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Abstract. In the following paper, the solution of the optimization problem
that relied on the determination of the optimal geometry of two cylindrical
coil arrangement evoking magnetic field of specific parameters was presen-
ted. The objective of the task was to generate, in a defined active area, the
magnetic field of the largest possible gradient and simultaneously keep this
gradient relatively constant. The computations were performed using the
classical particle swarm optimization as well as the modified method with
the correction sensitive to the fitness function gradient introduced to the for-
mula describing the movement of the specific swarm particles. As a result, a
considerable enhancement of the optimization process was achieved.
Keywords: Electromagnetism, optimization, evolutionary algorithms, Par-
ticle Swarm Optimization.

1. Introduction

Evolutionary algorithms such as genetic algorithms GA or particle swarm op-
timization method PSO have found an application for solving several optimization
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problems in electromagnetism [1, 2]. The optimization relies on searching the min-
imum of a fitness function, which is a measure of the solution quality in a search
space [1, 2, 3]. Obviously, a method of the fitness function designing depends on
the problem that is expected to be solved.

In an optimization of source parameters (coils or their arrangements) of the
static magnetic fields, there is a necessity to determine three-dimensional distri-
butions of these fields. This leads to emerge very complex mathematical relation-
ships, which results in extending the numerical computation time [4]. This problem
can be simplified when the cylindrical symetry coil is taken into consideration as
a magnetic field source.

In this paper a relatively simple coil arrangement were chosen in order to test
the application of the modified PSO algorithm for solving a real physical optimiza-
tion problem.

We consider a set of two identical coils forming the cylindrical symetry ar-
rangement. The z-axis is a symetry axis of the arrangement, whereas the xy-plane
represents its symetry plane. The coil cross section sides are 2a and 2b. The dis-
tance between the coil symetry planes and the xy-plane is Zo, whereas the average
radius of the coils is Rg (Fig. 1).
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Figure 1. The cross section of the coil arrangement generating magnetic field with
the controlled gradient

If the currents of the opposite directions flow through the coils, the magnetic field
in the center of the symetry is H(0,0,0) = 0.
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According to [4], the magnetic field along the z-axis is as follows:
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where Jy represents density of the current flowing within the coil.

The optimization problem relies on finding the parameters a, b, Ry, Zy in such
a manner to achieve the largest possible gradient of the magnetic field in an active
area 2Z, and to maintain simultaneously the maximal possible stability of this
gradient. We consider the following additional parameters:
Jo=250 A/m2, d=0.25m, D=0.6m, Z,=0.7m, q=0.4m, L=1m and take into account
geometrical constraints as follows: Ry+b < D,Ry—b >d,Zy—a > q,Zy <L, and
abRy < 0.006m>. The last condition limits the maximal amount of material used
for the coil construction.

The fitness function is defined according to the following formula:

_ 10006 _
IH(0,0,2=Z/2)*

" ) 12 @)
1000[(§\H(0,0,z:0.752a)\—|H(0,0,z=Za)|) F2(2IH(0,0,2=Z4 [DI-IH(0.0,2=Z4 /) J
|H(0,0,z=Z4/2)F|H(0,0,2=Z,)|

The factor G represents the field gradient stability, which is equalled to zero
when the field gradient in the active area is constant. The factor k£ = 0.15 deter-
mines the priority of the field gradient quantity with reference to its stability. On
the other hand, the fitness function F denominator is proportional to the field gra-
dient in the active area. A minimization of the fitness function enables to solve the
optimization problem expressed above.

2. Principle of the PSO algorithm operation

The Particle Swarm Optimization is a stochastic, evolutionary computational
technique applied for solving complex optimization problems. It was developed
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in 1995 by Kennedy and Eberhard [5]. The PSO was inspired by a metaphor of
the social behavior of animals that organize themselves in groups such as flock of
birds, swarm of bees or shoal of fish. The exploration of the search space oriented
to the area of the best fitted particles as well as utilizing the information of current
achievements in a searching process is a basic control mechanism of the PSO tech-
nique. The main advantages of the PSO method include: a relatively low number of
parameters used for the process optimization control, a convenient representation
of the solutions and an unsophisticated method of transformation of one solution
into another.

The PSO optimization process itself starts with generating the initial popula-
tion of particles in the N-dimensional search space. The position of each particle
is randomly generated within the range < X, Xmax > Of the search space for ev-
ery dimension. The initial value of the velocity vector is also randomly chosen.
A measure of the goodness of a given solution represented by the particle is a fit-
ness function. On its basis, each particle remembers its own best location pbest
at which this particle has achieved the highest fitness value. For the entire swarm,
among all the best locations pbest there is one particle of the highest fitness named
gbest. At every successive iteration, the particles update the pbest values of their
best current positions, and the gbest value for the entire swarm is also updated.
The particle movement proceeds along the velocity vector, which determines the
movement direction and the path length of the particles as follows:

Vnel = Wy, + ciri(pbest, — x,) + cara(gbest, — x,) 3)

The new particle location is a function of a newly determined velocity and its
previous position according to the following formula:

Xp+l = Xp + Vptd 4)

where w is inertial weight that determines the deviation of the particle original
direction, ¢ and c; are acceleration factors that determine respectively how much
the particle is influenced by the memory of its best location and by the rest of
the swarm, whereas r| and r, represent randomly generated numbers in the range
0,1).
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3. The new algorithm

In case of large, multidimensional optimization problems, an application of the
standard PSO algorithm does not guarantee that the optimal solution will quickly
be found. Moreover, it is expected that the algorithm will be converging slower
and the computational expenditures will be much higher. The computational time
will additionally increase when the optimizing search space contains many local
solutions.

Chowdhury et. al. [6] proposed a hybrid method that combines gradient method
with dynamic tunning method resulting in an efficient approach. Noel and Jannett
[7] used a hybrid method, which incorporates gradient information into the veloc-
ity updating formula of each particle.

In order to improve the effectiveness of the standard PSO algorithm, and thereby
accelerate the optimization process, a development of the original algorithm was
introduced, and that was inspired by papers [6, 7] mentioned above. These changes
refer to the equations of the particle velocity vector updating as well as to the way
of the search space exploration. In the new algorithm, a Fletcher-Reeves gradient
method was adopted. In this approach, the searching process is performed in the
conjugate direction system [8, 9], which represents a combination of the gradient
vector and the previous descent step vector. In the initial phase, the new algorithm
(FR-PSO) makes use the combination of the original PSO with the equation (1) in
order to find the first approximate local minimum. The best position of the swarm
particle (gbest) obtained in this way becomes a starting point for the Fletcher-
Reeves method.

The solutions achieved in this process are incorporated, as an additional com-
ponent, into the equation of the velocity vector updating, which determines the
movement direction and the path length of particles:

Vnsl = Wy, + c1r1(pbest, — x,) + cara(gbest, — x,) + cars(mfr, — x,)  (5)

which improves the algorithm performances. The necessity of additional compu-
tation of the gradient is compensated by much faster convergence of the algorithm
to the minimum with lower number of iterations. The mfr, factor introduced to the
formula (5) represents the distance between the particle position and the position
of the solution obtained by the Fletcher-Reeves method.
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4. Results

The study on an effectiveness of the proposed method used to determine an
optimal geometry of the coil arrangement was undertaken by means of a program
written in C++. The tests were performed in order to evaluate the algorithm per-
formance in terms both of the convergence velocity and the capability of finding
global optimum. The results were then compared with the achievements of the
standard PSO algorithm. All the computations were made for 1000 computations.

The exemplary results of the tests performed for 20, 30, 50, 80, 100, and 120
particles in the initial population are depicted in Fig. 2. All the values were aver-
aged over 100 trials for each combination of the parameters.
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Figure 2. The number of accurate solutions versus the swarm cardinality for PSO
and FR-PSO

It was reported, that the best results were achieved for large swarms. In case
of 100 and more particles, each investigated algorithm was able to find more than
80 % optimal solutions. The new algorithm turned out to be more effective than
standard PSO since it could find a few percent more accurate solutions within a
considerably lower iteration number (Table 1).

The results were poor for small swarms comprising of only a few particles. No
optimal solution was managed to obtain for the swarm containing 10 or fewer par-
ticles. For the population comprising 20 particles, there were only 19 successful
trials out of 100 that the FR-PSO algorithm found optimal solutions, but the con-
vergence time was very long. For the same initial parameters, the PSO algorithm
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Table 1. The relationship between the population cardinality and the number of

iterations to achieve the accurate solutions for the standard PSO and FR-PSO

Algorithm The number of particles in the swarm

10 20 30 50 80 100 120
PSO 0.0 | 601.3 | 646.71 | 561.8 | 527.02 | 453.57 | 376.31

FR-PSO | 0.0 | 303.67 | 296.84 | 245.02 | 191.52 | 189.89 | 183.87

found only 10 % accurate solutions, and the number of iterations was twice larger.
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Figure 3. The average values of best solutions (gbest) in the following iterations
for the population of 100 individuals

It was also discovered that the new algorithm gave more accurate solutions, and
the exploration of the search space was faster and more precise. The average gbest
values for 100 trials in the 150 initial iterations are presented in Fig. 3. The final
part of the following study was to find optimal parameters of fitness, which are
a=0.5254, b=0.0182, Ryp=0.5818 and Z,=0.9999. A distribution of magnetic field
along the z-axis is depicted in Fig. 4, and this was plotted using the relationship
(1) and the optimal parameters mentioned above.
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Figure 4. The distribution of magnetic field along the z-axis achieved for the opti-
mal fitness parameters

5. Summary

In this work, a new optimization algorithm that combines the PSO algorithm
with the Fletcher-Reeves method was proposed. The alterations referred to both
equations for the particle velocity vector updating and methods of the search space
exploration. The aim of the algorithm was to determine the optimal geometry of the
coil arrangement that evoked the specific magnetic field. The experiments showed
that the proposed FR-PSO algorithm is more efficient that PSO both in terms of the
convergence velocity and the capability of finding global optimum. Furthermore,
the results with the combined FR-PSO method are more accurate than the ones
obtained using classical PSO.

The following work presents a continuation of the previous investigations per-
formed by the authors [10, 11].
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