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                                                             ABSTRACT: A concise and factual abstract is required. The abstract should state briefly the purpose of the 
research, the principal results and major conclusions. An abstract is often presented separately from the article, 
so it must be able to stand alone. For this reason, references should be avoided, but if essential, then cite the 
author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they 
must be defined at their first mention in the abstract itself. 
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1. INTRODUCTION 

The aim of this work is to analyse behaviour of some steel mast under dynamic excitation of the given wind 
spectrum including also uncertain temperature load and further to contrast two different Finite Element 
Method solvers of equations of motion integration. 
The exemplary structure taken into account is a steel mast plsced in Zygry. Mast structure features the height 
equal to 198,0 meters. The mast shaft has been designed with the use of S235J2 steel in form of three-walled 
lattice with side width equal to 130,0 cm. The leg members have been modelled as round pipes with diameter 
of 168,3 mm and with the cross-section wall thickness varying along a height of this structure. The mast face 
lacings have been introduced as the round pipes of diameter 63,5 mm and also varying cross-section wall 
thicknesses. The mast guys have been attached to the shaft at following heights: 60,0 m, 120,0 m and 180,0 
m with the inclination angle equal to about 45°. A spiral strand steel rope 1x37 with the diameter of 32,0 mm 
has been applied having mean strength of 1960 MPa and elasticity modulus of 150GPa. An initial tension of 
the guys has been set by pre-shortening equal to 11,0 cm, 22,0 cm and 31,0 cm correspondingly for 
consecutive attachment levels with ascending order starting from the bottom. A general geometry of this 
mast has been presented in Figure 1.1a. Geometry of shaft has been presented in Figure 1.1b. 
Environmental uncertainty has been expressed by the Gaussian temperature load. Positive and negative 
temperature loads have been considered dependingly on which of these two contributes more significantly to 
structural safety reduction regarding some principal state variables. Positive temperature load has been 
introduce within a range of -10°C to +40°C when negative temperature load has been described within  
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a range of -50°C to ±0°C. Computations have been performed regarding both types of temperature load and 
repeated 11 times dividing both ranges of temperature load into ±5°C interval. The assumption has been 
made that the temperature applied to structure acts equally and no temperature fluctuations regarding height 
of the structure has been considered. 

a) b) 
Fig. 1.1. Mast geometry: a) general geometry, b) mast shaft geometry. 

Computations have been performed regarding both types of temperature load and repeated 11 times dividing 
both ranges of temperature load into ±5°C temperature interval. The assumption has been made that the 
temperature applied to structure acts equally and no temperature fluctuations regarding height of the 
structure has been considered. Principal state variables have been identified as stress of the main legs and of 
the face lacing referring to single structural elements of the mast. Global horizontal displacement and 
rotation of the entire structure top have been also considered for this purpose. Several series of numerical 
simulations with the Finite Element Method system have been performed assuming specific dynamic action 
of the wind load (see Fig. 1.2). This wind load has been modelled according to the Eurocode 1 guidelines (1) 
for towers, chimneys and masts including an effect of local wind gusts (2, 3, 4). Dynamic analysis of the 
wind influence on this structure has been performed in 10 minutes time interval.  

Fig. 1.2. History of wind load introduced into calculations. 
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This includes some wind action applied to the entire structure (see Fig. 1.3a) and some patch loads 
describing additional wind gusts along the height of the structure (see Fig. 1.3b).  
 

 

a) b) 
Fig. 1.3. Exemplary wind load acting along X-axis of global coordinate system: a) mean load, b) patch load. 

2. NUMERICAL SOLUTION 

Numerical solution for each computational case study has been performed in Autodesk Robot Structural 
Analysis (ARSA) using non-linear dynamic analysis option based on the Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) algorithm. Hilber-Hughes-Taylor (HHT) solver has been applied in order to integrate equations of 
motion (5). It is based upon the following approximation of the structural displacements and velocities: 
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Additionally, the HHT solver has been contrasted with the results achieved by Newmark method (6) and 
exemplary results have been presented in Figure 2.1. 
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Fig. 2.1. History of normal stresess in main leg under dynamic wind exctitation  
obtained using the HHT and Newmark method. 

This figure documents very well that the Newmark algorithm results in relatively larger variations of the 
given stress about the value relevant to the static equilibrium, while the HHT series is obtained in a quite 
regular pattern.  
At this point it has to be mentioned that Autodesk Robot Structural Analysis does not calculate effective 
stress in beam elements. The index of share of normal stress in Huber-Mises effective stress has been 
investigated in order to check whereas there is a necessity to calculate an effective stress in each time step 
manually for main legs and face lacing elements. In order to pursue such investigation, author checked the 
effective stress of elements by finding elements in which normal or shear stress calculated by ROBOT was 
the greatest among the entire structure and time of analysis. Products of solving equations of motion 
indicates that those elements are mainly stressed by axial force and some bending moments. Shear forces and 
torsional moment are of the minor interest as those figures are mainly lesser by three orders of magnitude 
comparing to normal force.  Nevertheless effective stress has been calculated by following Huber-Mises 
hypothesis of effective stress. Normal stress has been calculated as a product of axial force and bending 
moments acting on a cross section of element (see Fig 2.2a.). Total shear stress has been calculated as a 
product of vector aggregation performed on shear stress generated by shear forces and by torsional moment 
(see Fig 2.2b.). Taking into account abovementioned procedure, effective stress has been calculated for main 
leg and face lacing truss. This calculations has been performed by a deterministic approach as it is 
recommened by currently valid engineering guidelines (i.e. Eurocodes). In some future research on the other 
hand, some probabilistic approach might be worth taking into account regarding such a cross-sectional stress 
distribution analysis.  Exemplary calculations performed for main leg element are being presented below. 
Cross sectional properties: 
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Internal forces have been determined consecutively and they equal in turn: 
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Fig. 2.2. Load acting on cross-section of chosen main leg element. 
 

Utilizing bi-simmetrical properties of cross section, normal stress can be easily calculated in tilted coordinate 
system. Effective bending moment might be represented as: 
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Resulting normal stress is then calculated respectively: 
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Shear stress has been calculated in point A, which corresponds to greatest normal stress and considering 
relatively small shear stress, point A describes  greatest effective stress as well. 
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a) b) 
Fig. 2.3. Stress generated by internal forces: a) normal stress,  

b) shear stress as a product of vector-aggregation.

Finally, the Huber-Mises effective stress in point A: 
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Share index of normal stress to effective stress has been described as: 
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Comparison of a normal stress to effective stress shows that the influence of shear stress might be neglected. 
Simmilar calculations and conclusions has been drawn from analysis of stress state of face lacing elements. 
This brings the conclusion that calculating effective stress every time step of calculations can be neglected 
and normal stress can be taken as a representative instead. 
Discrete results of the resulting extreme stresses and displacements have been saved for any second of FEM 
simulations, where every save step has been subdivided into 10 time steps giving as a result computational 
time step equal to t=0.10 s. This calculus procedure has been repeated for 11 series of uniform temperature 
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load within a range of -50 °C up to +40 °C. A set of 600 discrete values of stresses and displacements 
computed for several series of the FEM tests was the basis to carry out Structural Response Function 
estimation in a form of the 11th order polynomial (or less). Polynomials have been fitted by the Weighted 
Least Squares Method in which the weighing function has been assumed as a triangular one. Structure 
Response Function (SRF) accuracy has been adjusted by the mean square root error minimization criterium 
as well as controlling whether over-fitting problem occurs. The SRF has been recovered for each random 
state variable separately (leg stress, face lacing stress, horizontal displacement and rotation) at any save step 
using both solvers (HHT and Newmark) giving as a result 4x600=2400 SRFs. These SRFs are analytical 
functions of the external temperature, which is assumed to be Gaussian variable. It has to be noted that 
polynomial order has been established once for all series of the SRFs that describe one of four state variables 
i.e. horizontal displacement. This means that all 600 SRFs associated with horizontal displacement in 
subsequent save steps of movement are described by polynomials of the same order.  

3. PROBABILISTIC ANALYSIS 

The generalized Stochastic Perturbation Technique (SPT) (7) has been introduced in order to compute the 
basic probabilistic characteristics of the structural response, where Monte Carlo Simulation (MCS) and 
Semi-Analytical Method (SAM) have been chosen as the reference techniques (8, 9, 10). Time fluctuations 
of the expected values, variances, skewness, kurtosis and coefficient of variation for the extreme values of 
normal stresses in the main legs have been presented in Figures (3.1-3.16), correspondingly.   
 

Fig. 3.1. History of expected value for normal stress in main 
legs. 

Fig. 3.2. History of the coefficient of variation for normal 
stress in main legs. 

 
 

Fig. 3.3. History of the skewness for normal stress in main 
legs. 

Fig. 3.4. History of the kurtosis for normal stress in main 
legs. 
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Fig. 3.5. History of the expected values of stress in face 
lacing. 

Fig. 3.6. History of coefficient of variation of stress in face 
lacing. 

Fig. 3.7. History of skewness of stress in face lacing. Fig. 3.8. History of skewness of stress in face lacing. 

Fig. 3.9. History of expected values of horizontal 
displacement. 

Fig. 3.10. History of coefficient of variation of horizontal 
displacement. 
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Fig. 3.11. History of skewness of horizontal displacement. Fig. 3.12. History of kurtosis of horizontal displacement. 
 

Fig. 3.13. History of expected values of rotation. Fig. 3.14. History of coefficient of variation of rotation. 
 

Fig. 3.15. History of skewness of rotation. Fig. 3.16. History of kurtosis of rotation. 
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4. CONCLUDING REMARKS

A very general conclusion, which can be drawn from these results is a good coincidence of all three 
probabilistic numerical methods, which taking into account nonlinear problem with large deformations 
including dynamic excitation is not trivial. Numerical results obtained here, and especially the first two 
probabilistic moments, may be directly used in stochastic reliability assessment according to the statements 
proposed in Eurocode 0. Finally, one can conclude that external temperature uncertainty has rather limited 
importance while dynamic stresses fluctuations are under consideration and cannot affect remarkably the 
resulting reliability index.  
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