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This contribution deals with the modelling and analysis of stability problems for thin com-
posite annular plates interacting with elastic heterogeneous subsoil. The object of analysis
is an annular plate with a deterministic heterogeneous microstructure and the apparent pro-
perties smoothly varying along a radial direction. The aim of contribution is to formulate
two macroscopic mathematical models describing stability of this plate. The considerations
are based on a tolerance averaging technique. The general results are applied to the analysis
of some special stability problems. The obtained results of critical forces with those obtained
from finite element method are compared.
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1. Introduction

The object of this contribution is a two-phased composite plate interacting with elastic micro-
heterogeneous subsoil with two moduli (Fig. 1). The assumed model of elastic foundation is
a generalization of the well-known Winkler model. The introduction of an additional modulus
of horizontal deformability of the foundation makes it possible to describe the stability of the
plate resting on a sufficiently fine net of elastic point supports such as piles or columns. The
annular plates under consideration have a space varying microstructure and hence are described
by partial differential equations with highly oscillating, non-continuous coefficients, which are
not a good tool for application to engineering problems. Hence, various simplified models are
proposed, replacing these plates by plates with effective properties described by smooth, slowly
varying functions. The plates under consideration are made of an isotropic homogeneous matrix
and isotropic homogeneous ribs which are situated along the radial direction.

Fig. 1. Fragment of the midplane of a plate with longitudinally graded microstructure: (a) microscopic
level, (b) macroscopic level
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The plate and foundation have λ-periodic structure along the angular axis and slow gradation
of effective properties in the radial direction. The period λ of inhomogeneity is assumed to be
very small when compared to the characteristic length dimension of the plate along the angular
axis. The apparent properties of the plate and foundation are constant in the angular direction
and slowly graded in space in the radial direction. Hence we deal here with a special case of a
functionally graded material (FGM) and functionally graded foundation properties.

Functionally graded materials are a class of composite materials where composition of each
material constituent determines continuously varying effective properties of the composite. Many
papers have been dedicated to analyse the behaviour of functionally graded (FGM) plates. The
analysis of functionally graded plates subjected to in-plane compressive loading can be found
in several papers. Javaheri and Eslani (2002) analyzed stability of rectangular FGM plates
simply supported on all edges. It is assumed that Young’s modulus varies along the thickness
direction. In the paper of Tylikowski (2005) analysis of dynamic stability of FGM rectangular
plates subjected to in-plane time dependent forces is presented. Material properties are graded
in the thickness direction according to the volume fraction power law distribution. You et al.
(2009) developed an analytical solution to determine deformations and stresses in circular disks
made of an FGM subjected to internal and/or external pressure. The governing equations are
derived from basic equations of axisymmetric, plane stress problem in elasticity. The mechanical
properties of materials are functions of the radial coordinate. In the paper by Tung and Duc
(2010) explicit expressions of postbuckling load-deflections curves by the Galerkin method are
obtained. Material properties in simply supported rectangular plates are assumed to be graded
along the thickness direction according the power law distribution of constituents. However,
analyses of FGM plates resting on an elastic foundation are quite limited. In the paper by
Benyoucef et al. (2010), the thick rectangular FGM plate with material properties graded in the
thickness direction according to a simple power-law distribution in terms of volume fractions
of constituents is analyzed. The plates are resting on a homogeneous elastic foundation. The
foundation is modelled as a two-parameter Pasternak or one-parameter Winkler-type foundation.
In the paper by Naderi and Saidi (2011), the exact solution of the buckling problem for FGM
sector plates resting on a homogeneous elastic foundation with one modulus is presented. It is
assumed that the modulus of elasticity E in the thickness direction varies according to a power
law function.

The majority of the above mentioned papers deal with plates where it is assumed that the
material properties vary along the plate thickness direction. In contrast to these papers, in
the present contribution, we deal with effective properties of the plate material and foundation
varying in the midplane of the plates.

The direct description of the plate under consideration leads to equations with highly oscilla-
ting and non-continuous coefficients. Hence, the aim of this contribution is to formulate averaged
models described by equations with functional but smooth and slowly varying coefficients. Here
we can mention these models which are based on the asymptotic homogenization technique for
equations with non-uniformly oscillating coefficients, cf. Jikov et al. (1994). However, because
the formulation of the averaged model by using the asymptotic homogenization is rather compli-
cated from the computational point of view, these asymptotic methods are restricted to the first
approximation. Hence, the averaged model obtained by using this method neglects the effect of
the microstructure size on the overall response of the FGM-plate. The formulation of the ave-
raged mathematical model for the analysis of stability of the plates under consideration will be
based on the tolerance averaging technique. The general modelling procedures of this technique
are given by Woźniak et al. (2008, 2010). One should also mention a few papers, where various
special problems of microstructured media are presented; e.g. Matysiak (1995), Nagórko and
Wągrowska (2002), Wierzbicki (1995). The applications of the tolerance averaging technique
for the modelling of stability of various periodic composites were presented in a series papers,
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e.g. Baron (2003), Michalak (1998), Tomczyk (2005), Wierzbicki et al. (1997). The approach,
based on the tolerance averaging technique, to formulate macroscopic mathematical models for
functionally graded stratified media was proposed by Michalak et al. (2007), Ostrowski and
Michalak (2011) for the heat conductions problem, and by Jędrysiak and Michalak (2011) for
the stability of thin plates. In the paper by Michalak (2012), shells with functionally graded
effective properties are analysed. Michalak and Wirowski (2012) analysed dynamic behaviour of
thin annular FGM plates with gradation of the material properties along the specified direction.

Throughout the paper indices i, j, k, . . . run over 1, 2, 3, indices α, β, γ, . . . run over 1, 2.
We also introduce non-tensorial indices A,B,C, . . . which run over the sequence 1, . . . , N . The
summation convention holds for all aforementioned sub- and superscripts.

2. Preliminaries

The object of our considerations are annular functionally graded plates with microstructure given
in Fig. 1 resting on a microheterogeneous foundation. Let us introduce the orthogonal curvili-
near coordinate system Oξ1ξ2ξ3 in the physical space occupied by a plate under consideration.
Setting x ≡ (ξ1, ξ2) and z = ξ3, it is assumed that the undeformed plate occupies the region
Ω ≡ {(x, z) : −H/2 ¬ z ¬ H/2, x ∈ Π}, where Π is the plate midplane and H is the plate
thickness. We denote by gαβ a metric tensors and by ǫαβ a Ricci tensor. Here and in the sequel,
a vertical line before the subscripts stands for the covariant derivative and ∂α = ∂/∂ξ

α, ξ1 = ϕ,
ξ2 = ρ. The plate rests on the generalized Winkler foundation whose properties are characteri-
zed by vertical kz and horizontal kt foundation moduli. The foundation reaction according to
Gomuliński (1967) has three components acting in the direction of the coordinates (z, ρ, ϕ)

Rz = kzw Rρ = kt
H

2
∂ρw Rϕ = kt

H

2

1

ρ
∂ϕw (2.1)

The model equations for the stability of the considered plate will be obtained in the framework
of the well-known second order non-linear theory for thin plates resting on the elastic foundation
(Woźniak, 2001). Denoting the displacement field of the plate midsurface by w(x, t), the external
forces by p(x, t) and by µ the mass density related to this midsurface, we obtain:

(i) strain-displacement and constitutive equations

καβ = −w|αβ mαβ = −Dαβγµκγµ (2.2)

where: Dαβγµ = 0.5D(gαµgβγ + gαγgβµ + ν(ǫαγǫβµ + ǫαµǫβγ)), D = Eh3/12(1 − ν2).

(ii) the strain energy averaged over the plate thickness

E(ξλ) =
1

2
Dαβγδw|αβw|γδ +

1

2
nαβw|αw|β +

1

2
kz(w)

2 +
1

2

h2

4
ktδ
αβ∂αw∂βw (2.3)

(iii) kinetic energy

K(ξα) =
1

2
µẇẇ (2.4)

The governing equations of the plate under consideration can be described by the well-known
principle of stationary action. We introduce the action functional defined by

A(w(·)) =

∫

Π

t1∫

t0

[L(y, w|αβ(y, t), w|α(y, t), ẇ(y, t), w(y, t)) + pw] dt dy (2.5)
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with the Lagrangian defined by

L(·, w|αβ , ẇ, ∂αw,w) = K(·, ẇ)− E(·, w|αβ , ∂αw,w)

=
1

2

(
µẇẇ − nαβw|αw|β −D

αβγδw|αβw|γδ − kzww −
h2

4
ktδ
αβw|αw|β

) (2.6)

where nαβ are in-plane forces, and the Kronecker-deltas δαβ will be treated as a tensor;
δ11 = 1/ρ2, δ22 = 1.

The principle stationary action applied to the functional A with the Lagrangian L, defined
by Eq. (2.6), leads to the Euler-Lagrange equation

∂

∂t

∂L

∂ẇ
−
∂L

∂w
+
( ∂L
∂w|α

)

|α
−
( ∂L
∂w|αβ

)

|αβ
= p (2.7)

and the equilibrium equations

(Dαβγδw|γδ)|αβ − (n
αβ
|β )|α −

h2

4
(ktδ

αβw|β)|α + kzw + µẅ = p (2.8)

This direct description leads to plate equations with discontinuous and highly oscillating coeffi-
cients. These equations are too complicated to be used in the engineering analysis and will be
used as the starting point in the tolerance modelling procedure.

3. Averaged models

Let us introduce the polar coordinates system Oξ1ξ2, 0 ¬ ξ1 ¬ ϕ, R1 ¬ ξ
2 ¬ R2 so that the

undeformed midplane of the annular plate occupies the region Π ≡ [0, ϕ] × [R1, R2]. Let λ,
0 < λ ≪ ϕ, be the known microstructure parameter. Denote Π∆ as a subset of Π of po-
ints with coordinates determined by conditions (ξ1, ξ2) ∈ (λ/2, ϕ − λ/2) × (R1, R2). An ar-
bitrary cell with a center at the point with coordinates (ξ1ξ2) in Π∆ will be determined by
∆(ξ1, ξ2) = (ξ1 − λ/2, ξ1 + λ/2) × {ξ2}. At the same time, the thickness h of the plate under
consideration is supposed to be constant and small compared to the microstructure parameter λ.

In order to derive averaged model equations, we applied the tolerance averaging approach.
This technique based on the concept of tolerance and indiscrenibility relations. The general
modelling procedures of this technique and basic concepts of this technique, as a tolerance
parameter, a tolerance periodic function, a slowly varying function, a highly oscillating function
are given by Woźniak et al. (2008, 2010).

We mention here only the averaging operator. For an arbitrary integrable function f(·), the
averaging operator over the cell ∆(·) is defined by

〈f〉(ξ1, ξ2) =
1

λ

ξ1+λ/2∫

ξ1−λ/2

f(η, ξ2) dη (3.1)

for every ξ1 ∈ [λ/2, ϕ − λ/2], ξ2 ∈ [R1, R2].

3.1. Tolerance model

The tolerance averaging technique will be applied to equations (2.1)-(2.7) in order to derive
averaged model equations. The first assumption in this technique is micro-macro decomposition
of the displacement field
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w(ξ1, ξ2, t) = w0(ξ1, ξ2, t) + hA(ξ1)VA(ξ
1, ξ2, t) A = 1, . . . , N (3.2)

for ξα ∈ Π and t ∈ (t0, t1).

The modelling assumption states that the functions w0(·, ξ2, t) ∈ SV 2δ (Ω,∆), VA(·, ξ
2, t)

∈ SV 2δ (Ω,∆) are slowly varying functions together with all partial derivatives. The functions
w0(·, ξ2, t), VA(·, ξ

2, t) are the basic unknowns of the modelling problem. The functions hA(·)
are known, dependent on the microstructure length parameter λ, fluctuation shape functions.

Let h̃A(·), ∂1h̃
A(·) stand for the periodic approximation of hA(·), ∂1h

A(·) in the cell ∆,
respectively. Due to the fact that w(·, ξ2, t) are tolerance periodic functions, it can be observed
that the periodic approximation of wh(·, ξ

2, t) and ∂αwh(·, ξ
2, t) in ∆(·) have the form

wh(y, ξ
2, t) = w0(ξα, t) + hA(y)VA(ξ

α, t)

∂αwh(y, ξ
2, t) = ∂αw

0(ξα, t) + ∂1h
A(y)VA(ξ

α, t) + hA(y)∂2VA(ξ
α, t)

ẇh(y, ξ
2, t) = ẇ0(ξα, t) + hA(y)V̇A(ξ

α, t)

(3.3)

for every ξα ∈ Π, almost every y ∈ ∆(ξα) and every t ∈ (t0, t1).

The tolerance model equations will be obtained by the averaging of the functional A,
Eq. (2.5). Substituting decomposition (3.2) of the displacement field into the Lagrangian
L(ξα, w,w|αβ , w|α, ẇ), described by equation (2.6), and using the tolerance averaging techni-
que, we obtain

Ah(w
0, VA) =

t1∫

t0

∫

Π

[〈L〉+ 〈p(·)〉w0(·) + 〈p(·)hA(·)〉VA(·)] dξ
α dt (3.4)

where averaged Lagrangian (2.6) has the form

〈L〉 =
1

2
〈µ〉ẇ0ẇ0 + 〈µhA〉ẇ0V̇A +

1

2
〈µhAϕB〉V̇AV̇B + 〈p〉w

0 + 〈phA〉VA

−
1

2
〈Dαβγµ〉w0|αβw

0
|γµ − 〈D

11γµhA|11〉w
0
|γµVA − 〈D

22γµhA〉VA|22w
0
|γµ

− 2〈D12γµhA|1〉w
0
|γµVA|2 − 〈D

1122hA|11h
B〉VAVB|22 −

1

2
〈D1111hA|11h

B
|11〉VAVB

− 2〈D1212hA|1h
B
|1〉VA|2VB|2 −

1

2
〈D2222hAhB〉VA|22VB|22 −

1

2
〈kz〉w

0w0

− 〈kzh
A〉w0VA −

1

2
〈kzh

AhB〉VBVA −
H2

8
〈ktg

AgB〉δ22VA|2VB|2

−
H2

4
〈kth

A
|1〉δ
1βw0|βVA −

H2

4
〈kth

A〉δ2βw0|βVA|2 +
H2

4
〈kth

A
|1h
B
|1〉δ
11VAVB

−
H2

8
〈kt〉δ

αβw0|αw
0
|β −
1

2
〈nαβ〉w0|αw

0
|β − 〈n

1βhA|1〉w
0
|βVA − 〈n

2βhA〉VA|2w
0
|β

−
1

2
〈n11hA|1h

B
|1〉VAVB − 〈n

12hA|1h
B
|1〉VAVB|2 −

1

2
〈n22hAhB〉VA|2VB|2

(3.5)

Applying the principle of stationary action to the averaged functional Ah, the Euler-Lagrange
equations take the form

∂

∂t

∂〈L〉

∂ẇ0
−
( ∂〈L〉
∂w0|αβ

)

|αβ
+
(∂〈L〉
∂w0|α

)

|α
−
∂〈L〉

∂w0
= 〈p〉

∂

∂t

∂〈L〉

∂V̇A
−
( ∂〈L〉
∂VA|22

)

|22
+
( ∂〈L〉
∂VA|2

)

|2
−
∂〈L〉

∂VA
= 〈phA〉

(3.6)
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Using averaged Lagrangian (3.5), we obtain the following system of equations describing stability
of the plate resting on the microheterogeneous foundation

(〈Dαβγµ〉w0|γµ)|αβ + (〈D
αβ11hA|11〉VA)|αβ + (〈D

αβ22hA〉VA|22)|αβ

+ 〈kz〉w
0 + 〈kzh

A〉VA −
H2

4
(〈kt〉δ

αβw0|β)|α −
H2

4
(〈kth

A
|1〉δ
1βVA)|β

−
H2

4
(〈kth

A〉δ2βVA|2)|β − (N
αβw0|β)|α + 〈µ〉ẅ

0 = 〈p〉

〈D11γµhA|11〉w
0
|γµ + 〈D

1122hA|11h
B〉VB|22 + 〈D

1111hA|11h
B
|11〉VB

+ (〈D22γµhA〉w0|γµ)|22 + (〈D
1122hAhB|11〉VB)|22 + (〈D

2222hAhB〉VB|22)|22

− 2(〈D12γµhhA|1〉w
0
|γµ)|2 − 4(〈D

1212hA|1h
B
|1〉VB|2)|2 + 〈kzh

AhB〉VB

+ 〈kzh
A〉w0 −

H2

4
(〈kth

A〉δ2βw0|β)|2 +
H2

4
〈kth

A
|1〉δ
11w0|β

−
H2

4
(〈kth

AhB〉δ22VB|2)|2 +
H2

4
〈kth

A
|1h
B
|1〉δ
11VB

− (N22〈hAhB〉VB|2)|2 +N
11〈hA|1h

B
|1〉VB + 〈µh

AhB〉V̈B = 〈ph
A〉

(3.7)

We have assumed that the forces nαβ can be represented by a decomposition

nαβ(ξγ) = Nαβ(ξγ) + ñαβ(ξγ) (3.8)

where Nαβ = 〈nαβ〉 is a slowly varying function and ñαβ(·) is the fluctuating part of the
forces nαβ(·), such that 〈ñαβ〉 = 0. In Eq. (3.5), we have assumed that the fluctuating part
ñαβ(·) of the forces nαβ(·) is very small compared to their averaged part Nαβ(·), and hence
〈n22hAhB〉 ∼= N22〈hAhB〉.

3.2. Asymptotic model

For the asymptotic modelling procedure we recall only the concept of highly oscillating
function. We shall not deal with the notion of the tolerance periodic function as well as
slowly-varying function. For every parameter ε = 1/n, n = 1, 2, . . . we define the scaled cell
∆ε ≡ (−εl/2, εl/2) and by ∆ε(x) = x+∆ε the scaled cell with a centre at ξ

α ∈ Π.
The mass density µ(·), moduli of the foundation kz(·), kt(·) and tensor of elasticity D

αβγδ(·)
are assumed to be highly oscillating discontinuous functions for almost every ξα ∈ Π. If
µ(·), kz(·), kt(·),D

αβγδ(·) ∈ HO0δ (Π,∆) then for every ξ
α ∈ Π there exist functions µ(y, ξ2),

kz(y, ξ
2), kt(y, ξ

2), Dαβγδ(y, x2) which are periodic approximations of the functions µ(·), kz(·),
kt(·), D

αβγδ(·), respectively.
The asymptotic modelling procedure begins with decomposition of the displacement as a

family of fields

wε(y, ξ
2, t) = w0(y, ξ2, t) + ε2h̃A

(y
ε
, ξ2
)
VA(y, ξ

2, t) y ∈ ∆ε(ξ
α) (3.9)

where h̃A(y, ξ2) is a periodic approximation of highly oscillating functions hA(·). From formula
(3.3) we obtain

∂αwε(y, ξ
2, t) = ∂αw

0(y, ξ2, t) + ε∂1h̃
A
(y
ε
, ξ2
)
VA(y, ξ

2, t) + ε2h̃A
(y
ε
, ξ2
)
∂2VA(y, ξ

2, t)

∂αβwε(y, ξ
2, t) = ∂αβw

0(y, ξ2, t) + ∂11h̃
A
(y
ε
, ξ2
)
VA(y, ξ

2, t)

+ 2ε∂1h̃
A
(y
ε
, ξ2
)
∂2VA(y, ξ

2, t) + ε2h̃A
(y
ε
, ξ2
)
∂22VA(y, ξ

2, t)

ẇε(y, ξ
2, t) = ẇ0(y, ξ2, t) + ε2h̃A

(y
ε
, ξ2
)
V̇A(y, ξ

2, t)

(3.10)
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Under limit passage ε→ 0 for y ∈ ∆ε(ξ
α), ξα ∈ Π we rewrite formulae (3.9) and (3.10) in the

form

wε(y, ξ
2, t) = w0(y, ξ2, t) +O(ε)

∂αwε(y, ξ
2, t) = ∂αw

0(y, ξ2, t) +O(ε)

∂αβwε(y, ξ
2, t) = ∂αβw

0(y, ξ2, t) + ∂11h̃
A
(y
ε
, ξ2
)
VA(y, ξ

2, t) +O(ε)

ẇε(y, ξ
2, t) = ẇ0(y, ξ2, t) +O(ε)

(3.11)

For a periodic approximation of the Lagrangian L, we have

L̃ε

(
y

ε
, ξ2, w0

(y
ε
, ξ2, t

)
+O(ε), ∂αw

0
(y
ε
, ξ2, t

)
+O(ε), ẇ0

(y
ε
, ξ2, t

)
+O(ε),

∂αβw
0
(y
ε
, ξ2, t

)
+ ∂11h̃

A
(y
ε
, ξ2
)
VA
(y
ε
, ξ2, t

)
+O(ε)

) (3.12)

If ε→ 0 then L̃ε by means of property of the mean value, see Jikov et al. (1994), weakly tends
to

L0
(
ξα, w0(ξα, t), ∂αw

0(ξα, t), ẇ0(ξα, t), ∂αβw
0(ξα, t), VA(ξ

α, t)
)

=
1

|∆|

∫

∆(x)

L̃
(
y, ξα, w0(ξα, t), ∂αw

0(ξα, t), ẇ0(ξα, t), ∂αβw
0(ξα, t)

+ ∂11h̃
A(y, ξ2)VA(ξ

α, t)
)
dy

(3.13)

The asymptotic action functional has the form

A0ε(w
0, VA) =

t1∫

t0

∫

Π

L0
(
ξα, w0(·), ∂αw

0(·), w0|αβ(·), VA(·), ẇ
0(·)
)
dξα dt (3.14)

where the Lagrangian is given by

L0(ξ
α, w0, ∂αw

0, w0|αβ, VA, ẇ
0) =

1

2
〈Dαβγµ〉w0|αβw

0
|γµ + 〈D

11γµhA|11〉VAw
0
|γµ

+
1

2
〈D1111hA|11h

B
|11〉VAVB +

1

2
〈kz〉w

0w0 +
H2

8
〈kt〉δ

αβ∂αw
0∂βw

0

+
1

2
〈nαβ〉∂αw

0∂βw
0 −
1

2
〈µ〉ẇ0ẇ0 − 〈p〉w0

(3.15)

Applying the principle of stationary action, we derive the Euler-Lagrangian equations

∂

∂t

∂L0
∂ẇ0
−
( ∂L0
∂w0|αβ

)

|αβ
+ ∂α

( ∂L0
∂w0|α

)
−
∂L0
∂w0
= 〈p〉

∂L0
∂VA
= 0 A = 1, . . . , N

(3.16)

Substituting formulae (3.15) into equations (3.16), we obtain the following system of equations
describing the stability of the plate under consideration

(〈Dαβγµ〉w0|γµ)|αβ + (〈D
11αβhA|11〉VA)|αβ + 〈kz〉w

0 −
H2

4
∂α(〈kt〉δ

αβ∂βw
0)

− (Nαβw0|β)|α + 〈µ〉ẅ
0 = 〈p〉

〈D11αβhA|11〉w
0
|αβ + 〈D

1111hA|11h
B
|11〉VB = 0

(3.17)
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Eliminating VA from second equation (3.17)

VA = −
〈D11γµhB|11〉

〈D1111hA|11h
B
|11〉
w0|γµ (3.18)

and denoting the effective elastic moduli

Dαβγµeff = 〈Dαβγµ〉 −
〈D11γµhB|11〉

〈D1111hA|11h
B
|11〉
〈D11αβhA|11〉 (3.19)

we arrive at the following asymptotic model equation for the averaged displacement of the plate
midplane w0(ξα, t)

(〈Dαβγµeff 〉w
0
|γµ)|αβ + 〈kz〉w

0 −
H2

4
∂α(〈kt〉δ

αβ∂βw
0)− (Nαβw0|β)|α + 〈µ〉ẅ

0 = 〈p〉 (3.20)

Equations (3.18)-(3.20) represent the asymptotic model of the stability of the thin plate inte-
racting with microheterogeneous subsoil.
The coefficients of model equations (3.7), (3.20) are smooth functions of the radial coordinate

ρ ∈ (R0, R1) in contrast to equations in direct description with the discontinuous and highly
oscillating coefficients.

4. Applications

In order to illustrate the model equations (3.7) and (3.20), we shall investigate a simple problem
of the linear polar-symmetrical stability of the annular plate clamped on its boundary (Fig. 2).
The considered composite plate is interacting with heterogeneous elastic subsoil.

Fig. 2. The annular plate with a longitudinally graded structure

The important point of the tolerance modeling approach is the determination of the fluc-
tuation shape functions (FSF). Our analysis we restrict to the case when we have only one
fluctuation shape function, hence A,B = 1 and VA(ξ

α, t) = V (ξα, t). The calculation of the
fluctuation shape functions is usually very difficult. Hence we apply an approximate form of
the fluctuation shape function analogous to dynamic analysis. For one-dimensional cell under
consideration ∆(ξ1, ξ2), as the fluctuation, shape function we assume

h(·) = λ2 cos
2πξ1

λ
(4.1)
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The comparison of results for the exact and this approximate form of the fluctuation shape func-
tion, we can find in papers by Jędrysiak (2001), Jędrysiak and Michalak (2005). For differences
between the value of Young’s modulus 0.25 ¬ Eb/Em ¬ 4 and for the ratio 0.25 ¬ d/(λρ) ¬ 0.75
(d – the widths of the ribs, λρ – microstructure length parameter) the error for the approximate
form of FSF is smaller than 10%.

4.1. Tolerance model

Let us introduce the polar coordinate system Oξ1ξ2, where ϕ = ξ1 is the angular coordinate
and ρ = ξ2 – radial coordinate. Setting w0 = w0(ρ), V = V (ρ), we obtain from equations
(3.7) the following system of equations describing the stability of annular plates interacting with
heterogeneous subsoil

∂22(〈D̃
2222〉∂22w

0) +
1

ρ
∂22(〈D̃

2211〉∂2w
0) +
2

ρ
∂2(〈D̃

2222〉∂22w
0) +

1

ρ3
〈D̃1111〉∂2w

0

−
1

ρ2
∂2(〈D̃

1111〉∂2w
0)−
1

ρ
∂2(〈D̃

2211〉∂22w
0) +

2

ρ4
〈D̃2211h|11〉V −

2

ρ3
∂2(〈D̃

2211h|11〉V )

+
1

ρ2
∂22(〈D̃

2211h|11〉V ) +
2

ρ4
〈D̃1111h|11〉V −

1

ρ3
∂2(〈D̃

1111h|11〉V ) + ∂22(〈D̃
2222h〉∂22V )

+
2

ρ
∂2(〈D̃

2222h〉∂22V )−
1

ρ
∂2(〈D̃

1122h〉∂22V ) + 〈kz〉w
0 + 〈kzh〉V −

H2

4
〈kt〉
1

ρ
∂2w

0

−
H2

4
∂2(〈kt〉∂2w

0)−
H2

4
∂2(〈kth〉∂2V )−

1

ρ
Nϕ∂2w

0 −Nρ∂22u = 0

1

ρ3
〈D̃1111h|11〉∂2w

0 +
1

ρ2
〈D̃1122h|11〉∂22w

0 +
1

ρ4
〈D̃1111h|11h|11〉V +

1

ρ2
〈D̃1111h|11h〉∂22V

+ ∂22
(1
ρ
〈D̃2211h〉∂2w

0
)
+ ∂22(〈D̃

2222h〉∂22w
0) + ∂22

( 1
ρ2
〈D̃2211h|11h〉V

)

+ ∂22(〈D̃
2222hh〉∂22V )− 4∂2

( 1
ρ2
〈D̃1212h|1h|1〉∂2V

)
+ 〈kzhh〉V −

H2

4
∂2(〈kth〉∂2w

0)

−
H2

4
∂2(〈kthh〉∂2V ) +

H2

4
〈kth|1h|1〉

1

ρ2
V −Nρ〈hh〉∂22V +

1

ρ2
Nϕ〈h|1h|1〉V = 0

(4.2)

where we have denoted D̃2222 = D2222, D̃1122 = ρ2D1122, D̃1111 = ρ4D1111, Nϕ = ρ
2N11,

Nρ = N
22. Equations (4.2) represent a system of two partial differential equations for the

averaged deflection w0(·) and the fluctuation amplitude V (·). The boundary conditions for the
clamped plate are given by

w0(ρ = R1) = w
0(ρ = R2) = 0 ∂2w

0(ρ = R1) = ∂2w
0(ρ = R2) = 0

V (ρ = R1) = V (ρ = R2) = 0 ∂2V (ρ = R1) = ∂2V (ρ = R2) = 0
(4.3)

Since h(·) ∈ O(λ2), the underlined moduli depend on the microstructure length parameter λ.
Hence, the tolerance model equations describe the microstructure length-scale effect on the
stability of the plate under consideration.

4.2. Asymptotic model

For analysis of the asymptotic model we use equations (3.20). Denoting Dr(ρ) = D
2222
eff ,

Dϕ(ρ) = ρ
4D1111eff , Drϕ(ρ) = ρ

2D1122eff , Kz = 〈kz〉, Kt = 〈kt〉 we obtain from equation (3.20) a
single equation describing stability for the asymptotic model of the plate under consideration
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∂22(Dr∂22w
0) +
2

ρ
∂2
((
Dr −

1

2
Drϕ
)
∂22w

0
)
+
1

ρ
∂22(Drϕ∂2w

0)−
1

ρ2
∂2(Dϕ∂2w

0)

+
1

ρ3
Dϕ∂2w

0 +Kzw
0 −
H2

4
Kz
1

ρ
∂2w

0 −
H2

4
∂2(Kt∂2w

0)−Nρ∂22w
0 −
1

ρ
Nϕ∂2w

0 = 0

(4.4)

The above equation represents the single partial differential equation for the averaged deflec-
tion w0(·) and has the form similar to the equation for buckling of the annular plate with
cylindrical orthotropy.

4.3. Numerical results for the asymptotic model

In order to derive the critical value of forces for buckling of the plate under consideration we
shall use the asymptotic model equation. We look for the solution to equation (4.4), where the
problem of the forces Nρ and Nϕ will be solve similarly to plate with cylindrical orthotropy (cf.
Mossakowski, 1960)

Nρ = −N
( ρ
R2

)k−1
Nϕ = −Nk

( ρ
R2

)k−1
k =

√
Dϕ
Dr

(4.5)

Substituting (4.5) into equation (4.4) we obtain differential operator in the form

L(w0) = ∂22(Dr∂22w
0) +
2

ρ
∂2
((
Dr −

1

2
Drϕ
)
∂22w

0
)
+
1

ρ
∂22(Drϕ∂2w

0)

−
1

ρ2
∂2(Dϕ∂2w

0) +
1

ρ3
Dϕ∂2w

0 +Kzw
0 −
h2

4
Kt
1

ρ
∂2w

0 −
h2

4
∂2(Kt∂2w

0)

+N
( ρ
R2

)k−1
∂22w

0 +N
1

ρ
k
( ρ
R2

)k−1
∂2w

0 = 0

(4.6)

Operator (4.4) has smoothly varying functional coefficients along the radial direction. Hence, in
most cases, solutions to specific problems for the plates under consideration have to be obtained
using approximate methods. In order to obtain the approximate solution to equation (4.4) for
the annular clamped plate interacting with heterogeneous subsoil, the Galerkin method will be
used. The smallest value of critical forces can be obtained from the following equation

R2∫

R1

L(f(ρ))f(ρ) dρ = 0 (4.7)

As the function f(ρ), we assume the first shape function of stability for the isotropic annular
clamped plate with the radius R1 = 1.0m and R2 = 3.0m resting on the elastic homogeneous
foundation

f(r) = w1
(
J0
(
1.1875

ρ

R1

)
+ 23.9767Y0

(
1.1875

ρ

R1

)
+ 16.0964J0

(
3.8405

ρ

R1

)

+ 11.1116Y0
(
3.8405

ρ

R1

)) (4.8)

where J0(·), Y0(·) are Bessel’s functions of the first and second kind, respectively.

4.3.1. Comparison of the test tasks with results from the finite element method

In order to verify the correctness of the derived equations, we analysed the obtained results
for a test task. We shall investigate the simple problem of polar-symmetrical stability of an
annular clamped plate. We compare the value of critical forces from the asymptotic model
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with the results from the finite element method (Abaqus program). The following material and
geometrical parameters of the plate were assumed: matrix: Em = E1 = 210, 150 and 69GPa,
ν1 = 0.3, ribs: Er = E2 = 210GPa, ν1 = 0.3, number of periodic cells N = 60, thickness
of the plate H = 0.05m, internal radius R1 = 1m, external radius R2 = 3m, width of ribs
d = 0.75λR1 = 0.75(2π/60)R1 and the foundation parameters: vertical modulus of elasticity
of foundation below the matrix kzm = 25MN/m

3, vertical modulus of elasticity of foundation
below the ribs kzr = 50MN/m

3, horizontal modulus of elasticity of foundation below the matrix
ktm = 0MN/m

3, horizontal modulus of tangent elasticity of the foundation below the ribs
ktr = 0MN/m

3.
The value of critical forces was calculated in two ways: by making use of asymptotic model

equations (AS) and through the finite element method (FEM, Abaqus program). These results
are summarized in Table 1

Table 1. The comparison of results for the test task calculated by two independent methods

Matrix Ribs Matrix Ribs
AM FEM

Ratio
(asym. model) (Abaqus)

Modulus Modulus Elast. found. Elast. found. Ncr Ncr NcrFEM
NcrASEm [GPa] Er [GPa] kzm [MN/m

3] kzr [MN/m
3] [kN/m] [kN/m]

210 210 0 0 24303 23843 0.98

150 210 0 0 20321 19533 0.96

69 210 0 0 14239 13181 0.93

210 210 50 50 39212 38756 0.99

150 210 50 50 34990 34054 0.97

69 210 50 50 28090 26615 0.95

210 210 25 50 34720 34275 0.99

150 210 25 50 30510 29712 0.97

69 210 25 50 23790 22690 0.95

The above table shows that the results obtained from equations for the tolerance averaging
technique coincide with the results from the well-known finite element method.

4.3.2. Influence of material properties of the plate and foundation on the critical forces

The aim of this Subsection is to investigate the influence of material properties of the plate
and foundation on the value of the critical forces. The material and geometrical parameter of
the plate we assume identical as in the above example.
In Fig. 3a, there is shown a diagram of the value of critical forces Nkr [MN] versus

k = kz2/kz1, where kz2 is the vertical modulus of the foundation under the matrix and kz1 un-
der the ribs. The diagram is derived for the ratio kt1/kz1 = 0.5, kt2/kz2 = 0.5, horizontal and
vertical moduli of elasticity of the foundation and kz1 = 500.0MN/m

3.
In Fig. 3b, there is shown the influence of the ratio p = kt/kz, horizontal kt and verti-

cal kz modulus of the elastic foundation. The diagrams in Fig. 3b are derived for the ratio
kz2/kz1 = 0.1, kt2/kt1 = 0.1 and the vertical modulus kz1 = 5000.0MN/m

3. Diagram Nkr1(p)
shows the smallest value of critical forces for the plate thickness H = 0.05m and Nkr2(p) for
the plate thickness H = 0.20m.

4.4. Numerical results for the tolerance model

We look for an approximate solution to equations (4.2) similarly to the asymptotic model
using the Galerkin method.
For the tolerance model, we obtain two values of critical forces, for macro and micro buckling.
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Fig. 3. Diagrams of the value of critical forces Nkr [MN] versus: (a) k = kz2/kz1, (b) p = kt/kz

4.4.1. Influence of the number of cells on the critical forces

The aim of this Subsection is to investigate the influence of the microstructure length para-
meter λ = 2π/α on the value of critical forces. In Fig. 4, diagrams of the value of critical forces
versus numbers of the cells α are shown. The diagrams are derived for the annular clamped
plate with geometry: H = 0.05m, R1 = 1m, R2 = 3m. The material parameters of the matrix
are: Em = E1 = 69GPa, ν1 = 0.3 and of the ribs: Er = E2 = 210GPa, ν2 = 0.3. The width
of the ribs is d = 0.75λR1, subsoil moduli: kz2/kz1 = kt2/kt1 = 0.2, kt1/kz1 = kt2/kz2 = 0.2,
kz1 = 50.0MN/m

3.
In Fig. 4a, the diagram of the value of critical forces for macro buckling of the plate versus

number of the cells α is shown. The value of critical forces for α > 25-30 is independent of the
number of the cells and conforms with the results from the asymptotic model. Let us note that
the number of the microstructure cells should be bigger than 30 to provide the correct solution
for the tolerance and asymptotic models.

Fig. 4. The value of critical forces N [MN/m] for: (a) macro buckling, (b) micro buckling versus the
number of the cells α

In Fig. 4b, the diagram of the value of critical forces for micro buckling of the plate versus
number of the cells α is shown. As one should expect, the value of critical forces for micro
buckling grows with the increasing number of the microstructure cells.

5. Conclusions

• The composite plate interacting with elastic heterogeneous subsoil having a functionally
graded structure is described by model equations involving only smooth coefficients in
contrast to the coefficients in equations for direct description, which are non-continuous
and highly oscillating.
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• Since the proposed model equations have smooth and slowly varying functional coefficients,
hence in most cases, solutions to specific problems of stability of the functionally graded
plate under consideration have to be obtained using well known numerical methods.

• The contribution contains two model equations – tolerance model equations (3.7) with
coefficients depending on the microstructure length λ and simplified asymptotic model
equations (3.20).

• Solutions to the boundary value problems formulated in the framework of the proposed
models have the physical sense only if they are slowly varying in the distinguished direc-
tions. The number of the microstructure cells should be bigger than 30. This requirement
determines the range of physical applicability of the proposed model.

• The horizontal foundation modulus has negligibly small influence on the critical force for
polar-symmetrical buckling of the plates under consideration.

• Analysing the obtained results, we can observe that the differences between the value
of macro buckling critical forces for the tolerance model and the asymptotic model are
negligibly small.
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