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Abstract. Hyperdimensional computing is a novel paradigm, capable of
processing complex data structures with simple operations. Its main limita-
tions lie in the conversion of real world data onto hyperdimensional space,
which due to lack of a universal translation scheme, oftentimes requires
application-specific methods. This work presents a novel method for un-
supervised hyperdimensional conversion of arbitrary image data. Addition-
ally, this method is augmented by the ability of creating HyperSymbols, or
class prototypes, provided that such class labels are available. The proposed
method achieves promising performance on MNIST dataset, both in translat-
ing individual samples as well as producing HyperSymbols for downstream
classification task.
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1. Introduction

The problem of translating latent data representations into meaningful sym-
bols is of paramount importance to developing real world applications of hyperdi-
mensional computing. While capable of processing a diverse range of data types
and structures in a unified manner, hyperdimensional computing [1] is currently
limited by the need for custom methods of converting real world data into hy-
perdimensional space. Since autoencoders have attained wide-spread adoption in
the domain of representation learning, they provide an ideal starting point for the
construction of universal hyperdimensional encoders.
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2. Related work

Hyperdimensional computing (HDC, a.k.a. Vector Symbolic Architectures),
proposed by Pentti Kanerva [1] is a computational paradigm based on long (around
10 bits), random binary or bipolar vectors. By leveraging the properties of high-
dimensional spaces (hypervectors can be thought of as vertices of a hypercube)
and spreading the encoded information over all bits, this bio-inspired framework
can efficiently perform complex data processing using only a few operators. Due
to the simplicity of hardware implementation and resilience to noise, hyperdimen-
sional computing has found application in domains such as event-based vision,
EEG classification [2] or language classification[3]. HDC is an attractive alterna-
tive or complement to deep neural networks [4], particularly in the case of deploy-
ment to edge devices due to its ease of hardware implementation [2].

A crucial problem with hyperdimensional representation is in translating real-
world data into hyperdimensional space. While a lot of classic data structures can
be build with proper application of basic hyperdimensional operations, more com-
plex data, such as images, typically require application of representation learning
techniques [5]. Some successful applications have leveraged direct naive coding of
values and their positions into latent vectors [6], yet the currently dominant family
of methods is based on vector quantization [7]. This can be implemented e.g. by
means of Sparse Distributed Memory (SDM), proposed by Pentti Kanerva [8]. As
in the case of hyperdimensional vectors, stored data is distributed over the entire
contents matrix C, providing similar structural noise resilience. Both writing to
(C := C+ ((AXgaqr) > d)x!) ) and reading from (Xgara = sign(C’ (AXuqar) > d)))
the SDM are based on the similarity between X,44 and the address matrix A.

3. Methods

The main contribution of this work is a novel method for deriving hyperdimen-
sional data representation, based on a modified Autoencoder than can be trained
using standard gradient-based methods, as shown in Fig.1. An ancillary contribu-
tion of this work is a proposal of the simplified, bidirectional version of SDM.

The mapping from latent space to hypervectors is simply a linear composition
of seed hypervectors stored in the value book V € B, with weights based on the
similarity of a latent vector k € Z*! to learned values in the key book K € Z"*:

v = tanh(V’ (k = K)) (1)
The inverse mapping, that is moving from the hyperdimensional space to Autoen-

coder’s latent space, follows the same principle. In this case the output is a linear
composition of latent vectors from the key book based on the similarity between
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hypervector v € B"*! and the value book:
k = K7 softmax(Vv) ()

The complete structure, showing the data flow through the proposed model is
shown in Fig.1.
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Figure 1: Structure of the hyperdimensional autoencoder. Source: own work.

The final step of deriving the HyperSymbolic representation is grounding it,
that is building hyperdimensional prototypes associated with each known label.
The construction of a class prototype can be done by simply bundling hypervec-
tor representations derived for a set of training images with the same label. The
number of components can be relatively low, oftentimes requiring only around 100
examples from each class.

While hypervectors can be compared using the dot product, a gradient-friendly
method of measuring floating point vector similarity was needed to enable bidirec-
tional mapping between floating point and hyperdimensional vectors. For this pur-
pose, the relaxed equality operator (equation 3) [9] has been chosen and extended
into vector version as the mean of elementwise computations.

a&bzsechz(bz;ga) 3)

The support of this operator can be controlled by changing the 8 parameter. Given
that the input to the hyperdimensional encoder has been produced by the sigmoid
layer of the convolutional encoder, the value of S was tuned so that the furthest
20% of values were not matched.

4. Results

The proposed model has been evaluated on the MNIST dataset after being
trained for 100 epochs with the PyTorch’s implementation of the Adam optimiser.
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Since the model had been designed to behave like a classic autoencoder, it was
trained using mean square error loss. Data augmentation, learning rate schedulers
and pretraining were omitted deliberately, in order to evaluate the learning ability
of the hyperdimensional component without additional confounding factors.

The performance of the proposed model can be evaluated in a twofold manner.
Firstly, the model can be assessed simply as an autoencoder, as shown in figure 2.
The set of images in Fig. 2a has been randomly sampled from the testing set, while
the set of images in Fig 2b is the output of the autoencoder for those images. As
it can be observed, the input handwriting exhibits a number of deviations from the
“ideal” digit shapes, however the autoencoder is capable of providing their legible
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(a) Random sample of input data. (b) Autoencoder output.

Figure 2: Autoencoder performance on a random sample of dataset. Source: own
work.

Secondly, the model can be evaluated based on its ability to assemble well
formed HyperSymbols, as shown in Fig.3. While the training dataset contained
digits with varying degrees of nonideality, the prototypes constructed from random
samples of 150 representatives of each digit, strongly resemble the “textbook”
versions of digits.This indicates that the prototypes are indeed well formed, as the
model was capable of extracting the “ideal” shapes of digits, from their non-ideal
representatives. The result of decoding of these prototypes can be seen in fig. 3a.

HyperSymbols can be used for a number of downstream applications, such as
encoding expert knowledge. For the derived HyperSymbols, we test their generic
nature using a task of image classification. As shown in Fig.3b, the hyperdi-
mensional classifier achieves promising performance, with the average accuracy
of 0.8725. While the classification performance is not perfect, the hyperdimen-
sional component of the model was trained with only 150 occurrences of each
digit, which is significantly less than required by most neural networks.

5. Conclusion

The proposed model enables simple conversion of real data into hyperdimen-
sional space and vice versa, with simple, unsupervised gradient-based training. It
enables easy inclusion of HDC paradigm in real world applications, without incur-
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(a) Decoded hyperdimensional prototypes for all (b) Confusion matrix for hyper-
classes in MNIST dataset. dimensional classification.

Figure 3: Performance of the hyperdimensional classifier. Source: own work.

ring the cost of developing custom, application-specific encoding schemes. Future
work on this method could investigate the degree of transferability of trained en-
coders between similar domains, as well as the impact of state-of-the-art neural
network training techniques and models on the quality of obtained HyperSymbols.
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