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Thin linear-elastic cylindrical shells having a micro-periodic strocture 
along two directions tangent to the shell midsurface (biperiodic shells) are 
object of considerations. The aim of this paper is to investigate the effect of a 
periodicity cell size on the stationary stability of such shells. In order to take 
into account the length-scale effect in special stability problems, a new 
averaged non-asymptotic model of biperiodic shells, proposed in [Tomczyk B.: 
Thin cylindrical shells, in: Thennomechanics of Microheterogeneous Solids 
and Stroctures. Tolerance Averaging Approach. Ed. by Wozniak C., Michalak 
B., lfdrysiak J., Lodz Technical University Press, Lodz 2008, pp. 165-175] is 
applied In the framework of this model not only the fundamental "classical" 
critical forces but also the new additional higher-order critical forces 
depending on the period of heterogeneity will be derived and discussed 
These critical forces cannot be obtained from the asymptotic models 
commonly used for investigations of the shell stability. The differences and 
similarities between results derived from the aforementioned non-asymptotic 
biperiodic shell model and a certain asymptotic one as well as from the non­
asymptotic model for shells with a micro-periodic structure along one 
direction tangent to the shell midsurface (uniperiodic shells) will be discussed. 

1. Introduction 

The object of considerations are thin linear-elastic circular cylindrical shells 
having a periodically inhomogeneous structure along two directions tangent to 
the shell midsurface. By periodic inhomogeneity we shall mean periodically 
variable shell thickness and/or periodically variable inertial and elastic properties 
of the shell material. Shells of this kind are termed biperiodic. As an example we 
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can mention cylindrical shells with periodically spaced families of thin nbs 

shown in (Fig. 1). The period of heterogeneity are assumed to be very large 

compared with the maximum shell thickness and very small as compared to the 

midsurface curvature radius as well as the smallest characteristic length 

dimension of the shell midsurface. 

Fig. 1. An example ofbiperiodically stiffened cylindrical shell 

For shells of this kind it is interesting to analyse the effect of the periodicity 

cell size on the overall shell behaviour (called the length-scale effect). However, 

the exact equations of the shell theory involve highly oscillating, non-continuous, 

periodic coefficients and hence they are too complicated to apply to investigations of 

engineering problems. That is why a lot of different approximate modelling 

methods for shells of this kind have been proposed. Periodic cylindrical shells are 

usually described using homogenized models derived by means of asymptotic 

methods. These models represent certain equivalent structures with constant or 

slowly varying rigidities and averaged mass densities, cf. [1, 2, 3, 4). Unfortunately, 

in models of this kind the effect of the period lengths on the overall shell 

behaviour is neglected in the first approximation which is usually employed. 

The periodically densely ribbed shells are also modelled as homogeneous 

orthotropic structures, cf. (5, 6, 7). These orthotropic models are also incapable 

of describing many phenomena (e. g. the dispersion of waves and the existence of 

higher-order motions and higher free vibration frequencies dependent on a cell 

size) observed mainly in the dynamics and dynamic stability of periodic structures. 
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In order to analyse the length-scale effect in dynamic or/and stability 
problems, the new averaged non-asymptotic models of thin cylindrical shells 
with a periodic micro-heterogeneity either along two directions tangent to the 
shell midsurface (biperiodic structure) or along one direction (uniperiodic 
structure) have been proposed by Tomczyk in a series of papers, e.g. [8, 9, 10, 
11, 12, 13, 14, 15), and also in books [16, 17, 18, 19, 20, 21). These, co called, 
the tolerance models have been obtained by applying the non-asymptotic 
tplerance averaging technique, proposed and discussed in monographs (22, 23, 
24, 25), to the known governing equations of Kirchhoff-Love theory of thin 
elastic shells (partial differential equations with functional highly oscillating non­
continuous periodic coefficients). Contrary to starting equations, the governing 
equations of the tolerance models have coefficients which are constant or slowly­
varying and depend on the period length of inhomogeneity. Hence, these models 
make it possible to investigate the effect of a cell size on the global shell 
dynamics and stability. This effect is described by means of certain extra 
unknowns called fluctuation amplitudes and by known fluctuation shape functions 
which represent oscillations inside the periodicity cell. Moreover, the tolerance 
models describe selected problems of the shell micro-dynamics, cf. [ 13, 18, 19]. 
It means that contrary to equations derived by using the asymptotic homogenized 
methods, the tolerance model equations make it possible to investigate the micro­
dynamics of periodic shells independently of their macro-dynamics. In the papers 
and books, mentioned above, the applications of the proposed models to analysis 
of special problems dealing with dynamics as well as stationary and dynamical 
stability of uniperiodically and biperiodically densely stiffened cylindrical shells 
have been presented. It was shown that the length-scale effect plays an important 
role in these problems and cannot be neglected. 

It has to be emphasized that the non-asymptotic tolerance models of shells 
with uni- and biperiodic structure have to be led out independently, because they 
are based on different modelling assumptions. The governing equations for 
uniperiodic shells are more complicated It means that contrary to the asymptotic 
approach, the uniperiodic shell is not a special case of biperiodic shell. 

The application of the tolerance averaging technique to the investigations of 
selected dynamical and/or stability problems for periodic plates can be found in 
many papers, e.g. [26) and [27), where dynamical stability of Hencky-Bolle-type 
plates and of Kirchhoff-type plates is analysed, respectively, in [28] and [29], 
where dynamics of Kirchhoff-type plates and of wavy-type plates is investigated, 
respectively, in [30], where stationary stability of densely stiffened Kirchhoff-
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type plates is discussed, respectively, For review of application of the tolerance 
approach to the modelling of different periodic and also non-periodic structures 
the reader is referred to (22, 23, 24, 25]. 

The main aim of this contribution is to apply the tolerance (non-asymptotic) 
model equations, derived in (16], and the governing equations of a certain 
asymptotic shell model, proposed in (20], to investigate the effect of a 
microstructure size on the critical forces of a circular biperiodically stiffened 
shell as shown in (Fig. 1). The new additional higher-order critical forces 
depending on the cell size will be derived and discussed. The second aim is to 
show both the differences and similarities between the critical forces obtained in 
this paper and the corresponding results presented by Tomczyk in (21], which 
have been derived for uniperiodically stiffened shell as shown in (Fig.2). 

Fig. 2. An example ofuniperiodically stiffened cylindrical shell 

It should be mentioned that the periodic cylindrical shells, being objects of 
considerations in this paper, are widely applied in civil engineering, most often as 
roof girders and bridge girders. They are also widely used as housings of reactors 
and tanks. Periodic shells having small length dimensions are elements of air­
planes, ships and machines. 

In the subsequent section the basic denotations, preliminary concepts and 
starting equations will be presented. 
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2. Preliminaries 

In this paper we investigate linear-elastic thin circular cylindrical shells. The 
shells are reinfo.rced by families of ribs, which are periodically and densely 
distributed in circumferential and axial directions. Shells of this kind are termed 
biperiodic. Example of such shell is shown in (Fig. 1 ). 

In order to describe the shell geometry define n = (O,.Li) x(O,L:i) as a set of 
points x = (x1 ,x2 ) in R 2 ; x1 ,x2 being the Cartesian orthogonal coordinates 
parametrizing region n c R2

. Let O.ix2x3 stand for a Cartesian orthogonal 
coordinate system in the physical space E 3

. Points of E 3 will be denoted by 
i = (x1 ,x2 ,x3

). A c~lindrical shell rnidsPrface M is ¥iven by its parametric 
representation M=\ieE3 :i=r(x1,x2hx1,x2

JenJ, where rO is the 
smooth function such that 8r/8x1 

• 8r/8x2 = o, 8r/8x1 
• 8r/8x1 = 1, 

fJr/8x2 ·or/8x2 =1. It means that on M we have introduced the orthonormal 
parametrization and hence L1, L2 are length dimensions of M It is assumed that 
x 1 and x 2 are coordinates parametrizing the shell rnidsurface along the lines of 
its principal curvature and along its generatrix, respectively, cf. (Fig. 1). 

Subsequently, sub- and superscripts a.,p, ... run over sequence 1, 2 and are 
related to midsurface parameters x 1 ,x2

; summation convention holds. The 
partial differentiation related to xa is represented by Ba . Moreover, it is denoted 
aa ... o =oa ... 00 • Differentiation with respect to time coordinate te[t0 ,ti] is 
represented by the overdot. Denote by aaJ3 and a al3 the covariant and 
contravariant midsurface first metric tensors; respectively. For the introduced 
parametrization Gaj3 = aaj3 = O<lj3 are the unit tensors. 

Let d(x) and r stand for the shell thickness and the constant rnidsurface 
curvature radius, respectively. 

Denote by baJ3 the covariant midsurface second metric tensor. For the 
introduced parametrization bi.2 = b12 = bi.1 = 0 and bi 1 = -r- 1

• 

Let A1 and A2 be the period lengths of the stiffened shell structure 
respectively in x 1 

- and x2 
- directions, cf. (Fig. l ). Define the basic cell !!.. and 

the cell distribution (Q, !!..) assigned to n = (O,Li) x (O,L2 ) c R2 by means of: 
!!.. = [-A1 / 2, A1 / 2]x [-A.2 / 2, A2 / 2], 

(Q,ll.) = {ll.(x1,x2
) = (x1 ,x 2

) + !!.., (x1,x 2
) E Q} , 

wherepoint (x1,x2
) · acell ll.(x1,x2

) and n is aclosureofn. 
The diameter A.= (A.1 )

2 + (A.2 )
2 of !!.. is assumed to satisfy conditions: 

A. / d max » 1, A. fr < < l and A./ min( L1, L2 ) « 1. Hence, the diameter will be 
called the microstrncture length parameter. In every cell ll.(x) we introduce 
local coordinates z1 ,z2 along the x 1 - and x2 -directions, respectively, with the 
0-point at the centre of the cell. It means that the cell !!.. has two symmetry axes: 



30 Barbara Tomczyk 

for z 1 = 0 and z 2 = 0 . Thus, inside the cell, the geometrical, elastic and inertial 

properties of the stiffened shell are described by symmetric (i.e. even) functions 

of z = (z1 ,z2
) e [-A.1 / 2, A.1 /2] x [-A.2 12, A.2 /2]. 

Denote by Ua =ua(x,t), w=w(x,t), xen , te(to,t1). the midsurface 

shell displacements in directions tangent and nonnal to M, respectively. Elastic 

properties of the shell are described by shell stiffness tensors vaJlyS(x), 

saf:lyS(x). Let µ(x) stand for a shell mass density per midswface unit area. Let 

/a(x,t), /(x,t) be external forces per midsurface unit area, respectively 

tangent and normal to M We denote by jjaP(t) the time-dependent compressive 

membrane forces. 
Functions µ(x), Daf:lyS(x), Bapyo(x) and d(x), x en, are assumed to be 

~-periodic with respect to arguments x 1 ,x2
• 

It is assumed that the in the general case the behaviour of the stiffened shell 

under consideration is described by the action functional 

L1L2 IJ 

A(ua, w) = ff fL(x,013ua,ua,r.ia,oaj3w,oaw, w, w)dtdx2dx1
, (1) 

o o 10 

where lagrangian L(x,opua,Ua,Ua,8apw,8aw, w, w) is highly oscillating function 

with respect to x and has the well-known form, cf. [7, 31], 

L =.!..(DaPr5apua88u
1 

+2r-1naJ:111 wapua +r-2D 1111 ww+ 
2 (2) 

+Bal3'foaapw8y0w+.NaP(t)oawopw-µaaPuaup -µw2
)- faua - fw. 

Obviously, in the above formula it has been taken into account that 

b 
-I 

11 =-r · 
The principle of stationary action applied to A leads to the following system 

of Euler-Lagrange equations 

Op fJL oL +.£._ aL = 0 
o(opua) Bua ot OiJa ' 

-O~A aL +a aL aL +.£._ fJL = 0 . 
""'o(aapw) a o(aa w) aw at ow 

After combining (3) with (2) the above system can be written in the form 

a13 (Dal:IY0a8uy)+ r-1ap (Dal311w)-µaa'3u13 +fa = 0, 

r - 1 vaPllapua +oa13(Bal3roaysw)+r-2 D1111w-.NaPaallw+µw-:f = 0 . 

(3) 

(4) 
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It can be observed that equations (4) coincide with the well-known governing 
equations of simplified Kirchhoff-Love second-order theory of thin elastic shells, 
cf. [6, 31]. In the above equations the displacements ua = ua (x,t), w = w(x,t) 
are the basic unknowns. For periodic shells coefficients of lagrangian L and 
hence also of equations (4) are highly oscillating non-continuous functions 
depending on x with a period A.. That is why equations (3) (or their explicit form (4)) 
cannot be directly applied to investigations of engineering problems. Using the 
tolerance modelling technique, cf. [23), to equations (3), the tolerance non­
asymptotic model equations with constant coefficients depending on microstructure 
length parameter ')... have been derived by Tomczyk in [16]. Here, this model will 
be applied to investigate a length-scale effect in a certain stationary stability 
problem of the biperiodic shells under consideration. Obviously, for stationary 
problems argument t and the terms involving time derivatives (i.e. inertial forces) 
will drop out from the tolerance model equations. At the same time forces Nap 
will be assumed as the time-independent constant compressive membrane forces. 

To make the analysis more clear, in the subsequent section we will recall the 
governing equations of the tolerance model proposed in [ 16] and shortly outline 
the tolerance modelling procedure leading to them. We will also remind the 
governing equations of a certain asymptotic model derived in [20]. 

3. Modelling approach 

Following monographs [23, 24, 25], we outline below the basic concepts and 
assumptions which is used in the course of the tolerance modelling procedure. 

3.1. Basic concepts and modelling assumption 

The fundamental concepts of the tolerance modelling are those of tolerance 
determined by tolerance parameter, cell distribution, tolerance periodic function 

and its two special cases: slowly-varying and highly-oscillating functions. The 
tolerance approach is based on the notion of the averaging of tolerance periodic 

function. 
The main statement of the modelling procedure is that every measurement as 

well as numerical calculation can be realized in practice only within a certain 
accuracy defined by tolerance parameter & being a positive constant. 

The concept of cell distribution (0, Ll) assigned to n = (0, L1) x (O,L2) has 

been introduced in the previous Section. 
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A bounded integrable function f0 defined on n =[0,Li]x[O,~] (which 
can also depend on t as a parameter) is called tolerance periodic with respect to 
cell 6 and tolerance parameter o, if roughly speaking, its values in an arbitrary 
cell A(x) can be approximated, with sufficient accuracy, by the corresponding 
values of a certain A -periodic function f. (z), z e A{x), x en. Function f. is a 
6 -periodic approximation of f in 6(x) . This condition has to be fulfilled by 
all derivatives off up to the R-th order, i.e. by all its derivatives which occur in 
the problem under consideration; in the problem analysed here R is equal either l 
or 2. In this case we shall write f e TPt (Q,D.). It has to be emphasized that for 
periodic structures being object of considerations in this paper function 
f. (z), z e A(x), x en has the same analytical form in every cell A(x), x en. 
Hence, f. O is independent of x . In the general case, i.e. for tolerance periodic 
structures (i.e. structures which in small neighbourhoods of A(x) can be 
approximately regarded as periodic), f. =f. (x,z), z e A(x), x en. 

Subsequently we will denote by 8 = (81,82 ) the gradient operator in n and 
by ak f 0, k = O,l, .. ,R, the k-th gradient of function f0 defined in n , where 
a0 f(·) = f(·) . Let fs(k) (z), z e 6(x) be a periodic approximation of 
akfeTPt(Q,6) incell A(x), xen, k = O,l, .. ,R, f.00=/.0. 

A continuous bounded differentiable function v(x) defined on 

n = [O, L1] x [O, L2 ] (which can also depend on t as a parameter) is called slowly­

varying with respect to cell A and tolerance parameter o, if 

v(x) e TPl (Q,A), 
(5) 

v~k)(z)=okv(x), k=O,l, ... ,R, forevery zeA(x),xen . 

It means that periodic approximation v~k) of akvO in A(x) is a constant 
function for every x e n . Under the above conditions we shall . write 
v e SVl(Q,D.). 

Function h(x) defined in 0 = [O,Li] x[O,L2 ] is called the highly oscillating 
function with respect to cell A and tolerance parameter o, he HOf (O,D.), if 

h(x) e TPl(0,6), 

('v'v(x) E SVl (0,A)) (/ = hv e TPl (0,6)), (6) 

f.(k)(z) =8kh.(z) v(x), k = 0,1, ... ,R, z E A(x), x E 0. 

In the problem considered here we also deal with the highly-oscillating 
functions which are 6 -periodic, i.e. they are special cases of the highly­
oscillating tolerance A -periodic functions, defined above. Set of the highly­

oscillating A -periodic functions is denoted by h E HOR (0.,6). Let h(x) be a 
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highly-oscillating /.. -periodic function defined in Q which is continuous 
together with its gradients il h, k = 1, ... ,R -1, and has either continuous or a 
piecewise continuous bounded gradient oR h . Periodic function h( ·)will be 
called the fluctuation shape function, if it depends on /.. as a parameter and 
satisfies conditions ( 6h and ( 6h , (in ( 6h <l h. ( z) has to be replaced by 
o* h(z) ), together with conditions: 

Ok h E O(')... R-k))' k = O,l, ... ,R, o0 h = h ' 

fok h(z)dz = o, z e A(x), x en, k = 1,2, ... ,R, 
t.(x) 

Jµ(z)h(z)dz = 0, z e A(x), 
t.(x) 

(7) 

where µ is a certain positive valued ')... -periodic function defined in n . In 

stationary problems, condition (7)3 is replaced by Jh(z)dz = 0. 
t.(x) 

Let /0 e TPf (Q,A). By the averaging of tolerance periodic function 

f = o0 f and its derivatives ok f, k = 1,2, ... ,R, we shall mean function 
k -< 0 f > (x), X E Q, defined by 

<Ok f > (x) = l~I J!?)(x,z)dz' k = 0,1, ... ,R, z E A(x)' x En. (8) 
t.(x) 

For periodic media periodic approximation fx(k) of ok f in A(x) is 

independent of argument x and < ak f > is constant. For tolerance periodic 

media < ak f > is a smooth slowly-varying function of x . 

Let f(x,ak g(x)), k = 0,1, ... ,R be a composite function defined in n such 

that f(x,akg(x)) E sog(n,A), g(x) E TPf (Q,A). The tolerance averaging of 

this function is defined by 

k _ I J (k) -<f(-,o g(·)>(x)=-l I fx(x,z,gx (x,z))dz, zeA(x), xen. (9) 
11 t.(x) 

For periodically microheterogeneous shells under consideration function / 1 

is independent of x and < f(·,ak g(-) > is constant. It can be seen, that definition 

(8) is a special case of definition (9). 
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In the tolerance modelling of dynamic problems for periodic shells we also 
deal with mean (constant) value < f > of /i - periodic integrable function /0 
defined by 

l J -<I (z) >=-I I /(z)dz' z E A(x)' x En . 
A t.(x) 

(10) 

More general definitions of these concepts are given in [23, 24, 25). 

The fundamental assumption imposed on the lagrangian under consideration 
in the framework of the tolerance averaging approach is called the micro-macro 

decomposition. It states that the displacement fields occurring in this lagrangian 

have to be the tolerance periodic functions in x . Hence, they can be decomposed 

into unknown averaged displacements being slowly-varying functions in x and 

fluctuations represented by known highly-oscillating functions called fluctuation 

shape functions and by unknown fluctuation amplitudes being slowly -varying in x . 

3.2. Outline of the modelling procedure 

The tolerance modelling procedure for Euler-Lagrange equations (3) is 

realized in two steps. 
The first step is the tolerance averaging of action functional (1). To this end 

let us introduce two systems of linear independent highly-oscillating Junctions, 

called the fluctuation shape functions, being A-periodic in x=(x1,x2
): 

ha(x) e Ha1(0.,li) , a=l,..,n and gA(x) e H02(0.,/i) , A=l,..,N. These 

functions are assumed to be known in every problem under consideration. Agree 
with (7), they have to satisfy conditions: 
ha e O(A.), A.oaha eO(A.) , 
gA E O(A.2 ), AOagA E O(A.2 ), A.2oa~gA E O(A.2 ) , 

<µha >=<µgA >=0 and <µhahb >=<µgAgB >=0 for a#=b,A#=B, where 

µ(-) is the shell mass density being a A. -periodic function with respect to x . 

In dynamic problems, functions ha(x), gA(x) represent either the principal 

modes of free periodic vibrations of the cell /i(x) or physically reasonable 

approximation of these modes. Hence, they can be obtained as solutions to 

certain periodic eigenvalue problems describing free periodic vibrations of the 

cell, cf. [ 17]. In stationary problems, these functions can be treated as the shape 

functions resulting from the finite element periodic discretization of the cell. 

Now, we have to introduce the micro-macro decomposition of displacements 

ua (x,t) e TPJ(O.,/i), w(x,t) e TPbO.,/i) , xeO., te(t0 , t1), which in the 

problem under consideration is assumed in the form 



where 

Length-scale effect in stability problems for biperiodically ... 

ua(x,t) = uha (x,t) = u~(x,t) + h0 (x)U~(x, t), a= l, ... ,n, 

w(x,t) = wg(x,t) = w0 (x,t)+ gA(x)WA(x,t), A= l, ... ,N, 

u~(x,t), U~(x,t) e svJ(O.,a) c TPJ(O.,a), 
w0 (x,t), wA(x,t) E svtcn,a) c TPr,2(0.,a)' 
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(11) 

(12) 

~nd where summation convention over a and A holds. Functions u~, w0
, 

called averaged variables, and functions U~, WA, called fluctuation amplitudes, 
are the new unknowns being slowly-varying in x . 

Since lagrangian (2) is a highly-oscillating function with respect to x , 

L e Hog (0., a) , then there exists its periodic approximation in every a(x) . The 
periodic approximation of L is obtained by replacing displacements ua, w and 
their derivatives occurring in (2) by periodic approximations of these functions. 
These approximations are calculated applying micro-macro decomposition (11) 
and bearing in mind properties of the slowly-varying and highly-oscillating 
functions given by means of (5), (6). Then, using tolerance averaging formula (9) 

we arrive at function < Lhg > being the tolerance averaging of lagrangian (2) in 
a(x) under micro-macro decomposition (11). The obtained result has the form 

L (~ 0 0 ·Ouau·a~ 0 0 0 OWA ·Ow"A) < hg > upua,ua,ua, a• a•uapW , aw , w , , w , = 

I [ Dapy8 ~ o~ 0 2 nnPYB~ ha ~ Oua =2 < > upUauliuy + < uli > upUa y + 

+ < naP'Ylia h0 o hb > U 0 Ub + P Ii y a 

+2r-1(<DaP11 >O u0 w0 +<Dap11a h0 > w0U 0 + P a P a 

+< DaPllgA >O uOWA +< DaJm0 hagA >UaWA)+ P a P a 

+r- 2(<D1111 >wowo+ 2<D1111gA >wOWA+ 

+<Dl lllgAgB >WAWB)+<BnPrli >o woo WO+ ap y8 

+ 2 < BapyBa gA >a wOWA + < BaPYBa gAf} gB > wAwB + yli ap a~ yB 

+NnPa w0a w0 -NnP<fJ gAfJ g 8 >WAW8 -< µ >anPu0u0 + a P a P ap 

-< µ > (w0)2 -< µhahb >a<:LPu~u8-< µgAgB >WAWB]+ 

- <fa >U~ - <faha >U~- <f > wo-<fgA >WA. 

(13) 
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Due to periodic structure of the shell, averages < · > on the right-hand side 
of (13) are constant and calculated by means of (10). The underlined terms in (13) 
depend on the microstructure length parameter A. . 

Functional 

(14) 

where < Lhg > is given by (13), is called the tolerance averaging of functional 

A(uu, w) defined by (1) under decomposition (11). 

The second step in the tolerance modelling of Euler-Lagrange equations (3) 
is to apply the principle of stationary action to Ahg given above. 

The principle of stationary action applied to Ahg leads to the system of 

Euler-Lagrange equations for u~, w0 , U~, WA as the basic unknowns. The 
explicit form of these equations will be given in the next subsection. 

3.3. Tolerance model equations 

In the previous subsection, applying the tolerance averaging of the starting 
lagrangian (2) and then using the principle of stationary action to tolerance 
averaged action functional (14) defined by means of averaged lagrangian (13), 
we have arrived at the Euler-Lagrange equations, which explicit form can be 
written as 
constitutive equations 

Nuf3 =< Duf3yli > o u0 + < Daf3rlio hb > Ub + Ii y Ii y 

+r-1(<Du[311 >wo+<Duf311gB >WB), 

Maf3 =< Baf3yo >o w0+<Baf3Y0fJ g 8 >W8 
yo yo , 

hap =< o ha Dapyo > o u0 + < o ha Daf3ro o hb > Ub + 
u 0 y u 0 y 

+r- '(< Oaha Duf311 >WO+< Oaha Daf311gB >WB)' 
(15) 

GA =r- '<gADllyli >oou~+r-2< gAD1111 >wo + 

+<o gABaf'>yo >o wo+r-' <gADllf3y f} hb >Ub+ yli uf3 f3 y 

+[< oapgA Baf3yli
010

gB > +r-2< gAD11 11 gB >]WB, 
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and the dynamic equilibrium equations 

8aNap_ < µ> aaP;;aO+ < f P >= 0' 

8apMaP +r- 1N 11 +Naf'Jaa13w0 + < µ > w0-< f >= 0 , 

hahb af3 u" b haP fpha - 0 b - 1 2 < µ >a a+ -< >- , a, - , , ... ,n, 

<µgA gB >WB +GA-Naf'J<Oo.gAopgB >WR+ 

-< fgA > ""0 , A,B"" 1,2,. .. ,N. 
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(16) 

Equations (15) and (16) together with micro-macro decomposition (11) and 

physical reliability conditions (12) constitute the tolerance model for analysis of 

selected dynamic and stability problems for biperiodica/ly stiffened shells under 

consideration. In contrast to starting equations (4) with discontinuous, highly 

oscillating and periodic coefficients, the tolerance model equations presented here 

have constant coefficients. Moreover, some of them depend on microstructure length 

parameter A. (underlined terms). Hence, the tolerance model makes it possible to 

describe the effect of length scale on the shell behaviour. 

It has to be emphasized that solutions to selected initial/boundary value 

problems formulated in the framework of the tolerance model have a physical 

sense only if conditions (12) hold for the pertinent tolerance parameter o. These 

conditions can be also used for the a posteriori evaluation of tolerance parameter 

o and hence, for the verification of the physical reliability of the obtained 

solutions. 
It is easy to prove, that for a homogeneous shell and homogeneous initial 

conditions for fluctuation amplitudes the resulting equations reduce to the 

starting equations (4). 

3.4. Asymptotic model equations 

The asymptotic model equations can be derived directly from the tolerance 

model equations (15), (16) by neglecting the underlined terms which depend on 

the microstructure length parameter A. . Hence, after calculating the fluctuation 

amplitudes by means of 

ub = -(G-1 )be I< a he DaT)µS >a uo + p - 1 <a he DaT)I I > woJ 
y YTJt a S µ a • 

WA = -(S-1 )AB < (} gB Baf'Jyfi > (} WO ap yfi • 

(17) 

where 
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and denoting 

Da~yo =< Daf3yo > _ < Daf3rn: 0 ha > (G-1 )ab < 0 hb Dxi:,ro > 
h - 'X ,,r, x ' 

B:f3yo =< Baj3yo > _ < Ba~µr,0µ1:,gA > (S-t )AB < Bµr,gB Bµ(,yo >, 

we arrive at the asymptotic model equations for unknowns u~(x,t), w0 (x,t) 

D:l3Y5af'>-Ou~ +r- 1D:1rnaliw0
- < µ > aaliii~ o +<fa>= 0 , 

B~5oCl.J3yfiwo +r-1D! 1Y5o5u~ +r-2D!111w0 + 

+Naliaa13w0 + < µ > w0 -< f >=0. 

(18) 

Equations (18) have to be considered together with decomposition of 

ua(x,t),w(x,t) in Qx(to,t1) givenby(ll)with U~,WA calculated by means 

of (17). Coefficients in equations ( 18) are constant in contrast to coefficients in 
equations (4) which are discontinuous, highly oscillating and periodic. It bas to 
be emphasized that equations (18) are not able to describe the length-scale effect 
on the overall shell dynamics and stability being independent of the microstructure 
size. 

It has to be emphasized that equations (18) coincide with the consistent 
asymptotic model equations derived in [20] from Euler-Lagrange equations (3) 
by applying a new approach to the asymptotic modelling of problems for micro­
heterogeneous media. This new approach is proposed in [24, 25] 

The subsequent analysis dealing with a certain stationary stability problem 
will be based on tolerance model equations (15), (16) and asymptotic model 
equations (18). Moreover, the results obtained for biperiodic shells under 
consideration will be compared with the corresponding results derived in [21] for 
uniperiodic shells. 

4. Applications 

Now, the tolerance model equations (15) and (16) will be applied to 
determine and investigate critical forces of the biperiodically stiffened shells 
under consideration. In order to evaluate the effect of a cell size in this stability 
problem, the critical forces obtained from the tolerance model will be compared 
with those derived from asymptotic model (18). Moreover, comparison of results 
obtained here with corresponding those derived in [21] for uniperiodic shells will 
be discussed. 
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4.1. Formulation of the problem 

Let the shell, considered here, be closed and circular. It means that Li = 27tr , 
where r is the midsurface curvature radius. The shell is reinforced by n families 
of stiffeners, which are periodically and densely distributed in circumferential 
and axial directions; an example of such a shell is shown in (Fig. 1 ). The 
stiffeners have constant cross-sections. Moreover, the gravity centres of the 
stiffener cross-sections are situated on the shell midsurface. It is assumed that 
both the shell and ribs are made of homogeneous isotropic materials. 

We define A= A. 1 = A.2 as the period length of the stiffened shell structure. 
The period /... represents the distance between axes of two neighbouring ribs 
belonging to the same family, cf. (Fig 1). It assumed that the following 
conditions hold: A./ dmax >> 1, A/ r << 1 and A./L1 <<1, where drruix is the 
maximum height of stiffeners. We also assume that Li.> Li and hence A./L2 <<1. 
We recall that inside the cell Li =[-A I 2, A. I 2] x [-A. I 2, A. I 2], the geometrical, 
elastic and inertial properties of the stiffened shell are described by symmetric 
(i.e. even) functions of arguments z =(z1 ,z2

) E[-A1 / 2, A.1 / 2]x[-A.2 /2, A.2 / 2]. 
The stiffened s1!_ell under consideration will be treated as a shell having a A -

periodic thickness d ( x) and A. -periodic elastic properties described by stiffness 
tensors DaJ3yli(x),BaJ3yli(x), x E [O,Li] x [O,L2 ]. 

It assumed that the shell is simply supported on edges x 2 = 0, x 2 = Li. , cf. [31 ]. 
In order to analyse the problem of stationary stability, argument t and the 

terms involving time derivatives (i.e. inertial forces) as well as external forces 
will be neglected in the tolerance and asymptotic model equations. Now, forces 
jijaJ3 in the stability terms of the model equations are time-independent constant 
compressive membrane forces. 

We assume that the shell is uniformly compressed in axial direction by 
constant forces Jii22

; hence Jii12 = jij21 = jij11 = o. 
Let the investigated problem be rotationally symmetric with a period A./ r ; 

hence u? = Uf = 0 and the remaining basic unknowns are only the functions of 
x 2 -midsurface parameter. It has to be emphasized that the total displacement 
u2, w in the micro-macro decomposition (11) are functions of both arguments, 
because the fluctuation shape functions depend on x 1 and x 2

• 

For the sake of simplicity, we shall confine ourselves to the simplest 
form of the tolerance model in which a = n = A = N = 1 . Hence, we introduce 

only two A. -periodic fluctuation shape functions h(z) = h1 (z) E Ha1 (O.,Li) and 

g(z) = g 1 (z) E H02(0.,Li), z = (z1 ,z2
) E Li(x), which have to satisfy condition 

< h >=< g >= 0 . Bearing in mind the symmetry of the cell geometry and 
symmetric distribution of the material properties inside the cell we assume that 



40 Barbara Tomczyk 

h(z) and g(z) are respectively odd and even functions of z ; i.e. h(z) and g(z) 

are respectively antisymmetric and symmetric functions on the cell. It assumed 

that these functions are known in the problem under consideration. 

In the sequel denotations U2(x2,t)=Ui(x2,t), W(x2,t)=W1(x2,t) will 

be used. 
Bearing in mind the conditions and denotations given above we will derive 

below the formulae for critical forces of the considered biperiodic shell by using 

both the tolerance model governed by equations (15), (16) and the asymptotic 

model represented by equations (18). 

4.2. Analysis in the framework of tolerance model for biperiodic shells 

Under assumptions given in the previous Subsection and under extra 

approximation 1 +'A.Ir~1, governing equations (16) of the tolerance model take 

the form 

<D2222>a uo+r- 1< D 22 11 >a wo+<D2222a h >a U -O 222 2 2 22-· 

r-1 < Dll22 > a2u~+ < B2222 > a2222Wo +r-2 < DIJIJ >WO+ 

+N22a22wo +r- t < D1122a2h > U2+ < B22aaaaag > a22W =0, 

< 02h D2222 > azu~ + r-• < a2h D221 I > WO+ 

+ < aahDa22aaah > U2 = 0, 

< aaag B22aa > a22wo + 

+(< aaf>g Baftrfiaysg >-'A.2N22 < (a2g)2 >)W = 0, 

( 19) 

with the basic unknowns u~(x2 ), w0 (x2) , U2(x2,t)=Ui(x2,t) , 

W(x2
) = W1(x2) and where g = 'A.-1g. All coefficients of (19) are constant and 

some of them depend explicitly on microstructure length parameter 'A.. 

Solutions to equations (19) satisfying the boundary conditions for a simply 

supported shell can be assumed in the form (see [31]) 

00 

u~(x2 ) = LAn cos(j3nx
2
), 

00 

w0
(x

2
) = LBn sin(j3nx

2
), 

n=I n=I (20) 
00 00 

U2 (x2
) =_Len sin(Pnx2

), W(x2
) = LDn sin(pnx2

), 

n=I n=I 

where Pn = me I Lz , n = 1,2,. .. ; n represents the number of buckling half-waves 

in axial direction. Substituting these solutions into (19) we obtain the system of 
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four linear homogeneous algebraic equations for ~,Bn,Cn,Dn, which has 
nontrivial solutions provided that its determinant is equal to zero. In this manner 

we arrive at the characteristic equation fo~ critical forces (N22 )1;: = N22 , from 

which for every n we derive the formulae for fundamental lower (N~2)';:, and 

new additional higher (N12)';:. critical values of compressive force (N22)';:,. 
Under denotations 

a=< oaflg Bafrtoayog >' 

b =< B2hD2211 > -< D2211 >, 

c =< D2222 ><Bah Da22aaah >< D222282h >-t - < 82hD2222 >, 

J =< Dt 12202h >< D2222 >< D222202h > - t _ < D1122 >, 

e = r-rJb(c)-1, kn =< B2222 > (Pn)4 + r - 2 < D1111 >, 

Pn =< B22
aaOaag > (Pn)2

, 

E =< (82g2) >, 

these formulae are written as 

- (- )2 -(- k- ) 
Sn = Pn +a e - n ' 

Some terms in (22) depend explicitly on period length A. . 

(21) 

(22) 

4.3. Analysis in the framework of asymptotic biperiodic shell model 

In order to evaluate the obtained results, let us consider the above problem 
within the asymptotic model, which can be derived from governing equations 
(19) by neglecting the terms involving microstructure length parameter A.. 
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Setting (N22 )d = N22 and assuming solutions to the resulting asymptotic 

model equations in the form (20), we derive from this asymptotic model the 

following formula for critical values of compressive forces N22 

(23) 

where e,kn are defined by (21)5 6. 
' 

It is easy to see that in the above formula the cell size is neglected and that in the 
framework of asymptotic model it is not possible to determine the additional 
higher critical force, caused by the periodic structure of the stiffened shell. 

4.4. Analysis in the framework of tolerance uniperiodic shell model 

This same stability problems has been analysed in [21] for shells with 
a periodic micro-heterogeneous structure only in circumferential direction. 
Example of such a shell is shown in (Fig. 2). Below, following (21] we recall the 
results obtained from the tolerance model for uniperiodic shells. 
Under denotations 

an =< B2222 > Cl3n )4 + r-2 < D1122 > (l- < Dt 122 >< D2222 > - t), 

bn = (- < 011g Bll22 > +'A.2 < gB2222 > Cl3n)2)2(l3n )4 'A.-4 < g2 >-I , 

en = (< (011g)2BI111 > -2(13n)2t..2 (< 011g BI 122g > + 

+ 2 < (oig)2 B1212 >))A.-4 < g2 >-I , 

(24) 

where g=A.-1g, g=A.-2g and setting (N22 )~'; :FP2
, the formulae for 

fundamental lower (N~2)~'; and new additional higher (N]2)~'; critical values 

of compressive force (N22 )1;: obtained in the framework of 

uniperiodic shell model are written as 

(N~2)~~m = 0,5(13nf2((an +cn)-~(an +cn)
2 -4(ancn -bn)), 

(N]2 )~1; = 0,5(Pnr
2 (can +cn)+~(an +cn)2 -4(ancn -bn)). 

In (25) the period length 'A. is contained in terms bn, en . · 

tolerance 

(25) 
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4.5. Comparison of results, discussion and conclusions 

• In the framework of the tolerance models, not only the fundamental lower, but 
also the new additional higher critical forces can be derived; cf. (22) and (25). 
The higher-order critical forces, caused by a periodic structure of the stiffened 
shell, cannot be determined using the asymptotic models. 

• In order to evaluate the length-scale effect in the stability problem considered 

here, let us compare the lower critical force (N~2 )';;. derived from the 

tolerance biperiodic shell model, cf. (22)1 , with critical force (N22 )d'm 

obtained from the asymptotic model, cf. (23). It can be shown that introducing 

a small parameter s = (! .. I Li) 2 
( A. I Li < < 1 ) and then representing the square 

root in (22)1 in the form of the power series with respect to s , we arrive at 

the result: 

(26) 

It means that the differences between the fundamental lower critical force 
derived from the tolerance biperiodic shell model and critical force obtained 
from the asymptotic one are negligibly small. Thus, the ejf ect of microstructure 
length parameter A. on the fundamental critical forces of the shells under 
consideration can be neglected. It means that the asymptotic models (for 
example asymptotic model given by (18)) are sufficient to determine and 
investigate the critical forces of biperiodically densely stiffened cylindrical 
shells under consideration. This is a very important conclusion from an 
engineering point of view, because of the asymptotic models are more simple 
then the non-asymptotic models. Similar results have been obtained for 
uniperiodically stiffened shells, cf. [21]. 

• Comparing critical forces (22) derived from the tolerance biperiodic shell 
model with the corresponding critical forces (25) obtained from the tolerance 
uniperiodic shell mode~ we conclude that there are more terms depending on 
A. in formulae (25) then in (22). It means that the length-scale effect is 
stronger in the stability problems for uniperiodic shells. It follows from the 
fact that reliability conditions (12) for biperiodic shells are more restrictive 
then the corresponding reliability conditions for uniperiodic shells. In the 
tolerance model equations for uniperiodic shells we deal with functions which 
are slowly-varying or highly-oscillating in only one direction, while for 
biperiodic shells these functions are slowly-varying or highly-oscillating in 
two directions. 
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5. Final remarks 

Thin linear-elastic Kirchhoff-Love-type circular cylindrical shells with a 
micro-periodically inhomogeneous structure along the axial and circumferential 
directions are objects under consideration. Shells of this kind are termed biperiodic. 
As an example we can mention cylindrical shells with periodically and densely 
spaced families of longitudinal and circular stiffeners as shown in (Fig. 1 ). Dynamic 
and stability behaviour of such shells are descnbed by Euler-Lagrange equations (3) 
generated by the well known Lagrange function (2). The explicit form of (3), given 
by (4), coincides with the governing equations of the simplified Kirchhoff-Love 
second-order theory for elastic shells. For periodic shells coefficients of these 
equations are highly oscillating non-continuous periodic functions. That is why the 
direct application of equations (4) to investigations of specific problems is non­
effective even using computational methods. 

The new mathematical non-asymptotic model for analysis of selected 
dynamic and stability problems for periodic shells under consideration was 
formulated in [16) by applying the tolerance modelling procedure given in [23]. 
Contrary to the "exact" shell equations (4) with highly oscillating non-continuous 
periodic coefficients, the tolerance model equations have coefficients which are 
constant or depend only on the time coordinate. Moreover, in contrast to the 
known asymptotic models commonly used to analysis of dyiiamics and stability 
of densely stiffened shells, the non-asymptotic tolerance model takes into 
account the effect of a cell size on the overall shell behaviour (the length-scale 
effect). Here, this model is applied to investigate the influence of a microstructure 
length on the stationary stability of biperiodically stiffened shell subjected to 
constant compressive axial forces. The tolerance model derived in [16] is recalled 
here by means of constitutive relations (15) and of dynamic balance equations 
(16) for averaged shell displacements and fluctuation amplitudes as the basic 
unknowns as well as by means of micro-macro decomposition (11) of the total shell 
displacements and the physical reliability conditions (12) making it possible to 
determine a posteriori an accuracy of the obtained solutions to special problems. 
Decomposition (11) and hence also resulting tolerance equations (15) and (16) are 

uniquely determined by the periodic linear independentjluctuation shapefanctions, 
which have to be known in every problem under consideration. These functions can 
be obtained as solutions to certain periodic eigenvalue problems describing free 
vibrations of the celi cf. [17] or can be treated as the shape functions resulting from 
the finite element periodic discretization of the cell. 
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In the framework of the non-asymptotic models of periodic shells the 
fundamental lower and the new additional higher critical forces can be 
calculated and analysed, cf. formulae (21 ), (25). The higher-order critical forces 
depend on the microstructure length A. and cannot be derived from the 
asymptotic models; they can be analysed only in the framework of the tolerance 
(non-asymptotic) models. The differences between the fundamental lower critical 
forces derived from the tolerance models and critical forces obtained from the 
asymptotic models are negligibly small. Thus, the effect of microstructure length 
parameter A. on the fundamental critical forces of the shells under consideration 
can be neglected. Hence, the asymptotic models being more simple then the non­
asymptotic models are sufficient from the point of view of calculations made for 
this problem. 
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EFEKT SKALI W ZAGADNIENIACH STATECZNOSCI 
BIPERIODYCZNIE UZEBROW ANTCH 

POWLOK W ALCO WY CH 

Streszczenie 

Przeclmiotem rozwaZaii S'l cienkie, Iiniowo-sprcrfyste powloki walcowe maj'lce 

periodycznie mikro-niejednorodrul strukturcr w dw6ch kierunkach stycznych do 

powierzchni srodkowej powloki (powloki biperiodyczne). Celem pracy jest 

zbadanie wplywu wielkosci kom6rki periodycznosci na stacjonanl'l statecznosc 

takich powlok. Aby uwzglcrdnic efekt skali w zagadnieniach statecznosci, zasto­

sowano nowy, usredniony, nieasymptotyczny model s~cy do analizy dynamiki 

i statecznosci biperiodycznie uzebrowanych powlok. Model ten zaproponowano 

w pracy [Tomczyk B.: Thin cylindrical shells, in: Thermomechanics of micro­

heterogeneous solids and structures. Tolerance averaging approach, Part 11: Model 

equations. Ed. by C. Woiniak, B. Michalak, J. J~iak, Lodz Technical University 

Press, Lodz 2008, pp. 165-175]. R6wnania modelu wyprowadzone z wyko­

rzystaniem technild tolerancyjnego modelowania maj~ stale wsp6kzynnik.i i wiele 

z nicb zalei:y od dlugosci okresu periodyczno5ci struktury. Wziircie pod uwag<r 

efektu skali pozwala wyznaczac i analizowac nowe, dodatkowe, »ytszego rzfdu sily 

loytyczne, zaleine od wielkosci mikrostruktury. Sily te nie mog'l bye wyprowadzone 

w ramacb modeli asymptotycznych, powszechnie stosowanych do badania 

statecznosci powlok. R6znice i podobienstwa micrdzy wynikami otrzymanymi 

z modelu tolerancyjnego dla powlok biperiodycznych oraz wynikami uzyskanymi 

z modelu asymptotycznego a takZe z modelu tolerancyjnego dla powlok 

z periodyCZD'l struictunt w jednym kierunku stycznym do powierzchni srodkowej 

S'l dyskutowane. 


