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Abstract. This paper investigates whether a quantum computer can effi-
ciently simulate the atom deexcitation process with emission of photon. An
algorithm is presented for simulating of the atom-photon interaction and
photon free propagation, implemented on standard two-input gates. The pa-
per examines the properties of the proposed algorithm and then compares
the obtained results with the theoretical predictions.
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1. Introduction

In the near future, quantum calculations can make a major contribution to the
development of informatics [1]. Although practical implementations of quantum
computer have not been built yet, its existence seems to be possible. Therefore, it
is worth examining the properties of such machines.

Today we know Shor [2] and Grover [3] algorithms which are of lower com-
putational complexity than their best classical counterparts. Another promising
application of quantum computer are quantum simulations [4, 5, 6], i.e. the com-
puter modeling of behavior of physical quantum systems. It gives the possibility
of effective modeling quantum processes, which is not possible using classical
computers [7]. Quantum computers can simulate a wide variety of quantum sys-
tems, including fermionic lattice models [8, 9], quantum chemistry [10, 11], and
quantum field theories [12].

As is well known, simulations of quantum systems performed using conven-
tional computers are not effective. This means that for classical computer the mem-
ory resources and time required to simulate grow exponentially with the size of
quantum system. In the case of a quantum computer, the situation is different. The
relationship between the size of quantum computer (register) and the size of the
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simulated quantum system is linear. Therefore, a very important task is to find the
appropriate algorithms that can properly simulate complex quantum systems and
non-trivial interactions between them. This is a difficult issue, because most of the
interesting quantum systems is feasible in infinitely-dimensional Hilbert spaces.
In such situations, we can use the technique of sampling the wave function and
build an algorithm based on Quantum Fourier Transform. This case was tested in
[13, 14, 15, 16], which examined the free particle and the harmonic oscillator. The
main limitation of this coding method of the particle state is that it does not enable
implementing an arbitrary potential V(x). It allows only a few special cases such
as the V(x) ∼ x2 potential. In our previous works we have shown that also rect-
angular potentials (like thresholds and wells) can be simulated using this method.
This provides the ability to examine other interesting processes, such as the tunnel
effect [17] and scattering of Pauli[18] and Dirac[19] particle.

Another important issue is the simulation of quantum fields, which are the
systems with an infinite number of freedom degrees. In this case, we can replace a
continuous band of energy levels with its discrete counterpart. We use this method
in the current publication and in [20, 21]. In the above-mentioned works, we have
simulated the atom deexcitation process successfully. However, the disadvantage
of the used algorithm is sparse coding of states in the quantum register (one level
per qubit). For this reason, we could simulate only a few photon energy levels. In
this work, we propose a new and more complex algorithm, which enables dense
coding of the photon states in the register. In nq qubits we can encode 2nq photon
levels. It allows us to simulate a photon having hundreds energy levels. Therefore,
the accuracy of the deexcitation process simulation increase. Moreover, we can
now simulate the process of the emitted photon propagation. The algorithm, which
is presented here, enables an efficient simulation of more complex processes (e.g.
photon emission in many space dimensions or multi-channel decays).

The theoretical approach to the problem of unstable quantum systems decay
can be found in [22]. Works of other authors also focus on the simulation of excited
states decay. Models based on cavity QED are particularly tested. For example,
processes such as: beta decay of helium atom [23] and decay of two-level atom in
crystal [24] are examined. In contrast to the cited works, we examine the problem
on purely algorithmic grounds, using abstract model of quantum gates. We abstract
from specified physical implementation completely.

In order to simulate a quantum register, we used a simple environment writ-
ten in C++ language for a single processor. However, there is possibility of us-
ing parallel computation methods for the simulation of a quantum computer [25].
Moreover, some quantum algorithms can also be studied using neural networks
and machine learning models [26].
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2. Description of the simulated system

Let us consider a complex quantum system which is composed of two parts
A and F (Fig. 1). Subsystem A (atom) has two energy levels: level |0〉A with
energy equal to zero (the ground state) and level |1〉A with energy EA (the ex-
cited state). We identify subsystem F with photon (without spin) trapped in-
side one-dimensional cavity of length xmax (with periodic boundary conditions
(ψ(0) = ψ(xmax)). Base states of subsystem F are denoted by |n〉F . We identify
state |0〉F with vacuum state (no photon in the cavity). Other states (for n , 0)
are stationary states with wavenumber kn (given by Eq. (25)) and energy En (given
by Eq. (26)). In general, parameter n takes both positive and negative values (to
simulate the motion of a photon in both directions). Thus, energy spectrum of the
photon is two-fold degenerated and (due to the conditions imposed by the simula-
tion) bounded (|n| ≤ nmax).
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Figure 1. Energy levels of A and F subsystems (in the absence of interactions). All
levels of subsystem F except ground state are two-fold degenerated.

The following operator is chosen as the Hamiltonian of interaction between sub-
systems A and F:

Ĥint =

nmax∑

n=−nmax
n,0

(gnâ†b̂n + g∗nâb̂†n), (1)

where â is an operator decreasing energy of subsystem A (â|1〉A = |0〉A and â†|0〉A =

|1〉A) and b̂n are annihilation operators of subsystem F defined as follows:

b̂n|n〉F = |0〉F for 0 < |n| ≤ nmax, (2)

b̂†n|0〉F = |n〉F for 0 < |n| ≤ nmax. (3)

Complex parameters gn are coupling constants calculated as follows:

gn = −iΓ

√
EA

En
eikn xa , (4)
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where Γ is decay constant and xa is position of atom in the cavity. The Hamiltonian
(1) describes transitions between states in the following form: |0〉A|n〉F ↔ |1〉A|0〉F .
The calculation of gn and the justyfication of the Hamiltonian (1) is given in Ap-
pendix B.
The total Hamiltonian of the system AF has the form:

Ĥ = EAâ†â +

nmax∑

n=−nmax
n,0

Enb̂†nb̂n + Ĥint, (5)

where En are given by Eq. (26).

3. The algorithm simulating propagation of free photon

State of photon is encoded in n f -qubit register. State |00..0〉 = |0〉 encodes
vacuum state. Other base states (|n〉 for n = 1, 2 . . . 2n f −1) encode photon with
defined energy and momentum. Let us consider two possibilities:

• photon with positive momentum only (kn > 0):
In this case, state |n〉 encodes photon with momentum equal to

kn = ∆k · n for n = 1, 2 . . . 2n f − 1, (6)

where by formula (25) ∆k = 2π/xmax. In this situation nmax = 2n f −1.

• photon with momentum of any sign:
In this case, the oldest qubit (n f−1) encodes sign of photon momentum (state
|0〉 corresponds to kn > 0, while state |1〉 encodes kn < 0 case). The rest of
the qubits encode |kn|. Both register states |00..0〉 = |0〉 and |10..0〉 = |2n f−1〉
encode vacuum state (but the latter is not used). Other states of the register
(|n〉) correspond to the following values of the momentum:

kn =

{
+∆k · n for n = 1, 2, ...2n f−1−1
−∆k

(
n − 2n f−1) for n = 2n f−1+1, ..., 2n f −1

(7)

In this situation nmax = 2n f−1−1.

The algorithm simulating time evolution of free photon (the second component
of the Eq. (5)) is shown in Fig. 2. Gates Uφ are phase-shift gates, which operate
according to the scheme:

|0〉 → |0〉, |1〉 → exp(−iφ)|1〉, (8)

where: φ = dE dt/~ and dE = hc/xmax is distance between adjacent energy levels.
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Figure 2. The algorithms simulating free propagation of the photon (example for
n f = 4). The left scheme shows the algorithm for kn > 0 only, the right one shows
the algorithm for kn of any sign. The oldest qubit (denoted by Fsg) encodes sign of
kn.

The algorithm from Fig. 2 follows from the fact that diagonal form of time evolu-
tion operator is equivalent to phase-shift operator:

U0(dt) = exp
(
−i

Endt
~

)
= exp

(
−i

dE dt
~

n
)

=

nL−1∏

k=0

exp
(
−i

dE dt
~

2kik
)
, (9)

where nL = 2n f . In the last step energy level number n is presented in binary form:

n =

nL−1∑

k=0

2kik, (10)

where ik is k-th binary digit of n. Therefore, state of k-th qubit is multiplied by
phase factor exp

(−i2kφ
)

for ik = 1.

4. The algorithm simulating interaction between photon and
atom

The whole algorithm is shown in Fig. 3. In the first qubit (denoted by A)
state of atom is stored. UφA gate is phase shift gate simulating free evolution of
subsystem A (first component from Eq. 5). Phase shift angle for UφA gate is equal
to φA = EA~

−1dt.
Each component of the sum from Hamiltonian (1) (describing transition |0〉A|n〉F ↔
|1〉A|0〉F) is simulated by a separate Rn block. The following transformation is ap-
plied:

|0〉A|n〉F → cos φtn|0〉A|n〉F + ie+iφgn sin φtn|1〉A|0〉F , (11)

|1〉A|0〉F → cos φtn|1〉A|0〉F + ie−iφgn sin φtn|0〉A|n〉F , (12)
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Figure 3. The scheme of the algorithm. UF block implements photon free evo-
lution (Fig. 2). UφA gate simulates free evolution of atom. R1, . . . R2n f −1 blocks
implement interaction between atom (A) and photon (F). A sample implementa-
tion of Rn block is shown in Fig. 4.

where φtn = |gn|dt/~, φgn = Arg(gn) and gn are given by Eq. (4). Transformations
(11)-(12) can be obtained acting on states |0〉A|n〉F , |1〉A|0〉F with time evolution
operator in the form:

Uint(dt) = exp(−i dt Hint/~) =
∏

n

exp
(
−i dt

(
gnâ†b̂n + g∗nâb̂†n

)
/~

)
=

=
∏

n

∞∑

j=0

1
j!

(
− i dt
~

) j(
gnâ†b̂n + g∗nâb̂†n

) j
=

=
∏

n

( ∞∑

j=0

(−1) j

(2 j)!

(dt
~

)2 j(
gnâ†b̂n + g∗nâb̂†n

)2 j
+

+i
∞∑

j=0

(−1) j

(2 j + 1)!

(dt
~

)2 j+1(
gnâ†b̂n + g∗nâb̂†n

)2 j+1
)

(13)

and using the following formulas:
(
gnâ†b̂n + g∗nâb̂†n

)2 j|0〉A|n〉F = |gn|2 j|0〉A|n〉F , (14)
(
gnâ†b̂n + g∗nâb̂†n

)2 j|1〉A|0〉F = |gn|2 j|1〉A|0〉F , (15)
(
gnâ†b̂n + g∗nâb̂†n

)2 j+1|0〉A|n〉F = |gn|2 jgn|1〉A|0〉F , (16)
(
gnâ†b̂n + g∗nâb̂†n

)2 j+1|1〉A|0〉F = |gn|2 jg∗n|0〉A|n〉F . (17)

Sample implementation of the Rn block (for n = 5) is shown in Fig. 4. (For other
levels constructing method of Rn blocks is the same.) The first three NOT and
CNOT gates implement transformation:

|0〉A|n〉F → |0〉A|1 . . . 1〉F , (18)

|1〉A|0〉F → |1〉A|1 . . . 1〉F . (19)
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The last three NOT and CNOT gates implement reverse transformation. Controlled
Rφ gates operate as follows:

|0〉 → cos φtn|0〉 + ie+iφgn sin φtn|1〉, (20)

|1〉 → cos φtn|1〉 + ie−iφgn sin φtn|0〉. (21)

σ
=

R5

Rφ5

σ0

1

1

Figure 4. An example of Rn block which simulates an interaction between atom
(the highest qubit) with n = 5 level of the photon (for n f = 3 and na = 1). If we
write number of level in binary form (in this case: n = 5 = 1012), then we apply
σx gates to each qubit corresponding to 0 binary digits and CNOT gates to each
qubit corresponding to 1 binary digits. The least significant bit is at the bottom of
the figure.

5. The simulation results

5.1. Free photon simulation

In the first part of the research, we simulate only photon (system F). In this case
an nq = 8 qubit register has been used. The algorithm for photon with momentum
of any sign (right scheme in Fig. (2)) has been applied. The other parameters are:
xmax = 30µm (cavity length), dt = 10−15s (time step of the simulation), n1 = 33
(the number of steps between capturing the state), 〈x〉 = 0.5 · 10−5m (the initial
position of packet center in the cavity).
As an initial state of the photon, we choose the Gaussian distribution in the form:

ψn = 〈ψ|n〉 = exp
(
− (n − 〈n〉)2

4 dn
− i kn〈x〉

)
, (22)

where n = 1, 2, . . . is number of energy level in the cavity, kn is given by Eq. (25).
A simple algorithm for inputting state (22) into the quantum register has been
proposed in [27].
The results of simulation are shown in Fig. 5. The left plot is made for 〈n〉 = 32
and dn = 8, the right one for 〈n〉 = 64 and dn = 4.
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Figure 5. Simulation of free photon propagation. The three phases of motion are
shown with interval equal to 3.3 ·10−14s. The horizontal axis represents position
in the cavity (measured in µm). The vertical axis shows electric field (in kV/m).
Transition from momentum to position representation has been made using the
formula (27).

5.2. The simulation of photon emission by excited atom

In the second part of the research, we simulate the full algorithm from Fig. 3.
In this case a nq = 9 qubit register has been used (1 qubit for system A and 8
qubits for system F (with momentum of any sign)). We choose initial state of the
system as |1〉A|0〉F . Energy of the atom excited level is equal to EA = 2eV. The
other parameters are: xmax = 30µm (cavity length), dt = 10−17s (time step of the
simulation). The results of simulation are shown in Figs 6-10.
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Figure 6. Propagation of the emitted photon in space (for xa = 0). The horizontal
axis represents position in the cavity (measured in µm). The vertical axis shows
electric field (in kV/m). The left plot shows case for Γ = 5·10−21J (two phases of
motion are shown: for t1 = 2·10−14s and t2 = 4·10−14s). The right plot is made for
Γ = 2·10−21J and t = 4·10−14s.
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In Fig. 7 in addition to the simulation results, we present its approximation (the
least squares method) and the theoretical prediction given by formula (e.g.[28]):

pthr(t) = exp
(
−2π
~
|g̃|2t

)
, (23)

where g̃ = Γ

√
d

dE , d is degeneration of energy levels and dE = hc
xmax

is distance
between adjacent energy levels.
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Figure 7. The probability of finding system A in an excited state as a function of
time (in 10−16s units). The left plot is made for Γ = 5 · 10−21J, the right one for
Γ = 2 · 10−21J. The curves denoted by “thr” are results of theoretical predictions
(given by Eq. (23)) and those denoted by “apr” are results of approximation.
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Figure 8. Energy spectrum of the emitted photon. The numbers in the horizontal
axis correspond to numbers of energy levels in the cavity (n). The left plot is
made for Γ = 5 ·10−21J, the right one for Γ = 2 ·10−21J. The black vertical line
corresponds to the atom excitation energy EA = 2eV (in the absence of atom-
photon interaction).
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Figure 9. The spacetime diagram for emitted photon. The numbers in the hori-
zontal axis correspond to a position in space (in µm), whereas the parameters in
the vertical axis are equal to time of propagation (in 10−16s units). The left plot is
made for Γ = 5·10−21J and the right one for Γ = 2·10−21J.

In Fig. 10 the propagation of emitted photon is shown in case where the atom is
not located in the cavity center (xa , 0). We achieve this effect by modification of
the phases of gn coefficients (according to the Eq. (4)).
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Figure 10. Propagation of the emitted photon in space for changed position of
atom inside the cavity. The left plot is made for xa = 5µm and the right one for
xa = −5µm. The vertical axis shows electric field (in kV/m units)). Both plots are
made for Γ = 5 ·10−21J. Three phases of motion are shown with interval equal to
10−14s.

6. Conclusions

• The evidence from this study suggests that even for nq = 9 qubits it is pos-
sible to obtain satisfying results. However, the algorithm is scalable - an

148 TEWI, 2021



increase in the number of qubits means a higher sampling density of photon
spectrum and, consequently, more accurate results.

• The results presented in Fig. 7 suggest that the tested algorithm is correct.
We obtain good compliance of the results (the curves denoted by “pA∗”)
with theoretical predictions (the curves denoted by “thr”).

• The main advantage of the proposed algorithm over its classical counterpart
is less memory requirements. The relation between number of simulated
energy levels nmax and number of qubits is logarithmic, whereas for classical
algorithm is linear. For example, a 9-qubit register simulated in this work
corresponds to an array of 2 · 29 = 1024 floating point numbers.

• As is well known, a typical lifetime of atom excited states is in the order of
10−8s (excluding metastable states). This time is much longer in comparison
to time of photon propagation in the cavity (the order of 10−14s). Therefore,
the time scale of deexcitation process has been reduced by several orders of
magnitude.

• Transition from momentum to position representation given by the formula
(27) is made outside the quantum register.

7. Appendix A. Useful equations

Let us consider photon in the one-dimensional cavity of length xmax with pe-
riodic boundary conditions (ψ(0) = ψ(xmax)). Wavelengths of stationary states are
given by:

λn =
xmax

n
for n = 1, 2, . . .. (24)

Photon momentum and wavenumbers are equal to:

pn =
h

xmax
n, kn =

2πn
xmax

for n = ±1,±2, . . . (25)

Energies of the stationary states are given by:

En =
hc

xmax
|n| = ~c|kn|, for n = ±1,±2, . . . (26)

Electric field ~E related with photon is equal to:

E(x, t) = −
√
~

ε0V

∑

n

√
2ωn

(
im{ψn(t)} cos knx + re{ψn(t)} sin knx

)
, (27)

where V is volume of the cavity.
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8. Appendix B. Calculation of the gn coefficients

The total Hamiltonian of electron in atom and electromagnetic field takes the
form:

Ĥ =
~p2

2me
+ V(x) + eφ, (28)

where me is electron mass, V(x) is potential energy of electron in atom, φ is scalar
potential of (external) electromagnetic field. Inserting momentum operator ~p =

i~~∇ − e~A and omitting the component with ~A 2, we obtain (in Coulomb gauge:
~∇ ◦ ~A = 0 and φ = c·A0 = 0) the Hamiltonian of interaction between electron and
field in the form:

Ĥint = − ie~
2me

~A ◦ ~∇, (29)

where ~A is vector potential in the form:

~A(x, t) =

√
~

ε0V

∑

n,s

1√
2ωn

(
~ε ∗s b̂†n,se

−i(kn x−ωnt) + ~εsb̂n,sei(kn x−ωnt)
)
, (30)

b̂n,s, b̂†n,s are the annihilation and creation operators, respectively, and ~εs is photon
polarization.
The initial and the final state of the system can be expressed as follows:

|ψi,mi〉 = ψi(~r) ⊗ 1√
mi!

(
b̂†kn,s

)mi |0〉, (31)

| f ,m f 〉 = ψ f (~r) ⊗ 1√
m f !

(
b̂†kn,s

)m f |0〉, (32)

where ψi and ψ f are the initial and the final wave function of electron, respectively,
|mi〉 is the mi-photon initial state (for single mode), whereas |m f 〉 is the m f -photon
final state.
Matrix elements of the interaction Hamiltonian (29) take the form:

〈mi, ψi|Ĥint|ψ f ,m f 〉 =

= − ie
me

√
~3

8ε0Vωn

√
miδmi,m f +1~ε

∗
s ◦

(∫
d3~r ψ∗i (~r)e−i(kn x−ωnt)~∇ψ f (~r)

)
+

+
√

m f δmi+1,m f~εs ◦
(∫

d3~r ψ∗i (~r)ei(kn x−ωnt)~∇ψ f (~r)
))
. (33)

In this work transitions between one-photon states and vacuum state are only con-
sidered. Additionally, we assume that the size of atom is much smaller than the
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emitted photon wavelength. In this case, the gn coefficients can be expressed as
follows:

gn = 〈0, ψi|Ĥint|ψ f , 1〉 = − ie
me

eikn xa

√
~3

8ε0Vωn

∫
d3~r ψ∗i (~r)~ε ◦ ~∇ f (~r), (34)

where xa is the position of atom in the cavity.

References

[1] Feynman, R. Internat. J. Theor. Phys., 21:467–488, 1982.

[2] Shor, P. W. Proc 35th Ann. Symp. Found. Comp. Sci., IEEE Comp.Soc. Pr.,
124, 1994.

[3] Grover, L. K. From schrodinger equation to the quantum search algorithm.
Am. J. Phys., 69:769–777, 2001.

[4] Lloyd, S. Universal quantum simulators. Science, 273:5278, 1996.

[5] Schaetz, T., Monroe, C., and Esslinger, T. Focus on quantum simulation.
New Journal of Physics, 15:085009, 2013.

[6] Lanyon, B. P. Universal digital quantum simulation with tapped ions. 2011.

[7] Childs, A., Maslov, D., Nam, Y., Ross, N., and Su, Y. Toward the first quan-
tum simulation with quantum speedup. PNAS, 115(38), 2018.

[8] Wecker, D. Solving strongly correlated electron models on a quantum com-
puter. Phys Rev A, 92:062318, 2015.

[9] Kokail, C., Maier, C., and van Bijnen, R. Self-verifying variational quantum
simulation of lattice models. Nature, 569, 2019.

[10] Wecker, D., Bauer, B., Clark, B., Hastings, M., and Troyer, M. Gate count
estimates for performing quantum chemistry on small quantum computers.
Phys Rev A, 90:022305, 2014.

[11] Hempel, C., Maier, C., and Romero, J. Quantum chemistry calculations on a
trapped-ion quantum simulator. Phys. Rev. X, 8:031022, 2018.

[12] Jordan, S., Lee, K., and Preskill, J. Quantum algorithms for quantum field
theories. Science, 336:1130–1133, 2012.

OSTROWSKI, M.: SIMULATION OF PHOTON EMISSION BY AN EXCITED ATOM IN THE QUANTUM REGISTER151



[13] Wiesner, S. Simulation of many-body quantum systems by a quantum com-
puter. 1996.

[14] Zalka, C. Efficient simulation of quantum system by quantum computers.
Fortschr. Phys., 46:877–879, 1998.

[15] Strini, G. Error sensitivity of a quantum simulator i: a first example. Fortschr.
Phys., 50:171–183, 2002.

[16] Benenti, G. and Strini, G. Quantum simulation of the single-particle
schrödinger equation. 2007.

[17] Ostrowski, M. Quantum simulation of the tunnel effect. Bulletin of the Polish
Academy of Sciences Technical Sciences, 63(2):379–383, 2015.

[18] Ostrowski, M. Quantum simulaton of the pauli particle. Przeglad Elek-
trotechniczny, ISSN 0033-2097, 89(7), 2013.

[19] Ostrowski, M. Quantum simulation of the dirac particle. Open Systems &

Information Dynamics, 22(1):1550002, 2015.

[20] Ostrowski, M. Simulation of the excited state decay in the quantum register.
Prz. Elektrotechniczny, (10):167–169, 2020.

[21] Ostrowski, M. Simulation of the schrödinger particle nonelastic scattering
with emission of photon in the quantum register. Bull. Pol. Ac.: Tech., 68(5),
2020.

[22] Anastopoulos, C. Decays of unstable quantum systems. Int J Theor Phys,
58:890–930, 2019.

[23] Vaintraub, S., Blaum, K., Hass, M., Heber, O., Aviv, O., Rappaport, M., Dhal,
A., Mador, I., and Wolf, A. Simulations of β-decay of 6he in an electrostatic
ion trap. 2014.

[24] Buzek, V., Drobny, G., Kim, M., Havukainen, M., and Knight, P. Numeri-
cal simulations of atomic decay in cavities and material media. Phys.Rev.A,
60(1):582–592, 1999.

[25] Sawerwain, M. and Pilecki, J. Parallel implementation of a quantum com-
puting simulator. Journal of Applied Computer Science, 14(2), 2006.

[26] Citko, W. and Sienko, W. Realizowalnosc algorytmow kwantowych
z zastosowaniem opartych na sieciach neuronowych modeli uczenia
maszynowego. Przeglad Elektrotechniczny, (9):146, 2019.

152 TEWI, 2021



[27] Ostrowski, M. Loading initial data into the quantum register. In XV Inter-
national Conference “System Modelling and Control”, Łódź, Poland, 23-24
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