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The paper is devoted to the modeling, analysis and optimization en-
countered in the design process of two-dimensional structural compo-
nents made of fiber-reinforced composite materials subjected to service
loading. The problem of optimal layout of reinforcing fibers in the com-
posite in order to obtain the assumed mechanical properties of the disk is
considered. The case of creation of linear and curvilinear fibers is discus-
sed. The adequate model, relevant optimality conditions for this type
of design problem are derived and the optimization procedure based on
the evolutionary algorithm is proposed. The problem considered in the
paper is illustrated by some numerical examples.
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1. Introduction

Fiber-reinforced composite materials are a group of modern construction ma-
terials from which products used in many areas of technical applications are
made. These materials are characterized by very good mechanical properties
associated with their small weight. The optimal design of these structures is
a very complex process. To fulfill the assumed properties of the composite
structures, we can modify some their structural parameters, such as mechani-
cal properties of the matrix or reinforcing fibers, percentage participation of
fibers in the structure, fiber shape and orientation, etc. Each of these parame-
ters influences the mechanical properties of the composite material and can be
treated as the design variable during the optimal design. However, as shown
in previous Author’s papers (Dems, 1986; Dems and Wiśniewski, 2006, 2007)
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the full advantages of the composite materials can be also obtained when the
reinforcing fibers are optimally oriented or shaped in the matrix with respect
to the assumed objective behavioral measure of the structure under actual lo-
ading conditions. The problem of optimal fibers arrangement in the composite
material is discussed in the present paper.
The paper constitutes the results of further investigation in the area of

designing composite structures. The results can be treated as a starting point
for optimal design of real composite structures subjected to service load. Thus,
it allows for avoiding expensive experimental testing, which can be reduced to
the final phase of structural design.

2. Object of analysis

A thin, two-dimensional and linearly elastic disk shown in Fig. 1 is conside-
red. The disk has a uniform thickness and it is supported on the boundary
portion SU with prescribed displacements u

0 and loaded by body forces f0

within a domain A and by an external traction T 0 acting along the boundary
portion ST .

Fig. 1. Two-dimensional composite disk subjected to service loading

The material of the disk is a composite made of a matrix reinforced with
a ply of long and unidirectional fibers of an arbitrary shape and assumed
cross-section (Fig. 1). Let us assume that:

• The matrix is homogeneous, isotropic and linearly elastic. Young’s mo-
dulus and Poisson’s ratio of the matrix are denoted by Em and νm,
respectively.
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• The reinforcing fibers are homogeneous, orthotropic and linearly elastic.
The mechanical properties of fibers are characterized by Young’s moduli
Ew1 and Ew2 with respect to the material axes 1-2, coinciding with the
fiber direction and the direction perpendicular to the fiber, Poisson’s
ratio νw12 as well as shear modulus Gw12 in the 1-2 plane.

• The fibers are regularly spaced and perfectly aligned in the matrix with
global density ρw, and their orientation at any point of the composite
material is denoted by the angle θ with respect to the x-axis of global
coordinate system xy.

• The bonds between the matrix and the fibers are perfect.

The angle of fiber orientation θ defines the layout of reinforcing fibers at
any point of the composite material (Fig. 1). This angle can be constant in
the composite, and then the fibers are rectilinearly spaced in the matrix or
can vary through the composite domain. In this last case, the fibers are placed
curvilinearly in the matrix. In general, the layout of reinforcing fibers can be
described by the shape of the so-called directional fiber using, for instance, the
polynomial, spline or Bezier representation. As the result, the fiber orientation
at any point of the composite depends on a set of fiber shape parameters b
defining that particular representation, i.e. θ = θ(x, b) and it is treated as an
angle between the tangent line to the fiber and x-axis of the global coordinate
system, as it is shown in Fig. 1.

Fig. 2. Family of straight fibers obtained by translation of directional fiber in
arbitrary direction

In the first case, the reinforcing fibers constitute a family of straight fibers
(Fig. 2), and the shape of directional fiber is described by

y(b) = bx+ c (2.1)
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where b and c denote the parameters of a straight line. The fiber orientation
angle θ for a straight fiber at any point of the composite is related to the
parameter b as follows

tan θ = b (2.2)

or it is directly defined by the angle between the fiber line and the x-axis of the
global coordinate system (Fig. 2). All other fibers in the family are obtained
by translation of the directional fiber in the d-direction, according to the rule

yi = y(b) + iq (2.3)

where i is the number of current fiber in the family and q is the distance
between two adjacent fibers measured in the y direction. As a result, the one-
-parameter family of reinforcing fibers of the same shape and constant fiber
density is created.

Besides the family of straight fibers, also a family of curvilinear fibers can
be created. In this case, the fibers layout is described by the shape of the
middle line of directional fiber (Fig. 3 and Fig. 4). Now, the shape of this line
can be defined using an arbitrary parametric description, namely

x = x(b, t) y = y(b, t) (2.4)

where b is a set of fiber shape parameters defining the shape of the curvilinear
directional fiber in the composite and t is a real parameter varying in the range
〈α, β〉. The fiber orientation angle θ at any point of the composite is defined
now by

tan θ =
y(b, t),t
x(b, t),t

=
y,t

x,t
and x,t 6= 0 (2.5)

where y,t and x,t denote derivatives of the function y(b, t) and x(b, t) with
respect to the parameter t, respectively.

For the case of curvilinear fibers, the layout of all other fibers in the family
can be obtained by translation of the directional fiber in an arbitrary direction
(Fig. 3), or by its shifting in the direction normal to its middle line (Fig. 4).

In the case of creation of the fiber family by translation of directional fiber
(Fig. 3), the directional fiber is translated in the d-direction according to the
rule

xi = x(bk, t) + idx yi = y(bk, t) + idy (2.6)

where i is the number of current fiber in the family, while dx and dy denote
components of the distance vector between two adjacent fibers in the direction
of translation. Thus, all fibers constitute a one-parameter family of fibers of
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Fig. 3. Family of curvilinear fibers obtained by translation of directional fiber in
arbitrary direction

Fig. 4. Family of curvilinear fibers obtained by shifting of directional fiber in normal
direction

the same shape, but the local fiber density is varying in the composite domain.
The fiber density at any point Mi(xi(t), yi(t)) of the composite is specified as
follows

ρw(i) = ρw(0)
µx0,t − y0,t
µx,t − y,t

√

(x,t)2 + (y,t)2

(x0,t)2 + (y0,t)2
µ =
dx

dy
(2.7)

where ρw(0) denotes the fiber density in the assumed point M0(x0(t), y0(t)).

The family of curvilinear reinforcing fibers can also be obtained by shifting
the directional fiber in the direction normal to its middle line, as it is shown in
Fig. 4. In this case, the local fiber density is constant in the composite domain,
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but each particular fiber in this family has a slightly different shape described
by the following expressions

xi = x(bk, t) + iq
(

− y,t
√

(x,t)2 + (y,t)2

)

(2.8)

yi = y(bk, t) + iq
( x,t
√

(x,t)2 + (y,t)2

)

where i is the number of current fiber in the family and q is the distance
between two adjacent fibers. Moreover, the creation procedure of the family
of curvilinear fibers by shifting the directional fiber has to be subjected to the
following condition

√

[ζ − x(t)min]2 + [η − y(t)min]2 ­
√

[x− x(t)min]2 + [y − y(t)min]2 (2.9)

which prevents the fibers from intersection of their middle lines.

3. Model of fiber-reinforced composite material

The microscopically non-homogeneous composite material is treated on a
macro-scale level as a plane, homogeneous, orthotropic and linearly elastic
material. In conformity with this assumption, the relevant model of the com-
posite is built (Fig. 5). The purpose of the modeling process is to determine
the extensional stiffness matrix D for that model in the global coordinate sys-
tem and to express its components in terms of mechanical and geometrical
properties of the matrix and the reinforcing fibers.

Fig. 5. Fiber-reinforced composite material: (a) real composite, (b) model of
composite
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The extesional stiffness matrix D for the assumed model of the composite
material in the global coordinate system xy can be expressed by (German,
1996)

D = T−1CT−⊤ (3.1)

The matrix C denotes here the stiffness matrix for the composite with respect
to the material axes 1-2, coinciding with the fiber direction and the direction
perpendicular to the fiber, and has the form

C =















E1

1− ν12ν21
E1ν21

1− ν12ν21
0

E2ν12

1− ν12ν21
E2

1− ν12ν21
0

0 0 G12















(3.2)

whereas the matrix T denotes the transformation matrix from the global co-
ordinate system xy to the material axes 1− 2, and it is expressed as follows

T =







cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ






(3.3)

The components of matrix C depend on the so-called engineering constants
for orthotropic lamina, where E1 and E2 are apparent Young’s moduli in the
fiber direction and in the direction perpendicular to the fibers, respectively,
while ν12 and ν21 are major and minor Poisson’s ratios, and G12 denotes the
in-plane shear modulus. Using the model of lamina presented by Halpin and
Tsai (1969) these engineering constants have the following form

E1 = Ew1ρw +Em(1− ρw)

E2 = Em
(1 + ξχρw
1− χρw

)

where χ =
Ew2
Em
− 1

Ew2
Em
+ ξ

ν12 = νw12ρw + νm(1− ρw) (3.4)

ν21 =
E2

E1
ν12

G12 = Gm
(1 + ξχρw
1− χρw

)

where χ =
Gw12
Gm
− 1

Gw12
Gm
+ ξ

Gm denotes here the shear modulus for the isotropic matrix, while the para-
meter ξ is a measure of fiber reinforcement of the composite that depends on
the cross-section of fibers and packing geometry. The values of ξ for typical
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Table 1. Values of ξ for typical fibers

value of ξ for E2 value of ξ for G12

circular fibers
ξ = 2 ξ =







1 for ρw ¬ 0.5
1 + 40ρ10w for ρw > 0.5in square array

quadratic cross-section
ξ = 2 ξ = 1fibers in diamond array

rectangular cross-section
ξ = 2

a

b
ξ =
√
3 ln
a

bfibers in diamond array

fibers obtained by Adams and Doner (1967a,b) and Foye (1966) are given in
Table 1.

The matrix T is considered as the matrix function of fiber orientation
angle θ. When the fiber line is described by (2.1), its components are simply
defined by

sin θ =
tan θ√
1 + tan2 θ

=
b√
1 + b2

(3.5)

cos θ =
1√

1 + tan2 θ
=

1√
1 + b2

or they can be explicitly defined by the angle between the fiber line and the
x-axis of the global coordinate system. For the case of curvilinear fibers, sin θ
and cos θ follow from (2.5), and are expressed in the form

sin θ =
tan θ√
1 + tan2 θ

=
y,t

√

(x,t)2 + (y,t)2

(3.6)

cos θ =
1√

1 + tan2 θ
=

x,t
√

(x,t)2 + (y,t)2

4. Analysis of structural behavior

Under the applied load, the structure shown in Fig. 1 undergoes some defor-
mations described by the displacement field u, the strain field e and the
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stress field σ. Thus, the behavior of the structure can be described by the
equilibrium equation given in the form (Zienkiewicz, 1971)

divσ + f0 = 0 (4.1)

as well as the kinematical relation between strain and displacement fields

e = Bu (4.2)

where B is a linear differential operator relating the displacement field with the
strain field. A linear stress-strain relation is assumed in the form of generalized
Hooke’s law

σ = De (4.3)

where D denotes the extensional stiffness matrix for the orthotropic model of
the composite material, and it is given by (3.1)-(3.6). Besides, the structure is
subjected to the boundary conditions expressed as follows

{

σn = T 0 on ST

u = u0 on SU
(4.4)

where n denotes the normal unit vector on the external boundary S of the
disk.

To solve the set of equations (4.1)-(4.4), the finite element method (FEM)
is proposed. The structure domain is divided into a set of finite elements
connected at nodes each to an other. In the present paper, the two-dimensional
four-node quadrilateral elements are used. The detailed description of the finite
element methods is presented, for instance, in Zienkiewicz (1971).

5. Optimization problem

The mechanical properties of composite disks depend on mechanical properties
of the matrix and reinforcing fibers, percentage participation of fibers in this
material, fiber shape and orientation as well as on the cross-section of fibers.
Thus, each of these parameters can be treated as a design variable during the
optimization procedure. However, full advantages of the composite disk can
mainly be obtained when the reinforcing fibers are optimally arranged in the
matrix with respect to the assumed objective behavioral measure under actual
loading conditions of the structure.
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The problem of optimal design of fibers arrangement in the composite,
so that the structure should satisfy assumed requirements in the range of
mechanical properties can be formulated in general as the minimization or
maximization of the proper quality index of structural behavior, expressed in
the global form as follows

min (or max) Fc =

∫

A

Γ (σ,e,u, b) dA+

∫

ST

Ψ(T 0,u) dST (5.1)

subjected to the global or local behavioral constraints
(

∫

A

Γ1(σ,e,u, b) dA+

∫

ST

Ψ1(T
0,u) dST

)

−G0 ¬ 0 (5.2)

and/or the constraint imposed on the total cost of the composite structure

[cwρw + cm(1− ρw)]V − C0 ¬ 0 (5.3)

where Γ , Γ1 and Ψ , Ψ1 are continuous functions depending on the state fields
induced in the deformed structure, while cw and cm are the costs per unit vo-
lume of the fiber and matrix materials, respectively. The fiber orientation of a
straight fiber or parameters defining the shape of a curvilinear fiber are selec-
ted as components of the vector of design variables b during this optimization
process.
The optimization task, defined by (5.1)-(5.3), will be performed with the

aid of the evolutionary algorithm shown in Fig. 6. This method based on the
imitation of the evolution processes occurring in the nature (Michalewicz,
1996) still finds the growing interest in engineering design problems. The evo-
lutionary algorithm is a simple, powerful and effective tool used for finding the
best solution in a complicated space of design parameters and it is not limited
by a restrictive assumption about the search space. This method only needs
the information based on the objective functional, which is its main advantage
in comparison to the methods based on gradient information of the objecti-
ve functional and constraints. Besides, in contrast to deterministic methods,
which often fall into a local optimum, the evolutionary algorithm always finds
the global optimum or the solution close to this optimum.
It should be added that in the case of the optimization problem with

constraints, the penalty function approach (Findeisen et al., 1980) is applied
in the proposed algorithm. Using this approach, the constrained problem is
transformed to an unconstrained one as follows

minZ(b,α) = min
[

Fc(b) +
1

2

ng
∑

i=1

αi[max(0;Gi(b))]
2
]

(5.4)
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data: LP – number of generations
N – number of chromosomes in population
pc – crossover probability
pm – mutation probability

step 1: GENERATION OF INITIAL POPULATION (floating point
representation)

∧

j=1,...,N chj → bj = [b1, b2, . . . , bp] where bi = bi(max) + r(bi(max) − bi(min))
step 2: EVALUATION OF CURRENT POPULATION:

∧

j=1,...,N v(chj) ≡ Fc(bj)
step 3: if k > LP then STOP

else go to step 4

step 4: OPERATION OF CURRENT POPULATION










deterministic selection: choice chromosomes the best v(chj) to modification

heuristic crossover: ch′ = r(ch2 − ch1) + ch2 where: Fc(ch2) ­ Fc(ch1)
non-uniform mutation: chj = [b1, . . . , bi, . . . , bp]→ ch′j = [b1, . . . , b′i, . . . , bp]
step 5: CURRENT POPULATION = NEW POPULATION and go to step 2

Fig. 6. Flow chart of evolutionary algorithm

where α is a vector of positive coefficients of penalty functions, and ng is a
number of inequality constraints in the constrained problem.

The evolutionary algorithm starts from random selection of the initial po-
pulation of N chromosomes. Each chromosome is a coded vector of design
parameters b defining the shape or orientation of reinforcing fibers and de-
scribes one possible solution to the given problem. This population is processed
by three main operators of the evolutionary algorithm. They are deterministic
selection, heuristic crossover and non-uniform mutation. Applying these three
operators, a new population of solutions is created and the single cycle of the
evolutionary algorithm, which is known as a generation, comes to the end.
Each successive generation contains better „partial solutions than in the pre-
vious generations, and converges towards the global optimum. This procedure
is continued until the best solution is found according to the assumed stop
criterion or the specified number of generations is attained.

As it is shown in Fig. 6, all chromosomes in the current population are eva-
luated using the objective functional Fc in the second step of the evolutionary
algorithm. The values of state fields appearing in the objective functional are
calculated using the finite element method in the analysis of the structural
behavior (Section 4).
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6. Optimal design of composite disks

To illustrate the applicability of the proposed approach to the optimal design
of fiber-reinforced composite disks, some simple examples are presented in
this Section. The particular forms of optimization problem (5.1)-(5.3) will be
introduced in the successive examples, in order to obtain the optimal layout
of reinforcing fibers in the composite structure.

As the first example, let us consider the problem of optimal strength
design of a composite disk for which the optimal fiber shape and orienta-
tion should be derived. Let us assume that the allowable stress level for the
composite structure after homogenization is defined by the longitudinal ten-
sile strength Rr1, longitudinal compressive strength Rc1, transverse tensile
strength Rr2, transverse compressive strength Rc2 and shear strength Rs.

For an orthotropic material, the strength function Φ corresponding to the
stress field σ induced in the deformed structure is assigned using the bi-axial
theory (Tsai and Wu, 1971). In conformity with this theory, the value of the
strength function Φ at any point of the composite structure should satisfy the
following relationship

Φ(σ) = F1σ1 + F2σ2 + F11σ
2
1 + 2F12σ1σ2 + F22σ

2
2 + F33τ

2
12 ¬ 1 (6.1)

where the strength coefficients Fi and Fij appearing in (6.1) have the form

F1 =
1

Rr1
− 1
Rc1

F2 =
1

Rr2
− 1
Rc2

F11 =
1

Rr1Rc1

F22 =
1

Rr2Rc2
F33 =

1

R2s
F12 = −

√
F11F22

2
(6.2)

whereas σ1, σ2 and τ12 are components of the stress field with respect to
material axes of the composite, coinciding with the fiber direction and the di-
rection perpendicular to the fiber. They are obtained using the transformation
rule in the form







σ1
σ2
τ12






=







cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ













σx
σy
τxy






(6.3)

The main idea of the strength design results in reduction of values of the
strength function, which violate criterion (6.1), and then in redistribution of
the stress field in the domain of the structure. Thus, the global measure of
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local strength criterion can be introduced as a behavioral functional and the
optimization problem is formulated in the following form

minFc(b) = n

√

√

√

√

∫

A

[Φ(b)]n dA (6.4)

where A is the area of structure domain of unitary thickness and b denotes a
vector of design parameters defining the layout of fibers in the composite, and
n denotes an even integer number. When n → ∞, the functional is a strict
measure of the maximum local values of strength criterion. In practice, the
value of n does not exceed the upper bound limit following from numerical
constraints. In all presented examples, the value of n was set to 20.

The above formulated problem can be illustrated by a simple example. Let
us consider a disk supported along its lower boundary and loaded by linear-
ly varying traction on the upper boundary (Fig. 7). The disk has a unitary
thickness and it is made of the composite material with mechanical properties
given in Tables 2 and 3.

Fig. 7. Composite disk subjected to load and boundary conditions

Optimization problem (6.4) was solved for two classes of the fiber shape.
In the first case, the composite material was reinforced with one family of the
straight fibers, and the angle of fiber orientation θ was selected as the design
parameter, i.e. b = {θ}. Next, the design problem was considered for the case
of one family of curvilinear fibers for which the shape of the middle line of
directional fiber was described by Bezier’s curve (Kiciak, 2000). In this case,
the coordinates of four nodes of the Bezier polygon were chosen as the design
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Table 2. Material data of components of composite

E [GPa] ν G [GPa] ρ [%]

fibers
(graphite HS)

220.0
0.22 8.90 45

13.8

matrix (epoxy) 3.5 0.38 – 55

fibers array quadratic cross-section fibers in diamond array

source: Adopted from German (1996)

Table 3. Allowable stress level for composite (graphite HS/epoxy)

Rr1 [MPa] Rc1 [MPa] Rr2 [MPa] Rc2 [MPa] Rs [MPa]

1531 1390 41 145 98

source: Adopted from German (1996)

parameters, i.e. b = {xi, yi}, i = 0, 1, 2, 3. The family of curvilinear reinforcing
fibers was obtained by shifting the directional fiber in the direction normal to
its middle line.

The optimization problem discussed here was solved using the proposed
evolutionary algorithm, discussed already in Section 5. To analyze the behavior
of the disk, its domain was discretized into 196 two-dimensional four-node
quadrilateral elements. The results of the optimization process are given in
Table 4, and the optimal layouts of reinforcing fibers in the disk domain are
shown in Fig. 8a and 8b, respectively.

Table 4. Results of optimization process

design
parameters

value of local
strength function

optimal disk with one family
θ = 85.17◦

Φmax = 0.92
of straight fibers Φmin = −0.13
optimal disk with one
family of curvilinear
fibers described by
Bezier function

P0 (0.317, 0.000)
P1 (0.131, 0.075) Φmax = 0.84
P2 (0.142, 0.205) Φmin = −0.12
P3 (0.148, 0.280)

reference disk with one family
θ = 90.00◦

Φmax = 1.15
of straight fibers Φmin = −0.11

These optimal solutions were also compared with the reference solution
for the disk reinforced with one family of straight fibers parallel to the y-axis
(Fig. 8c) in order to qualify the results of optimization. One can observe that
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Fig. 8. Plot of strength function in: (a) optimal disk with one family of straight
fibers, (b) optimal disk with one family of curvilinear fibers described by Bezier

representation, (c) reference disk with one family of straight fibers

the distribution of strength function Φ in the reference disk is considerably re-
duced after the optimization process, and the values of local strength function
violating criterion (6.1) are eliminated for both optimal solutions (cf. the plots
shown in Fig. 8 and maximal values of Φ presented in Table 4). It must be
also noted that the distribution of the stress field in the optimal structures is
practically uniform which allows for better usage of the construction material
or allows increasing the allowable upper level of service load.

As the second example, the problem of optimal layout of reinforcing
fibers in the composite for the case of mean stiffness design of the disk is di-
scussed. Thus, the minimization of the work done by external forces is selected
as the objective functional, and the optimization problem can be written in
the following form

minFc(b) =

∫

ST

u⊤T 0 dST (6.5)

where b is a vector of design parameters defining the shape of the middle line
of the directional fiber.

To illustrate this kind of design problem, the composite disk shown in
Fig. 9 was considered. Similarly as in the first example, the disk has a unitary
thickness and it is composed from polyester matrix reinforced with graphite
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fibers symmetrically placed with respect to the x axis. The material data of
the components of the composite material are given in Table 5.

Fig. 9. Composite disk subjected to load and boundary conditions

Table 5. Material data of composite components

E [GPa] ν G [GPa] ρ [%]

fibers
(graphite HS)

220.0
0.22 8.90 50

13.8

matrix (epoxy) 3.2 0.41 – 50

fibers array quadratic cross-section fibers in diamond array

source: Adopted from German (1996)

The problem of mean stiffness design was discussed, as previously, for two
classes of fibers shape, and due to symmetry of the problem, only one half of
the disk was considered. To solve the design problem, the evolutionary algori-
thm presented in Section 5 was used. The values of state fields and objective
functional Fc were calculated using the finite element method with 100 two-
dimensional four-node quadrilateral elements applied for discretization of the
disk domain.

In the first case, the composite material was reinforced with one family of
straight fibers for which the angle of orientation with respect to the symmetry
axis of the disk was selected as the design parameter, i.e. b = {θ}. The results
of optimization process for this case are given in Table 6 and the optimal
layout of reinforcing fibers in disk is shown in Fig. 10a.
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In the second case, the material of the disk was reinforced with one family
of parabolic fibers. Thus, the shape of directional fibers was assumed in the
form x = ay2, where the coefficient a was treated as design parameters,
i.e. b = {a}. All other fibers in the family were obtained by translation of the
directional fiber in the x-direction. The results obtained after the optimization
process for this case are also given in Table 6, and the optimal layout of fibers
is depicted in Fig. 10b.

Table 6. Result of optimization process

design objective
parameters functional

optimal disk with straight fibers θ = 76.98◦ Fc = 15.40 J

optimal disk with curvilinear fibers a = 0.72 Fc = 14.15 J

reference disk with straight fibers θ = 158.0◦ Fc = 38.76 J

Fig. 10. Optimal disk with family of straight fibers (a), optimal disk with one family
of parabolic fibers (b)

To evaluate the results obtained for optimal solutions, the mean stiffness
of the reference disk reinforced with the family of straight fibers of orientation
θ = 158◦ with respect to the symmetry axis of the disk (the most flexible
disk) was also calculated. The optimal layout in the case of family of straight
fibers increases the mean stiffness of the disk by 60%, while in the case of
family of parabolic fibers, this stiffness increases by 68%, when compared to
the reference disk.

As the last example, let us consider the problem of optimal design of
the composite disk with respect to the cost of its components. The disk is
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additionally subjected to the global and/or local behavioral constraints. Thus,
the optimization problem can be formulated as follows

minC(b) = [cwρw + cm(1− ρw)]V (6.6)

subjected to the global behavioral constraint
(

∫

A

Γ (σ,e,u, b) dA+

∫

ST

Ψ(T 0,u) dST
)

−G0 ¬ 0 (6.7)

where b denotes a vector of design parameters, cw and cm are the costs per
unit volume of the fiber and matrix materials, respectively, while Γ and Ψ
are continuous functions depending on the state fields induced in the deformed
structure.
To illustrate this kind of optimization problem, let us consider the compo-

site disk shown in Fig. 11. The disk has a unitary thickness and the mechanical
properties as well as unit costs of the components are given in Table 7.

Fig. 11. Composite disk subjected to load and boundary conditions

Table 7. Material data of composite components

E [GPa] ν cost [PLN]

fibers (glass E) 75 0.25 30

matrix (epoxy) 3.5 0.38 12

fibers array circular fibers in square array

source: Adopted from German (1996)

The minimization of the total cost of the disk reinforced with one family
of straight fibers was considered. It was also assumed that the stiffness of
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reinforced disk should be equal to 170 J. The angle of fiber orientation θ and
fiber density ρw were selected as the design parameters, i.e. b = {θ, ρw}, and
they were determined during the optimization process.

Table 8. Results of optimization process

design parameters stiffness [J] cost [PLN]

optimal disk θ = 134◦, ρw = 0.52 170.0 2.48

reference disk θ = 90◦, ρw = 0.70 170.0 2.96

Fig. 12. Optimal disk (a) and reference disk (b) reinforced with one family of
straight fibers

The design problem was solved using the proposed evolutionary algori-
thm and the results, obtained after of the optimization process, are given in
Table 8. In this example, the disk was divided into 120 two-dimensional four-
node quadrilateral elements. The optimal solution, shown in Fig. 12a, was next
compared with the solution for the same disk reinforced with one family of
straight fibers parallel to the y-axis (Fig. 12b). The optimal layout of fibers
decreases the total cost of disk by 17% when compared to the reference design
shown in Fig. 12b.

7. Conclusion

The full advantages of a composite disk subjected to a particular load can be
obtained when fibers are optimally distributed and oriented in the structure
with respect to the assumed measure of structural behavior. This optimal lay-
out can be obtained using the proposed evolutionary optimization algorithm,
which can be a very effective tool for finding a reasonable solution to a gi-
ven problem. Thus, this algorithm can constitute an alternative technique for
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the classical gradient-oriented methods applied in optimization of structural
elements, or can supplement them.

The presented analysis can be treated as a starting point for computer-
oriented optimal design procedures of real structures made of composite ma-
terials subjected to actual loading conditions. Such a procedure can allow for
avoiding expensive experimental testing, which can be reduced to the final
phase of structural design.
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Optymalne projektowanie tarcz kompozytowych wzmocnionych włóknami

Streszczenie

Praca dotyczy zagadnień modelowania, analizy i optymalizacji zachodzących
w procesie projektowania płaskich, dwuwymiarowych elementów konstrukcyjnych wy-
konanych z materiałów kompozytowych i obciążonych statycznie siłami działającymi
w ich płaszczyźnie. Rozpatrzono problem projektowania optymalnego ułożenia włó-
kien wzmacniających w kompozycie pod kątem uzyskania przez element konstrukcyjny
wykonany z tego materiału wymaganych własności mechanicznych. Rozważania doty-
czyły sposobu projektowania oraz generowania rodziny prostoliniowych, jak również
krzywoliniowych włókien wzmacniających. Do poszukiwania optymalnych rozwiązań
zastosowano opracowaną do tego celu metodę optymalizacyjną opartą na algorytmie
ewolucyjnym. Rozpatrywany w pracy problem zilustrowano przykładami numerycz-
nymi.
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