ : : : ;���rup

�
+ 2

X
s<t

(�1)s+t+1 	
�
[[��rus; ��rut]];���ru0; : : : ŝ : : : t̂ : : : ;���rup

�
:

Moreover, the curvature of the connection j � � and the curvature of
r are in the following relation

Rj��(%Arus; %Arut)� ��(Rr(us; ut))

= [[��rus;rut]] + [[rus; ��rut]]� [[��rus; ��rut]]� ��r[[us; ut]]L:

Since

Rj�� = j � R�
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and the curvature of r has values in hhh, we obtain that

[[��rus;rut]] + [[rus; ��rut]]� [[��rus; ��rut]]� ��r[[us; ut]]L

= (j � R�)(%Arus; %Arut)� ��(Rr(us; ut)) 2 hhh:

From here it follows that

((dL ��(A;B;r))	)(u0; u1; : : : ; up)

=
X
s<t

(�1)s+t 	
�
���r[[us; ut]]L;���ru0; : : : ŝ : : : t̂ : : : ;���rup

�
=
X
s<t

(�1)s+t+1 	
�
[[���rus;���rut]];���ru0; : : : ŝ : : : t̂ : : : ;���rup

�
= (��	)

�
���ru0;���ru1; : : : ;���rup

�
= ((�(A;B;r) � ��)	)(u0; u1; : : : ; up):

Since the homomorphism �(A;B;r) commutes with the di¤erentials
�� and dL, we obtain the cohomology homomorphism

�(A;B;r)# : H
�(ggg;B) �! H�(L);

[	 ] 7�!
�
�(A;B;r)(	)

�
:

In the case where L = A and r = idA : A �! A is the identity map
(idA is a �at connection), we have the following particular homomor-
phism for the pair (A;B):

�(A;B) = �(A;B;idA) : (� (
V
(ggg=hhh)�))� (B) �! � (

V
A�);

(�(A;B)	)x(u1 ^ : : : ^ up) =
D
	x; [��� � u1] ^ : : : ^ [��� � uk]

E
for 	 2 (� (

Vp(ggg=hhh)�))� (B); x 2M;u1; : : : ; up 2 � (A).
The homomorphism �(A;B;r) can be written as a composition

�(A;B;r) : (� (
V
(ggg=hhh)�))� (B)

�(A;B)����! � (
V
A�)

r����! � (
V
L�);

where r� is the pullback of di¤erential forms on the Lie algebroids. If
r is �at, r� commutes with the di¤erentials dA = d%A and dL = d%L .
For this reason, �(A;B) induces the cohomology homomorphism
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�(A;B)# : H
�(ggg;B) �! H�(A);

[	 ] 7�!
�
�(A;B)(	)

�
;

which for any �at L-connection r : � (L) �! � (A) factorizes
�(A;B;r)# in the sense that the following diagram is commutative

H�(ggg;B) H�(A)-
�(A;B)#

�(A;B;r)#

@
@
@
@
@
@
@
@
@
@@R
H�(L):

?

r#

(4.4)

De�nition 4.1.2. The mapping �(A;B;r)# is called the secondary
characteristic homomorphism of (A;B;r).

De�nition 4.1.3. We call elements of a subalgebra Im�(A;B;r)# �
H�(L) the secondary characteristic classes of (A;B;r).

De�nition 4.1.4. The homomorphism �(A;B)# = �(A;B;idA)# we call
the universal secondary characteristic homomorphism. The character-
istic classes from the image of �(A;B)# we call the universal secondary
characteristic classes of the pair (A;B).

If connectionr takes the value in B, then�(A;B;r)# is trivial. Thus,
the non-triviality of �(A;B;r)# is an obstruction to the compatibility
of r with the structure of the subalgebroid B. In the case of the Lie
algebroid of a vector bundle and its reduction with respect to a given
Riemann metric discussed below, the non-triviality of the secondary
characteristic homomorphismmeans thatr cannot be compatible with
the metric.
One can see that for a pair of regular Lie algebroids (A;B), B �

A, both over a manifold M with Im %A = Im %B = F , and for an
arbitrary element 	 2 H�(ggg;B) there exists a (universal) cohomology
class �(A;B)#(	) 2 H�(A) such that for any Lie algebroid L over M
and a �at L-connection r : � (L) �! � (A) the equality

�(A;B;r)#(	) = r#(�(A;B)#(	))
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holds. Therefore, no element from the kernel of �(A;B)# can be used
to compare the �at connection r with a reduction B � A. Hence,
it is natural to ask: Is the characteristic homomorphism �(A;B)# a
monomorphism for a given B � A? The answer yes holds in some
cases; see the sections below.

4.2 Functoriality of the secondary characteristic
homomorphism

In this section, we discuss some functorial properties of secondary char-
acteristic homomorphisms. The relationships between such character-
istic homomorphisms for Lie algebroids over various manifolds are dis-
cussed here. Thus, morphisms of Lie algebroids over smooth mappings
other than identity take on signi�cance here. We start with the concept
of such morphisms.

De�nition 4.2.1. (cf. [41], [50]) Let (A; %; [[�; �]]) and (A0; %0; [[�; �]]0) be
Lie algebroid manifolds M and M 0, respectively. By a homomorphism

H : (A0; %0; [[�; �]]0) �! (A; %; [[�; �]])

of Lie algebroids we mean any homomorphism of vector bundles

H : A0 �! A

over a smooth map f :M 0 �!M with the following properties:

1. % �H = f� � % 0,
2. for any �; �0 2 � (A0) with H-decompositions

H � � =
nX
i=1

f i � (�i � f) ; H � � =
nX
j=1

gj �
�
�j � f

�
;

where f i; gj 2 C1 (M 0), �1; :::; �n 2 � (A), we have

H�[[�; �0]]0 =
X
i;j

f igj([[�i; �j]]�f)+
X
j

(%0��)(gj)�(�j�f)�
X
i

(%0��0)(f i)�(�i�f):

Remark 4.2.1. Let (A; %; [[�; �]]) and (A0; %0; [[�; �]]0) be regular Lie alge-
broids over (M;F ) and (M 0; F 0), respectively. This means that Im % =
F and Im %0 = F 0. Let H : A0 �! A be a homomorphism of these Lie
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algebroids over smooth map f :M 0 �!M . Then, the homomorphism
of vector bundles

H : A0 �! f^A; a0 7�! (%0(a0); H(a0))

is a homomorphism of Lie algebroids (cf. Proposition 1.1.5 [50]). More-
over, H can be write as a composition of the homomorphism of reg-
ular Lie algebroids H and the projection to the second coordinate
pr2 : f

^A �! A,

H : A0
H�! f^A

pr2�! A:

Remark 4.2.2. De�nition of homomorphism of Lie algebroids over the
same manifold M (cf. De�nition 1.1.6) coincide with De�nition 4.2.1
in the case f = idM . So, De�nition 4.2.1 is a generalization of 1.1.6.

Let (A;B) and (A0; B0) be two pairs of regular Lie algebroids over
(M;F ) and (M 0; F 0) ; respectively, where B � A, B0 � A0; and let
H : A0 �! A be a homomorphism of Lie algebroids over a mapping
f : (M 0; F 0) �! (M;F ) of foliated manifolds such that H(B0) � B,
which means that f�(F ) � F 0. We write (H; f) : (A0; B0) �! (A;B).
Let H+# : H�(ggg;B) ! H�(ggg0; B0) be the homomorphism of co-

homology algebras induced by the pullback H+ � : � (
Vk(ggg=hhh)�) �!

� (
Vk(ggg0=hhh0)�) � cf. [52, Proposition 4.2].

Theorem 4.2.1 (The functoriality of �(A;B)#). [11] For a given
pair of regular Lie algebroids (A;B), (A0; B0) and a homomorphism
(H; f) : (A0; B0) �! (A;B) we have the commutativity of the following
diagram

H�(ggg0; B0) H�(A0):-
�(A0;B0)#

H�(ggg;B) H�(A)-
�(A;B)#

?

H+#

?

H#

De�nition 4.2.2. The triple (A;B;r) is called a regular FS-Lie al-
gebroid if A is a regular Lie algebroid over (M;F ), B � A is a regular
subalgebroid of A over (M;F ) and Secr : � (L) �! � (A) is a �at
L-connection in A, where L is a Lie algebroid over a manifold M .
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De�nition 4.2.3. Let (A0; B0;r0) and (A;B;r) be two regular FS-
Lie algebroids over (M 0; F 0) and (M;F ) ; respectively, and where r :
L �! A, r0 : L0 �! A0. By a homomorphism of regular FS-Lie
algebroids

H : (A0; B0;r0) �! (A;B;r)

over f : (M 0; F 0) �! (M;F ) we mean a pair (H; h) such that:

1. H : A0 �! A is a homomorphism of regular Lie algebroids over f
satisfying H(B0) � B,

2. h : L0 �! L is a homomorphism of Lie algebroids over f ,
3. r � h = H � r0:

Since h#�r# = r0#�H#, from �atness of r, the commutativity of
the diagram (4.4) and Theorem 4.2.1, it follows the following theorem.

Theorem 4.2.2 (The functoriality of �(A;B;r)#). [11] The follow-
ing diagram commutes

H�(ggg0; B0) H�(L0):-
�(A0;B0;r0)#

H�(ggg;B) H�(L)-
�(A;B;r)#

?

H+#

?

h#

4.3 Homotopy invariance

We recall the de�nition of homotopy between homomorphisms of Lie
algebroids.

De�nition 4.3.1. [51] Let H0; H1 : L
0 �! L be two homomorphisms

of Lie algebroids. By a homotopy joining H0 to H1 we mean a homo-
morphism of Lie algebroids

H : TR� L0 �! L;

such that H(�0; �) = H0 and H(�1; �) = H1, where �0 and �1 are null
vectors tangent to R at 0 and 1, respectively. We then say that H0 and
H1 are homotopic and write H0 � H1.
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De�nition 4.3.2. We say that homomorphism of Lie algebroids H :
L0 �! L is a homotopy equivalence if there is a homomorphism of Lie
algebroids G : L �! L0 such that G �H � idL0 and H �G � idL .
Remark 4.3.1. Let H0; H1 : L

0 �! L be two homotopic homomor-
phisms of Lie algebroids with a homotopy H : TR � L0 �! L. The
homomorphism H determines a chain homotopy operator (cf. [51],
[3]) which yields H#

0 = H#
1 : H

�(L) �! H�(L0).

De�nition 4.3.3. [51] Two Lie subalgebroids B0; B1 � A of a Lie
algebroid A (all over (M;F )) are said to be homotopic, if there exists
a Lie subalgebroid B � TR� A over (R�M;TR� F ), such that

�x 2 Btjx if and only if (�t; �x) 2 Bj(t;x) (4.5)

for t 2 f0; 1g. B is then called a subalgebroid joining B0 with B1.

Let B0; B1 be two homotopic Lie subalgebroids over (M;F ) and let
B � TR�A be a subalgebroid of TR�A joining B0 with B1. Consider
the homomorphism of Lie algebroids

FA
t : A �! TR� A; �x 7�! (�t; �x)

over ft :M �! R�M , ft(x) = (t; x), for t 2 R. Now, (4.5) shows that
FA
t (Bt) � B. Moreover, F+#t �

�
FA
t

�+#
are isomorphisms of algebras.

This was proved in [52]. Let r : L �! A be a homomorphism of Lie
algebroids over idM . Therefore, idTR�r is a homomorphism of Lie
algebroids over idR�M . In this way FA

t de�nes a homomorphism

(A;Bt;r) �! (TR�A;B; idTR�r)
of FS-Lie algebroids over ft. Now, using the above mentioned proper-
ties and Theorem 4.2.1 giving the functoriality of �t# = �(A;Bt)# and
�(A;B)#, we obtain the following commutative diagram

H�(0�ggg;B) H�(TR�A)-
�(A;B)#

H�(ggg;B0) H�(A)-�0#

6

F0
+#

6

F0
A#

H�(TR�L)-
(id�r)#

H�(L)

6

F0
L#

-r#

H�(ggg;B1) H�(A)-
�1#

?

F1
+#

?

F1
A#

H�(L)
?

F1
L#

-
r#

'

'

-

�
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Remark that the rows of the above diagram are characteristic ho-
momorphisms of regular FS-Lie algebroids. Moreover, FL#

0 = FL#
1 ,

since FL
0 ; F

L
1 : L �! TR � L are homotopic homomorphisms. Since

FL#
0 ; FL#

1 are isomorphisms (cf. [11]), we immediate conclude follow-
ing theorem on the homotopy independence of the secondary charac-
teristic homomorphism.

Theorem 4.3.1 (The Rigidity Theorem). (cf. [10]) If B0; B1 � A
are homotopic subalgebroids of A and r : L �! A is a �at L-
connection in A, characteristic homomorphisms�(A;B0;r)# : H

� (ggg;B0)
�! H� (L) and �(A;B1;r)# : H

� (ggg;B1) �! HL (M) are equivalent in
the sense that there exists an isomorphism of algebras

� : H� (ggg;B0)
'�! H� (ggg;B1)

such that

�(A;B1;r)# � � = �(A;B0;r)#:

Let E be a vector bundle of rank n over a manifold M and let h
be a Riemannian metric in E. The metric h determines the reduction
L(E;fhg) of the principal frames bundle LE of E and the Lie subalgebroid
A(E; fhg) of the Lie algebroid A(E) [52]. Note that � : Rn ! Ex is an
element of L(E;fhg) if and only if � is an isometry. Taking the canonical
isomorphism �E : A(LE) �! A(E) described in Section 1.3 (cf. [50])
we de�ne

A(E; fhg) = �E
�
A(L(E;fhg))

�
:

We observe that a 2 � (A(E)) is an element of � (A(E; fhg)) if and
only if for any sections �; � 2 � (E) we have

h(a(�); �) = (%A(E) � a)(h(�; �))� h(�; a(�)):

We recall that

0 ���! End(E)
�

���! A(E)
%A(E)

���! TM ���! 0

is the Atiyah sequence of A(E), while the Atiyah sequence of A(E; fhg)
is

0 ���! Sk(E) ���! A(E; fhg) ���! TM ���! 0
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where Sk(E) � End(E) is the vector subbundle of skew symmetric
endomorphisms with respect to the metric h.
Applying the Rigidity Theorem to a pair of Riemannian reductions

of the Lie algebroid A(E) of a vector bundle E, we obtain the inde-
pendence of the secondary characteristic homomorphism for the pair
A(E; fhg) � A(E) from a metric:

Corollary 4.3.1. [10] Let E be a vector bundle and A(E) its Lie alge-
broid. Two Lie subalgebroids B0 = A(E; fh0g), B1 = A(E; fh1g) of the
Lie algebroid A(E), corresponding to Riemannian metrics h0, h1, are
homotopic Lie subalgebroids [52]. Therefore, according to the Rigidity
Theorem 4.3.1 we conclude that

�(A(E);A(E;fh0g))# = �(A(E);A(E;fh1g))#;

i.e., the characteristic homomorphism for the pair (A(E); A(E; fhg))
is an intrinsic notion for A(E) not depending on the metric h.

4.4 Particular cases of the secondary characteristic
classes

The secondary characteristic homomorphism for Lie algebroids general-
izes �at exotic characteristic classes for Lie algebroids and the following
known characteristic classes: for �at regular Lie algebroids (Kubarski,
cf. [52]), for �at principal �bre bundles with a reduction (Kamber,
Tondeur, cf. [43]) and for representations of Lie algebroids on vector
bundles (Crainic, Fernandes, cf. [17], [18], [19]).

4.4.1 Comparison with the case of regular Lie algebroids and
classical �at connections

Given a regular Lie algebroid (A; %A; [�; �]) over a manifold M with
F = Im %A and ggg =ker %A, consider two geometric structures:

� a �at connection ! : � (F ) �! � (A), and

� a Lie subalgebroid j : B ,! A over (M;F ), i.e.,
with the anchor %B such that Im %B = F .

Let �! : A �! ggg be the connection form of !. Fix a connection
� : F �! B, and consider its extension j � � to A. Let �� : A �! ggg be
its connection form. Since
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� � �! + ! � %A = idA

where � : ggg ,! A is the inclusion, it follows that

� � �! � j � � = �� � �� � !:

Thus, we see that�
�(A;B;!)	

�
x
(u1 ^ : : : ^ up)

=
D
	x;
h
�(�� � !)(u1)

i
^ : : : ^

h
�(�� � !)(up)

iE
= h	x; [�!x(eu1)] ^ : : : ^ [�!x(eup)]i

for 	 2 (� (
Vp(ggg=hhh)�))� (B), x 2 M , u1; : : : ; up 2 � (F ), and whereeui = �(ui) for i = 1; : : : ; p. Since %B(eui) = ui, we deduce that

�(A;B;!)# : H
�(ggg;B) �! H�(F )

is the characteristic homomorphism for the regular �at Lie algebroids
(A;B; !), which was considered by Kubarski in [52].

4.4.2 Secondary universal characteristic homomorphism of
principal �bre subbundles

We recall secondary �at characteristic classes for �at principal bundles
[43] and its relationship with the secondary characteristic homomor-
phism for a suitable pair of Lie algebroids.
Let P be a G-principal �bre bundle on a smooth manifold M , ! �

TP a �at connection in P ,H � G a closed Lie subgroup ofG, and P 0 �
P a connected H-reduction. Consider Lie algebroids A(P ) and A(P 0)
of the principal bundles P and P 0, respectively. Let !A : TM �! A(P )
be the induced �at connection in the Lie algebroid A(P ). The triple�
A(P ); A(P 0); !A

�
de�nes the secondary characteristic homomorphism

�(A(P );A(P 0);!A)# : H
�(ggg;A(P 0)) �! H�dR(M):

Moreover, let

�(P;P 0;!)# : H
�(g; H) �! H�dR(M) (4.6)

denote the classical homomorphism on principal �bre bundles (Kam-
ber, Tondeur [43]), where H�(g; H) is the relative Lie algebra coho-
mology of (g; H) (see [43], [14], and Section 3.1). The characteristic
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homomorphism �(P;P 0;!)# is constructed as follows: Let �! : TP �! g

denote the connection form of !. There exists a homomorphism of
G-DG-algebras �!^ :

V
g� �! 
(P ) induced by the algebraic con-

nection �! : g� �! 
(P ), � 7�! ��! = h�; �!i (�atness of ! is
essential). The homomorphism �!^ can be restricted to H-basic el-
ements �!H : (

V
g�)H �! 
(P )H ; and according to the isomor-

phisms (
V
g�)H �=

V
(g=h)�H and 
(P )H �= 
(P=H), gives a DG-

homomorphism of algebras �!H :
V
(g=h)�H �! 
(P=H), which com-

posed with s� : 
(P=H) �! 
(M) where s : M �! P=H is the
section determined by the H-reduction P 0, leads to a homomorphism
of DG-algebras

�P;P 0;! :
^
(g=h)�H

�!H
���! 
(P=H)

s�

���! 
(M):

Explicitly,

(�P;P 0;!( ))x (w1 ^ : : : ^ wk) = h ; [�!z( ew1)] ^ : : : ^ [�!z( ewk)]i
where z 2 P 0jx, wi 2 TxM , ewi 2 TzP

0, �0� ewi = wi where �0 : P 0 �!
M is the projection in P 0. Now, passing to cohomology we have the
characteristic homomorphism (4.6).
Since (4.6) is an invariant of homotopic H-reductions and measures

the incompatibility of the �at structure ! with a givenH-reduction, the
nontriviality of �(P;P 0;!)# implies that there is no homotopic changing
of P 0 such that TP 0 contains !. If K � H � G where K is a maximal
compact subgroup of G and H is closed, then any two H-reductions
are homotopic, so (4.6) is independent on the H-reduction P 0.
The relation between �(A(P );A(P 0);!A)# and the classical character-

istic homomorphism for a principal bundle �(P;P 0;!)# is described by
the following theorem [52, Theorem 6.1].

Theorem 4.4.1. [52, Theorem 6.1] If P 0 is a connected H-reduction
in a G-principal bundle P , g is the Lie algebra of G, then there exists
an isomorphism of algebras

� : H�(g; H)
'�! H�(ggg; A(P 0))

such that

�(A(P );A(P 0);!)# � � = �(P;P 0;!)#:
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We recall from [52] that the isomorphism � at the level of cochains
is de�ned via the isomorphism

~� :
^
(g=h)�H �! (� (

V
(ggg=hhh)�))� (B)

given by

~�( )(x) = Ad^P 0;ggg(z)( ); z 2 P 0

x;

where the representation Ad^P 0;ggg of P
0 on the vector bundle

Vk(ggg=hhh)�

is induced by AdP 0;ggg : P 0 �! L(ggg=hhh), z 7�! [
^
z], and

^
z : g

�=�! gggx,
v 7�! [Az�v] (Az : G �! P; a 7�! za).
Hence, characteristic classes induced by�(P;P 0;!)# and�(A(P );A(P 0);!A)#

are identical. In [10] we showed that the homomorphism

�(P;P 0)# = �(A(P );A(P 0))# � � : H�(g; H) �! H�(A(P )) �! Hr�dR(P )

factorizes �(P;P 0;!)# for any �at connection ! in P , i.e., the following
diagram commutes

H�(g; H) H�dR(M);
-

�(P;P 0;!)#

H�dR(P )

�(P;P 0)#

�
�
�
���

!#
@
@
@
@@R

where !# at the level of right-invariant di¤erential forms 
r(P ) is
given as the pullback of di¤erential forms, i.e.,

!� : 
r(P ) �! 
(M); !�(�)x(u1; : : : ; un) = �p(eu1; : : : ; eun);
where p 2 Px, eui is !-horizontal lift of ui 2 TxM . If G is a compact,
connected Lie group and P 0 is a connectedH-reduction in aG-principal
bundle P , H � G, then there exists a homomorphism of algebras

�(P;P 0)# : H
�(g; H) �! H�dR(P );

which is called a universal exotic characteristic homomorphism for the
pair (P 0; P ) such that for arbitrary �at connection ! in P , the charac-
teristic homomorphism �(P;P 0;!)# : H

�(g; H) �! H�dR(M) is factorized
by �(P;P 0)#, i.e., the diagram
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H�(g; H) H�dR(M)
-

�(P;P 0;!)#

H�dR(P )

�(P;P 0)#

�
�
�
���

!#
@
@
@
@@R

is commutative.

4.4.3 Comparison with the Crainic exotic characteristic
classes

The Crainic Approach. We brie�y explain the Crainic theory of
�at characteristic classes [17], [18], [19]. Let L be a Lie algebroid
over a manifold M . The Crainic classes of a �at L-connection r in
a vector bundle E are in the cohomology algebra H�(L) of L. For
the trivial vector bundle E = M � V with dimV = n these classes
are constructed as follows: Let fe1; : : : ; eng be a frame of E and let
! = [!ij] 2 Mn�n(� (L

�)) be the matrix of 1-forms on L such that
ruej =

P
i !

i
j(u) �ei for any u 2 � (L). It is evident that tr(!) = tr(~!),

where ~! = 1
2
(!+!T ) is the symmetrization of !, and the �atness con-

dition implies that tr(~!2k�1) is closed on L for all k 2 N. Moreover,
their cohomology classes are independent of the choice of frames. These
classes vanish if r is a Riemannian connection with respect to some
Riemannian metric h in the vector bundle E. A Riemannian connection
is a connection in a Riemannian reduction L(E;fhg) of the frame bun-
dle LE. For any vector bundle E Crainic uses a local construction (a
suitable cocycle) and the µCech double complex �C�(U ; C�(L)) together
with the Mayer-Vietoris argument. For L = TM the usual exotic char-
acteristic classes of �at vector bundles are received. An explicit formula
for an arbitrary L-�at real vector bundle (E;r) is based on the ob-
servation that in a local orthonormal frame fe1; : : : ; eng of (E; fhg)
the symmetrization ~! of ! is equal to the matrix of the symmetric-
values form !(E; h) = 1

2

�
r�rh

�
, where rh is the dual L-connection

induced by the metric h. The connection rh is also �at since

Rr
h

u;� = �
�
Rru;�

��
for u; � 2 � (L):

The appropriate classes are obtained by replacing ~! with !(E; h). One
explicit formula up to a constant (see [19]) uses the Chern-Simons
transgression di¤erential forms csk for suitable two connections and is
given by
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u2k�1(E) = [u2k�1(E;r)] 2 H2k�1(L); k 2 N;

where

u2k�1(E;r) = (�1)
k+1
2 csk(r;rh) (4.7)

if k is an odd natural, u2k�1(E;r) is trivial if k is even, and

csk(r;rh) =

Z 1

0

chk(ra�) 2 � (
V2k�1 L�)

for the a¢ ne combination

ra� = (1� t) � ~r+ t � ~rh
: TR� A �! A(pr�2E)

is de�ned by the formula�Z 1

0

chk(ra�)

�
u1;:::;u2k�1

=

Z 1

0

chk(ra�) @
@t
;u1;:::;u2k�1

j(t;�)dt

for u1; : : : ; u2k�1 2 � (L). We denote here the lift of an arbitrary L-
connection r : � (L) �! CDO(E) through the projection pr2 : R �
M �!M by ~r, i.e.,

~r : TR� L �! A(pr�2E); ~r(vt;ux)(� � pr2) = rux(�);

where TR � L is the Cartesian product of Lie algebroids (cf. Section
1.6). One can check that if r is �at, ~r is also �at.

The Crainic secondary characteristic classes in terminology
of Riemannian reductions. Let E denote a vector bundle of the
rank n over a manifoldM with a Riemannian metric h. We recall that
the metric h determines the Lie subalgebroid B = A(E; fhg) of the
Lie algebroid A(E) described in Section 4.3. The Atiyah sequence of
A(E; fhg) is

0 ���! Sk(E) ���! A(E; fhg) ���! TM ���! 0

where Sk(E) � End(E) is the vector subbundle of skew symmetric
endomorphisms with respect to the metric h.
Let L be a Lie algebroid overM and r : � (L) �! CDO(E) be any

�at L-connection in A(E). Consider for

(A(E); A(E; fhg);r) and (A(E); A(E; fhg); idA(E))
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theirs secondary characteristic homomorphisms denoted by

�# : H
�(EndE;A(E; fhg)) �! H�(L);

�o# : H
�(EndE;A(E; fhg)) �! H�(A(E));

respectively. Recall from Section 4.4.2 the isomorphism (cf. Theorem
4.4.1)

� : H�(gl(n;R); O(n))
�=�! H�(EndE;A(E; fhg)):

If the vector bundle E is nonorientable, then

H�(EndE;A(E; fhg))
��= H�(gl(n;R); O(n)) �=

^
(y1; y3; : : : ; ym);

wherem is the largest odd integer� n, i.e.,m = 2[n+1
2
]�1, and y2k�1 2

H4k�3(EndE;A(E; fhg)) for k 2
�
1; 2; : : : ; [n+1

2
]
	
are represented by

the multilinear trace forms ey2k�1 2 � (V4k�3(EndE= Sk)�),

~y2k�1([A1]; :::; [A4k�3]) =
X

�2S4k�3

sgn� � tr( eA�1 � � � � � eA�4k�3) (4.8)

for Ai 2 � (EndE), and where eAi = 1
2
(Ai +A

�
i ) is the symmetrization

with respect to h (see [43, p. 142]).
In the case of an oriented vector bundle E with a volume form v, the

metric h and v induce an SO(n;R)-reduction L(E;fh;vg) of the frames
bundle LE. Note that � : Rn ! Ex is an element of L(E;fh;vg) if and
only if � is an isometry keeping the orientations. Since A(E; fh; vg) =
A(L(E;fh;vg)) = A(E; fhg), it follows that

H�(EndE;A(E; fh; vg)) �= H�(EndE;A(E; fhg)):

If E, is orientable of an odd rank, cf. [27],

H� (gl(n;R); SO(n)) �= H�(gl(n;R); O(n)): (4.9)

Using the isomorphism � and (4.9), we get

H�(EndE;A(E; fh; vg)) �= H�(gl(n;R); O(n)) �=
^
(y1; y3; : : : ; yn):

If the vector bundle E is orientable of the even rank n = 2m, then

H�(EndE;A(E; fh; vg)) �= H�(gl(2m;R); SO(2m))
�=
^
(y1; y3; : : : ; y2m�1; y2m);
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where y2i�1 2 H4k�3H�(EndE;A(E; fh; vg)) are de�ned as in (4.8), and
y2m 2 H2m(gl(n;R); SO(n)) �= H�(EndE;A(E; fh; vg)) is represented
by

ey2m 2 � �V2m((EndE= Sk)�
�
;

ey2m([A1] ; : : : ; [A2m]) = d(z2m�1)( eA 1; : : : ; eA 2m)

for A1; : : : ; A2m 2 � (EndE), and where d is the usual di¤erential on
the algebra

V
(EndE)�, but

z2m�1 2 �
�V2m�1(EndE)�

�
is de�ned by

z2m�1(A1; : : : ; A2m�1)

= cm
X

�2S2m�1

sgn�
�
e; �A�(1) ^ �[A�(2); A�(3)] ^ ::: ^ �[A�(2m�2); A�(2m�1)]

�
where cm =

(�1)m�1(m�1)!
2m�1(2m�1)! 2 R, e is a non-zero section of

V2m(EndE)�,
and

� : EndE �!
V2E

is given by

(� (A) ; � ^ �) = 1
2
((A�; �)� (�; A�))

for A 2 � (EndE), �; � 2 � (E). The form z2m�1 is the image of the
Pfa¢ an for a pair (E; e) by the Cartan map for EndE (for the Cartan
map we refer for example [36, Ch. VI, 6.7, 6.8]).
We will show that �#(y2j�1) is the Crainic class for all j 2�
1; 2; : : : ; [n+1

2
]
	
. Let dr : � (

V
L�
E) �! � (

V
L�
E) be the di¤er-

ential determined by r : � (L) �! CDO(E). Fix two L-connections
r0; r1 : � (L) �! CDO(E). Write their a¢ ne combination by

ra� = (1� t) ~r0 + t ~r1 : TR� L! A(pr�2E):

One can observe that

Rr1 = Rr0 + dr0� + [�; �] ; (4.10)

where
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� = r1 �r0 2 � (L� 
 EndE) (4.11)

and

[�; �] = �2 = � ^ � 2 � (
V2 L� 
 EndE);

[�; �](u; �) = [�(u); �(�)] for u; � 2 � (L):
We can lift any 1-form ! 2 � (L�
EndE) to ~! 2 � ((TR�L)�
EndE)
de�ning ~!(vt;�x) = !�x. Let

~� denote the lifting of (4.11). We follow the
convention that the section (0; u) of TR�L we will be brie�y denoted
by u and ( @

@t
; 0) by @

@t
. Observe that ra� = ~r0 + �, where �(t;x) =

t � ~�x and (d ~r1~�)u;�(w � pr2) = (dr1�)u;�(w) � pr2 for any u; � 2 � (L),
w 2 � (E), x 2M , t 2 R. From (4.10) we have

Rr
a�

= d
~r0� + [�;�] : (4.12)

Hence, we see that ra� need not be �at even if r0 is �at.

Lemma 4.4.1. [10] The curvature tensor Rr
a�
of the a¢ ne combina-

tion ra� of two �at L-connections r0,r1 satis�es the conditions:

(Rr
a�

) @
@t
;u(w � pr2) = �u(w);

(Rr
a�

)u;�(w � pr2)j(t;�) =
�
t2 � t

�
� (� ^ �)u;� (w);

((Rr
a�

)k@
@t
;u1;:::;u2k�1

)j(t;�) = k � tk�1 � (t� 1)k�1 � �2k�1u1;:::;u2k�1
:

From the above we obtain the following theorem.

Theorem 4.4.2. [10] For all k 2 N, we have

csk(r0;r1) = (�1)k+1
k! � (k � 1)!
(2k � 1)! � tr �2k�1; (4.13)

where � is de�ned by (4.11).

The above formula is well known in the classical cases (see, for
example, the papers by S.-S. Chern and J. Simons [13] or J. Heitsch
and B. Lawson Jr. [37]).
Let

e : EndE �! EndE; v 7�! ev := 1

2
(v + v�)

denote the symmetrization. Let us consider idA(E) as anA(E)-connection
and take its adjoint idhA(E) de�ned by the metric h. Let � : TM �!
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A(E) be any h-Riemannian connection, i.e., a connection such that
Im� � A(E; fhg). For the connection form �� : A(E) �! EndE of �,
we have � � ��+ � � %A(E) = idA(E). Therefore,

�]�� (a) = 1
2
(idhA(E)� idA(E))(a) (4.14)

for a 2 � (A(E)). Compare with Corollary 2.6.5, which shows that such
a¢ ne combinations of connections appearing in (4.14) are compatible
with the metric. (4.14), (4.13) and (4.7) now become

�o(ey2k�1) = (�1)k � 23�4k � (4k � 3)!
(2k � 1)! � (2k � 2)! � u4k�3(E; idA(E)):

From this and the equalities

csk(r;rh) = r�(csk(idA(E); id
h
A(E)))

and

u4k�3(E;r) = r#u4k�3(E; idA(E));

we obtain

�#(y2k�1) = [r��o (ey2k�1)] = (�1)k � (4k � 3)!
24k�3 � (2k � 1)! � (2k � 2)! �u4k�3(E):

From the above formulae we can explain the relation between the sec-
ondary characteristic homomorphism �# of (A(E); A(E; fhg);r) and
the family of the Crainic classes fu4k�3(E)g.

Theorem 4.4.3. [10] Let E be a real vector bundle over a manifold
M and

�# : H
�(EndE;A(E; fhg)) �! H�(L)

the secondary characteristic homomorphism corresponding to the triple
(A(E); A(E; fhg);r), in which r : � (L) �! CDO(E) is a �at L-
connection in A(E).

� If the vector bundle E is nonorientable or orientable and of odd rank,
then the image of �# is generated by u1(E), u5(E),: : :,u4[n+34 ]�3

(E).
� If the vector bundle E is orientable and of even rank n = 2m, then
the image of �# is generated by u1(E), u5(E),: : :,u4[n+34 ]�3

(E) and

additionally by �#(y2m), where y2m is the form generated by the Pfaf-
�an.
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4.4.4 Secondary characteristic homomorphism for a pair of
Lie algebras

In this section, we will consider the characteristic homomorphism
�(g;h)# for a pair of �nite dimensional Lie algebras (g; h), h � g , and
give a class of such pairs for which �(g;h)# is a monomorphism.
An arbitrary Lie algebra is a Lie algebroid over a point with the

zero map as an anchor. Consider the homomorphism of pairs of Lie
algebras (idg; 0) : (g; 0) �! (g; h), h � g. By the de�nition of the
universal exotic characteristic homomorphism, observe that

�(g;0)# : H
�(g; 0) = H�(g)

(� idg)#������! H�(g):

Now, the functoriality of (idg; 0) described in Theorem 4.2.1 implies
that

�(g;h)# = �(g;0)# � (idg)+# = (� idg)+# : H�(g; h) �! H�(g):

Let (
V
g�)ih=0;�h=0 be the basic subalgebra of

V
g�, i.e., the subalge-

bra of invariant and horizontal elements of
V
g� with respect to the Lie

subalgebra h. Denote by k the inclusion from (
V
g�)ih=0;�h=0 into

V
g�

(cf. [47], [36, p. 412]). Moreover, consider the projection s : g ! g=h
and the map

(�s)� :
�^

(g=h)�
�h
�!

�^
g�
�
ih=0;�h=0

given by

((�s)�	)(x1 ^ : : : ^ xk) = h	; (�s(x1)) ^ : : : ^ (�s(xk))i

for 	 2 (
Vk(g=h)�)h, x1; : : : ; xk 2 g. One can see that (�s)� is an

isomorphism of algebras and

�(g;h) = k � (�s)� :

Therefore, the exotic characteristic homomorphism �(g;h)# for the pair
(g; h) can be written as the composition

�(g;h)# : H
�(g; h)

(�s)#����!�= H�(g=h)
k#���! H�(g);

where H�(g=h) denotes the cohomology algebra H�((
V
g�)ih=0;�h=0; dg).
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Example 4.4.1. [11] Let g, h be �nite dimensional Lie algebras and g�h
their direct product. The secondary characteristic homomorphism of
the pair (g� h; h) is given by

�(g�h;h)# : H
�(g) �! H�(g)
H�(h); �#(g�h;h) ([�]) = [(�1)j�j ��]
1;

and �(g�h;h)# is a monomorphism.

Remark 4.4.1. Let (g; h) be a reductive pair of �nite dimensional Lie
algebras (here h � g), and let s : g! g=h be the projection. Theorems
IX and X from [36, sections 10.18, 10.19] imply that k# is injective
if and only if the algebra H�(g=h) is generated by 1 and odd-degree
elements. Thus, �(g;h)# is injective if and only if H�(g; h) is generated
by 1 and odd-degree elements since (�s)# is an isomorphism of alge-
bras. If h is reductive in g, the homomorphism k# is injective if and
only if h is noncohomologous to zero (brie�y: n.c.z.) in g, i.e., if the
homomorphism of algebras H�(g) ! H�(h) induced by the inclusion
h ,! g is surjective. Tables I, II and III at the end of Chapter XI of
[36] contain many n.c.z. pairs including for example:

(gl(n); so(n)) for odd n; (so(n;C); so(k;C)) for k < n;

(so(2m+ 1); so(2k + 1)) ; (so(2m); so(2k + 1)) for k < m.

Example 4.4.2. We consider a reductive pair (End(V ); Sk(V )) of Lie
algebras where V is a vector space of the positive dimension.
(1) If the dimension of V is odd, dimV = 2m� 1, we have

H�(End(V ); Sk(V )) �= H�(gl(2m� 1;R); O(2m� 1))
�=
^
(y1; y3; : : : ; y2m�1);

where y2k�1 2 H4k�3 (End(V ); Sk(V )) are represented by the multilin-
ear trace forms ([27], [43]). Since H�(End(V ); Sk(V )) is generated by
odd-degree elements. Remark 4.4.1 now shows that �(End(V );Sk(V ))# is
injective.
(2) If the dimension of V is even, dimV = 2m, we have:

H�(End(V ); Sk(V )) �= H�(gl(2m;R); SO(2m))
�=
^
(y1; y3; : : : ; y2m�1; y2m);
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where y2k�1 are as in item (1) of this example above, and y2m 2
H2m(End(V ); Sk(V )) is a class determined by the Pfa¢ an (cf. Sec-
tion 4.4.3). Since in the case of even dimV , an even-degree ele-
ments is in generating set of H�(End(V ); Sk(V )), it follows that then
�(End(V );Sk(V ))# is not a monomorphism.

4.5 Secondary characteristic homomorphism for a
pair of transitive Lie algebroids

Consider a pair (A;B) of transitive Lie algebroids on a manifold M ,
B � A, x 2 M , and a pair of corresponding isotropy Lie algebras
(gggx;hhhx). Obviously, the inclusion �x : (gggx;hhhx)! (A;B) is a homomor-
phism of pairs of Lie algebroids over fxg ,!M . Theorem 4.2.1 implies
the commutativity of the following diagram

H�(gggx;hhhx) H�(gggx):-
�(gggx;hhhx)#

H�(gggx; B) H�(A)-
�(A;B)#

?

�+#x

?

�#x

(4.16)

Obviously, if the left and bottom homomorphisms in (4.16) are monomor-
phisms, then so is �(A;B)#. The homomorphism �+#x is a monomor-
phism if each invariant element v 2 (

V
(gggx=hhhx)

�)hhhx can be extended
to a global invariant section of

V
(ggg=hhh)�. Consequently, we get the fol-

lowing theorem linking the Koszul homomorphism for a pair of Lie
algebras (discussed in the previous section) with secondary character-
istic classes.

Theorem 4.5.1. [11] Let (A;B) be a pair of transitive Lie algebroids
over a manifold M , B � A, x 2 M , (gggx;hhhx) be a pair of the isotropy
Lie algebras at x, and suppose that any element of (

V
(gggx=hhhx)

�)hhhx can be
extend to an invariant section of

V
(ggg=hhh)�. If the Koszul homomorphism

�(gggx;hhhx)# for the pair (gggx;hhhx) is a monomorphism, then �(A;B)# is a
monomorphism.

Remark 4.5.1. Theorem 6.5.15 of [63] yields � 2 (
V
(gggx=hhhx)

�)hhhx can be
extended to an invariant section of

V
(ggg=hhh)� if and only if it is invariant



4.5 Secondary characteristic homomorphism for a pair of transitive Lie algebroids 111

with respect to the �1(M)-action on (
V
(gggx=hhhx)

�)hhhx by the holonomy
morphism of the (�at) B-connection rad^B;hhh = ad^B; hhh � � in�^

(ggg=hhh)�
� hhh

=
G
x2M

�^
(gggx=hhhx)

�
�hhhx

where � : TM ! B is any TM -connection in B and ad^B;hhh is the

representation of B in (
V
(ggg=hhh)�)

hhh de�ned by ad^B;hhh.

We will show examples of pairs of Lie algebroids satisfying the as-
sumptions of the last theorem, including integrable and nonintegrable
Lie algebroids.
The case of integrable Lie algebroids. Let P be a principal G-
bundle and P 0 some of its reduction with a connected structural Lie
group H � G. According Theorem 1.1 from [48], we observe that for
any transitive Lie subalgebroid B � A(P ) there exists a connected
reduction P 0 of P such that B = A(P 0). Let g and h denote the Lie al-
gebras of G andH, respectively. The representation adB;hhh is integrable,
because it is the di¤erential of the representation AdP 0;hhh : P 0 ! L(ggg=hhh)
of the principal �bre bundle P 0 de�ned by z 7! [ẑ] (see [52, p. 218]). For
every z 2 P 0, the isomorphism ẑ : g! gggx, v 7! [(Az)�e v] maps h onto
hhhx (see [50, Section 5.1]) and de�nes an isomorphism [ẑ] : g=h! gggx=hhhx.
Thus, we have a natural isomorphism (see also [52, Proposition 5.5.2-
3])

� :
�^

(gggx=hhhx)
�
�H �=�!

�
�
�^

(ggg=hhh�)
��� (B)

:

On account of the connectedness of H, we have�^
(gggx=hhhx)

�
�H

=
�^

(gggx=hhhx)
�
�hhhx

:

It follows that �+#x is an isomorphism. Thus, we conclude that the
assumptions of Theorem 4.5.1 hold for any pair of integrable Lie alge-
broids (A;B), i.e., if A is a Lie algebroid of some principal bundle P
and B is its Lie subalgebroid of some reduction of P . Theorem 4.5.1
now gives the following theorem.

Theorem 4.5.2. [11] Let A be a Lie algebroid of some principal bundle
P (M;G), B = A(P 0) its Lie subalgebroid for some reduction P 0 of P ,
(gggx;hhhx) be a pair of adjoint Lie algebras at x 2 M . If the Koszul
homomorphism �(gggx;hhhx)# for the pair (gggx;hhhx) is a monomorphism for
any x 2 M , then the universal exotic characteristic homomorphism
�(A;B)# is a monomorphism.
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The case of non-integrable Lie algebroids of TC-foliations . We
discuss non-integrable Lie algebroids (i.e., not isomorphic to any Lie
algebroid of a principal bundle) satisfying the assumptions of Theorem
4.5.1. We consider Lie algebroids A(G;H) of transversely complete
foliations (TC-foliations) studied in [1], [50]. These TC-foliations play
an essential role in the theory of Riemannian foliations [68].
Let G be a Lie group and let H be its connected nonclosed Lie

subgroup. Let us recall that A(G;H) is the Lie algebroid of left cosets
of H in G (see [1], [50]). Remark that if G is connected and simply
connected, the Lie algebroid A(G;H) is non-integrable (see [1]). There
are examples of non-integrable Lie algebroids A(G;H) for which the
Chern-Weil homomorphism studied in [50] is nontrivial.
Denote by g and h the Lie algebras of G and H, respectively. Let

H denote the closure of H and let s be the Lie algebra of H. Using
trivializations of TG = G� g given by left-invariant vector �elds one
can check that A(G;H) is a vector bundle over G=H which is the
quotient space (G� (g=h))H with respect to the right action of H
on G and the adjoint action of H on g=h. Moreover, there exists an
isomorphism

c : l(G;H)
�=�! � (A(G;H))

of the module l(G;H) of transverse �elds onto the module � (A(G;H)),
which is also an isomorphism of real Lie algebras.
Every right-invariant vector �eld Y w generated by w 2 g and every

left-invariant vector �eld Xw generated by w 2 s is a transverse �eld
[50]. The Lie algebra bundle ggg associated with A(G;H) is a trivial
vector bundle of abelian Lie algebras with the trivialization G=H �
s=h! ggg given by (x; [w]) 7! (c(Xw))(x).
Let H1 and H2 be Lie subgroups of G such that

H1  H2  H1 = H2  G.

Denote by h1, h2 and t the Lie algebras of H1, H2 and T = H1 = H2,
respectively. Write

A = A(G;H1)

and

B = A(G;H2):
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The Lie algebra bundles of A and B are ggg = G=T � t=h1 and hhh =
G=T � t=h2, respectively. Fix

�o 2
^k

(gggx=hhhx)
� �=

^k
((t=h1) = (t=h2))

�:

The section � of
^k

(ggg=hhh)� which is equal to �o at all points of G=T is
invariant (see [11]). This means that any element of

V
(gggx=hhhx)

� can be
extended to an invariant section of

V
(ggg=hhh)�. We now apply Theorem

4.5.1 to obtain the following one.

Theorem 4.5.3. [11] Let G be a Lie group, and H1 and H2 be its Lie
subgroups such that H1  H2  H1 = H2  G. Then the universal
secondary characteristic homomorphism for the pair of Lie algebroids
A(G;H2) � A(G;H1) is a monomorphism. Moreover, if G is connected
and simply connected, A(G;H2) and A(G;H1) are non-integrable Lie
algebroids.

4.6 Example of a nontrivial secondary
characteristic class de�ned by the Pfa¢ an

Finally, we demonstrate another an example of Lie algebroid and its
reduction, for which secondary characteristic homomorphism is non-
trivial. We note that the even dimension of the vector bundle and the
fact that the manifold is orientable are important for the example here.
Let M be an oriented, connected manifold, dimM � 1, and

g = End(R2). Consider a transitive Lie algebroid (A; %A; [[�; �]]) over
M , where

A = TM � End(R2) �= A(M � R2);

%A = pr1 is a projection on the �rst coordinate, and

[[(X1; �1) ; (X2; �2)]] = ([X1; X2] ; X1(�2)�X2(�1) + [�1; �2])

for all X1; X2 2 � (TM); �1; �2 2 C1(M ; End(R2)). Observe that (cf.
Section 1.5) that

0 �!M � End(R2) �= End(M � R2) �
,! A

pr1�! TM �! 0

is the Atiyah sequence of A.
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Let B � A be the Riemannian reduction of A, i.e.,

B = TM � Sk(R2)

is a transitive subalgebroid of A. Observe that in the domain of the
universal characteristic homomorphism

�(A;B)# : H
�(M � g; B) �! H�(A)

is a class

[ey2] 2 H2(M � g; B)

de�ned by

ey2([�1]; [�2]) = Pf([[e�1; e�2]])
for all �1; �2 2 � (ker %A) �= C1(M ; g). One can check that�(A;B)#([ey2])
2 H2(A), represented by �(A;B)(ey2) 2 � (A�), is a nontrivial secondary
characteristic class for the pair of Lie algebroids�

TM � End(R2); TM � Sk(R2)
�

of even rank. For details of the proof of the non-triviality of this class,
please refer to [10].
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