
JOURNAL OF APPLIED
COMPUTER SCIENCE
Vol. 21 No. 1 (2013), pp. 53-69

Running and Testing Java EE Applications
in Embedded Mode with JupEEter Framework

Marcin Kwapisz1

1Technical University of Lodz
Faculty of Technical Physics, Information Technology and Applied

Mathematics
Institute of Information Technology
ul. Wolczanska 215, 90-924 Lodz

marcin.kwapisz@p.lodz.pl

Abstract. This paper presents a design and usage of the author’s innova-
tive framework, called JupEEter. This framework helps running and testing
Java Enterprise Edition (Java EE) applications [1] and to use Java EE com-
ponents in Java SE [2] applications. The framework defines the application
server and application life-cycle and exploits annotation based program-
ming technique for its configuration.
Keywords: integration testing, unit testing, Java EE, embedded.

1. Introduction

Java EE [1] applications require an application server to run. This is the main
problem during unit or integration testing of an application. An application server
and its containers deliver many services, e.g.:

• dependency injection,

• transaction management,

54 Running and Testing Java EE Applications in Embedded Mode with . . .

• security management,

• timers, etc,

that are not available in standard Java SE environment. Testing components that
depend on mentioned services is very difficult. A developer must deliver these ser-
vices to tested components, what can be sometimes impossible. Mocking them is
pointless because tested components may behave differently in a testing environ-
ment than a production one.

The main goal of presented JupEEter framework is to help developers to test
and run Java EE applications in a Java SE environment and to allow to use Java
EE components in Java SE applications.

2. Service layers of the framework

The design of the framework is based on multi-tier architecture and is depicted
on Figure 1.

Figure 1. Framework design

One of the main advantage of multi-tier architecture is a possibility to replace,
add or modify one layer instead of entire application or a framework. Developers
can even insert a new layer between existing ones. This feature is widely used in
the framework. For example, the Java EE Unit Runner is the integration layer of
the framework with JUnit and makes possible to test Java EE applications with it.
To test applications with TestNG, Java EE Unit Runner components have to be
replaced with other ones, which integrate the framework with TestNG. Both, JUnit

M. Kwapisz 55

and TestNG integration components from layer 4 must use Java Se Runner to work
properly.

On the other hand, to run or test Java EE applications on a different application
server than Glassfish Server [3], existing implementation of the Server Controller
component from the layer 2 must be replaced with another implementation that is
able to control that application server. The design, configuration and usage of all
layers and their components from figure 1 are described in the following subsec-
tions and sections.

2.1. Layer 1 - Framework Commons components

This is the basic data definition layer layer that contains only common data
types and interfaces used by the whole framework:

• ServerController - is an interface that must be provided by all components
used to control different Java EE application servers. The framework pro-
vides DefaultServerController (see section 2.2) for a fail-over mechanism
and a specialized controllers for Glassfish v3 and v3.x Application Servers
(see section 2.3),

• ApplicationAssembler - is an interface that must be provided by all compo-
nents used to prepare and assemble a Java EE application for deployment.
These components have to be provided by developers of the framework
along with server controllers because deployment of a Java EE application
depends on a type of an application server and a type of an application: web
(WAR), enterprise(EAR) or ejb (JAR).

The last worth mentioning class of this layer is ApplicationServerContext. In-
stances of this class store a configuration of an application server and of an Java
EE applications. They are filled with data collected during processing of the frame-
work annotations (see section 2.2), for example:

• Java EE Server identifier,

• network host name and port configuration,

• list of resources to install,

• list of application to deploy,

• security configuration and etc.

56 Running and Testing Java EE Applications in Embedded Mode with . . .

2.2. Layer 2 - Framework Core and Server Controller

This is the configuration and service layer of the framework. It provides basic
services for the third layer Java Se Runner that can run applications in Java SE
environment (see section 3.1)

The configuration of the framework is based on annotations. This is the one
of the features that distinct it form another similar tool that is based on XML
configuration[4]. Framework annotations can be used on a: class, method or a field
level. Each annotation is paired with corresponding annotation processor, respon-
sible for processing it and filling up ApplicationServerContex object. A name of
an annotation processor is an annotation name with suffix Processor:

• @ApplicationServer (processed by ApplicationServerProcessor) - the class-
level annotation that MUST be used. This annotation identifies and config-
ures application server instance. All its attributes have default values, so it
can be placed in a source code without any explicitly set ones. Probably in
the next release of the framework this annotation will be optional and default
configuration will be provided. An example usage of this annotation shows
listing 1. The main attributes:

– security - security realm configuration. A security realm contains user
credentials for authentication and authorization,

– resources - set of external files that contain configurations of applica-
tion server resources required for an application to run properly, like
for example: JDBC resources and connection pools,

– instancePorts - network configuration of an application server. This
configuration is required if an application have to be accessed remotely
through a computer network.

• @Applications (processed by ApplicationsProcesor) - the class-level anno-
tation that MUST be used. This annotation contains an array of @Appli-
cation annotations that provide basic configuration for applications to be
assembled and deployed on a target application server. Attributes:

– applicationPath - path to the Java EE application in a form of a scat-
tered archive (directory path) or WAR/JAR/EAR archive (file path),

– applicationType - type of an application to be deployed. This attribute
value can be set to WAR - web application, JAR - EJB module, EAR -
enterprise application,

M. Kwapisz 57

– modules - array of Java EE modules, that are parts of a web or an
enterprise application. @Module annotation configuration is similar to
Application one.

Listing 1. Sample usage of the @ApplicationServer and @Applications annota-
tions

1 @ A p p l i c a t i o n S e r v e r (ins t anceName = " domain2 " ,
2 i n s t a n c e P a r e n t P a t h = " t a r g e t / g l a s s f i s h " ,
3 s e c u r i t y = @Secur i ty (secur i tyRea lmName = " t e s t ") ,
4 r e s o u r c e s = @AppResource ({ " r e s o u r c e s . xml " }) ,
5 i n s t a n c e P o r t s = @Ports (
6 h t t p =8090 , h t t p s =8091 , i i o p =3800 , admin =4949 ,

i i o p s =3900)
7)
8 @ A p p l i c a t i o n s (
9 a p p l i c a t i o n s = {

10 @Appl i ca t ion (t a r g e t =" domain2 " ,
11 name=" c l a s s e s " ,
12 a p p l i c a t i o n P a t h =" t a r g e t " ,
13 a p p l i c a t i o n T y p e =A p p l i c a t i o n T y p e . EAR,
14 modules = {
15 @Module (name=" app " ,
16 modulePath=" t a r g e t / c l a s s e s " ,
17 moduleType=A p p l i c a t i o n T y p e . EJB) ,
18 @Module (name=" t e s t s " ,
19 modulePath=" t a r g e t / t e s t − c l a s s e s " ,
20 moduleType=A p p l i c a t i o n T y p e . JAR)
21 }) }
22)
23 p u b l i c c l a s s G l a s s f i s h S e r v e r T e s t S u i t e

An example usage of the @Applications annotation shows listing 1 starting
from line 9. It is a configuration of an enterprise application that contains two
modules:

• scattered EJB module with EJB components and its classes are located in
target/classes directory,

58 Running and Testing Java EE Applications in Embedded Mode with . . .

• scattered JAR module (a standard Java library) and its classes are located in
target/test-classes directory.

Each annotation processor explicitly extends AbstractAnnotationProcessor and
thus implicitly implements AnnotationProcessor interface (see Figure 2).

Figure 2. Annotation processors design

AbstractAnnotationProcessor forms a chain of child processors (it describes a
node in a tree-like structure). As shown on listing 1, attributes of @Application-
Server annotation are also annotations. These internal, second-level, annotations
like: @Security, @AppResource and @Ports have corresponding annotation pro-
cessors that are invoked by the first-level ApplicationServerAnnotationProcessor
(see Figure 3).

All first-level annotation processors are put into root, top-level, annotation pro-
cessor chain called FrameworkAnnotationProcessor. This class is a singleton and
defines a chain (sequence) of first-level processors invocation. The basic chain of
processors consist of:

• ApplicationServerAnnotationProcessor,

• AppResourceAnnotationProcessor (not shown on Figure 2),

• ApplicationsAnnotationProcessor.

M. Kwapisz 59

Figure 3. Annotation processors tree

The design, depicted on Figures 2 and 3 is very flexible. Modifications of ex-
isting annotations are closed only to its annotation processor classes. An addition
of a new processor requires only inserting it into proper FrameworkAnnotation-
Processor chain.

FrameworkAnnotationProcessor converts annotation-based configuration into
single instance of ApplicationServerContext class. This instance is internally used
during an application and an application server life-cycle. The layer 2 does not
define any particular life-cycle, it provides only:

• commands (behavioral design pattern), classes implementing Framework-
Command interface, that can be issued to the framework to call correspond-
ing server controller method or methods

• and a factory that dynamically loads server controller implementation class
for a given application server. In the case when the Java class loader cannot
find and load a server controller class there is failover mechanism that loads
default implementation called DefaultServerController. DefaultServerCon-
troller does nothing more than just logging messages concerning the class
loading problem.

Implementation elements described in section 2.1 and 2.2 are packed into sin-
gle Java library file (JAR). The pluggable part, described in the next section (2.3) is

60 Running and Testing Java EE Applications in Embedded Mode with . . .

additional JAR library and is required to complete the functionality of the service
layer 2.

2.3. Layer 2 - The pluggable server controller component - Glassfish-
Controller

There are two server controller implementations currently in the framework.
Both are able to control Glassfish Application Servers but one is designed for ver-
sion 3 and the second one for version 3.x. That was necessary due to complete
redesign of Glassfish Embedded API [5] in Glassfish 3.1. The Glassfish Controller
library contains, except of implementation classes, additional resources, like the
default Glassfish domain configuration file and XML templates required by the
application server to validate deployment descriptors of Java EE applications.

This component is replaceable. A developer can implement a server controller
that can control different Java EE application server, for example JBoss AS (JBoss
Aplication Server), Tomcat (TomEE) and build additional server controller Java li-
brary. The design depicted on Figure 4 allows to use the framework with different
application servers without any changes to the rest of the framework. A developer
can even configure a project for the Glassfish at the beginning and then change an
application server to JBoss AS, just by replacing the server controller library with
the new one.

Figure 4. Integration of the ServerController implementation with the framework

M. Kwapisz 61

The Server Controller interface and its implementation classes (see Fig.4) are
responsible for:

• starting and stopping a Java EE application server in an embedded mode,

• deploying additional resources used by an application, for example: data
sources and database connection pools,

• managing of security settings and user authentication (logging in and out),

• assembling and deploying of applications on a running embedded Java EE
application server,

• accessing of Java EE resources and components deployed on an embedded
Java EE application server.

3. Integration layer of the framework

3.1. Layer 3 - Java SE Runner

Java SE Runner is the main functional and the most complex layer of the
framework. It provides features that make this framework completely distinct from
others - allows to use Java EE components in a Java SE applications. It is possi-
ble by converting a Java SE application into a Java EE CDI application [6] and
deploying it to an embedded Java EE 6 compliant application server. To control
that server and deploy applications a Server Controller component described in
the subsection 2.3 is required.

The layer 3 Java Se Runner defines:

• a Java EE application server life-cycle that spans on the life-cycle of a Java
SE application (see Fig. 6),

• a new entry point to a Java SE application,

• an integration of a Java SE application with Java EE environment.

62 Running and Testing Java EE Applications in Embedded Mode with . . .

3.2. An application entry point and a server life-cycle

JVM specification [7] defines the entry point to a Java SE application. It is a
method with the following signature (1):

static public void main(String[] args) (1)

A class containing that method has to be passed as a parameter to the JVM.
From a technical point of view a Java SE application build with this framework is
not strictly a Java SE application. It is assembled and deployed on an embedded
Java EE application server by the Server Controller component. So it is a Java EE
CDI [6] application and the main function will not work as the entry point any
more.

Java SE Runner provides its own main method that must by passed to the JVM.
This method starts an application server life-cycle (Fig. 6) and an application by
firing the custom RunJavaAppEvent CDI event (Fig. 5). A Java SE application
must register a method (2) that observes that event. The name of the method must
only conform to Java language rules, but for convenience it was called main.

public void main(@Observes @JavaApp RunJavaAppEvent event) (2)

This method is called automatically by the CDI container when RunJavaAppEvent
is fired. If a developer registers in a Java SE application more methods that observe
RunJavaAppEvent all of them will be invoked.

Because Java SE application is a CDI one, all Java EE dependent components
and resources can by automatically injected by annotating fields, setters or con-
structors of the application classes with the @Inject annotation [1].

As depicted on Fig. 6 after DeployApplication phase another application can
be deployed along with its resources and security configuration. When all applica-
tions are deployed RunJavaAppEvent is fired to start them. When all applications
processes finish StopServer phase is invoked to close an embedded Java EE appli-
cation server and complete the applications life-cycle.

3.3. Security and transaction support

Java EE components and their methods can be invoked in a security and trans-
actional context. Both functions are implemented in a similar way. The framework
provides a CDI portable extension [6] with two methods that observe the same
standard CDI event - ProcessAnnotatedType. This event is fired for each Java class

M. Kwapisz 63

Figure 5. Java SE Runner application entry point

or interface that is discovered in an application. Developers can use this event to
wrap or completely replace annotations of beans classes (AnnotatedType) before
the CDI container builds their metamodel.

The first function scans beans classes for the @RunAs framework annotation.
When an CDI AnnotatedMethod with this annotation is found it is wrapped to add
RunAsBinding interceptor binding. Then the CDI container adds an ArroudInvoke
interceptor called RunAsInterceptor to surround an invocation of the method. This
interceptor simply authenticates and creates security context before an invocation
of the target method and destroys it when the method finishes.

The second function works similarly, but scans beans classes for the @Trans-
actional annotation and wraps AnnotatedMethod to add TransactionalBinding in-
terceptor binding to it. TransactionalBinding annotation binds TransactionalInter-
ceptor to the method. This interceptor creates a new transaction before an invoca-
tion of the target method and commits it when the method finishes.

64 Running and Testing Java EE Applications in Embedded Mode with . . .

Figure 6. JavaSeRunner Java EE application server life-cycle

Both annotations, RunAs and Transactional, can be used together, making a
method invocation to be performed in security and transactional contexts. Their
usage is very important during application unit testing. Methods of Java EE com-
ponents, like session EJBs, may require transaction (TransactionAttributeType.
Mandatory) and security contexts propagation (@RolesAllowed)[1], see the next
section 4.

4. Layer 4 - Java EE Unit Runner

The layer 4 is a typical integration layer that makes possible to use the frame-
work Java SE Runner by the JUnit components. Developers can create custom test
classes and test suites by extending JUnit:

• BlockJUnit4ClassRunner,

• Suite

classes respectively. This layer provides such classes to bind the Java Se Runner
application serer life-cycle to JUnit operations. Detail binding contains Table 1.

JeeSuite extends JUnit Suite class and must be used in @RunWith annotation
of the JUnit framework as showed on listing 2. The rest of the configuration is

M. Kwapisz 65

Table 1. JUnit and application server life-cycle
JUnit method Java SE Runner phase Description
@BeforeClass StartServer

DeployApplicationRes
ConfigureSecurity
DeployApplication

Starts an application server, pre-
pares all required resources and
security configuration and fi-
nally deploys an application to
the embedded application server.

@AfterClass StopServer Stops the application server after
all test methods of a Test class or
a TestSuite class have been exe-
cuted.

@Test Login
BeginTransaction
InjectResources
TestMethod (JUnit)
Logout
EndTransaction

Before test method execution:
authenticate user, begin transac-
tion and inject components to
the instance of a test class. Af-
ter the test method is executed
logout user and commit (or roll-
back) a transaction. All opera-
tions here are conditional and
depends on annotations configu-
ration.

practically the same as a sample configuration of Java Se Runner presented in
listing 1. All rules and configuration parameters described in subsections 2.2 and
3.3 applies here also.

Listing 2. JUnit @RunWith annotation with provided JeeSuite class

1 @RunWith (J e e S u i t e . c l a s s)
2 @Suite . S u i t e C l a s s e s ({ T e s t C l a s s . c l a s s })
3 @ A p p l i c a t i o n S e r v e r ()
4 @ A p p l i c a t i o n s (a p p l i c a t i o n s = {
5 @Appl i ca t ion (name = " c l a s s e s " ,
6 a p p l i c a t i o n P a t h = " t a r g e t / c l a s s e s " ,
7 a p p l i c a t i o n T y p e = A p p l i c a t i o n T y p e . JAR) })
8 p u b l i c c l a s s G l a s s f i s h S e r v e r T e s t S u i t e {

66 Running and Testing Java EE Applications in Embedded Mode with . . .

A JUnit suite groups and controls the execution of several JUnit test classes. A
single test class and its test method execution is controlled by the custom Class-
Runner called JeeBlockClassRunner. This is very important because JeeBlock-
ClassRunner creates test objects as CDI managed beans instances and makes them
a part of a tested application. There are two consequences of this approach:

• an automatic injection of resources and components is available,

• CDI portable extensions do work.

To get an instance of an application component for a testing purpose, a sim-
ple field of that class (or interface it implements) has to be placed in a test class
and has to be marked with CDI @Inject annotation. When a test class instance is
created, all dependent components are injected into that instance according to CDI
specification [6]. A part of a sample test class (without test methods) is presented
on listing 3, where different types of components are injected, like fo example:

• lines 3-4 injection of another test class instance,

• lines 5-7 injection of the transaction manager provided by embedded Java
EE application server,

• lines 9-13 injection of EJB components with @EJB and @Inject annotation,

• lines 15-18 injection of an entity manager (@TestDBPU is a custom anno-
tation describing injection point for CDI producer),

• lines 20-21 injection of a CDI component.

5. Conclusions

Current implementation of the JupEEter framework allows to:

• develop and run Java SE applications with Java EE components,

• perform unit and integration tests of components of Java EE applications
with JUnit,

• perform system tests of Java EE applications with tools that can cooperate
with JUnit.

M. Kwapisz 67

Listing 3. Injection of components and resources into test class instance

1 c l a s s T e s t C l a s s {
2
3 @In j ec t
4 A n o t h e r T e s t C l a s s t e s t C l a s s ;
5
6 @In j ec t
7 U s e r T r a n s a c t i o n t x ;
8
9 @EJB

10 p r i v a t e ComponentEJB componentEJB ;
11
12 @ In j ec t
13 p r i v a t e ComponentEJB c o m p o n e n t E J B I n j e c t e d ;
14
15 @ In j ec t
16 @TestDBPU
17 @ P e r s i s t e n c e C o n t e x t
18 E n t i t y M a n a g e r em ;
19
20 @ In j ec t
21 p r i v a t e ComponentCDI componentCDI ;
22 }

The framework uses Glassfish application server as an embedded Java EE ap-
plication container, but different application servers can be used also. Only a new
server controller component is required. Java SE applications build with the frame-
work are able to exploit all capabilities of Java EE technologies. Developers can
even create Java applications which can be access remotely through a WEB in-
terface. This use case is quite common for "small" home devices, like network
routers, set-top boxes and ect.

Like Java EE application server, JUnit can be also replaced with another test-
ing framework - TestNG. A type of a testing framework is insignificant to the fact,
that the JupEEter framework makes a process of development and continuous in-
tegration of Java EE applications very lean. It can be easily integrated with any
continuous integration infrastructure through Apache Maven configuration. De-
velopers can run unit test in a few or a dozen seconds. The whole application and

68 Running and Testing Java EE Applications in Embedded Mode with . . .

application server life-cycle takes about 15 seconds on a Intel Core 2 Duo E8200
based computer system. It is not much because application server has to be started
only once. Additionally, there is no need to build Java EE development environ-
ment for a team because JupEEter delivers one. Developers must only add the
framework libraries to the application:

• class-path to use Java EE technology or

• to test class-path to use it for testing purposes.

Methods of JUnit test classes can be annotated with @RunAs and @Transac-
tional annotations to run them in a security and transaction context. It is especially
important for an application unit testing, where there are no other components that
could start transaction or perform user authentication.

The framework has been tested in author’s real life Java EE projects and dur-
ing Distributed Business Application lectures. Most of these projects are based on
common Java EE technologies like for example: JAX-WS and JAX-RS web ser-
vices (WS). With the JupEEter framework they can be tested just like standard
components. WS server and WS client are assembled as a single application then.
Normally, developers have to deploy WS server components to a remote applica-
tion server prior running tests.

References

[1] Java Community Process, JSR 316 - Java Platform, Enterprise Edition (Java
EE) Specification, v6, 2009, http://http://jcp.org/en/jsr/detail?id=316.

[2] Gosling, J., Joy, B., Steele, G., Bracha, G., and Buckley, A., The
Java Language Specification - Java SE 7 Edition, Oracle, 2011,
http://docs.oracle.com/javase/specs/jvms/se7/html/index.html.

[3] Glassfish Server, http://www.oracle.com/technetwork/middleware/glassfish/

overview/index.html.

[4] JBoss Arquillian project site, http://www.jboss.org/arquillian.html.

[5] Glassfish Embedded API project site, http://embedded-glassfish.java.net/.

M. Kwapisz 69

[6] Java Community Process, JSR 299 - Contexts and Dependency Injection for
the Java EE platform, 2009, http://jcp.org/en/jsr/detail?id=299.

[7] Lindholm, T., Yellin, F., Bracha, G., and Buckley, A., The Java Virtual
Machine Specification - Java SE 7 Edition, Oracle Corporation, 2012,
http://docs.oracle.com/javase/specs/jvms/se7/html/index.html.

