
Mechanical systems with two nonlinear springs connected 

in series

(ASY251-15) 

Roman Starosta, Grażyna Sypniewska-Kamińska, Jan Awrejcewicz 

Abstract: The aim of the paper is analysis of dynamical regular response of the 

nonlinear oscillator with two serially connected springs of cubic type nonlinearity. 

Behaviour of such systems is described by a set of differential-algebraic equations 

(DAEs). Two examples of systems are solved with the help of the asymptotic multiple 

scales method in time domain. The classical approach has been appropriately 

modified to solve the governing DAEs. The analytical approximated solution has been 

verified by numerical simulations. 

1. Introduction

The linear simplification is sometimes too rough to describe the behavior of a physical object with 

sufficient accuracy. Therefore, models of nonlinear oscillators have been widely considered in 

physics and engineering. Nonlinear oscillators with serially connected springs were investigated by 

many authors mostly numerically. Most papers concern a case, when one of the springs is linear and 

the second one is nonlinear [1, 2, 3]. 

Telli and Kopmaz [1] showed that the motion of a mass mounted via linear and nonlinear springs 

in series, is described by a set of differential-algebraic equations. Similar situation occurs in our 

investigation. It implies a need of a modification of the standard multiple scale method in time 

domain (MMS). Two examples of the system with two nonlinear springs are presented and analyzed 

using appropriately adopted MMS. That are one-dimensional oscillator and a spring pendulum. 

2. One-dimensional oscillator

Let us consider the one-dimensional motion of a body of mass m attached by massless nonlinear 

springs to an immovable support. The studied system is shown in the Figure 1.  

The restoring force of the springs with cubic nonlinearity are 

  2,1,3  iZZkF iiiii  (1) 

where iZ  is the elongation of the i-th spring, ik  is the constant stiffness and i  is the nonlinearity 

parameter. Lengths of untensioned springs are L10 and L20. 
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Figure 1.   Oscillator with series connection of two nonlinear springs. 

Such type of nonlinear elasticity is widely discussed in the papers concerning nonlinear 

dynamics [1, 4]. When 0 i  the characteristics of the spring is called “hard”, while for 0 i  the 

characteristics is called “soft”. Hereafter we consider only the case 0 i . 

2.1. Mathematical model 

Two equations describe behaviour of the system. One of them is the differential equation of the body 

motion 

    01
2

222221  ZZkZZm  . (2) 

The second one is the algebraic equation describing equilibrium at the massless connection point 

S  and reads 

    011
2

2222

2

1111  ZZkZZk .  (3) 

The above equations are supplemented by the initial conditions 

02 )0( XZ  , 02 )0( VZ  . (4) 

After transformation of the governing equations to the more convenient dimensionless form they 

read 

    011 2

22221  zzzz  ,  (5) 

    011 2

111

2

222
 zzzz  ,  (6) 

012012 )0()0(,)0()0( vzzzzz   , (7) 

where z0 and v0 are initial displacement and velocity of the body, LZz ii / , 
2L

ii
  for 2,1i , 

2010 LLL  ,  12 / kk . Dimensionless time 1 t  where mke /1   and )/( 2221 kkkkke   

have been assumed as characteristic quantities. 

k1, Λ1 k2, Λ2 

S 

m 

Z1 Z2 
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2.2. Approximated analytical solution 

The problem (5)–(7) can be solved using MSM [4], although the approach requires some significant 

modification. The assumptions of smallness of the nonlinearity parameters are proposed in the form 

 2211

~,~  , (8) 

where   is a small perturbation parameter. 

The solution is searched in the form of series with respect to the small parameter 

       





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
1
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1011

1

0

1022 ,;,,;
k

k

k

k

k

k

k

k zzzz  . (9) 

Introducing (8) and (9) into (5) – (6) we obtain two equations in which the small parameter ε 

appears. These equations should be satisfied for any value of the small parameter, so after sorting 

them with respect to the powers of  ε we get the differential equations of the first and second order. 

After eliminating secular terms and solving the equations, the approximate solution takes the form: 

   
    
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 (10) 

   
 
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 

0
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122

3
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002 33cos
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cos 


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 






b
bz , (11) 

where      1831 3

12

2

0b , while 0b  and 0  are the initial amplitude and phase.  

2.3. Results 

In Figure 2 the time history of the generalized co-ordinates and their sum are presented.  

    

Figure 2.   Time history of the motion of the system for 8.01   4.12  ; a) 8 , 05.00 b ; 

4.12  ; b) 1.0 , 5.00 b ; dotted line – numerical solution. 
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The comparison between numerical and analytical solutions confirms correctness of the 

asymptotic calculations. The explicit form of the solution allows for deeper analysis of the motion of 

the body. 

From solution (10) the period of the primary vibration can be derived 

 
 1833

116
2

02

32

01 








bb
T

. (12) 

Expression (12) quantitatively describes dependence of the period with respect to amplitude, 

involved nonlinearities and the parameter  . When the springs are nonlinear with hard chara-

cteristics ( 0i ), the period is smaller than 2 . In Figure 3 the value of period of the vibration 

versus nonlinearity parameters 1  and 2  is shown. 

 

Figure 3.   Period vs. nonlinearity parameters; 5.1 , 1.00 b . 

The dependences of the vibration period and amplitude versus   obtained from (12) are 

presented in Figure 4.  

 

Figure 4.   Period and amplitude vs.  ; 8.01  , 4.12  ; dashed line – linear case 01  , 02  . 

The position of the extremum value in Figure 4 depends on nonlinearity of springs 1 , 2 . 

566



3. Spring pendulum 

The dynamics of the nonlinear spring pendulum presented in Figure 5 is investigated in this point. 

Such quite simple and intuitive system serves as a very good example of a study of non-linear 

phenomena exhibited by two degrees-of-freedom mechanical systems.  

Figure 5.   The pendulum with two nonlinear springs connected in series. 

The investigated pendulum-type system consists of the small body of mass m suspended at a fixed 

point on the two nonlinear springs of the length L01, and  L02 whose elastic constants are denoted by 

k1, Λ1 and k2, Λ2. Due to the introduced constraints, the body can move only in the fixed vertical 

plane. Moreover we assume that the springs are straight and collinear. We are interested in free 

motion of the system, thus no external force or damping are admitted. The total springs elongation Z1, 

Z2 and the angle φ describe unambiguously the position of the system. 

3.1. Mathematical model 

The equations of motion are obtained with the help of the Lagrange equations of second kind. 

Similarly as in previous section, the differential equations are supplemented by the algebraic one, 

which describes equilibrium of the spring’s connecting point S. The restoring forces in the springs are 

of the same type as previously. They are described by eq. (1). The dimensionless form of the 

mathematical model is as follows 

        

  ,01

1cos113131

2
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zz

wzzzzzzz rr
 (13) 

       0sin211 2

212121   wzzzzzz  , (14) 

      0133133 2

1111111

2

2222222  rrrr zzzzzzzzzz  . (15) 

The initial conditions reads 

00012012 )0(,)0(,)0()0(,)0()0(    vzzzzz . (16) 
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The dimensionless parameters are defined in the same way as above, in section 2. The 

elongations of the springs at the static equilibrium position rz1  and rz2  fulfill the following additional 

conditions 

  )1/(1 2

2

2

22
  wzz

rr  and   )1/(1 2

2

2

11
  wzz

rr . (17) 

The trivial solution of Eq. (14), which fulfills 0121  zz , is omitted. 

3.2. Approximated analytical solution 

The problem (13)–(16) can be solved analytically using the multiple scale method [4], although the 

approach requires some significant modification. The assumptions of smallness of the nonlinearity 

parameters are proposed now in the form 

2

22

2

11

~,~   , (18) 

In this problem three time scales should be used, so the solutions are searched in the form 

           













3

1

2101

3

1

21011

3

1

21022 ,,;,,,;,,,;
k

k

k

k

k

k

k

k

k

k

k

k zzzzz  . (19) 

Adopting the MSM we obtain the asymptotic analytical solution in the form: 
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where 20102010 ,,, aa  are the initial values of amplitudes and phases of 2z  and   respectively. 

They are related to the initial values 0z , 0v , 0  and 0  by the conditions (16) and eqs.(20) – (22) at 

instant 0 . The shortening denotations 654321 ,,,,,   have the following form 
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3.3. Results 

Time histories of the coordinates describing position of the body are presented in Figure 6. In both 

graphs, the solid line represents the asymptotic solution according to (20) – (22).  

 

Figure 6.   Time history of the body position for 35.01  , 25.02  , 5.2 , 07.010 a , 

07.020 a , 010  , 020   ; dashed line – numerical solution. 

The period of the first term of the asymptotic solution for longitudinal as well as swing vibration 

as a function of the parameter   are presented in Figure 7.  

 

  

Figure 7.   Period vs.   for longitudinal and swing vibration; for 35.01  , 25.02  , 07.010 a , 

07.020 a , 010  , 020  . 
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4. Conclusions 

The mathematical model of the mechanical systems containing two serially connected nonlinear 

springs consists of the differential and algebraic equations. Properly modified multiple scales method 

in time domain allows to solve effectively this problem and to obtain the approximate asymptotic 

solutions. The range of parameters, for which the error is reasonably small, is limited according to the 

assumptions of the MSM. The correctness of the results has been confirmed by numerical simulation. 

The analytical solution allows to analyse the influence of the parameters on the studied system 

motion. The influence of some parameters on the period and amplitude has been discussed in the case 

of free vibration. 

Finally, we confirmed that the applied software Wolfram Mathematica has been very helpful in 

the analytical transformations and simplification of the derived and studied DAEs. 
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