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Abstract. The present paper shows the method of cognitive hierarchical ac-
tive partitions that can be applied to creation of automatic image under-
standing systems. The approach, which stems from active contours tech-
niques, allows one to use not only the knowledge contained in an image,
but also any additional expert knowledge. Special emphasis is put on the
efficient way of knowledge retrieval, which could minimise the necessity to
render information expressed in a natural language into a description con-
venient for recognition algorithms and machine learning.
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guistic.

1. Introduction

In the traditional approach to image analysis, an image is first preprocessed
(e.g. by means of noise elimination or edge retrieval) and then analysed by means
of segmentation, which employs such techniques as thresholding, region growing
and splitting, etc. Such approaches are described in [1, 2, 3]. Most of them use only
the knowledge contained in the image. However, researchers e.g. in [4] have started
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to notice the necessity of adding expert knowledge, the lack of which disables
higher-level analysis. Therefore, the present paper is a creative development of
the concept of active contours, which, in a lower-level analysis, is able to use any
additional knowledge available. The present discussion proceeds in two directions.
Firstly, it focuses on the idea of cognitive hierarchical active partitions that enables
one to resign from a single pixel analysis (although it allows such an analysis) in
favour of hierarchical analysis of semantically relevant objects. Secondly, it offers
methods that allow utilisation of expert knowledge expressed in a natural language,
which can be particularly helpful to specialists in domains other than computer
science.

The paper is organized as follows: in section 2 the main idea of cognitive hier-
archical active partitions approach as well as methods of linguistic formulation of
expert knowlege are presented, section 3, section 4, section 5 describe three exam-
ples of appliction of the proposed methods with three different kinds of semantic
objects, the last section focuses on the summary of the proposed approach.

2. Active partitions

2.1. Active contours

The term active contours was first introduced with reference to the snakes
method by Kass, Witkin and Terzopoulos in [5]. In that work, contour, defined as
a parametrised curve, evolved until the desired object was identified in the image.
The purpose of the contour’s evolution was defined by energy function, which was
the objective function of the optimisation process. For the purpose of optimisation,
calculus of variations was used. Its application led to iterative solution of partial
differential equation set and, as a result, to iterative changes of the contour itself.
The literature abounds in modifications and improvements of this basic method.
Cohen in [6] introduced additional pressure forces able to compress or expand the
contour, which was further elaborated by Ivins and Porrill in [7], who introduced
region energy and region forces. Both of these changes allowed additional knowl-
edge to be taken into account, in order to prevent the process from getting stuck in
local minima of energy function, which happened in the case of wrong initialisa-
tion of the contour. Similar reasons can be ascribed to the introduction of gradient
vector flow by Xu and Prince in [8] and distance potential by Cohen and Cohen in
[9]. Other significant modifications can be found also in [10, 11, 12].

The snakes method was the first but not the only variation of active contours
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to have emerged in the literature. The most significant of them are geometric ac-
tive contours, which differ from the snakes method in that they do not take into
account the information about parameterisation of curves representing the con-
tour (the snakes method is regarded as a parametric active contours method). Such
an approach was introduced parallelly by Caselles, Catte, Coll and Dibos in [13]
and by Malladi, Sethian and Vemuri in [14] and used during the optimisation of
the level-set method, earlier applied by Osher and Sethian in [15] for the solution
of front propagation problem. The main advantage of this method was the pos-
sibility to change easily the contour’s topology during its evolution. A variation
of this technique was geodesic active contours introduced in two different ways
by Caselles, Kimmel and Sapiro in [16] and Yezzi, Kichenassamy, Kumar, Olver
and Tannenbaum in [17, 18]. Here, similarly to the snakes method, the purpose
of evolution was formulated in the form of energy function, and the evolution was
formulated in the form of forces that influence the contour. This enabled Xu, Yezzi,
Prince and Hopkins [19, 20] to indicate the dependencies between those methods,
which helped to share experiences.

Other types of active contours include: active shape models proposed by Cootes
and Taylor in [21, 22], where the contour was described by a set of landmark
points, and the appropriately tested point distribution model helped to impose
additional limitations on the evolving contour, Brownian strings introduced by
Grzeszczuk and Levin in [23], where the contour is described linguistically and
simulated annealing algorithm is used for the contour evolution, the approaches
discussed by Jacob, Blu and Unser in [24] and by Schnabel and Arridge in [25],
in which the contour is represented by splines, the approach of Staib and Duncan
[26], in which Fourier descriptors are used and finally the active ray approach de-
scribed by Denzler and Niemann in [27]. Although substantially different in regard
to contour’s description model, the above methods share a few characteristics.

First of all, they all apply the notion of contour. Although it is not precisely
defined in any of the works, a contour can be intuitively defined as something that
can indicate those image fragments that represent visible objects. In other words,
it is able to divide an image into the part representing the object and the part repre-
senting the background. For formal description, let o denote a pixel represented by
point p and let O and P denote the set of all pixels and the set of points represent-
ing the pixels, respectively. As shown in [28, 29], the contour can be regarded as
classifier k of image points, and therefore, the classifier of pixels, which assigns the
pixels one of two labels: lo or lb. The labels denote the object and the background,
respectively. The classifier partitions the set of image points and, consequently, the
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 1. Localisation of heart: (a) - original image, (b) - initial knowledge (all the
pixels in the image), (c) - heart that is sought, (d) - regions with similar colours,
(c) - knowledge that can be used to localise cardiac muscle, (d) - right ventricle
(blood with contrast), (e) - caridac muscle, (f) - left ventricle (blood with contrast)
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set of pixels, into those composing the object:

Olo =
{
o ∈ O : k(o) = lo

}
(1)

and those composing the background:

Olb =
{
o ∈ O : k(o) = lb

}
(2)

Of course Olo ∪ Olb = O and Olo ∩ Olb = ∅. The object detected in the image is
represented by the set of all points corresponding to pixels labelled lo.

Secondly, all active contour methods allow one to specify the expectations
concerning the object, directly or indirectly, in the form of energy function E. This
helps to include any knowledge that might be useful for pixels’ classification. The
knowledge can be included in the image (information about other elements of the
image), which places the problem among context classification problems, or it can
refer to general knowledge connected with the origin of the image and information
associated with the image or coming from the experience of people who are able
to analyse a particular class of images.

Finally, all the methods employ a specific way of optimal contour finding.
That way, usually iterative, leads to classifier’s evolution and, as a result, to further
changes of the partition. The character of energy function and the method of evo-
lution depend on the model of a classifier or, to be more precise, on the model’s
parameters that are optimised, and have great influence on the results.

2.2. Active partitions

The above approach can be generalised, given that image analysis generally
consists in indicating those image fragments that carry a certain semantic meaning,
which does not necessarily have to be (and most often is not) performed at the level
of particular image points. For the purpose of generalisation, let us assume that
P represents a set of patches that have already been assigned semantic meaning.
Individual patch p ⊂ R2 can denote, in the most simple case, a set containing a
single point that has been assigned a colour - like in the active contour method,
but also a division line between two regions of different characteristics, regions of
uniform colour or regions representing objects of higher-level semantic meaning
significant for a class of images analysed. Although these spatches correspond
to separate objects, they do not have to be separate regions. Additionally, let us
assume that k is not a binary classifier, but it assigns each object one of the labels
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L, denoted as l1, . . . , lL. Then the partition defined by such a classifier consists of
L parts:

Ol = {o ∈ O : k(o) = l} (3)

for l = l1, . . . , lL, which, like previously, are separate and compose the whole setO.
In this case, the object corresponding to label l is naturally represented in the image
by a sum of patches p ⊂ R2. If optimal partition finding process is performed in the
same way as in active contours, that is, by selecting the model of the classifier and
then iterative finding of its optimal parameters for a given energy function, then
one can speak of a new image analysis method referred to as active partitions. The
name of the method reflects evolution of the partition that results from classifier’s
evolution.

2.3. Cognitive hierarchical active partitions

The process of image understanding is usually more complex than direct find-
ing of the regions that represent semantically-relevant objects. It can be regarded as
a bottom-up process, in which the objects are organised in terms of increasing com-
plexity. The process is complex, as it should include not only image information
but also additional knowledge about the image analysed. What is also important
for image content understanding is the experience of a person who is analysing the
image, which refers not only to expert knowledge but also common life experience
connected for example with the culture area the person has been raised in. Such an
approach has already been advocated in [4, 30, 31].

Since the approach requires retrieval of semantically meaningful objects, one
can make use of the active partitions approach described above. For this reason,
the process of image understanding can be presented as iterative image partition,
with each part being ascribed a semantic meaning in such a way that, after each
iteration, newly understood objects constitute additional knowledge about the im-
age. The new knowledge can be used in the next step. According to the designation
used in previous chapters, one step can be represented as follows:

Algorithm 1: Cognitive hierarchical active partitions
select Oi from O
find the partition {Ol1

i , . . . ,O
lLi
i } of Oi

assign O = O ∪ {O
l1
i , . . . ,O

lLi
i } and i = i + 1
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Of course, in the case of automatic analysis of digital images, initially set O
contains just pixels – the only information available. It is worth mentioning that,
at each step, every object belonging to set O is connected with a certain patch
belonging to set P. Due to its structure and the fact that for partition finding, espe-
cially in the more complex cases, one has to employ an algorithm that uses external
knowledge and expert’s experience, the method has been called cognitive hierar-
chical active partitions, in short - CHAP. Although it seems natural to use active
partitions in the second step of the above algorithm (or active contours - at a pixel
level), the partition can be performed by means of any segmentation algorithm or
either supervised or unsupervised classification algorithm. These approaches can
be mixed.

A possible example of CHAP in Fig. 1 is shown. In Fig. 1b the initial set, which
contains all the pixels, is presented. The analysis of individual pixels helps to find
only the regions of approximately the same colour, which represent structures that
look the same on images. This is visible in Fig. 1d. However, these structures can
represent various anatomical structures, which is impossible to determine without
medical knowledge. In the example, it is particularly visible in the attempt to locate
the wall of the left ventricle Fig. 1g. While ventricle cavity is clearly visible due to
the contrast in patient’s blood, the muscle merges with neighbouring tissues. Only
with the help of additional information about the location of left ventricle shown
in Fig. 1h combined with anatomical knowledge, can one arrive at proper image
understanding and finding the heart depicted in Fig. 1c. The example illustrates the
necessity of hierarchical approach taking into account the accumulated knowledge,
that was gathered earlier, and additionaly demonstrates that in one CHAP step it
is sometimes necessary to use different kind of objects found so far (localisation
of cardiac muscle is possible when both patches representing vetricle cavities and
patchs representing separate pixels allowing to divide regions of the similar colour)
which is shown in Fig. 1e.

The above discussion refers to traditional 2D images, in which patches p are
subsets of R2. However, CHAP can be applied also to image sequences - both spa-
tial and video ones. Then, only patches are subsets of a corresponding space Rn

for n ∈ N. Therefore, instead of patches, a new term will be used, namely spatches
- a blend of spatial and patch.



94 Spatch Based Active Partition with Linguistically Formulated Energy

2.4. Linguistic

In order to understand an image, it is essential to combine the knowledge con-
tained in an image with external knowledge and experience of an expert. This
makes methods of knowledge representation in CHAP systems important.

Knowledge about an image is contained in set O that includes semantically
defined objects visible in an image (location of the objects describes the corre-
sponding spatches from set P). Because they carry semantic meaning, each of
them can be described by such features as location and colour of a pixel, coordi-
nates of circle’s centre and circle’s radius, coordinates of end points of a segment,
coordinates of a centroid, colour and descriptors of a region’s shape, etc. Such in-
formation constitutes full knowledge about the objects but might not be always
useful in such a form, because it is different from human way of description. It is
hard to imagine that an expert could describe an object by means of the features
mentioned above, e.g. there are two spots of a certain colour and a certain diam-
eter, the first of which has the centroid in one point and the second – in the other.
The expert is much more likely to express his/her statement in a natural language,
e.g. there are two bright spots of average size, one if which is located to the left of
the other.

Analogously, in order to find an object in an image, it is necessary to use expe-
rience of an expert. However, to be used in a computer system, such an experience
has to be expressed in an appropriate form. Unfortunately, the form of expression
which is convenient to recognition algorithms or machine learning is not conve-
nient for a human expert. The problem is usually solved in two ways. In the first
one, an expert provides a set of examples together with their interpretations. Al-
though often applied, such a solution requires accuracy, great amount of work
(the set should be representative and consistent) and time (gathering a sufficient
number of examples may take years). Therefore, more and more often, also during
knowledge description, the other method is used, i.e. linguistic descriptions, which
allows an expert to express his knowledge in a way resembling a natural language.

Thus, the present paper shows how linguistic knowledge can be used in the
CHAP method. Three examples will be presented, in which:

• knowledge about an object is rendered from a natural language to mathe-
matical formulae

• knowledge expressed by rules described in a natural language is directly
used by means of fuzzy sets that represent linguistic variables and by means
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of a fuzzy controller which, basing on those rules, performs reasoning

• knowledge about image and object is represented by a graph, whose vertices
are representations of semantically defined objects, while the edges can re-
flect linguistic relations between the objects.

3. Pixel spatch

3.1. Problem

The present section shows how a linguistic description provided by an expert
can be directly utilised. As a test problem we will use artificially generated black
and white images depicting an elongated object which has changeable location,
orientation and scale. Thanks to the method applied, the localisation of the object
is not difficult. However, in practice objects usually adjoin each other or overlap
and are affected by noise caused by image acquisition process. Thus, to make the
example more real, random noise is added to the images. The noise has a form of
randomly located additional objects. Therefore, information about a single pixel is
not sufficient and it is necessary to add knowledge about the shape of the object
wanted.

3.2. Spatch approach

For the localisation of the type of objects described above, we use a single step
of CHAP, which considers a full set of pixels O1. Active partitions approach is
applied, which this time is limited to active contours. As the model of classifier
k, and consequently, the model of a contour, potential active contours method has
been chosen, described in detail in [32, 33, 34].

Energy The research applies external energy component Ez described in the
mentioned papers, which punishes for all dark pixels located outside the contour
(label lb) and all bright pixels located inside the contour (label lo). However, in
the case of noise, energy not taking into account the relations between pixels has
no chance to obtain satisfactory results. Therefore, it is necessary to introduce an
additional component E f describing the shape.

For this purpose, a typical model of a fuzzy controller based on the Zadeh-
Mamdani model described in [35, 36] is applied. The fuzzufication using singleton
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a) b)

Figure 2. Shape histogram: (a) - contour with ring fragments, (b) - histogram

membership functions, reasoning with Larsen rules and canter average defuzzifi-
cation are used. For encoding the evaluated shape, the shape histogram, which
contains information about contour’s location in ring fragments of a circle cen-
tred round the centroid of the contour and with minimal radius allowing for the
inclusion of the contour, is chosen. Since it is considered with relation to a circle
determined for each contour separately, the description is independent of the lo-
cation and scale of the contour. In order to make it also rotation-independent, it is
presented starting from subsequent radii with the final result being the smallest re-
sponse of the controller for those presentation. Fuzzy controller has been prepared
in such a way as to evaluate the content of each ring fragment and, for this purpose,
it is provided with such data as the distance from the fragment to the circle’s cen-
tre, the angle between the fragment and the horizontal axis and the percentage area
of the fragment occupied by the contour. As an output, the controller determines
if the fragment’s potential is low (as it should be) or high (as it should not be).
Energy E f is defined as a sum of potentials that are the responses of the controller
for each ring fragment. All the inputs and outputs were described using linguistic
variables and the proper set of rules representing the expert’s knowledge in natural
language was prepared.

Listing 4. Sample rules
1 IF d i s t =n e a r AND p e r c=b i g THEN p o t=low
2 IF d i s t =n e a r AND p e r c=med THEN p o t=h igh
3 IF d i s t =n e a r AND p e r c= s m a l l THEN p o t=h igh
4 IF a n g l e= e a s t AND d i s t = f a r AND p e r c=b i g THEN p o t=h igh
5 IF a n g l e= e a s t AND d i s t = f a r AND p e r c=med THEN p o t=h igh
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(a) (b)

(c) (d)

Figure 3. Sample results of potential active contour approach: (a), (b) - both com-
ponents of the energy, (c), (d) - energy without E f component

6 IF a n g l e= e a s t AND d i s t = f a r AND p e r c= s m a l l THEN p o t=low
7 . . .

Additionally, E f has been enriched by an element that evaluates the size of a con-
tour, in order to avoid contour’s reduction to a very small size.

Evolution Simulated annealing has been chosen as an evolution method as, with
proper selection of parameters, it has a chance to avoid local minima of energy
function E. Its application (solution generators modifying parameters of sources
of potentials) was described in the works mentioned above.
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3.3. Sample results

Sample results in Fig. 3 show that application of additional component E f al-
lows one to obtain satisfactory results even if an object is largely distorted by noise.
At the same time, it is visible that the lack of this component brings unsatisfactory
results (the contour is matched only with the information contained in single pix-
els, in this case - their colour, while their location against each other and spatial
relations are also important). Of course, when the noise is big, even additional
knowledge may prevent a satisfactory solution.

4. Line spatch

4.1. Problem

The present chapter presents the application of active partitions method to
detection of spicular lesions in mammograms. Spicular lesions are pathological
changes in breast with irregular centres and numerous fibrous spicules. Due to the
spicules, a lesion is shaped like a star in radiological images, which is shown in
Fig. 4 and in Fig. 5. Detection of those changes is crucial, since they are often
indicative of a breast cancer.

4.2. Spatch approach

In the proposed method we look for the segments creating star-shaped forms.
For this reason, in the mammogram all visible lines should be detected. The at-
tempts to automate this process have not brought satisfactory results due to the
character of mammographic images. The segments detected are numerous and
very small. Therefore, the first step of CHAP forO1 that represents a full set of pix-
els has been performed manually and, as a result, set O contains pixels described
by their coordinates and lines described by the coordinates of their end points. Of
course all those objects have their reflection in spatches, which, for a line, is shown
in Fig. 4a. Further in this chapter, the second step of CHAP is described, assuming
that O2 consists only of segments detected in the first step:

o = AB (4)

where o ∈ O2 while A, B ∈ R2 define end points of a segment.
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(a) (b) (c) (d)

Figure 4. Sample results for line spatches: (a) - all the segments, (b) - segments of
spicular lesion (black), (c) - segments of result for both energy components, (d) -
segments of result without Et component

Energy In active partitions, it is necessary to use energy function E, which ap-
plies the knowledge about the object that we look for. In the example presented,
the function evaluates classifier k by taking into account two kinds of knowledge,
described linguistically as follows:

• Es - shape energy reflecting the following statement: segments composing a
spicular lesion should create a star-shaped form, and they should intersect
at right angle a circle, the centre of which is the centroid of those segments,
and the radius of which equals average distance between the circle’s centre
and the segments’ midpoints. To find its value for those segments in O2 that
are assigned the label lo by the current classifier, the circle with centre C
being the arithmetic mean of coordinates of end points A and B of and with
radius equal to arithmetic mean of the distances of the centroids of those
segments to centre C, is identified. Next, the punishment equal to the length
of segment is counted when the segment does not intersect the circle. The
reward, depending also on the length of the segment, is counted when the
segment intersects circle but in this case it is the bigger the more approxi-
mate is the angle of that intersection to the right angle. The lengths of the
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(a) (b)

(c) (d)

Figure 5. Sample results for line spatches: (a), (c) - segments of spicular lesion
(black), (b), (d) - segments of result (black)
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segment are normalised using the radius of the circle so that the object of
different sizes have equal chances.

• Et - centre energy reflecting the following statement the centre of the spic-
ular lesion in the image is an area of high brightness. Its value reflects the
reward equal to the square of average brightness of the pixels inside the cir-
cle found in the above energy component.

The second component is necessary as without it the set of segments shown in
Fig. 4d could be found. Its elements create a shape that resembles a star, however,
the location of the centroid does not overlap with the tumour.

Evolution As an optimisation mechanism the method of simulated annealing is
used. In order to do it, a proper solution generator must be defined. In the case
discussed, its main task is to modify the classifier k. The modification consists in
changes of label values from lo to lb or the other way round of the randomly chosen
segment.

4.3. Sample results

Sample results of algorithm performance are depicted in 5. The results show
that the method presented does not offer an ideal solution. However, it indicates
quite precisely the potential location of a tumour. The level of efficiency is satis-
factory, as the aim of the method is not to replace a radiologist but to indicate to
those fragments of the image that he/she should pay special attention to. Further re-
search is being conducted for the enhancement line detection automation, as well
as energy function improvement so it can more efficiently reflect the knowledge
linguistically expressed by doctors.

5. Circle spatch

5.1. Problem

The present chapter focuses on the problem of automatic localisation of ven-
tricular system in CT images of the brain. Exact recognition is important from the
diagnostic point of view, since changes in the system, particularly deformities of
shape, asymmetry, contraction or expansion are indicative of pathological changes
in the central nervous system.
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5.2. Spatch approach

The CHAP approach requires the selection of components of set O, which is
indirectly determined by the selection of types of classifiers k. Since the retrieval
of meaningful objects causes difficulties typical of such an analysis, we look for
an easier solution, which would, on the one hand, reduce the granularity problem
(depart from pixel analysis) and, on the other hand, help to avoid the problem of
complex retrieval of objects.

The approach described in the present chapter is based on image partition per-
formed by connecting points of a similar colour into circular regions, which will
constitute set O2. As a result, the number of objects is reduced drastically, which
enables the application of more complex analysis methods. Moreover, the very
definition of a circle carries information about the size and location of a region of
approximately uniform colour, while the set of circles contains information about
neighbouring regions. Knowledge, which is absent if the image has not been pre-
processed, is used and structured by the methods presented below.

If there are no requirements as to semantic quality, a simple circle process
is performed by means of a simple, unsupervised brute force algorithm, on the
basis of O1 which comprises all pixels. Having determined minimal and maximal
radius of the circles and error bound of colour cohesion, starting with the circles of
maximal radius, all possible locations, which do not overlap with the already found
circles, have to be systematically checked and added to the set if they fulfil the
colour uniformity criterion. Despite inconveniences resulting from computational
complexity, a big advantage of the algorithm is its determinism, simplicity and, in
particular, the lack of necessity to use any additional knowledge, which enables
unsupervised generation of descriptions.

Similarly to pixels, in the context of image analysis, it is the neighbourhood
of the circles that determines their meaning and importance. The description will
be recorded in whole in the circle graph, also referred to as the graph of linguistic
description. The choice of graph languages as a tool of linguistic description is
not accidental. Being formal and semantically precise, it is also extendable and
expressive enough to carry both information about object’s structure and external
knowledge.

Circle graph Let G = (V, E) be an undirected graph of linguistic description.
Every vertex v ∈ V is bijectively mapped to a circle in O2:

o = K(v) (5)
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(a) (b)

Figure 6. Description of example image: (a) - original image, (b) - circles

with centre O(v) and radius r(v). Two vertices w, v ∈ V are adjacent in graph
G if and only if the corresponding circles K(w) and K(v) are adjacent (within
admissible error margin).

Semantic information A fundamental characteristic of a linguistic description
is its information content. In the case of a circle graph, circles defined for each
node, code information about subareas that are cohesive colour-wise. Edges carry
information about the neighbourhood of such subareas and about the possibility
of their composition into larger areas which may constitute potential candidates in
the recognition process. Above all, however, the edges carry information about the
shape of an area, supplementing surface information contained in a set of vertices
and associated circles.

Task Following the denotations presented above, let G be a linguistic description
of an image. Assuming that the description is a combination of descriptions of
objects distinguishable in the image at a given granularity level, the task is to search
for subgraph Gc, which would fulfil the criteria taken, in graph G. In the present
paper, the criterion is described by a prototype graph Gp. The prototype graph
carries information about an expected shape. Note that the circles are described in
abstract coordinate space, which enables one to place the prototype in any point of
the image in order to compare it with any candidate graph Gc.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Vertices and edges carry spatial and shape information: (a), (d), (e), (h) -
objects, (b), (c), (f), (g) - corresponding graphs

Knowledge It has to be emphasised that the graph of prototype’s linguistic de-
scription carries only information about the shape of the object that is sought.
Because the shapes (especially those not very complex) are not unique, this in-
formation is not sufficient for object’s localisation. Thus, it is necessary to code
additional knowledge in energy function E that is optimised. In the case of ven-
tricular system image retrieval, we use knowledge of an expert, who indicated two
measurable pieces of information that may characterise the lateral ventricle that we
look for. The first one is blackness. It makes use of the fact that: the object is filled
with cerebrospinal fluid and in CT imaging, with appropriate data acquisition pa-
rameters, the regions filled with the fluid are dark. The second one is centrality
that: results from supervised exposition during axial scanning.

Energy The above characteristics have been coded by the following numerical
features that evaluate the classifier k which currently defines a candidate graph Gc:

• Eb - blackness energy; its value is an average of the values of colours of
pixels situated in the centres of the circles of Gc , divided by 255. Note that
the image is an 8-bit greyscale image, where black corresponds to 0.

• Ec – centrality energy; its value is an average distance between centres of
circles of Gc and the centre of the image divided by half the value of the
image’s diagonal.
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Proper energy E function optimised during examination of subdescriptions is
the sum of linguistic description’s matching cost Em and the values Eb and Ec.
With a function constructed in this manner, one should remember that both black-
ness and centrality have supplementary meaning which promotes well-located so-
lutions.

Prototype matching The key role in the search for solution is played by energy
component that formulates the candidate-prototype similarity. What is important,
the prototype may not exist in a literal sense (e.g. in the form of Gp). In this context,
the term prototype should be applied to the knowledge of the system’s designer.

Non-linguistic prototype matching There is no need to use the whole knowl-
edge encoded in a linguistic description. Let us consider similarity function that
measures the candidate-prototype surface matching. Let Pc be a set of image points
that belong to the sum of all circles of a candidate’s description, while Pp – a set
of points of a prototype after it has been placed on a candidate. Minimal rectangles
describing both sets are found: Rc i Rp, respectively. Next, the prototype is placed
on the image in such a way that the upper left vertices of the rectangles overlap.
The other option is to scale the prototype in such a way that the rectangles’ diag-
onals are equal. However, scaling eliminates from the prototype the information
about the size of the object and such knowledge does not find reflection in the
resultant energy, which usually makes it difficult to find the right set of circles.
Nevertheless, the size parameter can be included in function E, which allows one
to avoid the necessity to create a large number of prototypes. The last element
needed is the measure of surface similarity between sets Pc and Pp. If we regard
both of them as the sets of sets of points belonging to the circles that constitute
those sets, it is possible to apply the commonly used measures for supervised and
unsupervised classification, in particular those presented in [37]: purity, entrophy,
precision, recall and their combinations (e.g. F1 measure), mutual information, etc.

Linguistic prototype matching In the previous subchapter the information car-
ried by sets of graph edges Gp and Gc was ignored. However, Fig. 7 highlights
important description content that they carry. In particular, image imperfections
can lead to changes in number and size of circles and, as a result, surface changes.
However, similar shapes are likely to have similar circle structures and spatial rela-
tions between circles and their groups. In the present work, knowledge is extracted
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and utilised by calculating similarity between two graph linguistic descriptions:
Gc and Gp. Because graph descriptions are usually non-identical, the evaluation
algorithm is based on the search for a homeomorphism between the graphs de-
scribed in [38, 39]. The algorithm employs the notion of matching operations that
aim at possibly most exact reflection of Gp by the components of Gc. Every match-
ing operation is assigned an edit cost, which helps evaluate the similarity of those
shapes which are not homeomorphic in the definition sense. In search for a homeo-
morphism, two basic operations are performed, namely path substitution and path
deletion. These are multi-stage operations which use path approximation by seg-
ments, node substitution, node deletion and segment deletion in a path. Because
every such operation results in graph’s modification, it is assigned a cost estimated
in the context of graph descriptions. Note that there are many graph matching pos-
sibilities that differ in cost. Only minimum matching can be regarded as a measure.

It is impossible to search through the whole space of possible matches of can-
didate and prototype. The search for optimal matching is performed by the algo-
rithm presented below. It is based on heuristic iterative expansion strategy for best
possible graph matching.

Evolution This approach is also based on the algorithm of simulated annealing.
Both observations of the algorithm and theoretical considerations prove the role of
movement generator in the process of energy function optimisation.

In the case of candidate graph evolution, two strategies are applied. While us-
ing non-linguistic energy, which does not impose any additional limitations on a
candidate, generation of a neighbouring solution is parameterised by certain pa-
rameter µ ∈ [0, 1]. Let Gc be evolving candidate, the resultant solution is obtained
by searching all circles K(v) ∈ O2. Each K(v) has a chance to be included into
generated solution with a probability π being decreasing function of distance ρ
between K(v) and Gc:

π = µe−ρ (6)

This distance can be measured by the length of the route connecting the circle’s
centre and the closest point being the sum of circles corresponding to vertices
from Gc. However, more successful results have been obtained by measuring the
distance between a closest pair of points, where one of them belongs to K(v), and
the other one to the sum of all candidate’s circles. In this way spatial cohesiveness
of a candidate graph is preserved.



A. Tomczyk, M. Pryczek, S. Walczak, K. Jojczyk, P. S. Szczepaniak 107

Procedure GraphSimilaritySearch(Gp,Gc) ∈ R

/* Initial match is 1-1 matching between one node from Gp

and one from Gc; while computing costs prototype is
considered to be placed on the candidate so that
centers of initially matched nodes overlap. */

M - set of all initial 1-1 matches
while true do
/* remove worst partial matches; heuristically reduces
memory consumption ant time complexity */

trim(M)
best ←− match from M having smalles cost
remove( best from M)
/* Extending paths has been described in [38]. In
short, searching homeomorphism between Gp and Gc

requires searching for mappings between features of
both graphs (here edges). */

if best has extending paths then
foreach not previously matched pathp extending best do
/* it is possible to leave pathp unmatched, or to
check all possibly matching paths in Gc */

bestnp ←− best with pathp matched to nothing
cost(bestnp)←− cost (best) + penalty for unmatched pathp

add(bestnp to M)
foreach pathc in Gc do

best+ ←− best extended with pathp 
 pathc match
cost(best+)←− cost(best) + (pathp, pathc) match cost
add(best+ to M)

else
costold ←− cost(best)
cost(best) += unmatched prototype edges penalty
cost(best) += unmatched candidate edges penalty
if costold = cost(best) then
/* cost(best) didn’t change, so it smaller than
any other processed matching, finishing */

return cost(best)
else
add(best to M)
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Linguistic energy requires a candidate to be a connected graph. Therefore, the
process of new solution generation is divided into two stages. In the first phase,
the entire set of current candidate’s vertices is copied to the new, generated so-
lution candidate. Then, with a certain probability, vertices are deleted from this
set provided such a removal will not lead to disconnectivity of new candidate. In
the second phase, each circle adjacent to at least one corresponding to any ver-
tex that remained in the generated candidate is subjected to addition with certain
probability. Due to computational complexity of the matching algorithm, the size
of candidates vertices set has been limited to a few nodes.

5.3. Sample results

Sample results of algorithm’s performance for both non-linguistic and linguis-
tic energy function are depicted in Fig. 8, Fig. 9 and Fig. 10. The solution found
depends on the activation of particular components of energy function. Activation
of prototype scaling allows a dynamic matching of the prototype’s size with the
size of a candidate set of circles. However, this is not the best matching. The same
applies to the very mechanism of prototype shifting. Errors occurring at region’s
edges may shift the prototype and thus reduce the degree of matching, while any
arbitrarily selected reference point (including centroid) will have its pessimistic
examples. Although, from the theoretical point of view, the measure is well de-
fined, there are some difficulties caused by the application of simulated annealing
algorithm.

These disadvantages do not apply to the linguistic method that, while searching
for a homeomorphism, examines all possible shifts. Scale factor cannot be selected
automatically, because it is hard to predict how scaling will influence graph match-
ing cost. On the other hand, searching through the set of scalings would result
in substantial increasing of computing cost. Besides, scaling reduces information
content of a candidate’s description, which is undesirable.

The results produced by an algorithm that uses linguistic matching demonstrate
much greater resemblance of shape between the ventricular system and the proto-
type. Again, emphasis is put on the shape localisation problem, which is solved by
adding to energy function two components: blackness and centrality.
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(a) (b) (c)

(d) (e)

Figure 8. Non-linguistic result: (a) - original image, (b) - image description,
(c) - gold standard, (d) - recognition with Ec, (e) - recognition with Ec and Eb.

(a) (b) (c)

(d) (e)

Figure 9. Non-linguistic result : (a) - original image, (b) - image description,
(c) - gold standard, (d) - recognition with Ec, (e) - recognition with Ec and Eb.
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(a) (b) (c)

(d) (e) (f)

Figure 10. Sample results for graph homeomorphism approach. (a) - image,
(b) - description, (c) - gold standard, (d) - Em + Ec + Eb, (e) - no Ec, (f) - no Eb

6. Conclusions

The present paper has presented the CHAP method applied to automatic image
understanding system development. The approach draws upon the active contours
method, which employs not only the knowledge contained in the image but also
any other knowledge that might by useful or sometimes indispensable for proper
localisation of objects in an image. Since full utilisation of this knowledge can
be complicated or even impossible, the task of image understanding has to be di-
vided into steps, with each step contributing new semantic knowledge. This helps
to avoid, if such a need should arise, low-level pixel analysis and focus on high-
level spatch set analysis, which in many cases makes it easier to utilise expert
knowledge. Expert knowledge utilisation, which is a key element of the approach
presented, should be performed in such a way as to let an expert demonstrate their
knowledge in most natural way. Thus, the present work has presented three ap-
proaches based on linguistic description: the one that requires knowledge to be
rendered into the language of mathematical formulae with formal description of
an image itself, the one that directly applies linguistic descriptions in the form



A. Tomczyk, M. Pryczek, S. Walczak, K. Jojczyk, P. S. Szczepaniak 111

of rules, also with formal image description, and the one that defines linguisti-
cally both expert knowledge and image description. Sample examples prove the
approach is very promising and can be applied in many domains at different anal-
ysis levels.
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M. Woźniak, and A. Żołnierek, Vol. 45 of Advances in Soft Computing,
Springer, 2007, pp. 148–155.

[33] Tomczyk, A., Wolski, C., Szczepaniak, P. S., and Rotkiewicz, A., Analysis of
Changes in Heart Ventricle Shape Using Contextual Potential Active Con-
tours, In: Computer Recognition Systems 3, edited by M. Kurzyński and
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