Challenges of Crop Classification from Satellite
Imagery with Eurocrops Dataset

Przemyslaw Aszkowski!0000-0003-0388=8546]

Marek Kraftl [0000-0001-6483-2357]

Faculty of Control, Robotics and Electrical, Engineering,
Institute of Robotics and Machine Intelligence
Poznarn University of Technology,

60-965 Poznan, Poland
przemyslaw.aszkowski@doctorate.put.poznan.pl,
marek.kraft @put.poznan.pl

DOI:10.34658/9788366741928.2

Abstract. Crops monitoring and classification on a nationwide level pro-
vide important information for sustainable agricultural management, food
security, and policy-making. Recent technological advancements, followed
by Earth observation programmes like Copernicus, have provided plenty of
publicly available multispectral data. Combining these data with field anno-
tations allows for continuous crop monitoring from publicly available data.
In this paper, we present a solution for crop classification to determine crop
type from Sentinel-2 multispectral data, utilizing machine learning tech-
niques. Apart from presenting initial results, we discuss the challenges of
crop classification on a Eurocrops dataset and further research directions.
Keywords: computer vision, multispectral imaging, remote sensing, crop
classification

1. Introduction

Crop classification using satellite imagery has been gaining more research at-
tention recently, mainly utilizing publicly available data from Sentinel satellites
and Landsat program [1]. Due to the massive amount of multispectral data, as
well as the background of researchers, manually engineered features with phe-
nological information are especially popular, replacing raw multispectral bands
data. Authors in [2] combine data from heterogeneous sources: radar images from
Sentinel-1 and multispectral images from Sentinel-2, with non-weighted accuracy
reaching 0.85 for 23 crop types.

The research usually concentrates on a single country or even a small region,
as the labelled data is scarce and diverse. Moreover, it usually covers only a small
subset of cultivated crops that are especially relevant to the authors [3]. In this
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paper, a publicly available Eurocrops [4] dataset is used, and its usefulness for
crop classification is analysed. The Eurocrops dataset provides field annotations
for European countries along with ready-to-use multispectral data for each parcel.
Figure 1 shows a small part of the dataset fields visualised in QGIS.

Figure 1. Fields from Eurocrops dataset with boundaries, visualized as semi-
transparent blue polygons in QGIS on Bing Aerial Maps. Source: own work.

2. Materials and Methods

2.1. Dataset

Although the Sentinel-2 satellite has a resolution of 10 m and a revisits time
of 10 days, the Eurocrops dataset provides for each field only a single representa-
tive pixel for each date, with 13 multispectral bands. Data are provided for each
country individually. In this paper, due to the high amount of data, the training
and testing focused on Austria, as data for this country were available at first, with
396600 annotated parcels in the training set, covering 44 crop types. The testing
dataset is not a random subset of the training dataset, but it is a distinct geographic
region of the country, specified in the Eurocrops dataset. The data provided by Eu-
rocrops are from Sentinel-2 L1C products, which introduces significant bias due
to the weather at a specific time point [5].

2.2. Data preprocessing

Dates when the images were taken are not consistent among the dataset. There-
fore, before further processing, the data were resampled to common dates by tak-
ing the nearest data point for each date. Moreover, due to weather conditions, data
are often obscured by clouds. Such data points could be potentially removed and
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resampled, e.g. with spline interpolation through time. Apart from using the raw
pixel data, a simple yet effective vegetation indicator NDVI (Normalized Differ-
ence Vegetation Index) [6] was utilized, which is calculated based on near-infrared
and red band values (bands 8 and 4 respectively). Example NDVI curves for a few
selected crop types are presented in Figure 2. Using this index alone does not
contain all information required for classification but seems to usually improve the
model results.
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Figure 2. Average NDVI values through time for different crop types. One of the
features used as model input, apart from the raw pixel values. Source: own work.

2.3. Algorithms

As there is no spatial information for a single parcel, the application poten-
tial for modern neural networks, including CNNs and transformers, is quite lim-
ited. Therefore, FCNN (Fully Connected Neural Network), as well as classical
machine learning techniques, including SVM (Support Vector Machine) and ran-
dom forest, were used. The input data consists of resampled and normalized pixel
values with an additional NDVI feature. As it is a classification problem, the out-
put data classes are different crop types. Due to high class imbalance, data were
weighted by the number of samples in the training dataset.

2.4. Results

The best results on the testing set were achieved for FCNN, though the other
methods were not significantly inferior. The best variant of the tested FCNN con-
sists of four fully connected layers, with ReLLU activation and batch normalization,
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and trained with cross-entropy loss. Table 1) shows the metrics achieved by the
compared methods.

Table 1. Metrics achieved by the FCNN model on the test dataset for Austria, for
all 44 crop types

Method Accuracy | Weighted accuracy | Precision \ Recall ‘
FCNN 0.715 0.620 0.715 0.715
SVM 0.691 0.613 0.691 0.691
Random forest | 0.694 0.431 0.692 0.692

Most of the crop types can be easily distinguished, but some crops (e.g. nuts
and leguminous plants) have an accuracy not better than a random guess. Fig. 3
shows the confusion matrix trained for a few randomly selected crop types, which
yields significantly better results.
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Figure 3. Confusion matrix for test dataset of crop classification, with a model
trained only on a few selected crop types. To show high-class imbalance, the

percentage of total predictions is shown in each cell (apart from the last row and
column). Source: own work.
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3. Conclusions

As presented in this paper, crop classification is achievable with the publicly
available Eurocrops dataset, with weighted accuracy of 0.620 while training and
testing on one country for all 44 crop types. Testing on fields from a different
country than the training data yields significantly lower accuracy, possibly due to
differences in climate, diverse vegetation processes, uncorrelated weather or even
different subspecies for a specific crop, which is not covered by the dataset. Apart
from including data from different countries in training, domain transfer with unla-
beled data can be considered to tune the model to a different geographical region.
The interoperability and accuracy of the model most probably could be improved
by using Sentinel-2 L2A products with atmospheric correction and without cloudy
data. Also, training the model to work only on a subset of crop types signifi-
cantly improves the model’s accuracy. Future work could involve analyzing all
pixels within a parcel and not only a single representative pixel, allowing for spa-
tial analysis. Another interesting research direction is the prediction from partial

data without the full growing period.
Code available at https://github.com/PUTvision/crop_classification_
eurocrops.
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