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Tolerance modelling of stability of thin composite
plates with dense system of beams

12.1. Introduction

The subject of the contribution are thin functionally graded skeletal plates
with dense system of beams. The considered skeletal plate is made of two
families of thin homogeneous beams with axes intersecting under the right angle.
The regions situated between the beams fills a homogeneous matrix material
(Fig. 12.1). It is assumed that the width of the beams can vary slowly in the
midplane of the plate. Thus, we deal with composite plate that has space-varying
microstructure. Since, the apparent properties of the plate are graded in space, we
deal with a special case of a functionally graded material. The generalized period

[ =4/ll, of heterogeneity is assumed to be sufficiently small comparing to the

measure of the midplane of the plate. The fundamental feature of proposed model
is that the microstructure length parameter / is similar compared to thickness 4
of the plate. From a formal point of view, the plate with microstructure of this
kind can be described in the framework of the well-known theories for thin
elastic plates. However, due to the inhomogeneous microstructure of the plate,
this direct description of the structure leads to plate equations with discontinuous
and highly oscillating coefficients. These equations are not a good tool to be
applied to numerical solutions of specific engineering problems.

The aim of the presented analysis is to derive and apply the macroscopic
mathematical model describing stability of the composite plate under consideration.
The macroscopic model for the plate dynamic analysis of this kind we can find in
[12.5]. The formulation of the macroscopic mathematical model for the analysis of
stability of these plates will to be based on the tolerance averaging approach. The
general modelling procedures of this technique are given by Wozniak et al. in books
[12.8], [12.9]. The applications of this technique for the modelling of stability of
various periodic composites are given in a series of papers. Baron [12.1] analyzed
dynamic stability of an uniperiodic medium thickness plate. In the paper of Michalak
[12.3] the stability of elastic slightly wrinkled plates is analyzed. The stability of thin
periodically stiffened cylindrical shells was analyzed by Tomczyk [12.6]. In the
paper of Wierzbicki et al. [12.7], stability of micro-periodic materials under finite
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deformations is discussed. The approach, based on the tolerance averaging technique,
formulating macroscopic model of stability of functionally graded plates was
presented by Jedrysiak and Michalak [12.2]. In the paper of Perlinski et al. [12.4]
stability of functionally graded annular plate interacting with elastic micro-
heterogeneous subsoil is presented.

k= L |

Fig. 12.1. Rectangular plate with varying width of the beams

In the above mentioned papers the thickness / of the considered plates is
supposed to be much smaller comparing to the microstructure length parameter
/. In the presented contribution we deal with the plates which are reinforced by
two dimensional system of beams, where the microstructure length parameter
I=4/ll, (I,l,- dimensions of cell in Fig. 12.1) is similar compared to the plate
thickness /.

Throughout the contribution, indices i,k,/... run over 1,2,3, indices
a,B,y,...tun over 1,2 and 4,B,C,... run over 1,2 . The summation convention
holds all aforementioned sub-and superscripts.

12.2. Direct description

The subject of presented considerations are rectangular plates shown in
Fig. 12.1. Let us introduce the orthogonal Cartesian coordinate system Ox,x,x,.
Setting x =(x,,x,) and z = x, we assume that the undeformed plate occupies the
region Q={(x,z):-h/2<z<h/2,xell}, where Il is the plate midplane and /

is the plate thickness. The starting point of this contribution is the direct
description of the composite plate in the framework of the well-known second
order non-linear theory of thin plates. The displacement field of the arbitrary
point of the plate we write in form:
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wy (X, 2) = wy(X), w_(X,2) =wo(X)—z-0,w,(X) (12.1)

Denoting by p(x,) the external forces, setting 0, =0/0x, we also introduce
gradient operators V =(0,,0,), in the framework of the linear approximated
theory for thin plates, we obtain the following system of equations:

(1) strain-displacement relations
€,5(X,2) =&,5(X)+K,,(X) 2 (122)
_ 0, 1 _ :
£, =V g, +50,w, 0w, Koy ==V 5Ws
(i1) strain energy averaged over the plate thickness
E(X)=3B" K Kk s+5D"c, ¢ (12.3)
3
where D" = E—th“m is the tensile stiffness and B“"" = LZH‘W"
(1-v?) 12(1-v7)

with H?" =0.5(g” g” + g g" +v(e” €™ +&“"€”) is the bending stiffness.
(iii)  work of external forces
F=p"w +p’ w, (12.4)

In order to derive governing equations of considered plate we shall define
the stationary action functional:

A(w(-)): .[L(W,VW,VZW) dx (12.5)

where Lagrangian /= F - F .
From stationary action principle (6A =0) we obtain

8,m™ =0,(n" 8,m) = p'

g ) (12.6)
o,n” =-p
where generalized forces
naﬂ _ J-h/Z O_aﬁdz — Daﬁyﬁe}«;
e (12.7)
m? =" c¥zdz=B"x,,
—h/2 7

This direct description leads to plate equations with discontinuous and
highly oscillating coefficients, which are too complicated to be used in the
engineering analysis. The above equations will be used as a starting point
of the modelling procedure.
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12.3. Modelling concept

Let the midplane of the considered plate (Fig. 12.1) occupy the region
IT=[0,L,]1x[0,L,]. We assume in considered composite plate that the number of
beams in x, and x, direction is n and m, respectively (1/n<<1,1/m<<1).
Hence [ =L/n and [,=L,/m are dimensions of the cell
A=(=1/2,112)x(-1,/2,1,/2), cf. Fig. 12.2. For the arbitrary cell A(x)=A+x
with centre situated at point x=(x,x,) we introduce the orthogonal local
coordinate system Oy,y, which is local with its origin at xeTl,, where
,=0/2,L-1/2)x(l,/2,L,—1,/2)cIl. The beams width is functional

a, =a,(x),a =1,2 but constant for every fixed xeII,.

l5-a;(xy)
2
b T - V14 ) 1 :_(32(}‘2)
Vi l5- as(xy)
2
b -a;(x) . I - ay (xy) £
3 a (3‘31'] 7

Fig. 12.2. A unit cell A geometry

In order to derive averaged equations for the plate under consideration we
apply tolerance averaging approach [12.8, 12.9]. We mention here some basic
concepts of this technique, as a tolerance periodic function, a slowly varying
function, a highly oscillating function and an averaging operator.

The first concept of the modelling technique is the averaging operation:
1 —
<f>(x)=w [fy.x)dy, xell (12.8)
A(x)

We shall refer (12.8) to as averaging of arbitrary integrable function f(-) for

everyxell.
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Periodic approximation. Let H" be the Sobolev space for fixed » > 0. Function
FO(x,)e H'(IT), xell, k=12,.,r will be referred to as the periodic
approximation of 0* f(-) in A(x) (where 6" - k-th gradient in IT). For k=0 we
define °f=f, [V =7f.

Tolerance periodic function. Function f e H"(IT) will be called the tolerance
periodic function (with respect to cell A(x) and tolerance parameter ¢€),
f eTP/(I1,A), if for k=0,1,...,7, the following conditions hold:

0" ()

(vx eI [ (x,) e H°<A>)[ =Tk

o, /¥ Cy)dyec ()

In the above definition we introduced the so called cluster of cells:

I, = A(z), xell, (12.10)

zeA(X)

< 5}
HO(T) (12.9)

Slowly varying function. Function F € H"(IT) will be called the slowly varying
function (with respect to the cell A(x) and tolerance parameter €), and denoted by
F e SV (I1,A), if for k=0,1,...,7, the following conditions hold:

F e TP/ (I,A) and (VX € IT) [F(x,) |, = 0" F(x)] (12.11)

It can be observed that periodic approximation F*(x,-) of ¢'F(x) in A(x)
is a constant function for every x € IT. In other words, if F € SV (IT,A) then:

(vxet) (o' F()-o'F(x)

< =
(<ek 0l,..r) (12.12)

HO(A(X
Highly oscillating function. Function ¢ € H'(I1) is called the highly oscillating
function (with respect to the cell A(x) and tolerance parameter €), and denoted
by ¢ € HO.(I1,A), if for k=0,1,...,r, the following conditions hold:
¢ TP (I1,A)
(VX eI (%) |y =04 (x,)] (12.13)
VF e SV (ILAXS = ¢ F e TP, (LAY A O (x|, = FX) ' ()],

Let by ¢(-) denote a highly oscillating function, ¢ € HO?(I1,A), defined on 11,

continuous together with gradient 0'e . Its second derivative 0°¢ is a piecewise
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continuous and bounded. Function ¢(-) is called the fluctuation shape function
of the 2-nd kind, if it depends on / as a parameter and satisfies conditions:

1° peO(”™) for k=1,..,a,a=2,

2° <p>(x)=0 for every xeIl,.

Set of all fluctuation shape functions of the 2-nd kind is denoted by FS?(IT,A).

12.4. Averaged model equations

The modelling technique will be based on the tolerance averaging
approximation and on the restriction of the displacement field under
consideration given by:

wi(X, 2) =V5(X) 12.14)
w,(%,2) =V, () + " (¥, )V, 00+ (=0, (0 + g (¥, ¥)uy () -z
forxell, ze(-h/2,h/2)and A=12.

The basic tolerance modelling assumption states that macro-displacements
V.(),V,(-) and fluctuation amplitudes of displacements V/(-), u/(-) are slowly
varying functions together with all partial derivatives. Functions
V.()eSViII, Ay, V,()eSV!III, Ay, ul()eSV!IIL,A), V/ ()eSV L, A)
are the basic unknowns of the modelling problem. Functions g“(-) are known,
dependent on the microstructure length parameter /= 4/[/, (/,[, - dimensions
of the cell A), fluctuation shape functions.

Let g%(x,), 0,g2"(x,)) stand for periodic approximation of g“(-), 0,g"(")
in cell A(x), respectively. Due to the fact that w,(-), w,(-) are tolerance periodic

functions, it can be observed that the periodic approximation of
w,, (X)), W, (-,x) and their derivatives in A(x), x € Il have the form:

Wi, (¥,X) = V(%)
0,9, (¥,X) =0, V,(X)
W, (9, %,2) =V, () + " (¥, )V 00+ (g (v, 0u () =8V, (X))=
0w, (¥, %,2) =0 V,(x)+0," (v, )V () + (2,8 (¥, \)u’ (x) -8, V(X))

(12.15)

Setting w, =w,, and w, =w,  into Lagrangian L(w,Vw,V’w) we can assume

) 0 . .
that L (w,,Vw_,V'w )e HO;(I,A). Hence the periodic approximation of
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L,() in every A(x) we denote by L, (X,y,w,,, W,

ag?

0 Ws, »0,w, ). In order to

derive the governing equations we shall define tolerance averaged Lagrangian
<L,>=<F,>-<E, >:

<L, >(X,V V.,V VYV V. V.V, V. ul)=

1 .~
=T ILg(x,y,w3g,wag,8aw3g,
A(x)

(12.16)
6awﬂg) dy

Substituting the right-hand sides of equations (12.15) into (12.8), on the basis of
tolerance averaging approximation, we arrive the strain energy averaged over the
cell A(x):
<E,6>= L<B7” >V V,V V=< B’ 0,8" >uy V.Vt
+3<B"0,8"0,8" >uju; +5 <D’ >V V. V.V +
+< D0 g' SVIV V, +1 <D0 ,g"0,8" V'V’ + (12.17)
+2< D" >V V.V V.V V,+, <D0 ,g" V'V V.V V, +

+y <D >V V.V V.V VV,V,
External load energy averaged over the cell A(x)
<F, >=<p’>V,+<p* >V, +<p*g" >V, (12.18)

From principle of stationary action of the averaged Lagrangian <, 6 > we

obtain equations responsible for:

a) plane stress state
V,N7+<p”>=0
o o (12.19)
<n”V,g">-<p®g">=0
where normal forces
N? =<n” >=< D >V V +< D"V ,g" >V '+ <D >V V,V ¥, (12.20)
b) bending state
vaﬂ (Eaﬂyé‘vy&VS _EVAaﬂuyA )_va(Naﬂ VﬁV3)—<p3> =0 1o
B "V [V, =By’ =0

where we have denoted:
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B =< B > B =< B’V ,g" >, B*"" =< B’V ,g"V ,g" >
(12.22)

From (12.21) we can obtain direct representation of oscillation amplitudes uf .

Let K j/f stands for linear transformation operator such that K(ff B“” = 0,0 e
Thus

B BA Dadys
u® =K B’V ¥, (12.23)
Denoting
B = B — B B (12.24)

stability equation takes a form

V., (BY*V V)=V (NP V ,V,)=0 (12.25)

The above equation has an identical form as stability equation for thin plate with
functional coefficients. Coefficients in the above equation are functional but
smooth in contrast to equation in direct description.

X

Fig. 12.3. Simply supported plate under pressure

12.5. Applications

Let us consider a rectangular plate simply supported on all edges and
suppressed in one direction only, cf. Fig. 12.3. The stability equation (12.25)
transforms then into:

0By 0.0+ B 0. )40, (83" 0.7:) 126

+622(Be1;;‘22 811V3+B;?2~22 a22V3)_N11 allVS =0 .
where N''=—P. The above equation in all subsequent examples will be solved
with Galerkin method using the following assumed form of solution:
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SV, -sin(a, x,)-sin(3,x,) (12.27)

1 n=1

M

Vy(x)=

3
11

where o, =mz /L, B, =nn/L,.
Since coefficients in (12.26) explicitly depend on assumed fluctuation shape

functions, we must first define them, what is done next.

12.5.1. Fluctuation shape function

During tolerance modelling few assumptions had to be state. One of them is
the form of given fluctuation shape functions. They should satisfy conditions
mentioned in former sections and they are in number of two. Both of them are
assumed as a product of linear and quadratic function

g'y.x)=0"(y,x) 0" (v.%) (12.28)
where A =1,2. Graphs of these functions are shown below (Fig.12.4a,12.4b).

1

1)
P>

.
OO OO D D O T

S

... 0
————— ?,

Iv(x)/3

Fig. 12.4a. Fluctuation shape function g'

Fluctuation shape functions depend on microstructure parameter / as well as
on the distribution of heterogeneity:

v(x) = liz\/(l] —-a, (x))(l2 —-a, (X))(llaz(x) +La,(x)—a,(xX)a, (x)) (12.29)

Such properties and characteristics assure continuity of displacement field overall
and stress field continuity along the beams.
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Fig. 12.4b. Fluctuation shape function g*

The exact formulas of these functions:

203 I I a
—|y+=2| fory el -+, ——
11 -4 (yl Z\J 4 2 2 :|
o' (yX)=y - 203 for y, e|:——l,&} (12.30)
a, 2°2
M —l—l for y, € a4 l—l
Z] _al by 2 y] B s )
23 1, !
—|y,+=| fory,e|-2—-2=
lz—az(yz 2J » { 2 2}
o (1X)=9 = 203 for y, e[—&,&} (12.31)
2 272
ZIV\/E( , —Z—ZJ for y, [a—z,l—z}
l,-a, 2 272

2
l,—a, 22
) _ 4 4 12.32
o (,,x) = 0 fory,e > (12.32)
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2
(i) yle[_l_l,_ﬂ}
l,—a, 202
@fZ)(y1:X)= 0 foryle[—%,%} (12.33)

2
o UV I e[ﬂ,l_l}
[, —a, 2°2

12.5.2. Validation of proposed model

In order to find out the correctness of the proposed mathematical model and
its applicability, some benchmark analysis should be first made. Suppose the
beams (Fig. 12.2) are made of steel, i.e. for Young’s modulus £" =210 GPa and
Poisson’s ratio v" = 0.3, meanwhile the matrix is made of concrete for which has
E'=20 GPa and v'=0.3. Consider a biperiodic square plate with L =L, =4 m
and /, =1/, of thickness 4 =0.1m, which consists of beams (20 in each direction)
of the same thickness: a, =a,. Due to such a microstructure, all averaged
coefficients in stability equation are constant and (12.26) reduces to:

B0,V + 2By + 257 V4 B0V + POV =0 (12.34)

Now, substituting (12.27) we obtain:

2B ii(l’}f +77-m2n2 +n4)-an
P: eff . m=ln=1 (1235)

2 0 o
L >y mi,,

m=1 n=

where

2B“~22+2812~12
n =(ff—/f) (12.36)

1111
Bef/'

Hence the critical force for the m-th and n-th buckling mode:

2 pllll
2B 4 Cp252 4
p =Flam N/ mn tn (12.37)
L m

If m = n =1 then we deal with the first mode of buckling.

Let us introduce a parameter f=aqa,/l, f<[0,1] as a volume fraction of
beams material but in this example only. Case of =0 stands for an uniform
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plate made of matrix material (concrete) for which P, , =4.519-10° kN /m , and

cr_c

case of =1 stands for uniform plate made of beams material (steel) for which

P =4.745-10" kN /m . These values for critical forces are obtained from the

cr_s

exact solution.

sx10%

4x10™]
Per([3) 3104
Per_s(3)
Per_c([3) 210l

110"

8
Fig. 12.5. Critical forces in square biperiodic plate as a function of parameter 3
As we can see in Fig. 12.5, the graph is situated precisely between two

values for uniform plate. Therefore, there exists a smooth passage from
biperiodic to uniform plate which proofs the correctness of the proposed model.

12.5.3. Influence of geometrical and material properties
on stability of plates

This section is devoted to some model applications presented in few
numerical examples. Suppose the material properties of plate components are
invariant in all following examples, i.e. we deal with concrete matrix and steel

beams. Square plates ( L, = L, =4 m) are only investigated.

Example 1. Suppose the width of the “vertical” beams @, =/ /4, and width
of the “horizontal” beams
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a,(x)= a{%j . {1 + (/32 —1)' sin(%'zxz—_lzﬂ (12.38)

Lz _12

for x, € [12/2,L2 —12/2], wherea,(1,/2)=1,/4 and f=p,=a,(L,/2)/a,(l,/2) is
a tested in this example parameter. Such width function implies uniperiodic plate
with functionally graded effective properties in one of directions, cf. Fig. 12.6.

Ly
| v
l |

Fig. 12.6. Distribution of effective material properties in uniperiodic plate

Case of B=1 stands here for biperiodic plate. If f<1 then we deal with a
situation where “horizontal” beams are getting wider moving away from the
centre of the plate. Case of 1< <4 is the opposite one.

3x10%

P (M)

1109

]

Fig. 12.7. Diagram of critical force in uniperiodic plate
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The critical force as a function of parameter £ is a strictly monotone

(strictly increasing) function (Fig. 12.7). It means that concentration of beams
material in the centre of the plate essentially enlarges the value of critical force.

Example 2. Suppose now that the width of vertical beams is not constant
but expressed by similar form to (12.38):

a,(x) = a(%j-{l+(ﬂl —1)-sin[%-mﬂ (12.39)

L] _Zl

for xle[ll/2,Ll—ll/2], where a,(l,/2)=1/4 and g =a,(L /2)/a,/2). The
width of the “horizontal” beams is as in Example 1. Moreover, the same
parameter £ is investigated. Physical interpretation of f, is quite similarto .

3104

P..(3) 2x107

Pcr(ll")

1x10%

3
Fig. 12.8. Diagram of critical force in functionally graded plate

As we can see in Fig. 12.8, two graphs of critical force dependence for two
different values of B, are displayed. Critical force is also strictly increasing with

respect to parameter f,. Thus, it suffices to have more beams material in the
centre of the plate to obtain a greater value of critical force.

Example 3. The final example is most interesting in our opinion. Suppose

T 2x —1
— .1 -sin| Z.2Ye "l 12.40
a,0=p-1, sm[2 La_lJ (12.40)
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for every x, e [la /2,L, -1, /2], a =12, where pe[0,1]. In Example 1 for
S, =1 we have dealt with biperiodic structure from which we can get the value

of critical force P,  =1.552-10" kN /m for some special case. In this particular

cr_ per
case the volume fraction of the beam material was 0.25 (because of S =0.25
from that example).

x10%
2104
10
P..(P) 3%10
2104 . 4
Per per =1.552-10
|
I
1x10% :_ )
B=0.29
I
I
1

6]

Fig. 12.9. Diagram of critical force in functionally graded plate
in comparison to biperiodic plate

It occurs, Fig. 12.9, that the same value of critical force, but for the plate
with variable beams width in both of directions, we obtained for g =0.293. The

beams material usage is 0.186 and its smaller then in biperiodic plate where it
was 0.25. It means also that having variable beams width in our composite, by
the same material usage in comparison to biperiodic structure, we get the greater
values of critical force.

12.6. Summary

The problem of stability in two-component thin plates is described by the
PDE with highly oscillating and discontinuous coefficients. Therefore, the
tolerance technique was applied in order to obtain averaged PDEs with functional
but smooth coefficients. Hence, the solution of specific boundary problems of
stability of considered plates can be obtained using typical numerical method.
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The validation process of the averaged model equations passed satisfactory.
There is observed a smooth passage from non-uniform to uniform structure from
the point of view of critical force value. It is obvious that reinforcement of the
plate enlarge the value of this critical value but what is most important, the layout
of these reinforcements (beams) plays crucial work in this analysis. It occurs that
with non-uniform structure we can achieve up to 65% greater values of critical
force the with biperiodic one. That information could be a crucial one in optimal
control problems.
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