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In this paper the analysis of the damping behaviour of thin-walled composite columns 

with open stiffened cross-sections subjected to in-plane pulse loading is described. 

The pulse loading of a rectangular shape is concerned. The discussed problem of the 

dynamic interactive buckling is solved by the analytical-numerical method (ANM) 

using the Koiter’s perturbations method. A critical value of the dynamic load factors is 

determined according to the Budiansky-Hutchinson’s criterion for different value of 

the viscous damping ratio. The detailed calculations confirm that small damping does 

not affect the dynamic response of the thin-walled composite columns under the 

impact in-plane loading. 

 

1. INTRODUCTION 

 

Damping of the fiber-reinforced lamina is a very important parameter in the design 

of composite structures. Energy dissipation mechanisms in this structure can be divided 

into two classes: those associated with the material damping, and those associated with 

additional sources of dissipation such as friction at joints [1]. In metal structures usually 

dominates the latter, but with the fibre-reinforced laminate structures the situations is 

different. The inherent material damping contributes significantly to the overall damping. 

Composites have a material damping capacity ratio 10-100 times higher than metals. But 

it is often too low for many applications, for example in dynamic buckling. In recent 

years, viscoelastic damping materials in composites have been used to increase the 

damping of composite structures with little reduction in stiffness and strength [2-4]. 

There are several mechanisms of dissipative behaviour in this type of composite 

material: viscoelastic behaviour of matrix and/or fibres, thermoelastic damping due to 

cyclic heat flow, Coulomb friction due to slip in the fibre-matrix interface, dissipation 

caused by damage in the composite and so on [2]. Several analytical approaches are 

available in the form of micromechanical [5-6], macromechanical [7] and structural 

models/theories as a result of investigations carried out for both static and dynamic 

performance of composites [8-10]. There are conducted experimental [8,11-14] research 

and FEM calculations additionally [4,15-16]. A review of the available publications on 

composite material damping one can find in paper [2] with regard to different aspects 

such as mechanisms of damping, methods of predicting the damping and damping 

models/theories. 
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2. DAMPING MODELLING IN LINEAR SYSTEM 

 

The mechanical structures explicitly are described by the mass (denote as m), the 

stiffness (denote as k) and the energy dissipation phenomena. Many different effects 

contribute to the damping simultaneously and even complex models describe only the 

aspects of the observed structural response. Therefore, this study follows the most common 

procedure for the use of a viscous damping with damping forces proportional to the velocity. 

In the case of the viscous single degree of freedom linear system, one gets [17]: 
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where: mk /  is the eigenfrequency, c or h the viscous damping ratio and z the 

displacement. Between parameters describing damping the relation is as follows: 
 

 mch /2   (3) 

Many scientists [2] apply the hysteretic damping model to the description of damping, 

where the dissipative force is proportional to the displacement z: 
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where: η is the hysteretic loss factor, which is defined through the complex Young's 

modulus ''' jEEE  : 
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where: 1j . The viscous damping ratio h is related to the hysteretic loss factor η: 

 

 h2  (6) 

Solving Eq. (4) can lead to many problems, while the differential equation (2) is 

easily to calculate. Thus, hysteretic damping should be applied only for steady state 

harmonic excitation. What is important, while using Eq. (2) the hysteretic damping model 

can be substituted by an equivalent viscous damping mechanism. 

Loss factor η can be determined experimentaly using the half-power bandwidth 

method [13,17]. One has to measure frequency bandwidth, between points on the 

response curve, where the amplitude of response of these points is 2/1  times the 

maximum amplitude. The bandwidth for small damping corresponds to the frequencies: 

)1(1   n  and )1(2   n . 

Loss factor  of this method is defined as: 
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The specific damping capacity  (SDC) of a material is defined as the ratio 
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of the dissipated energy D per cycle of vibration and the maximum stored energy U per 

cycle [8-10,17]. It is possible to derive the relation between parameters describing models 

of damping above: 
 

  24  h . (9) 

 

In experimental studies the concept of a logarithmic decrement is used to describe 

damping properties of mechanical system. There are two definition of the decrement [17]: 
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where: an= at and an+1= at+0.5T are absolute values of two successive extreme deflections, 

an+2=at+T - deflections after the vibration period T. The relationship is as follows: 
 

  2T . (11) 

 

Finally, the relation between all parameters describing damping can be defined as: 

 

   hT 25.02 . (12) 

 

For the multiple degree of freedom system the Rayleigh damping model is used 

[4,11,15-16]. In this case equations of the motions have the form: 
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where: M, D, K are the mass, viscous damping and stiffness matrices respectively, z is the 

displacement vector. In order to avoid an explicit expression of the damping matrix D a 

linear composition of M and K is introduced instead: 
 

 KMD    (14) 

 

where: two constant parameters α and β control the damping. This approach has no real 

physical meaning and is chosen for mathematical convenience. Despite this disadvantage, 

it is a frequently applied method of introducing the dissipative properties into an analysis on 

the structural level. For example, in ANSYS [18] its general form is 
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where: βk is constant stiffness material multiplier, βc - variable stiffness matrix multiplier, 

expressed as  //2  hc , Dω - frequency-dependent damping matrix, Dl - element 

damping matrix. 

After transformation from original coordinates of z to generalized coordinates of ξ 

using transformation operator obtained by the eigenvectors φi of the generalized 

eigenproblem: 

 iii  MK
2 . (16) 

 

The coupled set of differential equations (13) yields a single equation for every degree of 

freedom i: 
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The damping formulation (14) leads to: 
 

 22 iii h    (18) 

 

for the i-th eigenmode. Using this approach, damping of two eigenmodes can be specified 

exactly by the free parameters α and β. Subsequently, the damping ratios hi of all other 

modes are given by this relation (18). 

 

3. RESULTS AND DISCUSSION 

 

The prismatic thin-walled columns with open cross-sections (Fig. 1), subjected to 

axial compression, are considered. The detailed analysis of the calculations was 

conducted for the composite columns with the following dimensions: b1=100 mm, b2=50 

mm, b3=15 mm, bs=15 mm, h=12·hlay=1.5 mm and four various lengths: l = 2500, 2000, 

1500 and 1000 mm. Each column is made of a twelve-layer composite with the symmetric 

plies alignment [45/-45/04]S [19-21]. Each layer of the thickness hlay=0.125 mm is 

characterized by the following mechanical properties: E1 = 140 GPa, E2 = 10.3 GPa, 

G12 = 5.15 GPa, 12 = 0.29, 1600 kg/m
3
 [22]. 

For the thin-walled structures with initial deflections and the viscous damping, the 

non-linear Lagrange’s equations of motion for this case of an interaction of N eigenmodes 

can be defined as [19-21, 23-28]: 
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where: r  - dimensionless amplitude of the r-th buckling mode (maximum deflection 

referred to the thickness of the first plate), r , r , *
r  - critical stress, circular 

frequency of free vibrations and dimensionless amplitude of the initial deflection 

corresponding to the r-th buckling mode and hr - the damping ratios corresponding to the 

r-th frequency. The last part in the equation (19) results from including the non-linear 

model of the thin-walled structures and the amplitude of imperfections. In the case of one 

mode buckling, the linear equation of motion (19) has the form: 
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The third part of the equation (20) compared with Eq. (2) was modified by taking into 

account the influence of the compressing load on the frequency of free vibration of the 

real construction. 
 

(a)       (b)  
 

Fig. 1. Open cross-sections of columns with a central intermediate stiffener [19-21] 

a) C-shape with outside stiffeners,         b) C-shape with inside stiffeners 

 

Table 1. Critical stresses for the column shown in Fig. 1 [19-21] 

l  
Example 1 (Fig. 1a) Example 2 (Fig. 1b) 

1  2  3  4  1  2  3  4  

[mm] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa] 

2500 52.25 29.36 131.97 119.04 50.93 42.24 106.37 189.15 

2000 79.54 42.11 127.08 112.83 74.58 62.50 112.25 175.77 

1500 129.08 66.90 138.74 136.74 104.99 103.51 135.71 174.22 

1000 143.95 109.24 208.16 210.21 107.73 180.40 219.32 242.19 

 

The expressions for the postbuckling coefficients rpqa are to be found in papers [27-

28]. In the equations of motion (19), inertia forces of the pre-buckling state and second 

order approximation have been neglected [23]. The initial conditions have been assumed 

in the following form: 
 

 0)0( tr ;                0)0(, ttr  (21) 
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The static problem of interactive buckling of thin-walled multilayer columns (i.e. for 

0, ttr  in Eqs. (19)) has been solved with the method presented in paper [28]. The 

frequencies of free vibrations have been determined analogously as in paper [29]. The 

problem of interactive dynamic buckling (Eqs. (19)) has been solved by means of the 

Runge-Kutta numerical method modified by Hairer and Wanner [30]. 
 

Table 2. Circular frequency of free vibration of the columns shown in Fig. 1 [19-21] 

l  
Example 1 (Fig. 1a) Example 2 (Fig. 1.b) 

1  2  3  4  1  2  3  4  

[mm] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] 

2500 227 170 1082 1027 224 204 971 1295 

2000 350 254 1327 1305 339 310 1247 1561 

1500 594 428 1849 1835 536 532 1828 2072 

1000 942 820 3396 3412 814 1054 3485 3662 

 

Values of the critical stresses and the circular frequencies of free vibrations 

corresponding to the buckling modes under analysis for different column lengths l  are 

presented in Table 1 and Table 2, respectively. In these tables, the following index symbols 

were introduced: 1 - flexural-distortional mode for m = 1; 2 - flexural-torsional-distortional 

mode for m = 1; 3 - flexural-distortional mode for m = 3; 4 - flexural-torsional-distortional 

mode for m = 3, where m is the m-th harmonic mode. 

Further on, the analysis of dynamic interactive buckling of the columns under 

consideration was conducted. Analysis was limited to the interaction of four buckling modes 

(i.e. N = 4). Solving the set of equations (19) one receives the amplitudes of the buckling mode 

(i.e. 1 , 2 , 3 , 4 ) as a function of time and amplitude of the load pulse. A detailed 

analysis was conducted for a rectangular pulse load: 
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where: t0 is a duration of the pulse load, and D is an amplitude of the dynamic load. The 

duration t0 equal to the period of fundamental flexural free vibrations 11 /2 T . The 

computation time is equal to 05.1 t . The level of imperfections was assumed as: 
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The dynamic buckling is possible only when the geometric imperfections are not 

equal to zero. When the displacement growth is assessed with time for different amplitude 

of load, buckling occurs when the dynamic load reaches a critical value associated with a 

maximum acceptable deformation or strain, stress, the magnitudes of which are defined 

arbitrarily. So it appears to be no perfect criterion as yet for dynamic buckling. Therefore, 

this study follows the most widely used the Budiansky-Hutchinson’s criterion [20-21, 25-

26]. In order to find a critical value of the dynamic load factors:  crD min/ , one has 

to find out which of the displacements’ growth is the highest for certain force amplitude 
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minD  (where: );;;min( 4321min   ). The value of  crD min/  depends on 

the step of calculations and restrictions imposed on deflections. In order to find the 

critical value of dynamic load factor one should draw the graph of deflection amplitude as 

a function of dynamic load. Values of the critical dynamic load factors:  crD min/  

for different column lengths l  are presented in Fig. 2. Five cases of the parameter of 

damping were considered: 

I   – the viscous damping ratio hr for r=1,…,N, when N=4 in Eqs. (19) is equal to 0, 

so there are not damping; 

II  – the viscous damping ratio hr is equal to 2% for all modes; 

III – the viscous damping ratio hr is equal to 0.5% for the global modes (1 and 2) 

and 3% for the next ones (3 and 4); 

IV – the viscous damping ratio hr is equal to 10% for the global modes (1 and 2) 

and 2.5% for the next ones (3 and 4); 

V – the viscous damping ratio hr is bigger from 20% for all modes. 
 

In the presented case of the material damping, it is assumed that the viscous 

parameter of damping hr for the carbon-epoxy, composite plate element amounted to 

0.5% for frequencies lower than 2000 Hz and 1.5% for frequencies from 2500 Hz to 4000 

Hz and 3% for frequencies higher than 5000 Hz [14]. The behaviour of the viscous model 

and the hysteretic one is different. The hysteretic model leaded to a frequency 

independent damping. In this case, for the carbon-epoxy composite plate the loss factor  

is less than 1% [14] so the viscous parameter of damping hr is less than 0.5% (Eq. 6). It 

can be shown [31-33] that for low damping the frequency increase if the material damping 

is very weak. The joints damping is weak for composite structures as well. For the glass-

epoxy composite beam the viscous parameter of damping hr is less than 1% for all fibre 

orientation and frequency less than 1200 Hz [8,11-12]. In the case of Kevlar fibre-epoxy 

composite beam the viscous parameter of damping hr is less than 2% for all fibre 

orientation and frequency less than 1200 Hz [7,9-10]. Dissertations above allows to 

accept two cases for further analysis: Case II where damping is frequency independent 

and Case III where damping is the function of frequency. If the damping is high, the 

relationship between the loss factor  and the natural frequency  is hyperbolic [34]: 
 

 


 oa
  (24) 

 

where: ao and  are constant. In this model, the loss factor  for glass-epoxy composite 

beam is lower than 20% (h=10%) for global mode and lower than 5% (h=2.5%) for the 

local ones [34], what was described in Case IV. 

The last case (Case V) regards the composite structures with viscoelastic layer  

[3-4]. For the 3M ISD-112 damping material the viscous parameter of damping hr is 

greater from 25% for the frequency less than 2000 Hz [4]. 

The small damping (Case II and Case III) doesn’t affect the value of critical 

dynamic load factor for all columns. In this case, the value of  crD min/  grew less 

than 5%, compared to the column without damping (Case I). It is possible to reduce 
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differences in received results by narrowing the step of calculations. So it is possible to 

say that one can get the same results for all cases with or without small damping. 
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Fig. 2. The critical values of the dynamic load factors (σD/σmin)cr determined from the 

Budiansky-Hutchinson’s criterion for columns shown in Fig. 1: 

(a) Example 1 (Fig. 1a),     (b) Example 2 (Fig. 1b) 

 

If damping is greater (Case IV), the value of  crD min/  grew more than 10% 

but less than 25%, compared to the column without damping. The growth is so low that 

damping has secondary meaning for the phenomenon of the dynamic buckling. Only if 

damping is very strong (Case V), the value of  crD min/  grew more than the 25% 

but less than 45% and it should be taken into account in calculating the critical value of 

the dynamic load factors:  crD min/ . 

 

4. CONCLUSION 

 

In this paper the analysis of the damping behaviour of thin-walled composite 

columns with open stiffened cross-sections subjected to in-plane pulse loading was 

described. The detailed calculations confirmed that small damping didn’t affect the 
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dynamic response of the columns. The influence on the value of the dynamic load factors 

was observed only in case of composite with one or more layers made of the viscoelastic 

damping materials. 
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