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PREFACE  

This is the fourteenth time when the conference “Dynamical Systems: Theory 
and Applications” gathers a numerous group of outstanding scientists and engineers, who 
deal with widely understood problems of theoretical and applied dynamics.  

Organization of the conference would not have been possible without a great effort of 
the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage 
over the conference has been taken by the Committee of Mechanics of the Polish Academy 
of Sciences and Ministry of Science and Higher Education of Poland. 

It is a great pleasure that our invitation has been accepted by recording in the history 
of our conference number of people, including good colleagues and friends as well as a large 
group of researchers and scientists, who decided to participate in the conference for the 
first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all 
over the world. They decided to share the results of their research and many years 
experiences in a discipline of dynamical systems by submitting many very interesting 
papers.  

This year, the DSTA Conference Proceedings were split into three volumes entitled 
“Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical 
Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and 
Engineering Dynamics and Life Sciences. Additionally, there will be also published two 
volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems 
in Theoretical Perspective” and “Dynamical Systems in Applications”.  

These books include the invited and regular papers covering the following topics:  
• asymptotic methods in nonlinear dynamics, 
• bifurcation and chaos in dynamical systems, 
• control in dynamical systems, 
• dynamics in life sciences and bioengineering, 
• engineering systems and differential equations, 
• non-smooth systems 
• mathematical approaches to dynamical systems 
• original numerical methods of vibration analysis, 
• stability of dynamical systems, 
• vibrations of lumped and continuous systems, 
• other problems. 
Proceedings of the 14th Conference „Dynamical Systems - Theory and Applications" 

summarize 168 and the Springer Proceedings summarize 80 best papers of university 
teachers and students, researchers and engineers from all over the world. The papers were 
chosen by the International Scientific Committee from 370 papers submitted to the 
conference. The reader thus obtains an overview of the recent developments of dynamical 
systems and can study the most progressive tendencies in this field of science.  
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Our previous experience shows that an extensive thematic scope comprising dynamical 
systems stimulates a wide exchange of opinions among researchers dealing with different 
branches of dynamics. We think that vivid discussions will influence positively the creativity 
and will result in effective solutions of many problems of dynamical systems in mechanics 
and physics, both in terms of theory and applications.  

We do hope that DSTA 2017 will contribute to the same extent as all the previous 
conferences to establishing a new and tightening the already existing relations and scientific 
and technological cooperation between both Polish and foreign institutions.  

 
 
 
 

On behalf of both  
Scientific and Organizing Committees 

 
 
 

Chairman 
Professor Jan Awrejcewicz 
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Review on the Cell Discretization Method

Nicola Maria Auciello, Maria Anna De Rosa, Maria Lippiello, Stefania Tomasiello

Abstract: In the last forty years, the Cell Discretization Method (CDM) has
become a popular method for the statical and dynamical analysis of structures.
According to this method, the structure is reduced to a set of rigid bars linked
together by means of elastic constraints (cells). In this way, the structure is
reduced to a rigid-elastic system with a finite number of Lagragian coordi-
nates. The latter ones may be chosen in two alternative ways: the rotations
of rigid bars or the displacements of the cells. This method found several ap-
plications, for instance: the dynamics and stability of arches; masonry arches;
statical and dynamical analysis of Euler-Bernoulli beams under several load
and boundary conditions; statical and dynamical analysis of Timoshenko and
Rayleigh beams; statical analysis of plates; statical and dynamical analysis of
carbon nanotubes, by taking into account nonlocal effects. Due to the reno-
vated interest in this method, especially with regard to the application to the
field of carbon nanotubes, it seems appropriate proposing a critical review on
the method and its current and future applications.

1. Introduction

The Cell Discretization Method (CDM) has been becoming an important tool in the field of

the structural engineering, thanks to its approximation abilities and easyness to be imple-

mented.

The advent of sophisticated and totally generalized discretization tools, such as FEM,

BEM, allowed to simulate the behaviour of structures taking into account several variables

due to the removal of as many as simplified hypotheses, but on the other hand such pro-

cedures may induce to lose the physical sense of the real behaviour of the structures that

should be always at the basis of engineering studies.

In this sense, the CDM may be regarded as a technique able to address such issues. It

was developed by some of the present authors jointly with other co-workers in 80s. The idea

behind the method, that is the discretization of structures by means of rigid bars linked

through elastic constraints (cells), was in the literature since the beginning of the 20th

century. Anyway, the first time it appeared as a formally theoretically supported method is

in [1]. The method proposed in [1] was then developed to handle the problem of arches, by

computing the conservative critical loads [2].
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Raithel and Franciosi in [3] extend the discretization procedure to the dynamics problem

by computing the vibration modes of arches without axial loads, while in [4] the presence

of axial loads (applied to arches) is considered as a delay effect. In the last years, several

proposals and calculation analyses were developed in the field of structural engineering,

involving the behaviour of arches with different types of constraints, such as simply elastic

supports or even rigid foundation blocks [5] – [15]. In all these works, the procedure is shown

to be very versatile and able to work in any case on a finite number of Lagrangian parameters

by bringing the solution into the alveo of the usual numerical analysis methods. With regard

to the study of masonry arches, with a few numerical strategies and assuming the presence

of non-reactive tensile units, a powerful investigation tool was proposed, for determining

the collapse multipliers [16] – [19]. In addition, this method found several applications,

even for the static and dynamical analysis of uniform and tapered Euler - Bernoulli beams,

Timoshenko and Rayleigh beams and plates under several load and boundary conditions [20]–

[39]. More recently, some of the present authors applied the method to the dynamical analysis

of single- and double-walled carbon nanotubes, by taking into account non - local effects [40]

– [42] and they obtained results showing that the method is able to describe the nanostructure

behaviour satisfactorily with a little computational effort. At the moment, it seems proper

writing a review note on the method and its former and coming applications. This work

presents briefly the method and its application, as well as its potentialities.

2. The method

The discretization procedure of the CDM is intended to reduce the structure to a set of rigid

bars, with equal length, linked by elastic cells. The choice of the Lagrangian coordinates

can be done in two ways: the first one is choosing the rotations of the rigid bars while the

second one is assuming the vertical displacements of the elastic cells. Consequently, based on

the Lagrangian coordinates chosen, namely the set of rotations or the set of displacements,

the method allows to derive all the possible configurations of the structure and writing the

equations of motion. In the current literature, the difference between the two proposed

procedures has not been emphasized yet, probably because the basic concept is the same,

that is discretising the structure in rigid bars and elastic cells.

In this review work, we summarize the two discretization methods for the simple case

of the dynamic analysis of an Euler–Bernoulli beam, leaving the reader looking for more

complex cases in the cited works.
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2.1. The discretization

By applying the Hamilton Principle for an Euler-Bernoulli beam, with span L, section of

area A and inertia I, Young modulus E and mass density ρ, one has∫ t2

t1

[δT − δEt]dt = 0 (1)

where t is the time variable and t1, t2 two arbitrarily fixed times.

The kinetic energy is

T =
1

2

∫ L

0

ρA

(
∂v(z, t)

∂t

)2

dz, (2)

where z is the abscissa along the beam axis. The deformation energy is

Et =
1

2

∫ L

0

EI

(
∂2v(z, t)

∂z2

)2

dz. (3)

Subtracting Eq. 2 from Eq. 3, one has the Lagrangian

T − Et =
1

2

∫ L

0

ρA

(
∂v(z, t)

∂t

)2

dz− 1

2

∫ L

0

EI

(
∂2v(z, t)

∂z2

)2

dz. (4)

Performing the first variation of Eq. 4 we obtain the equation of motion and the corre-

sponding boundary conditions:

EI
∂4v(z, t)

∂z4
+ ρA

∂2v(z, t)

∂t2
= 0 (5)

If the structure is discretized, the Eq. 5 will be represented by the following Lagrange

equation system:

d

dt

(
∂T

∂q̇i

)
+
∂Et

∂qi
= 0, i = 1, ....n, (6)

with qi Lagrangian coordinates.

2.2. First approach: rotations as Lagrangian coordinates

The structure is regarded as a set of n rigid bars linked by n+1 elastic constraints (Figure 1),

representative of the flexural constraints. In this case, the structure configurations depend

on a finite number of degree-of-freedoms (DOFs). The rigid rotations ϕi of the bars are

assumed as Lagrangian parameters:

ccc = [ϕ1, . . . , ϕi, . . . , ϕn]T (7)

and one can get the displacements of the beam by means of simple geometric considerations

(Fig. 1). More precisely, let L/n be the length of the rigid bar, then by considering the

11



scheme in Fig. 1, the displacements vi and the relative rotations in any elastic cell are given

by

v1 = 0, v2 = −ϕ1 L/n, vi = −
i−1∑
i=1

ϕiL/n, vn+1 = −
n∑

i=1

ϕiL/n, (8)

∆ϕ1 = ϕ1, ∆ϕ2 = ϕ2 − ϕ1 , ∆ϕi = ϕi − ϕi−1, ∆ϕn+1 = 0, (9)

which in matrix form are

vvv = AcAcAc, ∆ϕ∆ϕ∆ϕ = BcBcBc, (10)

where the (n+ 1) × n matrices A, B are written as follows

Figure 1. First method for chosing the Lagrangian parameters: rigid rotations

A =
L

n



0 0 0 . . . 0

−1 0 0 . . . 0

−1 −1 0 . . . 0

...
...

...
...

...

−1 −1 −1 . . . −1


, B =



1 0 0 . . . 0

−1 1 0 . . . 0

0 −1 1 . . . 0

...
...

...
... 0

0 0 0 . . . 0


. (11)

By considering Eq. 10, the kinetic energy can be written as follows

T =
1

2

∫ L

0

ρAv̇vv2dz =
1

2

n+1∑
i=1

miv̇
2
i . (12)

The masses mi are centred in the elastic cells and are given by

m1 =
L

2n
ρA1, mi =

L

2n
ρ (Ai + Ai+1) , mn+1 =

L

2n
ρAn+1, i = 2....n. (13)
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Then, the kinetic energy can be written as

T =
1

2
ċccT
[
AAATmmm AAA

]
ċcċccċccc =

1

2
ċccTMMM ċcċccċccc, (14)

with M the mass matrix of order (n, n+ 1).

The deformation energy is given by the work done by the bending moment because of

the relative rotation in the generic elastic cell. By neglecting the shear effect, the bending

moment is given by

Mi =
n

L
EI∆ϕi = ki∆ϕi, (15)

with ki being the stiffness of the rigid links, given by

k1 =
n

2L
EI1, ki =

n

L
E (Ii + Ii+1) , kn+1 =

n

2L
EIn+1. (16)

Then Eq. 3 becomes

Et = −1

2

∫ L

0

EI
(
vvv′′
)2

dz = −1

2

n∑
i=1

M i∆ϕi = −1

2
cccT BBBT kkk B cB cB c =

1

2
cccTKKK ccc, (17)

with KKK = BBBTkkk BBB.

Since the structure is reduced to an n DOFs system, the equation of motion will be given

by the Lagrange equations (6) with q̇i = ϕ̇i and qi = ϕi which can be written as follows, by

replacing Eqs (13,16)

Mc̈Mc̈Mc̈ +KcKcKc = 000, (18)

whose solutions can be found by

det
(
KKK − ω2MMM

)
= 0, (19)

2.3. Second approach: displacements as Lagrangian coordinates

As a second way for discretizing the structure, one can consider as Lagrangian coordinates

the n+ 1 displacements vi (Fig. 2), collected into a vector v.

By means of the vector vvv, one can easily get the vector of the n rotations of the rigid

bars, defined as follows

φi = n
vi+1 − vi

L
, i = 1, 2, ..., n, (20)

that is in matrix form

ΦΦΦ = VVVvvv, (21)
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Figure 2. Second method for chosing the Lagrangian parameters: displacements

where VVV is the (n, n + 1) transfer matrix. The relative rotations between the two sides of

any elastic cell are given by

ψ1 = φ1, ψi = φi − φi−1, ψn+1 = −φn (22)

or in matrix form

ψψψ = ∆∆∆φφφ, (23)

where ∆∆∆ is the (n+ 1 × n) transfer matrix.

The deformation energy is centred into the cells and it will be given by

Le =
1

2

n+1∑
i=1

kiiψ
2
i =

1

2
ψψψTkkk ψψψ (24)

In order to get a quadratic form, Eqs. 20-21 have to be used

Le =
1

2
ψψψTkkk ψψψ =

1

2
φφφT∆∆∆Tkkk ∆∆∆ φφφ =

1

2
vvvT(((VVVT∆∆∆Tkkk ∆∆∆VVV)))vvv (25)

By letting KKK = VVVT∆∆∆Tkkk ∆∆∆VVV, then

Le =
1

2
vvvTKKKvvv. (26)

The kinetic energy, similarly to the first approach, is written as

T =
1

2

n+1∑
i=1

miv̇
2
i (27)
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or in matrix form

T =
1

2
v̇̇v̇vTMMMv̇̇v̇v. (28)

As mentioned in the previous section, Lagrange equations can be written as Eq. (6)

setting q̇i = v̇i and qi = vi .

3. Conclusions

In this note we analyzed the CDM, a method discretizing a structure in rigid bars and elastic

cells. Thanks to the versatility of the procedure it is easy to understand that the method

can be used for many structural types (beams, Timoshenko beams, higher order beams,

single- and multiple-walled carbon nanotubes, plates, shells, arches, masonry arches, bridges,

slightly curved beams etc.) and in the range of different theories (statical analysis, linear

and nonlinear dynamics, stability analysis, in presence of conservative and non-conservative

forces, nonlocal effects, in seismic analysis, etc.). It will be the task of researchers applying

the method to new fields of investigation.
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Theory of size-dependent physically nonlinear Euler-Bernoulli 
beams in an aggressive medium with taking into account the 

coupling of temperature and deformation fields 

 

Jan Awrejcewicz, Tatyana Y. Yakovleva, Ekaterina Y. Krylova, Anastasiya 

O. Sinichkina, Vadim A. Krysko - jr. 

Abstract: In this paper a size-dependent theory of physically nonlinear beams described 

by the kinematic theory of the first approximation is constructed. The basis of the 

developed theory is the moment theory of elasticity. The physical nonlinearity is taken 

into account following the Birger method of variable elasticity parameters, according 

to which the physical parameters of the beam material are not constant, but are functions 

of coordinates and a stress-strain state of the structure. The input partial differential 

equations of motion are obtained from the Hamilton variation principle. Equations take 

into account the relationship between deformation and temperature fields, material 

dependence on temperature and the aggressive medium properties in which the beam is 

located. The governing equations are nonlinear of the hyperbolic-parabolic type and 

exhibit different dimension. The equation of beam motion is one-dimensional, and the 

equation of thermal conductivity is two-dimensional. It means that no any restrictions 

for temperature distribution over beam thickness are employed. A calculation algorithm 

with nested iterations is developed in order to solve the problem in a reliable and 

validated way.  

1. Introduction 

The study of the effects associated with corrosion, wear and dynamic thermal force phenomena on the 

behavior of mechanical systems is an extremely complex but promising direction of the scientific 

research. The reorganization of the dynamic system modes may depend not only on the change in the 

parameters of the force (mechanical) loading, but also on the change in the thickness of the structure 

due to the action of the corrosive medium, as well as it is influenced by the temperature effects. Interest 

in such tasks is related to a need to develop mechanical structures capable of operating in corrosive 

environments under conditions of uneven non-stationary heating (for example, in aviation and rocketry 

industries, gyroscopes fabrication, nuclear reactor protection systems, micromechanical systems, etc.). 

Engineering practice constantly requires increasing the accuracy of mathematical models describing 

the vibrations of structural elements. Investigation of the effect of corrosion and wear on the vibrations 

of mechanical systems in the form of beams located in temperature fields is an actual and interesting 

problem. 
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Thin-walled and thick-walled spherical shells subjected to mechanical-chemical of corrosion under 

the action of external and internal pressure are considered in the series of papers Pronina and Sedova 

[1-4]. Analysis and comparison of the results obtained on the basis of analytical solutions is done in the 

works. A mathematical model of uniform corrosion of a thick-walled long flexible cylindrical tube 

subjected to the internal and external pressure at different temperatures has been constructed in 

reference [5]. The influence of corrosion is taken into account according to the Dolinsky model [7] with 

an exponential decay in time. The problems of calculating the tensile rod being inhomogeneous along 

its length, taking into account corrosion wear, and using geometric nonlinear theory, are considered in 

[6]. The necessity of taking into account the nonlinearity in the problems under consideration is justified 

in this paper. Fridman solved the problem of determining the dimensions of the cross-section of the 

truss elements of the ring section constructions (for a given period of their operation), subject to 

corrosion, using the Dolinsky model. The influence of two-sided and one-sided corrosion on the 

frequency of natural vibrations of freely supported plates has been studied in [8]. With the help of the 

finite element analysis, the influence of the corrosion degree on the value of the natural frequency and 

on the bending shape of a plate has been investigated. The papers [9, 10] are devoted to the study of the 

loss of stability of thin-walled cylindrical pipes (circular and non-circular cross section) of the 

Kirchhoff-Love model. The pipes are subjected simultaneously to the action of transverse compression 

forces and uniform unilateral corrosion on the outside or from the inside. The critical time of loss of 

stability of pipes has been found. Also, the authors considered the problems of stability loss of thin-

walled spherical shells [11, 12] under the influence of external pressure and internal corrosion in 

temperature fields.  It was shown that an increase in temperature leads to an increase in the corrosion 

rate. In the papers [13-17] it has been shown that to obtain more accurate results it is necessary to take 

into account the coupling of the temperature and deformation fields.  

In recent decades, the interest in micro-dimensional mechanical structures has increased since in 

most cases they are the most important elements in MEMS [18, 19]. 

Many properties of  the elastic bodies are associated with the characteristic dimensions, these 

properties are different [20-22]. Despite a large number of works on this subject, where linear models 

are used for numerical analysis, we note that it is necessary to take into account the influence of 

nonlinearity on the dynamics of micro and nano mechanical systems [23]. The resolving linear 

equations, initial and boundary conditions for the size-dependent Euler-Bernoulli model (the first-

approximation model) have been obtained in [24, 25] using the modified moment theory of elasticity. 

The influence of the size parameter on the static deformation and the magnitude of the natural 

frequencies have been investigated. 

For a static problem, a linear equation of the fourth order for longitudinal displacement is 

considered. The natural frequencies are investigated for small deflections using a linear equation of the 
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6th order for the function of deflection. To reduce the partial differential equations to the ordinary 

differential equations with respect to time, the Bubnov-Galerkin method has been empoyed in the first 

approximation. In reference [26], the equations for the geometrically nonlinear Euler-Bernoulli beam 

have been obtained on the basis of the Kármán relations has been used. To get a numerical solution, the 

Bubnov-Galerkin method in the first approximation. The effect of the size coefficient on the value of 

the natural frequency of nonlinear vibrations has been investigated. 

The linear problems for the determination of natural frequencies and the static problems for 

investigating the influence of dimension-dependent parameters are considered in many papers. The 

effect of corrosion wear along with the temperature effect was considered for macro-dimensional 

mechanical systems. It is necessary to study in more detail the nonlinear deformations of size-dependent 

beams under the influence of static and dynamic loads, taking into account mechano-chemical corrosion 

and the related problem of thermodynamics. To study the dynamics of size-dependent beams, it is 

necessary to involve the apparatus of nonlinear dynamics on the basis of Fourier analysis and wavelet 

spectra, the phase portraits, the Poincaré sections, the change of the largest Lyapunov exponent (LLe) 

in time, the autocorrelation functions, amongst others [27-31]. The mentioned problems have been 

analysed with an account of three types of nonlinearity: physical, geometric and constructive (contact 

interaction in time). However, in these papers, the results have been obtained on the basis of the classical 

theory of elasticity, without considering the size-dependent behavior of structures [32-36]. 

At the moment, there are no mathematical models of vibrations of size-dependent beam structures 

including effects of corrosion wear, temperature and strain field connectivity, physical and geometric 

nonlinearity. In this paper we consider the interplay of all factors on the example of the Euler-Bernoulli 

beam. 

2. Main hypotheses and assumptions 

A mathematical model of non-linear vibrations of a beam of variable thickness under the influence of 

a normal distributed load is derived.  

We make the following assumptions about the beam geometry, the material properties and the 

operating conditions for formulate the mathematical models: 1) the Euler-Bernoulli hypothesis [37]; 2) 

the inertia of rotation of beam elements is not taken into account; 3) external forces do not change their 

direction when the beam is deformed; 4) the longitudinal size of the beam considerably exceeds its 

lateral size; 5) to describe the size-dependent properties of the system, the modified momentum theory 

of elasticity is employed [38]; 6) the geometric nonlinearity is taken into account in the form of Kármán 

[39]; 7) the physical nonlinearity is taken into account on the basis of the Bierger's variable elasticity 

method [40,41]; 8) normal stresses in the direction of the normal to the middle surface can be neglected 

in comparison to the main stresses. Basic stresses mean normal and tangential stresses in the middle 
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surface itself and in layers parallel to it; 9) the influence of corrosion wear is taken into account 

according to the Dolinsky model; it is assumed that the corrosion rate depends linearly on the maximum 

stress and decays exponentially with time [42]; 10) there are no restrictions on the propagation of 

temperature over the thickness of the beams, that is, two-dimensional heat conduction equations are 

considered; 11) we consider isotropic homogeneous beams of variable thickness; 12) dissipative 

systems are considered. 

3. Employment the moment theory of elasticity for a beam 

In the modified couple stress based gradient theory [38], the potential deformation energy 𝑈 in an elastic 

body occupying the domain 𝛺 = {0 ≤ 𝑥 ≤ 𝑎; 0 ≤ 𝑦 ≤ 𝑏; −ℎ ≤ 𝑧 ≤ ℎ}, for infinitely small 

deformations is 𝑈 =
1

2
∫ (𝜎𝑖𝑗𝜀𝑖𝑗 + 𝑚𝑖𝑗𝜒𝑖𝑗)𝑑𝑣

𝛺
, where 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧; 𝜀𝑖𝑗 − the components of the 

deformation tensor and 𝜒𝑖𝑗 − are the components of the symmetric tensor of the gradient of curvature 

𝜀𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
+ ∑

𝜕𝑢𝑚

𝜕𝑥𝑗

3
𝑚=1

𝜕𝑢𝑚

𝜕𝑥𝑗
), 𝜒𝑖𝑗 =

1

2
(

𝜕𝜃𝑖

𝜕𝑥𝑗
+

𝜕𝜃𝑖

𝜕𝑥𝑖
), 𝜃𝑖 =

1

2
(𝑟𝑜𝑡(𝑢))𝑖. Here, 𝑢𝑖 represent the 

components of the displacement vector 𝑢, 𝜃 is an infinitesimal rotation vector with the components. 𝜃𝑖  

and 𝛿𝑖𝑗 are the Kronecker symbols. For a linear isotropic elastic material, the stresses caused by the 

kinematic parameters included in the expression for the energy density of deformation are determined 

by the following state equations [38]: 𝜎𝑖𝑗 = 𝜆𝜀𝑚𝑚𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗, 𝑚𝑖𝑗 = 2𝜇𝑙2𝜒𝑖𝑗, where 𝜎𝑖𝑗 , 𝜀𝑖𝑗 , 𝑚𝑖𝑗  and 

𝜒𝑖𝑗 denote the components of the classical stress tensor 𝜎, the strain tensor 𝜀, the deviator part of the 

symmetric moment tensor of higher order 𝑚 and the symmetric part of the curvature tensor 𝜒, 

respectively; 𝜆 =
𝐸𝑣

(1+𝑣)(1−2𝑣)
, 𝜇 =

𝐸

2(1+𝑣)
 are the Lamé parameters; 𝐸(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧) are the Young's 

modulus and Poisson's ratio, respectively; 𝜌(𝑥, 𝑦, 𝑧) is the density of the beam material; 𝑒𝑖 is the 

intensity of deformation. The parameter 𝑙, appearing in the higher order moment 𝑚𝑖𝑗, is an additional 

independent material length parameter associated with the symmetric rotational gradient tensor.  

In this paper, the mathematical model of vibrations of a size-dependent geometrically and 

physically nonlinear beam exposed to unilateral corrosion wear will be constructed on the basis of the 

Euler-Bernoulli model (the hypothesis of the first approximation). The model reflects only the bending 

of the beam without turning and curving the cross section. The beam occupies the domain 𝛺 =

{0 ≤ 𝑥 ≤ 𝑎; 0 ≤ 𝑦 ≤ 1; −ℎ ≤ 𝑧 ≤ ℎ − 𝛿}, where 𝛿 = 𝛿(𝑥, 𝑡) is the negative thickness increment 

function, due to corrosive wear. The displacement of an arbitrary point in a certain layer of a beam 

parallel to the median line away from it by a distance 𝑧 ≠ 0 will have the form: 𝑢𝑥(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) −

𝑧
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
, 𝑢𝑦(𝑥, 𝑡) = 0, 𝑢𝑧(𝑥, 𝑡) = 𝑤(𝑥, 𝑡), where 𝑢(𝑥, 𝑡) is the axial displacement of an arbitrary point 

of the middle line of the beam, and 𝑤(𝑥, 𝑡)  is the transverse deviation. 
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We consider the inhomogeneous theory of elasticity. The physical constants are assumed to depend 

on the coordinates and the intensity of the deformations. We shall carry out the model studies, taking 

into account the physical nonlinearity with the dependence 𝐸(𝑥, 𝑦, 𝑧, 𝑒𝑖) on the coordinates, using the 

deformation theory of plasticity and employing the Bierger variable elasticity parameter [43], as is done 

for flexible physically nonlinear shells [44]. 

We consider an isotropic inhomogeneous rectilinear beam, under the action of the distributed 

transverse intensity force 𝑞(𝑥, 𝑡). The median line is located in the plane 𝑧 = 0. Taking into account 

the Euler-Bernoulli hypothesis, we can write the expression for the deformation of the elongation in the 

x direction, taking into account the geometric nonlinearity according to the von Kármán model, the 

influence of the temperature field, the variable beam thickness and the corrosion wear:  

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2
− 𝑧

𝜕2𝑤

𝜕𝑥2
− 𝛼𝑡𝑇(𝑥, 𝑧, 𝑡).                                                                          (1) 

The total deformation of an arbitrary point on a layer located from the median line by a distance z, 

where 𝜀𝑥𝑥  is composed of the deformation of the median line 
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2, the deformation 

of the bend −𝑧
𝜕2𝑤

𝜕𝑥2
 and the temperature deformation −𝛼𝑡𝑇(𝑥, 𝑧, 𝑡). Here ℎ = ℎ(𝑥) is the law of the 

beam thickness variation along its length, 𝛼𝑡 is the coefficient of thermal expansion of the beam 

material, and 𝑇(𝑥, 𝑧, 𝑡) is the function of the temperature field. 

We write the expressions for the nonzero components 𝜃, the symmetric part of the curvature tensor 

𝜒, the normal stress 𝜎𝑥𝑥 and the nonzero components of the higher order moments: 

𝜃2 = −
𝜕𝑤

𝜕𝑥
, 𝜒12 = 𝜒21 = −

1

2

𝜕2𝑤

𝜕𝑥2
, 

(2) 𝜎𝑥𝑥 = (𝜆 + 2𝜇) (
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2 − 𝑧
𝜕2𝑤

𝜕𝑥2 − 𝛼𝑡𝑇(𝑥, 𝑧, 𝑡)), 𝑚12 = 𝑚21 =

−𝜇𝑙2 𝜕2𝑤

𝜕𝑥2 . 

4. Variational formulation of the problem: mathematical modelling of the flexible 

physically nonlinear and size-dependent Euler-Bernoulli beams 

The potential energy U, obtained on the basis of the addition of higher-order forces, the kinetic energy 

K, the external work W associated with the distributed forces and energy dissipation will take the 

following form: 

𝑈 =
1

2
∫ ∫ (𝜎11𝜀11 + 2𝑚12𝜒12)𝑑𝑧𝑑𝑥 =

ℎ−𝛿

−ℎ

𝑎

0
  (3) 
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=
1

2
∫ ∫ ((𝜆 + 2𝜇) (

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2
− 𝑧

𝜕2𝑤

𝜕𝑥2
− 𝛼𝑡𝑇(𝑥, 𝑧, 𝑡) +

ℎ−𝛿

−ℎ

𝑎

0

𝜇𝑙2 (
𝜕2𝑤

𝜕𝑥2
)

2

)
2

) 𝑑𝑧𝑑𝑥, 

𝐾 =
1

2
𝜌 ∫ ∫ ((

𝜕𝑢

𝜕𝑡
)

2
+ (

𝜕𝑤

𝜕𝑡
)

2
) 𝑑𝑧𝑑𝑥

ℎ−𝛿

−ℎ

𝑎

0
 , 

𝑊 = ∫ (𝑞(𝑥, 𝑡)𝑤 + 𝜀
𝜕𝑤

𝜕𝑡
𝑤)𝑑𝑥

𝑎

0
, 𝜀 − is the dissipation coefficient. 

The equations of beams motion, as well as the boundary and initial conditions, are obtained from 

the Hamilton-Ostrogradskiy principle. According to this principle, a comparison is made of the close 

motions that lead the system of material points from the initial position at time 𝑡0 to the final position 

at time 𝑡1. For true motions, the condition: ∫ (𝛿𝐾 − 𝛿П + 𝛿𝑊)𝑑𝑡 = 0
𝑡1

𝑡0
 should be satisfied. Varying 

over the variables u, w, integrating by parts, and equating the expressions for δu and δw to zero, we 

obtain the resolving equations of motion and add to the resulting system the equations for corrosive 

wear: 

(
𝜕2𝑢

𝜕𝑥2 +
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑥2 +
𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2 −
1

2

𝜕𝑤

𝜕𝑥

𝜕2ℎ

𝜕𝑥2 −
1

2
𝑤

𝜕3ℎ

𝜕𝑥3) 𝐶00 + (
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑢

𝜕𝑥
)

2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2) 𝑑𝐶00 −  

−
𝜕3𝑤

𝜕𝑥3 𝐶10 −
𝜕2𝑤

𝜕𝑥2 𝑑𝐶10 + 𝑑𝑁𝑡 =  
𝛾(2ℎ−𝛿)

2𝑔𝑝1

𝜕2𝑢

𝜕𝑡2  ;                                                                                       (4) 

(
𝜕2𝑢

𝜕𝑥2
+

𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑥2
+

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
−

1

2

𝜕𝑤

𝜕𝑥

𝜕2ℎ

𝜕𝑥2
−

1

2
𝑤

𝜕3ℎ

𝜕𝑥3
)

𝜕𝑤

𝜕𝑥
𝐶00 + [(

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑢

𝜕𝑥
)

2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2
) 𝐶00 −

𝜕2𝑤

𝜕𝑥2 𝐶10 − 𝑁𝑡]
𝜕2𝑤

𝜕𝑥2 + [(
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑢

𝜕𝑥
)

2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2) 𝑑𝐶00 −
𝜕3𝑤

𝜕𝑥3 𝐶10 −
𝜕2𝑤

𝜕𝑥2 𝑑𝐶10 + 𝑑𝑁𝑡]
𝜕𝑤

𝜕𝑥
+

(
𝜕3𝑢

𝜕𝑥3 + (
𝜕2𝑢

𝜕𝑥2)
2

+
𝜕𝑢

𝜕𝑥

𝜕3𝑢

𝜕𝑥3 + (
𝜕2𝑤

𝜕𝑥2 )
2

+
𝜕𝑤

𝜕𝑥

𝜕3𝑤

𝜕𝑥3 −
1

2

𝜕2𝑤

𝜕𝑥2

𝜕2ℎ

𝜕𝑥2 −
𝜕𝑤

𝜕𝑥

𝜕3ℎ

𝜕𝑥3 −
1

2
𝑤

𝜕4ℎ

𝜕𝑥4) 𝐶10 + 2 (
𝜕2𝑢

𝜕𝑥2 +
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑥2 +

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2 −
1

2

𝜕𝑤

𝜕𝑥

𝜕2ℎ

𝜕𝑥2 −
1

2
𝑤

𝜕3ℎ

𝜕𝑥3) 𝑑𝐶10 + (
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑢

𝜕𝑥
)

2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2) 𝑑2𝐶10 −
𝜕4𝑤

𝜕𝑥4 (𝐶20 +

𝑝2

2𝑝1
𝑙2𝐶00) − 2

𝜕3𝑤

𝜕𝑥3 𝑑𝐶20 −
𝜕2𝑤

𝜕𝑥2 𝑑2𝐶20 + 𝑑2𝑀𝑡 =
1

𝑝1
(

𝛾(2ℎ−𝛿)

2𝑔

𝜕2𝑤

𝜕𝑡2 + 𝜀
𝛾(2ℎ−𝛿)

2𝑔

𝜕𝑤

𝜕𝑡
− 𝑞) ;                      (5) 

𝜕𝛿

𝜕𝑡
= (𝛿0 + 𝐾 [(𝜆 + 2𝜇) (

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2 − 𝑧
𝜕2𝑤

𝜕𝑥2 − 𝛼𝑡𝑇(𝑥, 𝑧, 𝑡))]) exp (−𝑏𝑡);                 (6) 

where:  𝐶00 = ∫ 𝐸(𝑥, 𝑧, 𝑒𝑥)𝑑𝑧
ℎ(𝑥)−𝛿(𝑥)

−ℎ(𝑥)
,  𝐶10 = ∫ 𝐸(𝑥, 𝑧, 𝑒𝑥)𝑧𝑑𝑧

ℎ(𝑥)−𝛿(𝑥)

−ℎ(𝑥)
 , 

𝐶20 = ∫ 𝐸(𝑥, 𝑧, 𝑒𝑥)𝑧2𝑑𝑧
ℎ(𝑥)−𝛿(𝑥)

−ℎ(𝑥)
,  𝑁𝑡 = 𝛼𝑡 ∫ 𝐸(𝑥, 𝑧, 𝑒𝑥)𝑇(𝑥, 𝑧, 𝑡)𝑑𝑧

ℎ(𝑥)−𝛿(𝑥)

−ℎ(𝑥)
,  

𝑀𝑡 = 𝛼𝑡 ∫ 𝐸(𝑥, 𝑧, 𝑒𝑥)𝑇(𝑥, 𝑧, 𝑡)𝑧𝑑𝑧
ℎ(𝑥)−𝛿(𝑥)

−ℎ(𝑥)
, 𝑝1 =

1−𝑣

(1+𝑣)(1−2𝑣)
, 𝑝2 =

1

2(1+𝑣)
, where 𝛾  is the specific 

gravity of the beam material; 𝑔 is the acceleration of free fall. The effect of corrosion wear is taken into 

account according to the Dolinsky model, and it is assumed that the corrosion rate linearly depends on 
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the maximum stress and decays exponentially with time [42]. The constants 𝐾 and 𝑏 are determined 

experimentally [45], and 𝛿0 is the initial corrosion rate. 

No restrictions are imposed on the propagation of temperature over the thickness of the beam, and 

therefore a two-dimensional heat equation for a nonstationary field is considered, taking into account 

the coupling of deformation fields and temperatures: 

𝐶0

𝑇0

𝜕𝑇

𝜕𝑡
−

𝜆

𝑇0
(

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑧2
) =

𝐸𝛼𝑡

1−𝑣

𝜕

𝜕𝑡
(

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2
− 𝑧

𝜕2𝑤

𝜕𝑥2
− 𝛼𝑡𝑇(𝑥, 𝑧, 𝑡)),                              (7) 

where: 𝐶0 is the specific heat of the beam material; 𝑇0 is the beam temperature in the initial undeformed 

state. 

We add initial conditions to the systems of differential equations (4)-(6): 

𝑤(𝑥, 𝑡) = 𝜑30(𝑥); 𝑢(𝑥, 𝑡) = 𝜑10(𝑥); 𝑇(𝑥, 𝑧, 𝑡) = 𝜑4(𝑥, 𝑧); 𝛿(𝑥, 𝑡) = 𝜑5(𝑥); 𝑡 = 0; 

(8) 𝜕𝑤(𝑥,𝑡)

𝜕𝑡
=𝜓30(𝑥); 

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
=𝜓10(𝑥); 𝑡 = 0. 

As well as one of the boundary conditions to the system of equations of motion (4)-(5) is taken, and 

to the heat conduction equation (7) one of the conditions I, II or III type are employed: 

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) =
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
= 0, 𝑥 = 0, 𝑥 = 𝑙;  

(9) 

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) =
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2 = 0, 𝑥 = 0, 𝑥 = 𝑙;  

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) = 0, 𝑥 = 0, 𝑥 = 𝑙,
𝜕𝑤(0,𝑡)

𝜕𝑥
=

𝜕2𝑤(𝑙,𝑡)

𝜕𝑥2
= 0;  

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) =
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
= 0, 𝑥 = 0, 𝑥 = 𝑙, 𝑀𝑥(𝑥, 𝑡) = 𝑁𝑥(𝑥, 𝑡) = 0.  

Here 𝜑10(𝑥), 𝜑30(𝑥), 𝜓10(𝑥), 𝜓30(𝑥), 𝜑4(𝑥, 𝑧), 𝜑5(𝑥)   are known functions that determine the 

initial state of the beam. The equation of motion of the beam element contains a fourth-order derivative, 

which is extremely important in proving the existence of a solution of the studied governing equations 

and the convergence of various methods for their solution. 

The system of governing PDEs supplemented by boundary and initial conditions is reduced to the 

counterpart dimensionless form using the following variables: 

𝑥 = 𝑎𝑥̅, 𝛿 = ℎ0𝛿̅, 𝛿0 =
𝛼

ℎ0
𝛿0
̅̅ ̅, 𝑏 = 𝑏0𝑏̅, ℎ = ℎ0ℎ̅, 𝑙 = ℎ0𝑙,̅ 𝑤 = ℎ0𝑤̅,  

(10) 𝑢 =
ℎ0

2

𝑎
𝑢̅, 𝑞 =

ℎ0
4𝐸0

𝑎4 𝑞̅, 𝑡 =
ℎ0

2

𝛼
𝑡̅, 𝐸 = 𝐸0𝐸̅, 𝜀 =

𝛼

ℎ0
2 𝜀,̅ 𝜆 =

𝛼

ℎ0
, 𝑇 =

ℎ0
2

𝑎2𝛼𝑡0
𝑇̅, 𝛼𝑡 = 𝛼𝑡0𝛼𝑡̅̅ ̅,  

𝐶00 = 𝐸0ℎ0𝐶00
̅̅ ̅̅ , 𝐶10 = 𝐸0ℎ0

2𝐶10
̅̅ ̅̅ , 𝐶20 = 𝐸0ℎ0

3𝐶20
̅̅ ̅̅ . 

The system of equations of motion (4-5), corrosion wear (6), and the heat equation (7), with 

allowance for the dimensionless parameters, will have the following form (bars over the non-

dimensional quantities are omitted): 

(
𝜕2𝑢

𝜕𝑥2 +
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑥2 +
𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2 −
1

2

𝜕𝑤

𝜕𝑥

𝜕2ℎ

𝜕𝑥2 −
1

2
𝑤

𝜕3ℎ

𝜕𝑥3) 𝐶00 + (
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑢

𝜕𝑥
)

2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2) 𝑑𝐶00 −  
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−
𝜕3𝑤

𝜕𝑥3
𝐶10 −

𝜕2𝑤

𝜕𝑥2
𝑑𝐶10 + 𝑑𝑁𝑡 =  

𝐾

𝜆2

(2ℎ−𝛿)

2𝑝1

𝜕2𝑢

𝜕𝑡2
 ;                                                                                   (11) 

(
𝜕2𝑢

𝜕𝑥2 +
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑥2 +
𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2 −
1

2

𝜕𝑤

𝜕𝑥

𝜕2ℎ

𝜕𝑥2 −
1

2
𝑤

𝜕3ℎ

𝜕𝑥3)
𝜕𝑤

𝜕𝑥
𝐶00 + [(

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑢

𝜕𝑥
)

2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2) 𝐶00 −

𝜕2𝑤

𝜕𝑥2 𝐶10 − 𝑁𝑡]
𝜕2𝑤

𝜕𝑥2 + [(
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑢

𝜕𝑥
)

2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2) 𝑑𝐶00 −
𝜕3𝑤

𝜕𝑥3 𝐶10 −
𝜕2𝑤

𝜕𝑥2 𝑑𝐶10 + 𝑑𝑁𝑡]
𝜕𝑤

𝜕𝑥
+

(
𝜕3𝑢

𝜕𝑥3 + (
𝜕𝑢

𝜕𝑥
)

2
+

𝜕𝑢

𝜕𝑥

𝜕3𝑢

𝜕𝑥3 + (
𝜕2𝑤

𝜕𝑥2 )
2

+
𝜕𝑤

𝜕𝑥

𝜕3𝑤

𝜕𝑥3 −
1

2

𝜕2𝑤

𝜕𝑥2

𝜕2ℎ

𝜕𝑥2 −
𝜕𝑤

𝜕𝑥

𝜕3ℎ

𝜕𝑥3 −
1

2
𝑤

𝜕4ℎ

𝜕𝑥4) 𝐶10 + 2 (
𝜕2𝑢

𝜕𝑥2 +
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑥2 +

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑥2
−

1

2

𝜕𝑤

𝜕𝑥

𝜕2ℎ

𝜕𝑥2
−

1

2
𝑤

𝜕3ℎ

𝜕𝑥3
) 𝑑𝐶10 + (

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑢

𝜕𝑥
)

2
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2
) 𝑑2𝐶10 − (𝐶20 +

𝑝2

2𝑝1
𝑙2)

𝜕4𝑤

𝜕𝑥4 − 2
𝜕3𝑤

𝜕𝑥3 𝑑𝐶20 −
𝜕2𝑤

𝜕𝑥2 𝑑2𝐶20 + 𝑑2𝑀𝑡 =
1

𝑝1
(

𝐾(2ℎ−𝛿)

2

𝜕2𝑤

𝜕𝑡2 + 𝜀
𝐾(2ℎ−𝛿)

2

𝜕𝑤

𝜕𝑡
− 𝑞) ;                  (12) 

𝜕𝛿

𝜕𝑡
= (𝛿0 + 𝑃𝑝1 (

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2 − 𝑧
𝜕2𝑤

𝜕𝑥2 − 𝛼𝑡𝑇(𝑥, 𝑧, 𝑡))) exp (−𝐵𝑡);                             (13) 

𝜕𝑇

𝜕𝑡
− 𝐿 (

𝜕2𝑇

𝜕𝑥2 + 𝜆2 𝜕2𝑇

𝜕𝑧2) = 𝐷𝛼𝑡
𝜕

𝜕𝑡
(

𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2
−

1

2
𝑤

𝜕2ℎ

𝜕𝑥2 − 𝑧
𝜕2𝑤

𝜕𝑥2 − 𝛼𝑡𝑇(𝑥, 𝑧, 𝑡)).                          (14) 

Here  
𝜆𝘨ℎ0

2

𝑎2𝐶0𝛼
= 𝐿, 

𝐸0𝛼𝑡0
2 𝑇0

(1−𝑣)𝐶0
= 𝐷, 𝐾𝐸0

ℎ0
3

𝑎2𝛼
= 𝑃, 𝑏0

ℎ0
2

𝛼
= 𝐵,  

𝛾

𝘨

𝑎4𝛼2

ℎ0
2𝐸0ℎ0

4 = 𝐾  are dimensionless physical 

and geometric parameters; 𝜆𝘨 is the coefficient of thermal conductivity of the beam material, and α is 

the thermal diffusivity of the beam material. 

5. Methods of solution 

The finite difference method is used for solving the resulting system of equations (5)-(8). When 

integrating the equations of motion with boundary and initial conditions, a uniform grid with the number 

of nodes n along the length and m along the thickness has been superimposed on the beam. Partial 

derivatives with respect to spatial coordinates, to improve the accuracy of the design scheme, have been 

replaced by central finite-difference approximations: 

𝛬𝑥(⬚𝑖) =
(⬚)𝑖+1−(⬚)𝑖−1

2𝑐
, 𝛬𝑥2( 𝑖) =

(⬚)𝑖+1−2(⬚)𝑖−(⬚)𝑖−1

𝑐2 , 

(15) 𝛬𝑥4(⬚𝑖) =
(⬚)𝑖+2−4(⬚)𝑖+1−6(⬚)𝑖−4(⬚)𝑖−1+(⬚)𝑖−2

𝑐4 , 𝛬𝑥2(⬚𝑖,𝑘) =
(⬚)𝑖+1,𝑘−2(⬚)𝑖,𝑘−(⬚)𝑖−1,𝑘

𝑐2 , 

𝛬𝑧2(⬚𝑖,𝑘) =
(⬚)𝑖,𝑘+1−2(⬚)𝑖,𝑘−(⬚)𝑖,𝑘−1

𝑝2 , 𝑖 = 0, 𝑛̅̅ ̅̅̅, 𝑘 = 0, 𝑚̅̅ ̅̅ ̅̅ , 

where: 𝑐 − is step in the spatial coordinate 𝑥, 𝑐 =
1

(𝑛−1)
  ; step along the thickness of the beam is           

 𝑝 =
1

(𝑚−1)
. 

The resulting system of the ordinary differential equations of the second order with the 

corresponding boundary and initial conditions reduces to a system of ordinary differential equations of 

the first order. The obtained system is solved by the Runge-Kutta method of the fourth order of 

accuracy. The choice of the method is due to the fact that the results obtained by the methods of the 4th 
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and 6th order of accuracy completely coincide, but the counting time for Runge-Kutta of the 4th order 

is half the size of the 6th order Runge-Kutta method [46]. 

At each step in time for the node 𝑥𝑖 the value of the function 𝛿(𝑥𝑖), which corresponds to the 

change of the thickened beams due to corrosion, the values of the stiffnesses 𝐶00, 𝐶10, 𝐶20 and their 

derivatives, as well as the temperature moments and stresses, are calculated. After that, the obtained 

parameters are substituted into the equations of motion. The thickness of the beam ℎ(𝑥𝑖) is recalculated 

taking into account the corrosive component from the previous layer. Based on the displacement and 

deflection of the beam obtained from the equations of motion, a total deformation is calculated for each 

points 𝜀11(𝑥𝑖 , 𝑧𝑘). Substituting it into the expression for the corrosion function δ, we obtain its new 

value on the time layer under consideration. Substituting the values of the total deformation into the 

heat equation, we obtain the values of the temperature field function 𝑇𝑗(𝑥𝑖 , 𝑧𝑘) at each point of the grid. 

Integrating over the thickness, we will have 𝑇𝑖 in the middle line of the beam, which will allow us to 

obtain the values of the temperature moments and stresses. 

6. Conclusions 

In the presented work, the mathematical model of vibrations of the Euler-Bernoulli size-dependent 

beam with the taking into account the corrosive wear, temperature and strain field connectivity, physical 

and geometric nonlinearity has been worked out for the first time. The calculation algorithm is under 

development. 
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Theory of coupled deformation and temperature fields                                     
for three-layer nano-mechanical structures 
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Abstract: In this work a mathematical model of a mechanical structure consisting of 

two nanoplates is developed, and between these nanoplates there is a nanobeam, and 

there are gaps between the elements. The resolving equations of this mathematical 

model are obtained using kinematic hypotheses of the first approximation (for the plates 

- Kirchhoff's conjecture, for beams - Bernoulli-Euler). The contact interaction is taken 

into account by the theory of Kantor. As a result, the obtained model takes into account 

the parabolic heat conduction equation. There are no restrictions on the temperature 

fields distribution in height for nanoplates and nanobeams (for nanoplates, the 

temperature field is three-dimensional, for a beam it is two-dimensional). The resulting 

system of partial differential equations is hyperbolic-parabolic and of different 

dimension. In addition, the equations are highly nonlinear and integro-differential, since 

the contact interaction between the elements of the structure is taken into account. To 

obtain reliable results, we reduce the resulting system to the Cauchy problem by two 

methods: the Faedo-Galerkin method in higher approximations and the finite difference 

method with the approximation 0(h2) and 0(h4) with respect to the spatial coordinates. 

Next, the Cauchy problem is solved by the Runge-Kutta methods of the 4th, 6th, 8th 

accuracy orders regarding time. Such a variety of methods of solution is necessary to 

obtain true results as a system with an infinite number of freedom degrees. 

Keywords: mathematical model, temperature, strain field, contact interaction, plate-beam structures, 

Faedo-Galerkin method, Runge-Kutta type methods, nonlinear dynamics. 

1. Introduction 

At present, the production and application of miniature sensors of inertial and external information, 

micromotors and converters are in great demand. Modern micromechanical and 

microelectromechanical systems find their application for a wide range of mobile objects, i.e. in 

navigation equipment, automotive industry, military equipment, aircraft construction and rocket 

engineering [1-5]. Compound elements of micro- and nano electromechanical systems (MEMS, 

NEMS), such as vibration sensors [6], micro-drives [7], microswitches [8], are micro- and nanoscale 

beams and plates. Due to their nanosize and the presence of small gaps between the elements, an 

extremely important issue is the study of the contact interaction of nanoplates and nanobeams, taking 

into account the connectivity of the temperature and deformation fields. In references [9, 10], the 
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nonlinear dynamics of a three-layer microplate has been studied. On the basis of Kirchhoff plate theory 

and von Kármán nonlinear deformations, nonlinear size-dependent transverse and plane equations of 

motion have been derived. The model takes into account the nonconservative damping force of a 

viscous type, as well as the external exciting load. In references [11-13], according to the momentum 

theory of elasticity, mathematical models have been constructed and the layered beam nanostructures 

have been studied, but in these works the connection between the fields of temperature and deformation 

have not been taken into account. 

 

2. Problem statement 

In this paper we study the nonlinear dynamics of beam and plate nanostructures with allowance for 

their contact interaction and connection between the fields of temperature and deformation. The 

multilayer structure consists of two parallel nanoplates, and there is a nanobeam located centrally 

between them. There is a small gap kh  between all elements and they are connected only through the 

boundary conditions (Fig.1). 

 

Figure 1. Scheme of the studied plate–beams structure. 

For nanoplates the Kirchhoff kinematic model is employed, whereas for the nanobeam we use for the 

Euler-Bernoulli theory. The relationship between strain and deformations in the nanoplate ( 11  ) and 

nanobeam ( 01  ) can be represented in the following form [14]:  

mTTE
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where: ),,0,,1,(  izyxEE  , ),,0,,1,(  izyx . This representation is based on the 

variable elasticity method [15]. The following notation is employed: 0 - volume deformation, i  - 
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strain intensity, T  - coefficient of linear thermal expansion, ),1,( zyx   – temperature increment for 

plate ( 11  ) and for beam ( 01  ). The resolving differential equations for nanoplates and 

nanobeam are yielded by the variation principle [16]: 

* * ( ) ,0 0V D K F u n S dA
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where 
**,, KDV   stand for the variations of the generalized free energy, the dissipative function and 

the kinetic energy, respectively; 00 ,uF  — the surface force and displacement; n  — an outer normal; 

А – the bounding body surface. 

After a few transformations according to the variational calculus, taking into account of (2) and 

according to the momentum theory of elasticity [17], the following differential equations for a three-

layer nanostructure are obtained 
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dimensional ( 11  ) and )(2   — two-dimensional ( 1 =0) Laplace operators). Furthermore, 

),( 31 
 
and ),( 42   are the coefficients of the general theory of elasticity and the coefficients of the 

moment theory of elasticity, respectively. The contact interaction is taken into account according to the 

Winkler model [18]. If there is a contact between the upper or lower nanoplate and nanobeam, then 

11   and 12   if there is no contact, then 01   and 2 0,   respectively. The expressions 1kq  

and 2kq  represent Winkler connection between compression and contact pressure. The appearance of 

clutch zones is unlikely, since the contact pressure between layers is small. The conditions of contact 

between layers can depend on the coordinates and include all kinds of imperfect one-sided contact. In 

the system (3) 231 ,, www  denote the deflection functions of the upper, lower nanoplate and nanobeam, 

respectively; K  is the stiffness factor of the transversal compression of the plate in the contact area;
 

kh  – the gap between elements; g – the gravity acceleration;   – the specific weight of material; c - 

the specific heat; *G  - bulk compression modulus. The nanoplates thickness h and beam height h are 

the same, the nanobeam width is 1; a denotes the nanobeam and nanoplate length, b stands for 

nanoplates width, whereas ),,( 1 tyxqi   is the transverse load acting on the nanoplates ( 1 =1), and 

acting on the nanobeam ( 1 =0).   

As a result, the obtained model takes into account the parabolic heat conduction equations. There are 

no restrictions on the temperature fields distribution over the thickness for nanoplates and in height for 

nanobeams (for nanoplates, the temperature field is three-dimensional, for a nanobeam it is two-

dimensional). The heat exchange between the elements is not taken into account. It is possible to 

consider different diagrams ),(  ii  describing the dependence of stress on deformation and 

temperature for several chosen materials. The boundary conditions of the first type and the initial 

conditions for the heat equations must be added to the system (3). 

Boundary conditions of the first type. The temperature distribution is set on the body surface: 

: (0 ),( / 2 / 2),

( , , ) : ( , ) .

S x a h z h

x z t x z S 

    

 
 (4) 

As initial conditions, we take the distribution of deflections, deflection velocities, and temperature 

increment at the initial moment of time 0t : 
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Also, the boundary conditions for nanoplates ( 1 =1) and nanobeam ( 1 =0) are taken. 

Hinged support on the contour for nanoplates and at the ends of the nanobeam:  

0.n nw M    (8) 

System (3) and boundary conditions create a system of integro-differential equations of different 

dimensions of hyperbolic-parabolic type, describing nonlinear oscillations and contact interaction of 

the related deformation and temperature fields for structure with physical nonlinearity, and also it 

exhibits the dependence of material properties on temperature. In addition, the equations are highly 

nonlinear and integro-differential, since the contact interaction between the elements of the structure is 

taken into account. To obtain reliable results, we reduce the resulting system to the Cauchy problem by 

two methods: the Faedo-Galerkin method in higher approximations and the finite difference method 

with the approximation 0(h2) and 0(h4) with respect to the spatial coordinate. In this case, an iterative 

procedure is constructed. The heat conductivity equations are solved by the finite differences method, 

the temperature moments are calculated, and the found values of the temperature field are substituted 

into the motion equations, and then we find deformations. For this aim, the Cauchy problem is solved 

by the methods of the Runge-Kutta type: the fourth-order Runge-Kutta-Felberg method (rkf45), and 

the eighth-order Runge-Kutta Prince-Dormand method (rk8pd) [19]. Such a variety of solution methods 

is necessary for obtaining true results for a system with an infinite number of freedom degrees, since 

the solution essentially depends on the method and the solution time step, i.e. of the initial conditions. 

3. Concluding remarks 

1. Mathematical model of a three-layer package of distributed mechanical structures, consisting of two 

parallel plates, and a beam has been derived. Between elements there are gaps. Each of the elements 

of the structure is described by kinematic models of the first approximation. Coupling of temperature 

and strain fields by Fourier theory has been taken into account. Equations from the Biot functional 

has been yielded. The mechanical structure is described by the modified couple stress theory. 

2. The algorithm for nonlinear dynamics of a three-layer nanostructure, taking into account the contact 

interaction between the elements, is developed. The algorithm is based on the application of the 

Faedo-Galerkin method in higher approximations for reduction to the Cauchy problem, which is 

solved by the Runge-Kutta type methods. The developed software package allows to consider various  

options of heating the structure (preheated only the beam, or only one or another plate, or co-heating). 

The contact interaction between the elements yield a high nonlinearity effects of the studied system. 

 

35



3. The proposed algorithm allows to solve constructively-nonlinear stationary problems. 

4. Chaotic vibrations have been detected and studied. 
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Variable structure systems with sliding modes 

 

 

Andrzej Bartoszewicz 

Abstract: The main purpose of control engineering is to steer the regulated plant in such 

a way that it operates in a required manner. The desirable performance of the plant 

should be obtained despite the unpredictable influence of the environment on all parts 

of the control system, including the plant itself, and no matter if the system designer 

knows precisely all the parameters of the plant. Even though the parameters may change 

with time, load and external conditions, still the system should preserve its nominal 

properties and ensure the required behavior of the plant. In other words, the principal 

objective of control engineering is to design systems which are robust with respect to 

external disturbances and modelling uncertainty. This objective may be very well 

achieved using the sliding mode technique which is the main subject of this talk.  

The theory of variable structure systems with sliding modes is currently one of the most 

significant research topics within the control engineering domain. Moreover, recently a 

number of important applications of the theory have also been reported. Therefore, this 

paper presents a tutorial introduction to the theory of sliding mode control. Some 

important results on the chattering attenuation, reaching phase elimination, finite time 

convergence and optimal sliding surface design are mentioned. 

1. Introduction 

First research papers on variable structure systems (VSS) and in particular on VSS with sliding modes 

were published in the former Soviet Union almost seven decades ago [8, 9, 10, 12, 18]. Initially, these 

systems were hardly applicable because electromechanical switches available at that time (relays) could 

not operate continuously at high frequencies. Therefore, only after the significant development of 

semiconductor technology took place at the end of the twentieth century, practical realization of sliding 

mode controllers became possible.  

The principle of operation of VSS consists in the deliberate switching of different feedbacks 

(controllers) according to the evolution of the system representative point in the state space. Therefore, 

the dynamics of these systems are described by differential equations with a discontinuous right hand 

side. Thus, the traditional assertion of the existence and uniqueness of solutions to differential equations 

cannot be used directly for such systems. A. Filipov was among the first researchers to study this 

problem in his work [10]. The considerations presented therein go far beyond the scope of this tutorial 

presentation and therefore, only the idea of his work [10] will be given here.  
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2. Filipov’s construction 

Let us take into account a nonlinear and possibly time-varying, single input plant of the order n 

described as  

𝒙̇ = 𝒇(𝒙, 𝑡, 𝑢), (1) 

where x is the state vector, t denotes time and u is the control input defined by the following relation 

𝑢 = {
𝑢+   for   𝑠(𝒙) > 0

𝑢−   for   𝑠(𝒙) < 0
 , (2) 

where 𝑠(𝒙) is a scalar function of the state x, and 𝑠(𝒙) = 0 determines the sliding hypersurface. In the 

ideal case, on the hypersurface the system switches over infinitely fast between two vector fields 

𝑓(𝒙, 𝑡, 𝑢+) and 𝑓(𝒙, 𝑡, 𝑢−). Let us denote appropriate limits of these fields by  

𝒇+ = lim
𝑠→0+

𝒇(𝒙, 𝑡, 𝑢+), (3) 

and 

𝒇− = lim
𝑠→0−

𝒇(𝒙, 𝑡, 𝑢−). (4) 

If the system remains in sliding mode, the following conditions are satisfied  

〈𝒅𝒔, 𝒇+〉 ≤ 0 (5) 

and 

〈𝒅𝒔, 𝒇−〉 ≥ 0, (6) 

i.e. the scalar product of the vectors ds = grad s(x) and 𝒇+ is non-positive, and the corresponding scalar 

product of the vectors ds and 𝒇− is non-negative. It results from the above that on neither side of the 

sliding hypersurface the representative point of the object moves away from this hypersurface. 

Additionally, in the sliding mode the object behaves as if it was affected by the “averaged” field 𝒇𝟎 

constituting a convex combination of 𝒇+  and 𝒇−  

𝒙̇ = 𝒇𝟎 = 𝛼𝒇+ + (1 − 𝛼)𝒇−, (7) 

where 𝛼 is a non-negative real number smaller than or equal to one. For the representative point of the 

object to remain on the sliding hypersurface, the field  must be tangent to it at every point, i.e. orthogonal 

to ds, hence, the following condition must be satisfied 

〈𝒅𝒔, 𝒇𝟎〉 = 0. (8) 
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Assuming that the scalar product 〈𝒅𝒔, (𝒇− − 𝒇+)〉 is greater than zero and solving equation (8) for 

α, the following is obtained  

𝛼 =
〈𝒅𝒔,𝒇−〉

〈𝒅𝒔,(𝒇−−𝒇+)〉
 . (9) 

Then, substituting relation (9) into (7), one can formulate an equation which determines the object 

dynamics in the sliding mode  

𝒙̇ = 𝛼𝒇+ + (1 − 𝛼)𝒇− =
〈𝒅𝒔,𝒇−〉

〈𝒅𝒔,(𝒇−−𝒇+)〉
𝒇+ −

〈𝒅𝒔,𝒇+〉

〈𝒅𝒔,(𝒇−−𝒇+)〉
𝒇−. (10) 

To sum up Filipov’s reasoning presented here in a simplified form, one can state that the averaged 

solution to equation (1) with control (2), on the hypersurface  s(x) = 0 is uniquely determined by relation 

(10). Let us also note that the constant α determined by equation (9) can be interpreted as part of the 

time during which the representative point of the object remains on this side of the switching 

hypersurface on which the switching variable s(x) assumes positive values. 

Justification for introducing Filipov’s construction was the fact that traditional methods in 

differential equation theories cannot directly be used for systems with ideal sliding motion. However, 

as noted in [19], ideal sliding motion does not occur in real variable structure systems due to hysteresis, 

inertia and the delay of switching elements. Therefore, these systems can be described by differential 

equations with a continuous right-hand side, and ideal sliding motion in such systems should be treated 

as a boundary case which occurs when the non-ideality of switching elements disappears. A detailed 

analysis of operation of control systems with sliding motion based on such an assumption – constituting 

an alternative approach to Filipov’s method – is presented in [20]. 

3. Equivalent control 

Filipov’s reasoning discussed above allows, due to the averaging of the vector fields 𝒇+ and 𝒇−, 

determining the motion of the system on the switching hypersurface 𝑠(𝒙) = 0. Another method of 

determination of this motion is to introduce a concept of so called equivalent control, that is to say, such 

(fictitious, and in fact non-existing) continuous control under the effect of which the system would 

move in the same way as it moves due to the action of discontinuous variable structure control [19]. In 

other words, the equivalent control ueq constitutes such a continuous control signal which ensures that 

the representative point remains on the sliding hypersurface. The fundamental difference between 

Filipov’s method and the equivalent control method is that when the equivalent control method is used, 

the vector fields 𝒇+ and 𝒇− are not averaged; instead, control itself  𝑢+(𝒙, 𝑡) and 𝑢−(𝒙, 𝑡) is averaged.  

In order to present this method, let us consider a single-input (generally nonlinear) dynamic object, 

which is linear with respect to control 
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𝒙̇ = 𝒇(𝒙, 𝑡) + 𝒈(𝒙, 𝑡)𝑢, (11) 

where f and g are certain non-linear vector functions, x is the state vector, u is the control signal, and t 

denotes time. When the system is, and indeed remains in sliding mode, the following two relations are 

fulfilled  

𝑠(𝒙, 𝑡) = 0 (12) 

and 

𝑠̇(𝒙, 𝑡) = 0. (13) 

From equation (13) it follows that  

𝑠̇ = 〈𝒅𝒔, (𝒇 + 𝒈𝑢)〉 = 〈𝒅𝒔, 𝒇〉 + 〈𝒅𝒔, 𝒈𝑢〉 = 0. (14) 

Assuming that the scalar product 〈𝒅𝒔, 𝒈〉  is not equal to zero, the expression determining the 

equivalent control is obtained  

𝑢𝑒𝑞 = −
〈𝒅𝒔,𝒇〉

〈𝒅𝒔,𝒈〉
 (15) 

and substituting this expression into equation (11), one can, as in Filipov’s method, establish the relation 

determining the object dynamics in sliding motion  

𝒙̇ = 𝒇 − 𝒈
〈𝒅𝒔,𝒇〉

〈𝒅𝒔,𝒈〉
 (16) 

It is obvious that equations (10) and (16) are equivalent and constitute only a different form of 

description of the same motion which takes place on the switching hypersurface. An additional 

advantage of the equivalent control method is that it can be directly generalized for multiple-input 

systems. 

As mentioned previously, one of the most important advantages of variable structure control 

systems with sliding modes is their insensitivity with respect to a considerably large class of model 

inaccuracy and external disturbances. To demonstrate this, let us consider a dynamic object whose 

model is not precisely known, subjected to the action of disturbances  

𝒙̇ = 𝒇(𝒙, 𝑡) + 𝒈(𝒙, 𝑡)𝑢 + 𝒉(𝒙, 𝑡), (17) 

The vector field 𝒉(𝒙, 𝑡) in equation (17) represents a combined effect of (independent of the 

vector x) external disturbances and the modelling imperfections. If the system remains in sliding mode, 

relations (12) and (13) are satisfied.  In turn, it results from relation (13) that 

𝑠̇ = 〈𝒅𝒔, (𝒇 + 𝒈𝑢 + 𝒉)〉 = 〈𝒅𝒔, 𝒇〉 + 〈𝒅𝒔, 𝒈〉𝑢 + 〈𝒅𝒔, 𝒉〉 = 0 . (18) 
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Hence, assuming that the scalar product 〈𝒅𝒔, 𝒈〉 is different from zero, equivalent control can now 

be expressed in the following form  

𝑢𝑒𝑞 = −
〈𝒅𝒔,𝒇〉+〈𝒅𝒔,𝒉〉

〈𝒅𝒔,𝒈〉
 . (19) 

Substituting relation (19) into equation (17), the following is obtained  

𝒙̇ = 𝒇 − 𝒈
〈𝒅𝒔,𝒇〉+〈𝒅𝒔,𝒉〉

〈𝒅𝒔,𝒈〉
+ 𝒉 . (20) 

If the vector field 𝒉(𝒙, 𝑡) can be expressed in the form  

𝒉(𝒙, 𝑡) = 𝒈(𝒙, 𝑡)𝑣(𝒙, 𝑡), (21) 

where 𝑣(𝒙, 𝑡) is a certain scalar function, then equation (20) describing the dynamics of the object in 

sliding motion assumes the form  

𝒙̇ = 𝒇 − 𝒈
〈𝒅𝒔,𝒇〉+〈𝒅𝒔,𝒈〉𝑣

〈𝒅𝒔,𝒈〉
+ 𝒈𝑣 = 𝒇 − 𝒈

〈𝒅𝒔,𝒇〉

〈𝒅𝒔,𝒈〉
 . (22) 

which does not depend on 𝒉(𝒙, 𝑡). Thus, the sliding motion considered is invariant with respect to 

disturbances and inaccuracy of the model satisfying equality (21), i.e. being in the range of input signals 

of the control object. The present considerations constitute theoretical justification for desirable 

properties of variable structure systems with sliding modes. These considerations are the generalization 

of the seminal results given first by Draženović in [7]. It should be added that constraints determined 

by relation (21) are often encountered in various robust control problems, and are usually called 

matching conditions. Let us stress at this point that sliding mode controllers ensure not only some 

degree of robustness, but complete insensitivity with respect to matched disturbances and inaccuracy 

of the model. This is an important property distinguishing them from other robust control methods, 

which do not offer insensitivity, but only some (sometimes quite satisfactory) degree of robustness. In 

other words – to the best of the author’s knowledge – sliding mode control is the only technique which 

not only attenuates the effects of matched disturbance and modelling uncertainty on the plant, but totally 

rejects those undesirable effects. 

The considerations presented hitherto have mainly dealt with single-input control objects. In 

multiple-input systems, however, it will be possible to select a larger number of switching hypersurfaces 

– equal to the number of independent control inputs of the object – and to design the control in such a 

way that sliding motion takes place at their intersection, i.e. at a certain manifold in the state space. In 

order to analyze the operation of such systems in more detail, let us consider an n-dimensional, linear 

with respect to control signals, object with m inputs 

𝒙̇ = 𝒇(𝒙, 𝑡) + 𝑩(𝒙, 𝑡)𝒖, (23) 
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where x is the state vector, f is a certain nonlinear vector function, B is the matrix of dimensions n×m, 

u is the vector of m control signals, and t denotes time. Let us now select m sliding hypersurfaces 

𝑠1(𝒙) = 0, 𝑠2(𝒙) = 0, 𝑠𝑚(𝒙) = 0,  and let us form the vector 

𝒔(𝒙) = [𝑠1(𝒙)   𝑠2(𝒙)   …   𝑠𝑚(𝒙)]T, (24) 

which determines a multidimensional switching variable. By calculating a derivative of this vector with 

respect to time, comparing it to zero and assuming that the matrix 
𝜕𝒔

𝜕𝒙
𝑩(𝒙, 𝑡)  is non-singular, it is 

possible to calculate the equivalent control  

𝒖𝑒𝑞 = − [
𝜕𝒔

𝜕𝒙
𝑩(𝒙, 𝑡)]

−1 𝜕𝒔

𝜕𝒙
𝒇(𝒙, 𝑡), (25) 

and then, substituting equation (25) into relation (23), to determine the dynamics of the object in sliding 

mode 

𝒙̇ = {𝑰𝑛 − 𝑩(𝒙, 𝑡) [
𝜕𝒔

𝜕𝒙
𝑩(𝒙, 𝑡)]

−1 𝜕𝒔

𝜕𝒙
} 𝒇(𝒙, 𝑡), (26) 

where 𝑰𝑛  is the identity matrix of the order n. Equation (26) defines such motion of the system in which 

the representative point of the object moves on a certain (n – m)-dimensional manifold, constituting the 

intersection of m sliding hypersurfaces  𝒔(𝒙) = [𝑠1(𝒙)   𝑠2(𝒙)   …   𝑠𝑚(𝒙)]T = 𝟎  in the state space. 

Just as it has been done for a single-input system, one can also demonstrate that the sliding motion 

described by equality (26) is invariant with respect to disturbances and modeling uncertainty 𝒉(𝒙, 𝑡)  

satisfying the condition 

∀(𝒙, 𝑡), ∃𝒗(𝒙, 𝑡),    𝒉(𝒙, 𝑡) = 𝑩(𝒙, 𝑡)𝒗(𝒙, 𝑡), (27) 

where 𝒗(𝒙, 𝑡) is a certain m-dimensional vector function. Let us add that in the case of multi-input 

objects – depending on how the controller has been designed – sliding motion can, but does not have 

to take place on each of the switching hypersurfaces separately. This is because a situation can occur 

when sliding motion will take place only at the intersection of these hypersurfaces and not on each of 

them independently. In paper [6] an extensive discussion and a number of methods for designing sliding 

mode control systems for multi-input dynamic objects are presented. 

4. Conditions of the ideal sliding motion stability 

In the foregoing considerations the most important properties of dynamic objects operating in sliding 

regime have been described. A separate important issue is determination of conditions for the existence 

of such regime, i.e. answering the question when – after representative point of the controlled object is 

(slightly) thrown off the sliding mode – it will return to the intersection of the switching hypersurfaces. 
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As can be seen, the issue considered here is, in its essence, the problem of sliding motion stability. 

Therefore, it can be fairly easily analyzed using Lyapunov methods [17]. On the basis of [18, 20], let 

us now quote a theorem concerning conditions for the existence (stability) of sliding motion. 

Theorem: A sufficient condition for the (n – m)-dimensional domain D to be a domain of sliding 

motion is that in a certain n-dimensional area Ω ⊂ ℜ𝑛 where D ⊂ Ω there exists, a continuously 

differentiable with respect to all its arguments, scalar function V: Ω × ℜ+ × ℜ𝑚 → ℜ  satisfying the 

following conditions: 

i) V(𝒙, 𝑡, 𝒔) is positive definite with respect to s, 

ii) The total derivative of the function V(𝒙, 𝑡, 𝒔) has a negative upper limit on the spheres ‖𝒔‖ = 𝑟 

except the points lying on the switching surface, where control may not be defined and the derivative 

of the function V(𝒙, 𝑡, 𝒔) does not exist. 

The proof of the theorem quoted herein can be found, among others, in [20]. The theorem can be 

directly applied to the design of control rules that will ensure stability, and hence will guarantee the 

actual occurrence of sliding motion in a variable structure system. However, this theorem is more 

frequently used in an indirect manner, formulating so called conditions for the existence of sliding 

motion and designing the control in such a way that one of these conditions is satisfied. One of the 

conditions for the existence of sliding motion quite often used in the literature is the following inequality 

[17] 

∀𝒔 ≠ 𝟎    𝒔T𝒔 ≤ −𝜂‖𝒔‖ (28) 

where the constant η is greater than zero, and ‖𝒔‖ denotes the Euclidean norm of the vector s. It is easy 

to demonstrate that the validity of this inequality implies that the assumptions of the theorem quoted 

above are satisfied. To do so, let us take into account the positive definite function of the variable s in 

the form 

𝑉(𝒔) =
1

2
𝒔T𝒔 (29) 

and calculate its derivative with respect to time 

𝑉̇(𝒔) = 𝒔̇T𝒔 . (30) 

If condition (28) is satisfied, then this derivative has everywhere – except those points in which 

s = 0 – a negative upper limit equal to −𝜂‖𝒔‖. Thus, the assumptions of the theorem are satisfied and 

the sliding motion in the system under consideration is stable. Let us also note that the fulfilment of 

relation (28) ensures not only the asymptotic stability of this motion, but also guarantees the 

convergence to the intersection of the switching hypersurfaces  s = 0 in finite time  

𝑡∗ ≤ 𝜂−1‖𝒔(0)‖, (31) 
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where 𝒔(0)  denotes the value of the vector switching variable at the start of the control process. This 

inequality is of vital significance because it implies that for every time t greater than or equal to 𝑡∗ the 

system under consideration is insensitive to external disturbances and modelling uncertainty. Of course, 

inequality (28) constitutes only one of many possible conditions for the existence of sliding mode and 

other similar relations facilitating the design of control systems are often used in the literature [11]. 

5. Selected problems in the field of sliding mode control 

The previous sections illustrate important properties of VSS with ideal sliding modes. Unfortunately, 

in any real application there exist unavoidable differences between the ideal characteristics of switching 

devices and their actual performance. These include, but are not limited to, unmodelled inertia, 

inevitable hysteresis, non-negligible delays and limited gain of switches. Therefore, the application of 

the control method presented in the previous sections to any physical object causes high-frequency 

oscillations. This phenomenon typically referred to as chattering is undesirable because it causes wear 

and tear of the actuator components, and it can also be a reason of vibrations caused by the excitation 

of unmodelled part of the system dynamics. Hence, in practical systems the discontinuous variable 

structure control of the type 

𝒖𝑛 = 𝝋(𝒙, 𝑡)
𝒔

‖𝒔‖
, (32) 

where 𝝋(𝒙, 𝑡) is a vector function of time, and the system state is replaced with its continuous 

approximation. In most cases, it consists in introducing a certain boundary layer [5, 15, 16, 17, 22] 

𝒖𝑛 = 𝝋(𝒙, 𝑡) {

𝒔

‖𝒔‖
  for   ‖𝒔‖ > 𝛿

𝒔

𝛿
  for   ‖𝒔‖ ≤ 𝛿

 , (33) 

where 𝛿 is a small positive constant. However, other approaches leading to the reduction of chattering 

[2] have also been proposed. Probably the most significant of them is the introduction of the second, 

and higher order sliding mode controllers [1, 13]. 

As it has already been demonstrated (see equality (22)), VSS in the sliding mode, ensure complete 

insensitivity of the controlled plant with respect to matched disturbances and modelling uncertainty. 

Therefore, much work has been performed to shorten or eliminate the reaching phase. For that purpose, 

on the one hand integral sliding mode control [21] has been proposed, and on the other, time-varying 

sliding surfaces were introduced [3, 4]. Both of these approaches attempt to select the sliding surface 

so that the representative point (state) of the controlled plant belongs to the sliding surface from the 

very beginning of the control process. When integral sliding mode technique is employed, this goal is 

achieved by introducing an extra state variable and extending the state space of the system. The initial 
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value of the extra state variable can be chosen arbitrarily, which makes it possible to place the extended 

state of the system on the sliding hypersurface at the start of the control action and keep it on the surface 

for any time greater than zero. On the other hand, when time-varying sliding surfaces are applied to 

eliminate the reaching phase, the surfaces are chosen to pass the representative point of the plant in the 

state space at the initial time, and then they smoothly move (usually they are either shifted or rotated) 

to their final location, which ensures desirable dynamical performance of the system and error 

convergence to zero. 

Appropriate selection of the sliding surface is of utmost importance, since the system dynamics in 

the sliding mode is fully governed by the predefined surface. Therefore, the selection has to ensure 

stability, and the desired performance. Furthermore, smart choice of nonlinear surfaces can guarantee 

finite time error convergence to zero. VSS which actually make the error die out in finite time are 

usually called terminal sliding mode VSS [14]. Finally, let us mention that some researchers made an 

attempt to choose sliding surfaces in such a way that the closed loop system has become optimal in the 

sense of some control quality criterion [4], like integral of absolute error, integral of time multiplied 

absolute error, quadratic performance index, etc.  

6. Conclusions 

In this paper some basic properties of the sliding mode control systems have been briefly summarized. 

First, Filipov’s construction has been presented, and the most important feature of continuous time VSS 

with sliding modes, i.e. their insensitivity with respect to matched model uncertainty and external 

disturbances, was demonstrated. Then the notion of equivalent control was presented and elaborated 

upon. Further in the paper conditions for the existence and stability of the sliding motion were 

presented. Finally, some research topics in the field were identified. These include, but are not limited 

to, the design of higher order sliding mode controllers, chattering attenuation, integral sliding mode 

control, design of terminal sliding mode control systems, and application of time-varying sliding 

hypersurfaces. Of course this list is not exhaustive and many other research problems in the field 

deserve attention and further studies. 
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Generic bifurcations in thermodynamics by fractional continuum 
mechanics  

 

 

 Péter B. Béda 

Abstract: In the last years non-integer differentiation became a popular tool for 

modeling complex behaviors of systems from diverse fields of mechanics. Especially, 

long-range temporal or spatial dependence phenomena inherent to fractional order 

systems present unique and intriguing peculiarities, not supported by their integer order 

version. In dynamic stability analysis mathematical aspects of non-locality were studied 

by using the theory of dynamical systems. Such approach results in conditions for cases, 

when the differential operators have critical eigenvalues of zero real-parts. When the 

critical eigenvalues have nontrivial eigenspace, the ways of loss of stability is classified 

as a typical (or generic) bifurcation. Our experiences show that material non-locality 

and the generic nature of bifurcation at instability are connected and the basic functions 

of the non-trivial eigenspace can be used to determine internal length quantities of non-

local mechanics. Fractional calculus is already successfully used in thermo-elasticity. 

In the paper non-locality is introduced via fractional strain into the constitutive 

relations. Then by defining dynamical systems stability and bifurcation is studied for 

states of thermo-mechanic solids. Stability conditions and genericity conditions are 

presented for constitutive relations under consideration. Internal length effects are also 

studied by calculating critical non-trivial eigenspaces and the basic functions of them. 

Such functions are essential in bifurcation analysis in non-linear studies.  

1. Introduction  

The roots of fractional calculus, go back to Leibniz (1695) and  Euler (1730) as a natural extension of 

calculus [1], and most definitions were already given in the golden age of analysis Liouville, Riemann 

and others. In recent years mechanics has brought back into the center of interest, because it is a useful 

tool to model non-locality. Such non-locality is an old problem of solid mechanics [2], and is usually 

treated by using integrals and second gradients [3], [4]. The first application was in visco-elasticity [5], 

as a kind of non-local time effect. In material instability problems spatial non-locality plays an 

important role in non-linear bifurcation (post-bifurcation) investigations, while in several cases local 

formulation of the basic equations of solid bodies may result an indeterminate behavior [6]. In 

numerical studies such behavior appears as mesh sensitivity, when the mesh used in finite element 

method, determines post-bifurcation behavior. Conventionally, such problem is avoided by introducing 

gradient terms into the constitutive equations. In physical interpretation: non-locality is used to cure 

indeterminate behavior. The aim of the paper is to describe non-locality by using fractional calculus, 
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and study a thermo-mechanical material instability problem. Here thermal stresses are added as usual 

[7] to a material instability investigation and heat propagation is described by the Vernotte-Cattaneo 

equation. Non-locality (in space) appears in a generalized fractional strain. Similar concept was used 

by [8] for non-local time in a visco-elastic problem. The focus of the study is on the existence of a set 

of regular basis for the non-trivial critical solutions in the post-bifurcation case. 

The second part introduces the thermodynamic setting of a solid continuum taking into 

consideration thermal stresses. For the sake of simplicity small deformation theory is applied in a 

uniaxial problem. In the third part a stability and bifurcation analysis is performed. Two ways of loss 

of stabilities are treated, the static and the dynamic bifurcations. A dynamical system is defined from 

the basic equations presented in the previous part. The second subsection deals with the possibility of 

a static bifurcation. After then two subsections study dynamic bifurcation. The first of them is a general 

investigation, the second one present two special cases: a simplified version to show the possibility to 

get generic dynamic bifurcation and at last we show that with no fractional description no generic 

dynamic bifurcation is possible.  

2. Fractional thermo-mechanics  

This part describes the basic equations for a solid body with thermal stresses. In addition to the basic 

equations of continuum mechanics also heat propagation should be taken into account. To avoid non-

generic behavior due to infinite propagation velocity Vernotte-Cattaneo equation is used instead of 

Fourier law. 

The set of basic equations consists of the kinematic equation 

̇ =
𝜕𝛼𝑣

𝜕𝑥𝛼 , (1) 

the equation of motion 

𝑣̇ =
1

𝜌

𝜕𝜎

𝜕𝑥
 (2) 

and the constitutive equation, which is in rate form reads 

𝜎̇ = 𝐵(𝜀̇ − 𝜃𝜗̇) + 𝜒ℎ̇. (3) 

In equations (1), (2) and (3) the notations are: strain (for uniaxial small deformations) , velocity v, 

space coordinate x, mass density , temperature . Overdot denotes derivative with respect to time t 

and B is tangent stiffness, while  is a material constant. In (1) a generalized strain is used, where 0 <

𝛼 < 1 denotes the order of the fractional derivative.  

Heat conduction is given by the Vernotte-Cattaneo equation 
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𝜏ℎ̇ + 𝑎
𝜕

𝜕𝑥
𝜗 + ℎ = 0, (4) 

where the relaxation time of heat flux is denoted by , the heat flux by h, and heat conductivity by a. 

For the constitutive variables , , , h two types of constitutive equations are given. The one in form 

(3) could be referred as mechanical constitutive equation, while the other 

Θ1̇ + Θ2̇ + Θ3 ℎ̇ = ̇ (5) 

may be called the thermodynamic constitutive equation [9], with material constants Θ1, Θ2, Θ3.  

From (4)  

ℎ̇ = −
𝑎

𝜏

𝜕

𝜕𝑥
𝜗 −

ℎ

𝜏
. (6) 

By substituting (1) and (6) into the mechanical and thermodynamic constitutive equations, (3), (5) we 

have  

𝜗̇ = Θ1̇ + Θ2
𝜕𝛼𝑣

𝜕𝑥𝛼 − Θ3
𝑎

𝜏

𝜕

𝜕𝑥
𝜗 − Θ3

ℎ

𝜏
 , (7) 

𝜎̇ = 𝐵
𝜕𝛼𝑣

𝜕𝑥𝛼 − 𝐵𝜃𝜗̇ − 𝜒
𝑎

𝜏

𝜕

𝜕𝑥
𝜗 − 𝜒

ℎ

𝜏
 . (8) 

From (7), (8) 

̇ = (𝐵 − 𝐵𝜃
Θ1𝐵+Θ2

1+Θ1𝐵𝜃
)

𝜕𝛼𝑣

𝜕𝑥𝛼 + (𝐵𝜃
Θ1𝜒+Θ3

1+Θ1𝐵𝜃
− 𝜒) 

𝑎

𝜏

𝜕

𝜕𝑥
𝜗 + (𝐵𝜃

Θ1𝜒+Θ3

1+Θ1𝐵𝜃
− 𝜒)

ℎ

𝜏
  , (9) 

𝜗̇ =
Θ1𝐵+Θ2

1+Θ1𝐵𝜃

𝜕𝛼𝑣

𝜕𝑥𝛼 −
Θ1𝜒+Θ3

1+Θ1𝐵𝜃

𝑎

𝜏

𝜕

𝜕𝑥
𝜗 −

Θ1𝜒+Θ3

1+Θ1𝐵𝜃

ℎ

𝜏
 . (10) 

By using simplifying notations (9) and (10) reads 

̇ = 𝑐1
𝜕𝛼𝑣

𝜕𝑥𝛼 + 𝑐2  
𝑎

𝜏

𝜕

𝜕𝑥
𝜗 + 𝑐2

ℎ

𝜏
  , (11) 

𝜗̇ = 𝑑1
𝜕𝛼𝑣

𝜕𝑥𝛼 − 𝑑2
𝑎

𝜏

𝜕

𝜕𝑥
𝜗 − 𝑑2

ℎ

𝜏
 . (12) 

Now equations (2), (6), (11) and (12) for variables 𝑣, 𝜎, 𝜗, ℎ can be used to describe the motion of the 

thermodynamic continuum. 

3. Continuum as dynamical system and stability investigation 

This part deals with stability analysis of a state of the thermo-mechanic continuum. A dynamical 

systems approach will be used. The investigation concentrates on the conditions of having a generic 

bifurcation. Generic type means the existence of non-trivial critical eigenspace at the loss of stability. 

The importance of it can be obvious in non-linear bifurcation and post-bifurcation analysis, while 
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nonlinearity is studied by projecting the expressions into the non-trivial critical eigenspace of a linear 

operator determined by the basic equations.  

3.1. Stability and bifurcation conditions 

In the previous part a set of equations was derived as the fundamental equation for a solid body taking 

into account the effect of thermal stresses and non-locality in form of fractional strain. This system is 

of first order in time and can be studied as a dynamical system. In vector form it reads 

 

[

𝑣̇
𝜎̇
𝜗̇
ℎ̇

] =  

[
 
 
 
 
 
 0

1

𝜌

𝜕𝜎

𝜕𝑥
0 0

𝑐1
𝜕𝛼

𝜕𝑥𝛼 0 𝑐2
𝑎

𝜏

𝜕

𝜕𝑥
𝑐2

1

𝜏

𝑑1
𝜕𝛼

𝜕𝑥𝛼 0 −𝑑2
𝑎

𝜏

𝜕

𝜕𝑥
−𝑑2

1

𝜏

0 0 −
𝑎

𝜏

𝜕

𝜕𝑥

1

𝜏 ]
 
 
 
 
 
 

[

𝑣
𝜎
𝜗
ℎ

]. (13) 

In (13)  differential operator  𝐴  is defined in a matrix form, 

  𝐴( 𝑣, 𝜎, 𝜗, ℎ ) =

[
 
 
 
 
 
 0

1

𝜌

𝜕𝜎

𝜕𝑥
0 0

𝑐1
𝜕𝛼

𝜕𝑥𝛼 0 𝑐2
𝑎

𝜏

𝜕

𝜕𝑥
𝑐2

1

𝜏

𝑑1
𝜕𝛼

𝜕𝑥𝛼
0 −𝑑2

𝑎

𝜏

𝜕

𝜕𝑥
−𝑑2

1

𝜏

0 0 −
𝑎

𝜏

𝜕

𝜕𝑥

1

𝜏 ]
 
 
 
 
 
 

[

𝑣
𝜎
𝜗
ℎ

].  

Assume that equations (2), (6), (11) and (12) has a stationary solution 𝑣0, 𝜎0, 𝜗0, ℎ0 satisfying all 

initial and boundary conditions. This solution represents a state of the thermo-mechanical continuum. 

Its stability can be studied as the Lyapunov stability of solution 𝑣0, 𝜎0, 𝜗0, ℎ0. By using perturbation 

technique: 

  𝑣 = 𝑣0 + 𝑣̃,   𝜎 = 𝜎0 + 𝜎̃,   𝜗 = 𝜗0 + 𝜗̃,   ℎ = ℎ0 + ℎ̃, (14) 

where 𝑣̃, 𝜎̃, 𝜗̃, ℎ̃ are small perturbations satisfying homogeneous boundary conditions. While (13) is a 

linear equation, by substituting (14) into it a similar equation is obtained for the perturbations, and 

stability investigation is performed by the characteristic equation  

  det(𝐴 − 𝜆𝐼) = 0. (15) 

When the real parts of all 𝜆 satisfying (15) are negative, the state of the material given by solution 

𝑣0, 𝜎0, 𝜗0, ℎ0  is stable. On the stability boundary, there is at least one 𝜆, which is zero (static bifurcation) 

or the real part of which is zero (dynamic bifurcation) [10].  
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Unfortunately (15) is an operator equation, which requires to solve a system of partial differential 

equations causing a lot of difficulties. In most cases such solutions are found by numerical analysis. 

Instead a generally used simplification can be done, when the study is restricted to periodic 

perturbations 

  𝑣 = 𝑣̃0exp(𝑖𝜔𝑥),   𝜎 = 𝜎̃0exp(𝑖𝜔𝑥),   𝜗 = 𝜗̃0exp(𝑖𝜔𝑥),   ℎ = ℎ̃0exp(𝑖𝜔𝑥). (16) 

In the following subsections such simplification is used to remain at analytic approach. 

3.2. Static bifurcation investigation 

At static bifurcation 0  is an eigenvalue of the characteristic equation (𝜆 = 0),  thus by substituting (16)  

into the matrix form of (15) 

  det

[
 
 
 
 
 
 0

1

𝜌

𝜕𝜎

𝜕𝑥
exp(𝑖𝜔𝑥) 0 0

𝑐1
𝜕𝛼

𝜕𝑥𝛼
exp(𝑖𝜔𝑥) 0 𝑐2

𝑎

𝜏

𝜕

𝜕𝑥
exp(𝑖𝜔𝑥) 𝑐2

1

𝜏

𝑑1
𝜕𝛼

𝜕𝑥𝛼 exp(𝑖𝜔𝑥) 0 −𝑑2
𝑎

𝜏

𝜕

𝜕𝑥
exp(𝑖𝜔𝑥) −𝑑2

1

𝜏

0 0 −
𝑎

𝜏

𝜕

𝜕𝑥
exp(𝑖𝜔𝑥)

1

𝜏 ]
 
 
 
 
 
 

= 0  

is obtained. By calculating derivatives 

  det

[
 
 
 
 
 
 0

1

𝜌
𝜔exp (𝑖

𝜋

2
) 0 0

𝑐1𝜔
𝛼exp (𝑖

𝜋

2
𝛼) 0 𝑐2

𝑎

𝜏
𝜔exp (𝑖

𝜋

2
) 𝑐2

1

𝜏

𝑑1𝜔
𝛼exp (𝑖

𝜋

2
𝛼) 0 −𝑑2

𝑎

𝜏
𝜔exp (𝑖

𝜋

2
) −𝑑2

1

𝜏

0 0 −
𝑎

𝜏
𝜔exp (𝑖

𝜋

2
)

1

𝜏 ]
 
 
 
 
 
 

= 0. (17) 

Equation (17) should be solved for 𝜔 and a non-trivial solution is searched for. When we have such a 

solution (non-zero) 𝜔int , the basis of the critical non-trivial eigenspace is 

  [𝑣̃0exp(𝑖𝜔int𝑥),   𝜎̃0exp(𝑖𝜔int𝑥),   𝜗̃0exp(𝑖𝜔int𝑥),   ℎ̃0exp(𝑖𝜔int𝑥)] (18) 

and the non-trivial solutions for post-bifurcation investigations should be searched for a linear 

combination of it. In addition static internal length for this type of loss of stability can be defined as 

ℓint = 𝜋𝜔int. (19) 

From (17)  

𝜔𝛼+2 1

𝜌
𝑒𝑖

𝜋

2 (𝑐2
𝑎

𝜏2 𝑒𝑖
𝜋

2𝑑1𝑒
𝑖
𝜋

2
𝛼 + 𝑑2

𝑎

𝜏2 𝑒𝑖
𝜋

2𝑐1𝑒
𝑖
𝜋

2
𝛼 +

1

𝜏
(𝑑2

𝑎

𝜏
𝑒𝑖

𝜋

2𝑐1𝑒
𝑖
𝜋

2
𝛼 + 𝑑1

𝑎

𝜏
𝑒𝑖

𝜋

2𝑐2𝑒
𝑖
𝜋

2
𝛼)) = 0, (20) 
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consequently, only the trivial solution exists. Thus, there is no regular non-trivial critical eigenspace 

for static bifurcation. 

Let us study what happens, if damping is added to the mechanical constitutive equation. Then 

instead of (3) 

𝜎̇ = 𝐵(𝜀̇ − 𝜃𝜗̇) + 𝜒ℎ̇ + 𝐷
1

𝜌

𝜕𝛼

𝜕𝑥𝛼

𝜕

𝜕𝑥
𝜎 (21) 

should be used, where 𝐷 is damping coefficient. After similar steps as before, the characteristic equation 

in case of a static bifurcation results 

  det

[
 
 
 
 
 
 0

1

𝜌
𝜔exp (𝑖

𝜋

2
) 0 0

𝑐1𝜔
𝛼exp (𝑖

𝜋

2
𝛼) 𝑐3𝜔

𝛼+1exp (𝑖
𝜋

2
(𝛼 + 1)) 𝑐2

𝑎

𝜏
𝜔exp (𝑖

𝜋

2
) 𝑐2

1

𝜏

𝑑1𝜔
𝛼exp (𝑖

𝜋

2
𝛼) 𝑑3𝜔

𝛼+1exp (𝑖
𝜋

2
(𝛼 + 1)) −𝑑2

𝑎

𝜏
𝜔exp (𝑖

𝜋

2
) −𝑑2

1

𝜏

0 0 −
𝑎

𝜏
𝜔exp (𝑖

𝜋

2
)

1

𝜏 ]
 
 
 
 
 
 

= 0, (22) 

but (22) leads to the same result as (17), there is no regular non-trivial critical eigenspace for static 

bifurcation either. 

3.3. Dynamic bifurcation investigation 

The necessary condition for a dynamic bifurcation is to have pure imaginary solution 𝜆 = 𝛽exp (𝑖
𝜋

2
) 

of the characteristic equation (15). When the imaginary expression is substituted into (15)  

  det

[
 
 
 
 
 
 −𝛽𝑒𝑖

𝜋

2
1

𝜌
𝜔𝑒𝑖

𝜋

2 0 0

𝑐1𝜔
𝛼𝑒𝑖

𝜋

2
𝛼 −𝛽𝑒𝑖

𝜋

2 𝑐2
𝑎

𝜏
𝜔𝑒𝑖

𝜋

2 𝑐2
1

𝜏

𝑑1𝜔
𝛼𝑒𝑖

𝜋

2
𝛼 0 (−𝑑2

𝑎

𝜏
𝜔𝑒𝑖

𝜋

2 − 𝛽𝑒𝑖
𝜋

2) −𝑑2
1

𝜏

0 0 −
𝑎

𝜏
𝜔𝑒𝑖

𝜋

2 (
1

𝜏
− 𝛽𝑒𝑖

𝜋

2)]
 
 
 
 
 
 

= 0 (23) 

is obtained. From (23) 

-
1

𝜌
𝜔𝑒𝑖

𝜋

2 (−𝑐2
𝑎

𝜏2 𝑒𝑖
𝜋

2𝑑1𝜔
𝛼+1𝑒𝑖

𝜋

2
𝛼 − 𝑑2

𝑎

𝜏2 𝑒𝑖
𝜋

2𝑐1𝜔
𝛼+1𝑒𝑖

𝜋

2
𝛼 + (

1

𝜏
− 𝛽𝑒𝑖

𝜋

2) ((−𝑑2
𝑎

𝜏
𝜔 −

𝛽 ) 𝑐1𝜔
𝛼𝑒𝑖

𝜋

2
𝛼 − 𝑑1𝜔

𝛼+1 𝑎

𝜏
𝑒𝑖

𝜋

2𝑐2𝑒
𝑖
𝜋

2
𝛼)) + 𝛽2𝑒𝑖𝜋 ((−𝑑2

𝑎

𝜏
𝜔 − 𝛽 ) 𝑒𝑖

𝜋

2 (
1

𝜏
− 𝛽𝑒𝑖

𝜋

2) − 𝑑2
𝑎

𝜏2 𝑒𝑖
𝜋

2𝜔) =

0. (24) 

Equation (24) is complex, its real and imaginary parts define a system of two equations  
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((𝑑2𝑐1𝛽
𝑎

𝜌𝜏
− 𝑑2𝑐1

𝑎

𝜌𝜏2
)𝜔𝛼+2 +

1

𝜌
𝛽2𝑐1𝜔

𝛼+1) cos (
𝛼𝜋

2
) + ((−𝑑1𝑐2𝛽

𝑎

𝜌𝜏
+ 𝑑2𝑐1

𝑎

𝜌𝜏2
)𝜔𝛼+2 +

1

𝜌𝜏
𝛽𝑐1𝜔

𝛼+1)(−sin (
𝛼𝜋

2
)) − 𝛽3 (−𝑑2

𝑎

𝜏
𝜔 − 𝛽 ) = 0, (25) 

((𝑑2𝑐1𝛽
𝑎

𝜌𝜏
− 𝑑2𝑐1

𝑎

𝜌𝜏2
)𝜔𝛼+2 +

1

𝜌
𝛽2𝑐1𝜔

𝛼+1) sin (
𝛼𝜋

2
) + ((−𝑑1𝑐2𝛽

𝑎

𝜌𝜏
+ 𝑑2𝑐1

𝑎

𝜌𝜏2
)𝜔𝛼+2 +

1

𝜌𝜏
𝛽𝑐1𝜔

𝛼+1) cos (
𝛼𝜋

2
) = 0, (26) 

and should be solved for variables 𝛽 ≠ 0 and 𝜔 ≠ 0. From (26) 𝛽 can be expressed as a function of 𝜔, 

then it can be substituted into (25), and now   𝜔 can be expressed.

If  𝑐1 = 0, then  

𝑑1𝑐2𝛽
𝑎

𝜌𝜏
𝜔𝛼+2 cos (

𝛼𝜋

2
) = 0, (27) 

that is, there is no solution with the necessary properties. Equation (27) is satisfied, when 𝛽 = 0, or 

𝜔 = 0, but such solutions are excluded. The third possibility is cos (
𝛼𝜋

2
) = 0. It happens when  

𝛼𝜋

2
=

𝜋

2
, 3

𝜋

2
, … , but also these cases cannot be resent, because of condition  0 < 𝛼 < 1. For material constants 

𝑐1 ≠ 0 implies  

𝐵 (1 − 𝜃
Θ1𝐵+Θ2

1+Θ1𝐵𝜃
) ≠ 0. (28) 

Now (26) could be divided by 𝑐1 and simplified to 

𝛽2 − (1 − cot (
𝛼𝜋

2
))

𝑑2𝑎𝜔

𝜏2 + 𝛽
1

𝜏
(𝑑2𝑎𝜔 − 𝑑1

𝑐2

𝑐1
𝑎𝜔 cot (

𝛼𝜋

2
) + cot (

𝛼𝜋

2
)) = 0. (29) 

To obtain 𝛽 = 𝛽(𝜔) the second order equation (29) should be solved and the solution should be 

substituted into (25). Then the solvability of 

((𝑑2𝑐1𝛽(𝜔) 
𝑎

𝜌𝜏
− 𝑑2𝑐1

𝑎

𝜌𝜏2)𝜔𝛼+2 +
1

𝜌
(𝛽(𝜔)) 2𝑐1𝜔

𝛼+1) cos (
𝛼𝜋

2
) + ((−𝑑1𝑐2𝛽(𝜔) 

𝑎

𝜌𝜏
+

𝑑2𝑐1
𝑎

𝜌𝜏2
) 𝜔𝛼+2 +

1

𝜌𝜏
𝛽(𝜔) 𝑐1𝜔

𝛼+1) (−sin (
𝛼𝜋

2
)) − (𝛽(𝜔))

3
(−𝑑2

𝑎

𝜏
𝜔 − 𝛽(𝜔)  ) = 0 (30) 

should be studied. If there exists regular non-zero 𝜔 satisfying (30), then the dynamic bifurcation is 

generic and a non-linear investigation is possible. 
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3.4. Dynamic bifurcation for two special cases 

To show that (30) may have regular solution, this part will study simplified cases (𝛼 =
1

2
 and α = 1), 

in which such solution can easily be derived. Then the case of the conventional strain will also be treated 

to demonstrate the need for fractional strain to have generic dynamic bifurcation. 

Denote 𝐴 =
𝑑2𝑎𝜔

𝜏
 and assume for the sake of simplicity that  

𝑐2 = 0  and  cot (
𝛼𝜋

2
) = 0 (31) 

to study a simplified special case. Then (29) is  

𝛽2 + 𝐴𝛽 −
𝐴

𝜏
= 0. (32) 

Equation (32) can be solved to 

𝛽1,2 = −
𝐴

2
± √𝐴 √

𝐴𝜏+4

4𝜏
. (33) 

Conditions (31) imply  

Θ3𝐵𝜃 = 𝜒  and  𝛼 =
1

2
, (34) 

then the positive solution from (33) should be substituted into (25), and  

𝜏2√2

𝜌
 𝑐1𝜔

3

2 − (𝑑2𝑎𝜔)3 − 3(𝑑2𝑎𝜔)2 − 3(𝑑2𝑎𝜔) − 1 = 0 (35) 

is obtained. To have a generic dynamic bifurcation (35) should have a non-zero solution 𝜔dyn. In (35) 

coefficient 𝑑2 = Θ3.  

Instead of solving (35) we may assume, that dynamic material length  ℓdyn ≝ 𝜔dyn𝜋  is determined 

by some measurement or physical experience. Then (35) presents a condition for the coefficients of the 

constitutive equations in form  

𝜏2√2

𝜌
(𝐵 (1 − 𝜃

Θ1𝐵+Θ2

1+Θ1𝐵𝜃
)) (

ℓdyn

𝜋
)

3

2
− (Θ3𝑎

ℓdyn

𝜋
)
3

− 3(Θ3𝑎
ℓdyn

𝜋
)
2

− 3(Θ3𝑎
ℓdyn

𝜋
) − 1 = 0. (36) 

Of course we should keep in mind all the previous assumptions (28), (34) and  

Θ1𝐵 + Θ2 ≠ 0   and    Θ3 ≠ 0 (37) 

to set up conditions for the existence of a generic dynamic bifurcation as the way of loss of stability.  

At last the case of conventional strain 
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𝜀 =
𝜕𝑢

𝜕𝑥
   

is studied. Then 𝛼 = 1 and (26) implies 

𝛽2 +
𝑑2𝑎𝜔

𝜏
𝛽 −

𝑑2𝑎𝜔

𝜏2
= 0. (38) 

its solution reads 

𝛽12 = −
𝑑2𝑎𝜔

2𝜏
±

1

2𝜏
(𝑑2𝑎𝜔)

1

2(𝑑2𝑎𝜔 + 4)
1

2. (39) 

When it is substituted into (25) at 𝛼 = 1, after some calculations 

(−
𝑑2𝑎𝜔

2𝜏
+

1

2𝜏
(𝑑2𝑎𝜔)

1

2(𝑑2𝑎𝜔 + 4)
1

2)
3

(
𝑑2𝑎𝜔

2𝜏
+

1

2𝜏
(𝑑2𝑎𝜔)

1

2(𝑑2𝑎𝜔 + 4)
1

2) = 0 (40) 

is obtained. Unfortunately (40) cannot be satisfied, thus no 𝜔 solution exists, because (40) is valid either 

when 

𝑑2𝑎𝜔 = (𝑑2𝑎𝜔)
1

2(𝑑2𝑎𝜔 + 4)
1

2, (41) 

or 

−𝑑2𝑎𝜔 = (𝑑2𝑎𝜔)
1

2(𝑑2𝑎𝜔 + 4)
1

2, (42) 

Both (41) and (42) require 

(𝑑2𝑎𝜔)2 = (𝑑2𝑎𝜔)(𝑑2𝑎𝜔 + 4)    ⇔    𝑑2𝑎𝜔 = 𝑑2𝑎𝜔 + 4,  

which is a contradiction. That is, no generic dynamic bifurcation is possible for conventional strain. 

4. Conclusions 

By using dynamical systems stability analysis of thermo-mechanical continua can easily be performed, 

even when fractional derivatives are used. Such case may be obtained, when non-locality is described 

by a generalized, fractional strain. In constitutive formulation two types of constitutive equations are 

used, thermodynamical constitutive equations should also be added to the classical “mechanical” 

constitutive equations. In such a way a closed systems of equations is obtained to determine the motion 

of the thermo-mechanical continuum. By using such system of equations a dynamical system can be 

defined and the requirements of generic static and dynamic bifurcations can be studied. When the 

investigation is restricted to homogeneous periodic perturbations, general necessary conditions are 

formulated for both static and dynamic bifurcations. For the conventional setting (small deformations, 

linearized constitutive equations, Vernotte-Cattaneo equation) no generic static bifurcations are found. 

For dynamic bifurcation there are possibilities to have generic behavior. A general formula is derived 
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for such case. Moreover, having done a few simplifying restrictions conditions are presented for the 

material constants of the constitutive equations to ensure generic dynamic bifurcation. The necessity of 

fractional strain is also presented, while at conventional strain no generic bifurcation is possible. 
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Computation of periodic switching strategies for the optimal
control of chemical reactors

Peter Benner, Andreas Seidel-Morgenstern, Alexander Zuyev1

Abstract: In this paper an isoperimetric control problem for the optimization
of the performance measure for a nonlinear chemical reaction model with pe-
riodic inputs is considered. For this problem, a family of bang-bang controls
parametrized by switching times is introduced. The issue of defining these
switching times is addressed for periodic boundary conditions by using the
Fliess series expansion. Such a technique allows us to obtain analytical re-
lations between the boundary conditions and control parameters for the case
of small time periods. These theoretical results are illustrated by numerical
simulations for a non-isothermal reaction model with two inputs.

1. Introduction

Problems of chemical engineering stimulate the development of nonlinear design techniques in

mathematical control theory for distributed and lumped parameter systems. As an important

reference, we cite the pioneering work by J.M. Douglas [1], where the performance measure

of a nonlinear chemical reaction was estimated under sinusoidal modulations of the feed

composition. Since then, problems of increasing the efficiency of periodic operations of

chemical reactors have received considerable attention in theoretical and experimental studies

(see, e.g., the recent papers [4, 5] and references therein).

A family of bang-bang extremal controls was proposed for an isoperimetric optimiza-

tion problem in our previous work [8] in order to maximize the performance of a nonlinear

chemical reaction with periodic inputs. It was noted that this control design methodology is

based on solving an auxiliary system of equations with respect to the switching times. The

properties of these switching strategies have not been fully analyzed so far, and we carry out

a further study of this problem in the present work.

Our main theoretical contribution is summarized in Section 3. In Lemmas 1–3, we pro-

vide conditions for the switching times and the initial data of the considered isoperimetric

problem. These analytic results allow to define bang-bang controls for the case of relatively

small time periods (i.e., for relatively high frequencies of the input modulations). We also

derive representations of the cost function along periodic trajectories for different switching

1Corresponding author.
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scenarios. The novelty of this approach is underpinned by the use of essentially nonlinear

techniques, based on the Fliess functional expansion, while the matrix exponentials of the

linearized problem were previously used in [8]. The above theoretical results, linking switch-

ing parameters with the initial data, are illustrated with numerical simulations in Section 4

for a non-isothermal chemical reaction model.

2. Optimal control problem

This section contains a brief presentation of the necessary results related to the isoperimetric

optimal control problem introduced in [8].

2.1. Mathematical model

Consider a mathematical model of a controlled non-isothermal chemical reaction of the type

“A→ product” governed by the following differential equations [8]:

ẋ = f0(x) + u1f1(x) + u2f2(x), x =

x1
x2

 ∈ R2, u =

u1

u2

 ∈ U ⊂ R2, (1)

U = [umin1 , umax1 ]× [umin2 , umax2 ].

We assume that the dimensionless components of x(t) and u(t) describe the deviation of basic

physical quantities from their steady-state values under a suitable rescaling, so that x1(t)

corresponds to the outlet concentration of A, x2(t) corresponds to the temperature of the

reactor, u1(t) controls the inlet concentration of A, and u2(t) controls the temperature of the

inlet stream. Here t ≥ 0 is the dimensionless time. Thus, the nonlinear control system (1)

describes the reactor dynamics in a neighborhood of some steady state, so that f0(0) = 0,

and the trivial solution x = 0 with u = 0 corresponds to the operation with a constant

consumption of A at a constant temperature. More details concerning the derivation of

equations (1) can be found in [4, 5, 8].

The problem of maximizing the mean conversion of A to the product (or, equivalently,

minimizing the mean concentration of A at the output of the reactor) has been considered

in [8] under periodic boundary conditions. To formulate this problem, we introduce the class

of admissible controls Utf consisting of all measurable functions u : [0, tf ]→ U ⊂ R2.

2.2. Problem formulation

For given tf > 0, x0 ∈ R2, and ū1 ∈ R, the goal is to find a control û(·) ∈ Utf that minimizes

the cost

J :=
1

tf

∫ tf

0

x1(t) dt (2)
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along the solutions x(t) of system (1) corresponding to the admissible controls u(·) ∈ Utf
such that

1

tf

∫ tf

0

u1(t) dt = ū1 (3)

and

x(0) = x(tf ) = x0. (4)

The above isoperimetric problem formulation corresponds to an assumption that the

process is controlled periodically and the mean consumption of the input reactant A is fixed

to be ū1 (in our dimensionless variables).

2.3. Parametrization of the switching times

If û(t) is an optimal control for the above problem then, as it was shown in [8], the Pontryagin

maximum principle implies that

û1(t) =
umax1 + umin1

2
+
umax1 − umin1

2
sign (p1(t) + η1),

û2(t) =
umax2 + umin2

2
+
umax2 − umin2

2
sign p2(t), t ∈ [0, tf ],

(5)

where (p1(t), p2(t)) satisfy the adjoint equations, and the constant η1 plays the role of a

Lagrange multiplier for problems with isoperimetric constraints (cf. [6]). For the case of a

reaction of order n considered in [8], the vector fields of system (1) are

f0(x) =

k1e−κ − φ1x1 − k1(x1 + 1)ne−κ/(x2+1)

k2e
−κ − φ2x2 − k2(x1 + 1)ne−κ/(x2+1)

 , f1(x) =

1

0

 , f2(x) =

0

1

 , (6)

and the adjoint differential equations for (p1(t), p2(t)) take the following form:

ṗ1 = −p0 + φ1p1 + n(k1p1 + k2p2)(x1 + 1)n−1e−κ/(x2+1),

ṗ2 = φ2p2 +
κ(k1p1 + k2p2)(x1 + 1)n

(x2 + 1)2
e−κ/(x2+1), p0 = const ≤ 0.

(7)

Here n, κ, ki, and φi are parameters of the reaction [8].

As there is no information about the initial values of the adjoint variables p1 and p2,

the principal problem for implementing bang-bang controls of the form (5) is related to the

computation of the switching times, when the functions p1(t) + η1 and p2(t) change their

signs.
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Remark 1. The number of switchings has been estimated in our previous work [8] for the

linearization of systems (1) and (7), when n = 1 and the differential equations for x and p are

decoupled. In this case, it was shown under an additional assumption on the parameters of

the drift term f0 (which holds for the reaction considered in [8]) that each control û(·) ∈ Utf
satisfying the Pontryagin maximum principle has at maximum 4 switchings in the interval

t ∈ [0, tf ].

Starting from this observation, we fix a natural number N and consider a finite sequence

of boundary control values

uj ∈


umin1

umin2

 ,

umin1

umax2

 ,

umax1

umin2

 ,

umax1

umax2

 = Ub, j = 1, N, (8)

together with a partition

0 = t0 < t1 < ... < tN = tf , (τj := tj − tj−1 > 0), (9)

in order to define the following piecewise-constant control u : [0, tf )→ Ub:

u(t) := uj for t ∈ [tj−1, tj), j = 1, N. (10)

Thus, the candidates for optimal controls may be obtained by checking all controls of

the form (10) corresponding to all possible choices of N , switching scenarios (8), and parti-

tions (9) such that the constraints (3) and (4) are satisfied.

3. Equations for the switching times

In this section, we will propose analytic formulas for computing the switching times and

corresponding asymptotic representations of the cost J for the case of small periods tf . Our

study is based on the Fliess functional expansion for solutions of system (1), which can be

deduced from its Volterra representation [2]. Namely, for the analytic vector fields fi, output

function y = h(x), initial data x(0) = x0 ∈ R2, and piecewise-continuous input u ∈ Utf , the

value of y(t) = h(x(t)) for the corresponding solution x(t) of system (1) can be represented

as follows [2], [3, Chapter 4]:

y(t) = h(x0) +

∞∑
ν=0

2∑
i0,...,iν=0

Lfi0 · · ·Lfiν h(x0)

∫ t

0

dξiν · · · dξi0 , t ∈ [0, tf ], (11)

where Lfih(x) = ∂h(x)
∂x

fi(x) is the Lie derivative, ∂h(x)
∂x

is the Jacobian matrix,
∫ t
0
dξ0 = t,∫ t

0
dξi = ξi(t) =

∫ t
0
ui(t) for i = 1, 2, and, by induction,∫ t

0

dξiν · · · dξi0 =

∫ t

0

dξiν (s)

∫ s

0

dξiν−1 · · · dξi0 .
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To simplify computations in the sequel, we assume that the mean consumption of the

input reactant corresponds to the same amount that is used to achieve the steady-state

x = 0, i.e. we assume that ū1 = 0 in the isoperimetric constraint (3). We also assume that

the set Ub is symmetric, i.e.

umaxi = −umini > 0, i = 1, 2. (12)

For a given number N ≥ 1 and a switching scenario u1, u2, ..., uN ∈ Ub, we introduce positive

real variables τ1, τ2, ..., τN and denote t0 = 0, t1 = τ1, t2 = t1 + τ2, ..., tN = tN−1 + τN = tf .

Our goal is to define (τ1, τ2, ..., τN ) from the conditions (3), (4) and to analyse their

properties for small values of tf . By assuming that Remark 1 remains valid for the nonlinear

system (1) in a neighborhood of the origin, we will consider the cases with N ≤ 4 only. It is

clear that any constant control u(t) ∈ Ub does not satisfy the isoperimetric constraint∫ tf

0

u1(t) dt = 0 (13)

under the assumption (12). Thus, we will exclude the case N = 1 from consideration.

3.1. Case N = 2

For a given switching scenario u1, u2 ∈ Ub, the isoperimetric constraint (13) is satisfied for

the control u(t) of the type (10) only if

τ1 = τ2 = tf/2 and u2 = −u1. (14)

With this control u(t), the Fliess functional expansion (11) with h(x) ≡ x takes the form

x(tf ) = x0 + 2τ1f0(x0) + 2τ21Lf0f0(x0) + τ21 [g1, f0](x0) +O(t3f ) for small tf > 0, (15)

where g1 = u1
1f1 +u1

2f2, and [gi, f0] := Lgif0−Lf0gi is the Lie bracket of the vector fields gi

and f0. Note that formula (15) is valid for any vector fields fi of class C2, and its remainder

O(t3f ) can be estimated by Lemma 3.1 of [7]. We use the representation (15) to derive

equations for the switching times from the periodic boundary conditions (4) in the following

lemma.

Lemma 1. Let N = 2, and let the parameters of the contol u(t) given by (10) satisfy (14).

If the corresponding solution x(t) of system (1) satisfies the boundary conditions (4), then

f0 + τ1

{
Lf0f0 +

1

2
[g1, f0]

}
= O(t2f ), where g1 = u1

1f1 + u1
2f2, (16)

and

x̄ :=
1

tf

∫ tf

0

x(t)dt = x0 + τ1

{
f0 +

1

2
g1

}
+ τ21

{
2

3
Lf0f0 +

1

2
Lg1f0

}
+O(t3f ) (17)
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for small tf > 0.

Note that the vector fields in formulas (16), (17) and in the subsequent computations

are evaluated at x = x0.

3.2. Cases N = 3 and N = 4

If N = 3 and u1, u2, u3 ∈ Ub, then the isoperimetric constraint (13) is satisfied for the

control (10) if

τ1 = τ2 + τ3 = tf/2 and u2 = −u1, u3
1 = −u1

1. (18)

We summarize our analytic approach for the design of controls (10) with N = 3 as follows.

Lemma 2. Let N = 3, and let the parameters of the contol u(t) given by (10) satisfy (18).

If the corresponding solution x(t) of system (1) satisfies (4), then

2τ2f0 + τ3(2f0 + g1 + g3) + τ22 {2Lf0f0 + [g1, f0]}+ 2τ2τ3 {2Lf0f0 + Lf0g3}

+
τ23
2
{4Lf0f0 + 3Lg1f0 + Lg3f0 + 3Lf0g3 + Lf0g1

+Lg3g3 + 2Lg1g3 + Lg1g1} = O(t3f ), where gi = ui1f1 + ui2f2.

(19)

For the case N = 4, we observe that the control (10) with u1, u2, u3, u4 ∈ Ub satisfies

the isoperimetric constraint (13) if

τ3 = τ1, τ4 = τ2, 2(τ1 + τ2) = tf and u3 = −u1, u4 = −u2. (20)

In this case, we have:

Lemma 3. Let N = 4, and let the parameters of the contol u(t) given by (10) satisfy (20).

If the corresponding solution x(t) of system (1) satisfies (4), then

2(τ1 + τ2)f0 + τ21 {2Lf0f0 + [g1, f0]}+ τ22 {2Lf0f0 + [g2, f0]}

+ τ1τ2 {4Lf0f0 + [g1 + g2, f0] + [g1, g2]} = O(t3f ), where gi = ui1f1 + ui2f2,
(21)

and

x̄ :=
1

tf

∫ tf

0

x(t)dt = x0 + (τ1 + τ2)f0 +
τ1g1 + τ2g2

2
+

2(τ1 + τ2)2

3
Lf0f0

+
τ1(2τ1 + 3τ2)

4
Lg1f0 +

τ2(τ1 + 2τ2)

4
Lg2f0 +O(t3f ) for small tf > 0.

(22)

The proof of Lemmas 1–3 is based on the Fliess functional expansion (11) and is omitted

due to lack of space.
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4. Numerical simulations

In this section, we will show how the above analytical results can be applied to control the

hydrolysis reaction of the type (CH3CO)2O + H2O → 2 CH3COOH. We choose the same

realistic parameters for the vector fields (6) of system (1) as in [8]: n = 1, φ1 = φ2 = 1,

κ = 16.07, k1 = 3.059 ·107, k2 = −1.058 ·106, umax1 = −umin1 = 4.21, umax2 = −umin2 = 0.06.

Let us first consider controls of the form (10) for N = 2, i.e. let

u(t) =

 u1, t ∈ [0, τ1),

−u1, t ∈ [τ1, tf ],
(23)

with τ1 > 0, tf = 2τ2, and u1 ∈ Ub (we take into account (14) to satisfy the isoperimetric

constraint with ū1 = 0). As, for an arbitrary initial condition x(0) = x0 ∈ R2, the solution

x(t) of system (1) with control (23) does not necessary satisfy the periodic boundary con-

dition x(0) = x(tf ), we use Lemma 1 to satisfy the relation between x0 and τ1. Namely, if

tf = 2τ1 = 0.4, u1 = −u2 = (umax1 , umax2 )T , then condition (16) of Lemma 1 is satisfied with

x0 ≈ (−0.403,−0.006)T . We have truncated the term O(t2f ) in the right-hand side of (16)

and solved the resulting equation numerically. The solution x(t) of system (1), (6), (23)

with the above choice of parameters is shown in Fig. 1. We observe that the solution x(t)

is tf -periodic, and the cost is J = 1
tf

∫ tf
0
x1(t)dt ≈ −0.015. As J is negative, the periodic

control (23) ensures a better performance of the reactor in comparison to its steady-state

operation with x = u = 0.

–0.006

–0.004

–0.002

0.002

0.004

0.006

x2

–0.4 –0.2 0.2 0.4

x1

–0.006

–0.004

–0.002

0.002

0.004

0.006

0.008

0.01

x2

–0.4 –0.2 0.2

x1

Figure 1. Trajectories of the control system (1), (6), (10): N = 2 (left) and N = 4 (right).

To illustrate the case N = 4, we choose control (10) with the same tf = 0.4 and

u1 = −u3 = (umax1 , umax2 )T , u2 = −u4 = (umin1 , umax2 )T . Then equation (21) (with higher

order terms being truncated) is satisfied with x0 ≈ (0.0152,−0.0058)T and τj = 0.1. The

corresponding trajectory x(t) of system (1), (6), (10) is presented in Fig. 1. The cost

J = 1
tf

∫ tf
0
x1(t)dt ≈ −0.038 is also negative in this case, which confirms the performance

improvement with respect to the steady-state solution.

Note that the first coordinate of x̄ in (22) provides a representation of the cost J for small

values of τ1 and τ2. Hence, for future work, we plan to extend these analytical results for
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estimating the optimal phase shift in the reactor model with two periodic inputs. Another

direction for future development is related to the problems of stability and orbital stability

of the proposed periodic trajectories for justifying possible implementations of our approach.
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Nonlinear quantum systems

Björn Birnir

Abstract: We model the dynamics of electrons in doped quantum wells driven by ter-
ahertz radiation and a superlattice biased by a dc voltage. We compute coherent, self-
consistent electron states, density matrix equations of motion, and dipole absorption
spectra. The model simultaneously accounts for intersubband transitions and many non-
linear phenomena that have been observed in these systems. We predict a bistable re-
sponse for strong terahertz fields and bifurcations to coherent time-periodic quantum
states. These bifurcation include, period-doubling bifurcations, producing a subhar-
monic response, Hopf bifurcations producing an incommensurate frequency response,
and a cascade of period doubling bifurcations to a strange attractor. These bifurcation
have been difficult to measure in single quantum wells. Therefore we design super-
lattice heterostructures of quantum wells where these bifurcations occur and are easier
to measure.

1. Introduction

Quantum wells are fabricated (or ‘grown’) from semiconductors by depositing a thin layer of one mate-

rial, such as gallium arsenide GaAs, onto a substrate of a different material, such as aluminum gallium

arsenide AlGaAs, followed by another layer of substrate material, so that a type of ‘sandwich’ geometry

called a heterostructure is formed. The defining property of quantum wells is that the middle layer has

a significantly smaller band gap than the substrate layers, and has thickness of the same order as the

de Broglie wavelength of the electron. This causes an electron occupying the conduction band of the

middle layer to be confined to move freely in only two dimensions, while motion in the third dimension

is only possible via transitions between quantized energy levels, called ‘subbands’, see Figure 1. These

wells can be populated by a density of electrons by a process called doping and this makes them ideal

quantum systems for the study of nonlinear effects.

The success of nonlinear dynamical systems theory in the late 20th century, see Guckenheimer and

Holmes [23], and its application in the sciences and engineering, see for example Birnir [8], lead to the

conjecture that similar phenomena could be found in quantum systems. In semi-classical systems non-

linear dynamics and bifurcations of coherent solutions (solitons) have been shown to exist [7,9,22,30],

so it is not unreasonable to expect nonlinearity in some quantum systems far from the semi-classical

limit. In the late 1990s and early 2000s, Galdrikian, Batista, Birnir et al. [5, 6, 20] studied intersubband

transitions of doped quantum wells. They developed computational methods for determining the coher-

ent states of the electron gas in an oscillating external electric field. It was found that the density matrix
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Figure 1. Left: The conduction and valance band for a semiconductor heterostructure, showing several

‘bare’ electron and hole subbands (states). Right: The parabolic subbands of the energies Ekxkyα of the

envelope wavefunctions ξα .

equations of motion were nonlinear due to the interactions of the electron gas and that these nonlineari-

ties could be enhanced by fabricating quantum wells with certain asymmetries, so that the lowest-lying

subband levels were close to one another in energy. For sufficiently nonlinear wells, it was predicted

that the wells would exhibit a bistable response as the terahertz power of the electric field (laser) was

ramped up and then down. For strong enough terahertz fields, period-doubling bifurcations leading to

a period-doubling cascade were predicted. Galdrikian, Batista, Birnir et al. [5, 6, 20] developed this

nonlinear theory of semiconductor quantum wells, typically made out of GaAs and AlzGa1−zAs and

populated by the technique of doping, where material providing electrons is deposited close to the well

structure, see Heyman et al. [24,25]. The nonlinearity was introduced through the Hartree and Hartree-

Fock local density approximation where a system of n-interacting electrons is replaced by a system

of n-noninteracting electrons in a different (Hartree) potential. This latter view leads to the quantum

mechanical system of coherent electron states. These states satisfy a Schrödinger equation where the

potential depends on several parameters and when these parameters change the coherent electron states

can bifurcate.

2. The local density approximation

We now briefly describe the steps involved in obtaining the nonlinear quantum system describing the

coherent electron states and their bifurcations. It is possible to add donor-type dopants at the interfaces

of the middle layer with the substrate layers, so that a two-dimensional electron gas will occupy the

well. In order to describe such a system theoretically, we take advantage of the fact that all the materials

involved exhibit a periodic crystal lattice structure, which constrains the allowed electronic states and

leads to a set of semiconductor Bloch equations. Assuming that the electron gas is not too dense, we

make an effective mass approximation and work with a simplified model that will be discussed below.
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The starting point is the Heisenberg equation for the electron operator

ih̄
∂ψ

∂ t
= [ψ,H].

Let the x- and z-coordinates parameterize the lateral and growth directions of the heterostructure, re-

spectively. Here x is a two-dimensional coordinate parameterizing both the direction of lateral and

the transverse direction. Since the wavelength of the laser drive is much longer than the width of the

quantum well, the vertical field will be coupled to the electrons in the active region with the dipole

approximation. In the effective mass approximation, the mean field Hamiltonian including the vertical

field Fz (which falls off rapidly outside the active region) is

H(t) =
∫

ψ
†(x,z, t)[

h̄2

2m
∇

2 + v(x,z)+w(x,z, t)− ezF(x, t)]ψ(x,z, t) d2xdz,

where v and w are the time-independent and time-dependent parts of the electric potential, respectively,

e is the electron charge and m is the effective mass. The electric potential is coupled to the electron

density n by Poisson’s equation

∇
2[v(x,z)+w(x,z, t)] =− e

ε
n(x,z, t), where n(x,z, t) = 〈ψ†(x,z, t)ψ(x,z, t)〉,

is the electron density. The electron operator is expressed as

ψ(x,z, t) = ∑
α

∫
eik·x

ξα (z)akα (t)
d2k
2π

(1)

where the envelope wavefunctions ξα (z) form a complete orthonormal basis. If the active region is

filled and the bias voltage is zero (i.e. the electron density is uniform), then the self-consistent envelope

wavefunctions may be calculated in the same manner as in Galdrikian, Batista and Birnir [5, 6, 20].

3. Homogeneous quantum wells

The theory of homogenous quantum wells with the local density approximation consists of the following

steps. We discretize the integral in Equation (1) and write the electron operator as

ψ(x,y,z) = A−1/2
∑

kx,ky,α

akxkyα eik·x
ξα (z),

where A is a constant. The envelope wavefunctions obey the time-independent Schrodinger equation{
− h̄2

2m
∂ 2

∂ z2 + v(z)

}
ξα (z) = Eα ξα (z), Ekxkyα =

h̄2

2m
(k2

x + k2
y)+Eα , (2)

with the energies lying in parabolic subbands see Figure 1. The envelope wave functions satisfy van-

ishing boundary conditions at the sides of the well, which is a good proxy for a vanishing boundary

conditions at z =±∞, see [6, 20]. The self-consistent potential is determined by Poisson equation

∂ 2

∂ z2 v(z) =−e2

ε
n(z). (3)
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Figure 2. The first few energy states, the shape of the potential and the Fermi energy for different

doping levels and the energy difference E2−E1 between the first and second state as a function of the

charge density.

The local density (or Hartree) approximation is implemented by use of the partition function that yields

the relationship between the chemical potential µ , sheet density Ns and subband energies Eα , giving

the thermal weights wα

Ns =
m

π h̄2
β

∑
α

log
{

1+ e−β (Eα−µ)
}
≡ m

π h̄2
β

∑
α

wα ,

where β = 1/T , T being temperature. Then the electron density can be expressed as

n(z) = ∑
α

wα |ξα (z)|2. (4)

4. The Hartree iteration

The potential v is determined by a Hartree iteration:

1. Solve Schrödinger equation (2) for {ξα (z),Eα}. 2. Determine {µ,wα} from {Ns,Eα} and update

n(z) in (4). 3. Solve Poisson’s equation and update v(z) in (3). 4. Repeat until the iteration has

converged.

Figure 2, shows the first few energy states, the shape of the potential and the Fermi energy for

different doping levels and the energy difference between the first and second state as a function of the

charge density.
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Figure 3. The absorption frequency. The leftmost picture shows the intersubband spacing (Stark shift)

and infrared absorption due to the depolarization shift, as a function of the charge density. The second

and third picture show that with fixed electron (doping) density the absorption peak shifts and changes

form with the amplitude of the incoming radiation. The blue shift between the two leftmost figures is

the depolarization shift.

5. Intersubband absorption

The nonlinear effects due to the electron density in the quantum wells have been understood and mea-

sured since the mid 1990s. The intersubband absorption when the quantum well is illuminated by an

auxiliary laser, can be simulated and measured. The simulations were developed by Zalużny [40, 41]

and the experiments were done by Craig et al. [16]. The incoming radiation first builds up a charge

in the quantum well, this is a Stark effect and corresponds to a redshift of the absorption frequency.

However, as the incoming radiation increases the electrons in the well shield against it, this is called

the depolarization shift and is a blue shift. Eventually, the depolarization shift dominates, see Figure

3. One can also measure the relaxation times for the densities in the quantum well, namely Γ1; the

depopulation rate and Γ2; the depolarization rate. This was also done by Craig et al. [16].

6. Time-dependent local density approximation

The driving of the quantum wells with time-periodic laser fields requires the development of the time

dependent version of above theory. The laser field is added to the Hamiltonian in the electric dipole

approximation, this works well since the wavelength of the laser is large compared to width of the well.

The intersubband absorption now occurs by collective oscillations of electrons occupying the well and

the resonance is broadened and shifted away from intersubband spacing (This is the depolarization shift

discussed above). Using the time-dependent Hartree (local density) approximation, we calculate the

self-consistent fluctuations due to time-periodic driving term. The time-dependent electric field zF(t)
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now induces self-consistent fluctuations in potential δv(z, t) and electron density δn(z, t)

H̃(t) = H− ezF(t)+δv(z, t);
∂ 2

∂ z2 δv(z, t) =−e2

ε
δn(z, t).

These satisfy a Poisson equation with a self-consistency condition: v(z, t) = v(z)+ δv(z, t). n(z, t) =

n(z)+δn(z, t). Then we can find a Liouville-von Neumann equation

∂ρ(z,z′, t)
∂ t

=− i
h̄
[H̃(t),ρ(z,z′, t)]−R[ρ(z,z′, t)],

for the density matrix ρ , where R is the relaxation operator. In the final quantum mechanical dynamical

system, in 4 complex dimension, R is determined by the experimentally measured depolarization rate

Γ1 and decorrelation rate Γ2, discussed above.

The time-dependent potential is determined by a time-dependent Hartree iteration:

1. Evolve ρ(z,z′, t) until a periodic response is reached. 2. Compute the electron density by the formula

n(z, t) = ρ(z,z′, t)|z′=z. 3. Solve Poisson’s equation and update δv(z, t). 4. Repeat until converged.

7. Nonlinear phenomena in assymmetric quantum wells

Nonlinear bifurcation of the time-periodic coherent electron states were explored by the theory above.

In 1996 Galdrikian and Birnir [20] found the period-doubling bifurcation of these states. In 2003 Batista

and Birnir [5] found the Hopf bifurcation. These bifurcations were found in simulations of the above

model and simulations showed the period-doubling cascade to the (Feigenbaum) strange attractor in

first case [20] and the quasi-periodic cascade to another strange attractor in the second case [6]. We

illustrate both of these in Figure 4, taken form Batista and Birnir [5]. We sample the normalized dipole

momentum < µ > /µ10, µ = zF above, onto the two pertinent complex valued states, in Figure 4, µ10

is a normalization. The first column in Figure 4 is the time series of this sample. It shows if there

is a simple oscillation present or if there are more oscillations superimposed. The pattern in the third

row is called beating. The second column is the phase portrait, the basic mode is plotted against its

derivative. Both must be sampled at the same (spatial) point. The third column is the Poincaré map,

again the mode and its derivative are sampled, but now only at each period T. This is also called the

stroboscopic map. A circle on the second column turns into a point in the Poincaré map. Finally the

fourth column is the power spectrum or the absolute value of the Fourier transform of the solution. The

fundamental frequency ω = 2π/T shows up as the biggest peak. Superharmonics are smaller peaks at

integer valued multiples nω of the fundamental frequency. In the first row, we see a periodic orbit, with

the fundamental frequency and one superharmonic on the power spectrum. The second row shows a

period doubling, we see a periodic orbit with twice the period 2T , this is now a simple periodic orbit

(two dots) on the Poincaré map in the third column, and the power spectrum now has a peak at half
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Figure 4. Left: The asymmetric quantum well with two barriers; bottom, the corresponding eigenstates,

top. Right: Time series, phase portrait, Poincaré map and power spectrum.

the frequency ω/2. On the third row, we see a Hopf bifurcation in the Poincaré map, that means that

we now have a torus in the phase space. The Poincaré map is a cross section (cut) of this torus. The

orbits are quasi-periodic and fill the surface of the torus. On the power spectrum we now see a new

incommensurate frequency, smaller than the fundamental frequency. Then on the fourth row we see the

torus period double. On the fifth row the doubled torus deforms.

8. Semiconductor Superlattices

The observation of Bloch oscillations in semiconductor superlattices (SSLs) [31] has led to many pro-

posed applications of these heterostructures as sources and detectors at gigahertz and terahertz frequen-

cies. More recently, nonlinear Gunn oscillations and chaotic dynamics have been observed in SSLs in

the sequential tunneling regime. These nonlinear phenomena present the opportunity for development

of new applications of SSLs, such as true random number generators and frequency mixers. Further-

more, recent advances in the design of SSLs have opened the possibility of realizing these applications

at room temperature. In support of the development of applications of SSLs in the nonlinear regime,

we theoretically characterize the nonlinear dynamical phenomena of the sequential resonant tunneling

(SRT) model of weakly-coupled SSLs in this paper. We show the effects on the bifurcation diagram

from variations of the number of periods making up superlattice, the sensitivity of the SRT model to

time-dependent stochastic fluctuations in the bias voltage and local tunneling rates, and the effect of

time-independent random perturbations of the widths of the wells and barriers. This and the next three

sections follow [18].

73



Figure 5. Left: Schematic diagram of a dc voltage-biased SSL, from Bonilla et al. [11]. Right: The

band diagram of a GaAs/Al0.7Ga0.3As SSL (a) and GaAs/Al0.45Ga0.55As SSL (b), from Y. Huang et

al. [32]. The conduction band and the bound states of the wells are indicated by the solid horizontal

lines. The bottom of the X-valley is indicated by the dashed lines.

Spontaneous oscillations, quasiperiodic orbits, and chaos have already been observed experimen-

tally at very low temperatures [29, 31, 39] and at room temperature [26–28, 32, 35] in 50-period SSLs

with noisy voltage sources. Simulations by M. Alvaro, M. Carretero, and L. Bonilla [1] exhibited a

strong chaotic signal. Experiments by Huang et al. [26, 27] show that heating supresses the nonlinear

phenomena in SSLs, and we suspect this also occurs in single QWs. Huang et al. also describe a way of

suppressing the effect of heating, enhancing the current oscillations: It was hypothesized that at warm

temperatures, phonon-assisted transport though the X-valley of AlAs allowed a thermal distribution of

carriers to diffuse through the SSL, overwhelming the nonlinear quantum dynamics. This effect was

supressed by choosing the Aluminum concentration of GaAs/AlGaAs wells in order to maximize the

lowest bandgap energy, i.e. make the X and Γ band gaps equal to one another (Figure 6). As a result,

current oscillations were observed in SSLs at room temperature for the first time, see [26, 27].

We consider the SRT theory of Bonilla et al., which describes the electronic dynamics of SSLs

in the weakly-coupled, self-consistent regime [15]. Two different time scales are taken into account

in this description of SSLs. The inter-site tunneling and inter-subband relaxation processes occur on

much shorter timescales than the dielectric relaxation processes [11]. Therefore, the long timescale dy-

namics of semiconductor lasers [37] and superlattices [1, 14] are typically modeled using semiclassical

equations, while the short timescale processes are treated separately as noise. In the case of the SRT

model, the short-timescale processes are included through the addition of stochastic terms to the dy-

namical equations. Nonlinearities enter the model via the inter-site Coulomb interaction, which bends

the conduction band of the SSL, modifying the inter-band tunneling rates by casting the energy levels of

adjacent wells into or out of resonance [11]. The dynamical equations are discussed in detail in [18,36].
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Figure 6. The stationary self-consistent potential resulting from the band structure and Coulomb poten-

tial of the assymetric GaAs/AlGaAs quantum well, taken from Batista et al. [6]. The energy levels of

the bound states are indicated by the horizontal lines.

The bias voltage, Vbias, is treated as an external parameter of the model. Gunn-like oscillations in J(t)

are found to occur in the SRT model over several intervals of Vbias [10,17]. These oscillations undergo a

series of bifurcations, which may cascade into chaotic behavior [1]. In [36], we characterized the route

to chaos via analysis of the Poincaré map and power spectrum, and distinguished the effects of the noise

terms from the deterministic chaos.

For sufficiently small bias voltages, the total current J(t) through the SSL responds linearly to

changes in the bias voltage. At higher bias voltages, J(t) suddenly transitions to a time-dependent,

oscillatory function, which passes through a further series of transitions leading to chaotic behavior.

We summarize the behavior of J(t) below:

Fixed-point: Over certain voltage intervals, J(t) is attracted toward a stationary value.

Bistability: The first signal of the nonlinear dynamics is a bistable response of J(t) to slow variations

in Vbias. This behavior is observable only at sufficiently low temperatures [10,17]. Generically, bistable

behavior is found at voltages near the Hopf bifurcation described below.

Supercritical Hopf Bifurcation: As the bias voltage is increased, we next observe a supercritical Hopf

bifurcation. The fixed point becomes unstable, and J(t) evolves to a periodic orbit. The periodic orbit

is topologically equivalent to a circle in phase space, which corresponds to a one-cycle of the Poincaré

map. In this regime, the SSL acts as a GHz oscillator with a discrete power spectrum involving the

frequencies fn = n/T, n = 1,2,3, ..., where T is the period of the lowest-frequency oscillation present.

The superharmonics n > 1 arise due to the nonlinearities present in the SRT model. In this dynamical

phase, the fundamental period T varies smoothly with the bias voltage, therefore the oscillator is also

tunable. By filtering out all but the desired harmonic and fine-tuning it via the bias voltage, a wide

range of frequences may be selected.

Period Doubling Bifurcation: In this regime, one-cycles of the Poincaré map transition to two-cycles.

The fundamental period of the oscillator is doubled, T → 2T , and the fundamental frequency is cut in
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half: ω → ω/2. A new frequency peak will appear in the spectrum at half the fundamental frequency,

and the number of superharmonics will double. Following a period doubling bifurcation, the reverse

(period-halving) bifurcation may occur. We refer to the regions between these bifurcations as period

doubling bubbles. An application of period doubling, due to the subharmonic peak, is that a signal

may be read at lower frequency, where the noise may be reduced, and it can be used to make squeezed

states [21].

Period Doubling Cascade: Period doubling may occur in succession over certain voltage intervals,

and an infinite number of doublings is possible in a finite voltage range. The invariant phase space

structures transition from compact manifolds (periodic orbits of high periods) to chaotic attractors. The

Poincaré map takes on a fractal structure. Our simulations show that the SRT model does not support

true quasiperiodic orbits, hence the chaotic attractor is the most complex structure in the bifurcation

diagram. It is the result of a cascade of a period doubling sequence of periodic orbits. An application

of the chaotic dynamics in this regime is ultrafast generation of random number sequences [32]. This

has many applications in areas such as secure communication and data storage, stochastic modeling,

and Monte Carlo simulations, see [4, 19, 34, 38]. Previously the generation of ultrafast random number

sequences has been accomplished by fast semiconductor lasers but these require a mixture of optical

and electronic components. SSLs on the other hand are entirely submicron devices that can be readily

integrated into complex circuits.

In previous theoretical studies of optically-driven quantum wells, it was discovered that the intro-

duction of one or more off-center “steps” in the confinement potential, see Figure 7, had a profound

impact on the character of the nonlinear phenomena. In the presence of a single step, a period-doubling

bifurcation in the electronic response was predicted to occur near the intersubband resonant frequency

at high doping densities and strong driving fields. The presence of a second step unfolded the period-

doubling bifurcation into a supercritical Hopf bifurcation which generated quasiperiodic behavior. Both

single- and double-stepped assymetric quantum wells also exhibited period-doubling cascades to chaos.

In analogy with these results, we consider the possibility of unfolding the period doubling bifurcation

of the SRT model into a Hopf bifurcation, by breaking the periodic symmetry of the SSL, which we

term “disordered superlattice.”

The model for the superlattice is a quasi-one-dimensional resonant sequential tunneling model of

nonlinear charge transport in SSLs [12, 14, 15]. We use the formulation in [18, 36].

9. Results

We simulate superlattices and characterize the dynamical instabilities that may be applied to create

sources, period halvers and squeezers, random sequence generators and frequency mixers, even at room

temperature. The dynamical equations in [18,36] are evolved using the parameter values listed in Table

1 in [36] for a GaAs/Al0.7Ga0.3As SSL, with the quantized energy levels corresponding to Vbarr = 600
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POWER SPECTRA AND BIFURCATION DIAGRAM FOR N = 10
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Figure 7. (Top row) The power spectrum of J(t) plotted against the bias voltage, taken from [36].

(Bottom row) The bifurcation diagram, plotting the Poincaré map against the bias voltage. The Hopf

bifurcation from the steady state is shown in the first column. A period doubling “bubble” is shown in

the second column. A period-doubling cascade is shown in the third column

meV. The GaAs/Al0.7Ga0.3As SSL is treated here in order to illustrate bifurcations as clearly as possible,

but the same phenomena and instabilities occur in Al0.45Ga0.55As SSLs [18]. Dynamical instabilities

are found in two distinct plateaus, over which which the local electric fields of the SSL cease to increase

monotonically as a function of Vbias. The first plateau occurs at very low voltages, with tunneling

transport between the ground states of adjacent wells that are nearly aligned with one another in energy.

The second plateau occurs in the region of Vbias where the the electric fields bend the potential of the

SSL to align the ground state of well i with first excited state of well i+ 1. We do not observe a third

plateau because the third excited state becomes unbound at bias voltages that align it with the first

excited state of an adjacent well.

The leading edge, i.e. the lowest value of Vbias contained in a plateau, is identified by a supercritical

Hopf bifurcation from fixed point to periodic orbit, as shown the leftmost column of Figure 8. At low

temperatures, the Hopf bifurcation may be preceded by bistability, but at higher temperatures this phe-

nomenon is supressed. Within a plateau, we may observe period-doubling, period-doubling cascades,

and chaotic attractors whose locations depend upon on the values of the rest of the parameters, in partic-

ular N, the number of wells making up the superlattice. As a general rule, shorter superlattices exhibit a

greater variety of dynamical behavior in the second plateau. In SSLs (N ≤ 10), the Hopf bifurcation in

the first plateau disappears and the first plateau is not present. As N increases, the dynamical instabil-

ities appear to move from the second plateau into the first plateau: Near N = 20, the Hopf bifurcation

appears in the first plateau. In longer SSLs (N ≥ 30), the second plateau contains only a supercritical

Hopf bifurcation to a periodic orbit without any further bifurcations, while the first plateau has gained

a period-doubling bubble. In this section, we give a detailed description of the dynamical instabilities
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of N = 10 SSLs, then we point out the effect of increasing N. We close with a discussion of the effects

of stochastic terms and disorder on the dynamical instabilities.

9.1. N=10

As mentioned above, the first plateau does not exist for N = 10, and all oscillatory behavior takes place

in the second plateau. Combining the bifurcation diagram, power spectra and phase portraits shown in

Figures 8 and 9, we characterize the dynamical instabilities of the SRT model for N = 10:

Supercritical Hopf Bifurcation: In the leftmost column of Figure 8, we observe a transition from a

stationary state to a periodic orbit. Subsequently, we observe a circle in the phase portrait, similar to

the top row of Figure 9. The Poincaré map consists of a single point, or one-cycle, when visualized.

The power spectrum contains peaks falling at integer multiples of a fundamental oscillation frequency

as demonstrated in the top row of Figure 8. In this regime, the SSL acts as a GHz oscillator with a

discrete power spectrum involving the frequencies fn = n/T, n = 1,2,3, ..., where T is the period of the

lowest-frequency oscillation. The superharmonics n > 1 arise due to nonlinearities of the SRT model.

We also observe that the fundamental frequency and resulting superharmonics can be continuously

tuned by variation of Vbias as demonstrated in Figures 8.

Period Doubling Bifurcation: A period-doubling bifurcation is identified by a doubling of the orbits

in phase space and consequent doubling of the number of points in the Poincaré map. We illustrate

this phenomena in the transition between rows one and two of Figure 8 and in the second row of

Figure 9. The power spectrum gains a subharmonic peak at half of the former fundamental frequency,

and consequently we observe twice as many superharmonics in the power spectrum. A period-doubling

bifurcation may be followed by a period-halving bifurcation forming a period-doubling bubble as shown

in the second column of Figure 8.

Period Doubling Cascade: A period doubling cascade is identified when many period-doubling

bifurcations occur in rapid succession over some interval of the bias voltage. In principle, an infinite

number of doublings may occur over a finite voltage interval. This process terminates when the phase

space orbits lose their periodicity altogether and the Poincaré map takes on the characteristics of a

chaotic attractor. An example of a period-doubling cascade is illustrated in the last three rows of Figure

9. The rightmost column of Figure 8 also shows several period-doubling cascades connected by regions

of orbits with very high periods. The broadening and merging of peaks in the power spectrum is

characteristic of a chaotic attractor. We also compute the Feigenbaum constant of the cascade near

2.109 Volts, shown in Figures 8 and 9. We introduce the formula

δn =
Vn−1−Vn−2

Vn−Vn−1
, (5)

where Vn are the voltages corresponding to the nth doubling in the cascade. For a period-doubling cas-

cade, δn→ 4.6692 . . . as n→ ∞. By taking sufficiently small steps (about 10−6 Volts) in the parameter
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PERIOD-DOUBLING CASCADE FOR N = 10
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Figure 8. Representative phase portraits, taken from [36]. The first column shows the average current J

plotted against time t. The second column shows the phase portrait F6(t) plotted against F4(t). The third

column shows the Poincaré map PḞ6(t∗) plotted against PF6(t∗). The last column shows the power

spectrum of J(t). A periodic oscillation is shown in the first row. A period-doubling bifurcation is

observed in the second row. The period-doubling cascade to a chaotic attractor is shown in the bottom

four rows.

Vbias, we have measured the first Feigenbaum constant with less than 1% error. We conclude that the

route to chaos in the SRT model is a period-doubling cascade.

9.2. N > 10

We next describe the effects of increasing number of periods making up the SSL, keeping all other

parameters fixed. In the case of N = 20, both the first and second plateaus are present. The supercritical

Hopf bifurcation corresponding to the beginning of the first plateau is shown in the first column of Fig-

ure 10. No other bifurcations are observed in the first plateau. The onset of the second plateau is shown

in the second column of Figure 10. In the second plateau, we again find period doubling cascades to

chaotic attractors; this behavior is illustrated in the third column of Figure 10. Comparing the third

columns of Figures 10 and 8, we observe that the period-doubling cascade and the chaotic attractor oc-

cur over narrower voltage intervals in the N = 20 case compared with the N = 10 case. For higher values

of N, the voltage intervals containing the period doubling bifurcations become increasingly narrow, and

eventually disappear entirely from the second plateau near N = 30.

As N is increased, we observe the appearance of more dynamical instabilities in the first plateau. A

period-doubling bubble emerges in the first plateau near N = 25 and subsequently widens over a larger

interval of Vbias with increasing N. This bubble is responsible for the period-two orbit illustrated in the
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POWER SPECTRA AND BIFURCATION DIAGRAM FOR N = 20
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Figure 9. (Top row) The power spectrum of J(t) plotted against the bias voltage. (Bottom row) The

bifurcation diagram, plotting the Poincaré map against the bias voltage. The Hopf bifurcation from the

steady state in the first plateau is shown in the first column. The Hopf bifurcation from the steady state

in the second plateau is shown in the second column. A narrow region in the second plateau containing

a chaotic attractor is shown in the third column.

top panel of Figure 12 for the case of N = 50. There are no further period-doubling bifurcations present

in the first plateau for this value of N. For N = 100, simulations by Amann et al. showed chaotic

dynamics occur in the first plateau [2]. This result fits with the trend of dynamical instabilities moving

from the second plateau to the first plateau as N increases.

9.3. Noise

We next consider the effects of the stochastic terms in equations (8) and (9) in [18], which model the

effects of a noisy voltage souce and intrinsically random tunneling processes. We observe that the

dynamics become increasingly sensitive to noise with increasing N. For the case of N = 10, regions of

interest in the bifurcation diagram are plotted in Figure 11. We have chosen these voltage intervals to

be the same as in Figure 8 for clear comparison. We observe that the addition of noise stimulates the

Hopf bifurcation to occur at lower voltages, which widens the second plateau. Noise also has the effect

of broadening the peaks in the power spectrum as shown in the first row of Figure 11.

Upon perturbation by noise, period-doubling behavior may be enhanced and higher period orbits

may occur over a particular window of Vbias than do in the noise-free case, see Figure 12. demonstrates

the effect of very small perturbations by noise on the phase portrait over the window containing the

period-doubling bubble, which occurs in the first plateau for the N = 50 case. For higher-period orbits,

the broadening effect of perturbations on the power spectrum can cause the narrowly spaced peaks in the

spectrum to merge, transforming high-period orbits to chaotic attractors as demonstrated in Figure 11.

This effect may broaden the windows in which chaotic attractors occur, connecting chaotic attractors
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POWER SPECTRA AND BIFURCATION DIAGRAM WITH NOISE FOR N = 10
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Figure 10. (Top row) The power spectrum of J(t) plotted against the bias voltage. (Bottom row) The

bifurcation diagram, plotting the Poincaré map against the bias voltage. The Hopf bifurcation from the

steady state is shown in the first column. A period doubling bubble is shown in the second column. A

period-doubling cascade is shown in the third column. ση = 1.4×10−5V.
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Figure 11. Period doubling with and without noise. ση = 2.8×10−6V
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that are distinct in the noise-free limit as demonstrated by comparison of the chaotic regions in Figure 8

and Figure 11.

Periodic orbits in the first plateau for N = 50 are more sensitive to noise than those which occur in

the second plateau for N = 10. This difference is evident upon comparison of Figure 11 with Figure

12, in particular the power spectra. We see similar results but have used much less noise to produce

Figure 12 than Figure 11. The bottom panel of Figure 12 shows that the inclusion of noise terms

may cause the Poincaré map and power spectrum to resemble those of a chaotic system. However, we

simulate the same situation in the absence of noise in the top panel of Figure 12. While the SRT model

is very sensitive to noise in this regime, the underlying dynamical structure is an orbit of period two,

and hence our numerical methods are able discern between noise-sensitivity and true dynamical chaos.

10. Discussion

The connection that we are making between plasmon states in single quantum wells in the terahertz

regime and density waves in superlattices in the gigahertz regime may seem to be a stretch. On the sur-

face there are many differences between these systems. A superlattice of wells in the terahertz regime

would be tightly coupled described by the equation in Section 3 with periodic boundary conditions,

very different from the coupled equations in [18, 36] describing the sequential tunneling model in the

gigahertz regime. The boundary conditions are obviously different but in both cases we have a quali-

tative description for a range of parameters involved. The striking similarity between these two system

is that their qualitative behavior is in both cases governed by coherent electron states. In the former

case these are the plasmons slushing back and forth in quantum well. In the latter case they are the

density waves executing Gunn oscillations in the superlattice. In both cases these oscillations exhibit

bifurcations with increase in parameters. In the first case with increase amplitude of the laser drive, in

the second case the bifurcations take place with increased voltage bias. The bifurcating oscillations of

the plasmons have been understood for a long time, but we have shown in [18,36] that the density wave

form a coherent electron state extending through the superlattice and the oscillations of these states

show the same bifurcations at the same values of the bias throughout the lattice. This is observed by

taking different Poincaré sections for different lattice site. They turn out to be qualitatively the same for

all the lattice sites. Thus we see coherent electron states exhibiting generic bifurcations in both cases.

Both of these systems are genuine nonlinear quantum systems of coherent electron states and this makes

them qualitatively similar in spite of the physical differences.

11. Conclusions

We have shown that the nonlinear bifurcations found by simulations in single quantum wells in the tera-

hertz regime [5,6,20] also occur in semiconductor superlattices (SSLs) in the gigahertz range [2,3,13].

The only exception is the second Hopf bifurcation to quasi-periodic orbits on a torus, but this can pre-
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sumably also be accomplished with the design of more structure in SSL. The advantage of experiments

on SSLs in the gigahertz range is that the experiments can be conducted at room temperature and indeed

a chaotic oscillator due to the random dressing of a period two-orbit has already been measured [26,27].

In [36] we have determined that the route to chaos for SSLs in the sequential tunneling regime is the

period doubling cascade. Shorter (10-period) superlattices are observed to exhibit faster oscillations

compared with longer (50-period) ones. Two plateaus are observed as functions of the voltage bias,

and intrinsically chaotic dynamics on the second plateau are possible only for shorter SSLs, while the

dynamics in the first plateau contain intrinsic chaos only for longer (N > 50) SSLs, see [18]. The ro-

bustness of these results to stochastic perturbations in the local tunneling currents and the bias voltage

was tested in [18]. It was observed that shorter SSLs are much less sensitive to noise compared with

longer SSLs. Therefore two modes of random number generation are possible: Faster, intrinsic chaos

in the second plateau for shorter superlattices, and slower, noise-enhanced chaos in the first plateau for

longer superlattices, see [18] for more details.

The effects of random variations in doping density and the width of the wells and the barriers was

also examined in [18]. It was found that the period-doubling cascade is robust to these perturbations, but

the detailed shape of the bifurcation diagram can change significantly. Then these perturbations cannot

unfold the period-doubling bifurcation into a second Hopf bifurcation as we initially conjectured. They

are simply not strong enough to break the reflection symmetry of the constituent wells. To observe the

second Hopf bifurcation it is essential that this symmetry is broken analogous to the work of Batista

and Birnir [5, 6], then two or more states would also exist below the Fermi level. We conjecture this

greater number of active states will be successful at exposing the second Hopf bifurcation in a properly

designed SSL. It remains an open question whether all of these bifurcations can be extended to SSLs

in the terahertz regime. This would signify a nontrivial technological progress since terahertz devices

are difficult to make and operate at room temperature. It these bifurcations are found in teraherz range

the possibility of making all the devices discussed above opens up and such devices can be operated at

signicantly faster time-scales.
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83



semiconductor superlattices. Phys. Rev. B 65 (2002), 193313.

[3] ANDO, T., FOWLER, A. B., AND STERN, F. Electronic properties of two-dimensional systems.
Reviews of Modern Physics 54, 2 (1982), 437.

[4] ASMUSSEN, S., AND GLYNN, P. W. Stochastic simulation: Algorithms and analysis, vol. 57.
Springer Science & Business Media, 2007.

[5] BATISTA, A. A., BIRNIR, B., TAMBORENEA, P., AND CITRIN, D. Period-doubling and hopf
bifurcations in far-infrared driven quantum well intersubband transitions. Physical Review B 68,
3 (2003), 035307.

[6] BATISTA, A. A., TAMBORENEA, P. I., BIRNIR, B., SHERWIN, M., AND CITRIN, D. S. Non-
linear dynamics in far-infrared driven quantum-well intersubband transitions. Physical Review B
66, 3 (2002), 195325.

[7] BIRNIR, B. Chaotic perturbations of kdv equations: I. rational solutions. Physica D: Nonlinear
Phenomena 18, 1 (1986), 464–466.

[8] BIRNIR, B. Basic Attractors and Control. To be published by Springer, New York, 2018.

[9] BIRNIR, B., AND GRAUER, R. An explicit description of the global attractor of the damped and
driven sine-gordon equation. Communications in mathematical physics 162, 3 (1994), 539–590.

[10] BONILLA, L., ESCOBEDO, R., AND DELL’ACQUA, G. Voltage switching and domain relocation
in semiconductor superlattices. Physical Review B 73, 11 (2006), 115341.
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Selected problems of nonholonomic mechanics

Alexey Borisov, Yury Karavaev

Abstract: The paper is concerned with some problems of nonholonomic me-
chanics. The results of their investigation can be useful in practice in devel-
oping various designs of mobile robotic devices. Special attention is given to
the Chaplygin sleigh with time-varying mass distribution, which arises due to
various movable mechanisms (rotors, flywheels etc.) and makes it possible to
control the sleigh. From the physical point of view, the possibility of (constant)
acceleration of the sleigh plays a key role. It is shown that all trajectories of
the reduced system can be made unbounded by an appropriate choice of mass
distribution. This, in turn, will allow one to observe the acceleration of the
sleigh. Consideration is also given to the problem of controlling a combined
spherical robot. This spherical robot is set in motion by means of an internal
wheeled platform with a rotor placed inside. The results of theoretical and
experimental research are presented for the above-mentioned prototype of the
spherical robot.

1. Introduction

We consider two problems of nonholonomic mechanics, namely, the problem of the Chaplygin

sleigh and the problem of controlling a combined spherical robot. The Chaplygin sleigh [10]

is a rigid body moving on a horizontal plane in the presence of a nonholonomic constraint:

the translational velocity at some point is orthogonal to the body-fixed direction. This

constraint can be realized by means of a weightless knife edge (skate) fastened in the body

or by means of a wheel pair [4]. A detailed qualitative analysis of the motion of the sleigh

using explicit quadratures was carried out by C.Carathéodory [9]. It turned out that if the

center of mass of the body is not displaced along the knife edge, the sleigh moves in a circle,

otherwise the sleigh asymptotically tends to a straight-line motion. Various generalizations

of the Chaplygin sleigh problem are considered in many papers [1, 8, 7, 6, 5]. It turned out

that in this case the sleigh exhibits complicated intricate behavior, which, according to the

author, resembles random walks of bacterial cells with some diffusion component. The sleigh

exhibits similar behavior under the action of the torque, which depends on their orientation,

and in the presence of viscous friction [5]. In this paper, we consider the Chaplygin sleigh

with time-varying mass distribution, which arises due to various movable mechanisms (rotors,

flywheels etc.). They enable the control of the sleigh.
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Recently, there has been a large body of research devoted to different designs of spheri-

cal robots [11, 18, 13]. The most popular methods of executing the motion of the spherical

robots are: to change the position of the center of mass [13, 12] and to change the internal

gyrostatic momentum [3, 17]. Despite a large number of models of spherical robots and

their technical implementation, the question remains open what type of propulsion device

is the most optimal in terms of simplicity of control and efficiency of maneuver execution.

Experimental investigations of the dynamics of the spherical robots with various internal

propulsion devices (pendulum, rotors, omniwheeled platform) have shown that a mecha-

nism combining the above-mentioned effects can become the most promising mechanism for

controlled motion.

2. Investigation of the dynamics of motion of the Chaplygin sleigh

2.1. Equations of motion

We explore the dynamics of a multicomponent mechanical system with a nonholonomic

constraint. The system consists of a platform that slides on a horizontal plane like the

Chaplygin sleigh [10], that is, the point R given on the body (see Fig. 1) cannot slide in

some direction n fixed relative to the platform:

(vR, n) = 0. (1)

According to a given law, n material points P (i), i = 1, . . . n, move on this platform.

Figure 1. The Chaplygin sleigh

To describe the motion of the system, we define two coordinate systems: a fixed (inertial)

coordinate system Oxy and a moving coordinate system Rx1y1 attached to the platform.

The position of each point relative to the platform is defined by the radius vector in the

moving coordinate system:

ρ(i)(t) =
�
ρ
(i)
1 (t), ρ

(i)
2 (t)

�
, i = 1, . . . n.
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We will specify the position of the platform by the coordinates (x, y) of point R in the

fixed coordinate system Oxy, and its orientation by the angle of rotation ϕ, see Fig. 1.

Thus, the configuration space of the system Q = {q = (x, y, ϕ)} coincides with the group of

motions of the plane SE(2).

Let v = (v1, v2) denote the projections onto the moving axes Rx1x2 of the velocity of the

point R relative to the fixed coordinate system Oxy and let ω denote the angular velocity

of the body. Then

ẋ = v1 cos ϕ− v2 sin ϕ, ẏ = v1 sin ϕ + v2 cos ϕ, ϕ̇ = ω. (2)

In this case, the constraint equation (1) has the form v2 = 0. The equations of motion of the

sleigh in the variables of momentum P and angular momentum M have the following form:

Ṗ = mω
�
c1(t)ω + ċ2(t)

�
, Ṁ = −mv1

�
c1(t)ω + ċ2(t)

�
,

ϕ̇ = ω, ẋ = v1 cos ϕ, ẏ = v1 sin ϕ,
(3)

where the following expressions can be written for the velocities v1 and ω:

v1 =
I(t)P + mc2(t)M −mI(t)ċ1(t)−mc2(t)k(t)

m
�
I(t)−mc2

2(t)
� ,

ω =
c2(t)P + M −mc2(t)ċ1(t)− k(t)

I(t)−mc2
2(t)

,

(4)

where the denominator is a positive definite function. Here, m = ms +
nP

i=1

m
(i)
p is the mass of

the entire system, I(t) is its moment of inertia, c = (c1(t), c2(t)) is the position of the center

of mass, and k(t) is the gyrostatic momentum due to the motion of points. The last four

quantities are given functions of time which are expressed in terms of the system parameters

as follows:

k =

nX
i=1

mp

�
ρ
(i)
1 ρ̇

(i)
2 − ρ

(i)
2 ρ̇

(i)
1

�
, I = Is +

nX
i=1

m(i)
p

��
ρ
(i)
1

�2
+
�
ρ
(i)
2

�2�
,

cj =
ms

m
dj +

1

m

nX
i=1

m(i)
p ρ

(i)
j , j = 1, 2.

(5)

It can be seen that if the number of particles n > 0, the equations of motion contain

four independent given functions of time: c1(t), c2(t), I(t), k(t). The resulting system

is analogous to the well-known Liouville system describing the dynamics of a rigid body

deformable according to a given law.

Equations (3) are invariant under the group of motions of the plane SE(2). As a result,

a closed (reduced) system of equations decouples which governs the evolution of P and M .

It follows from (3) that the motion of the sleigh in the fixed coordinate system Oxy is defined

by quadratures from the known solutions of the reduced system.
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2.2. The motion of a point in the transverse direction

Consider the case of one point (n = 1) which executes periodic motions in the direction

transverse to the plane of the knife edge

ρ(1) =
�
a, b sin(Ωt)

�
.

We also assume that the center of mass of the sleigh lies on the axis Rx1, that is, d2 = 0

(see Fig. 2). In this case, from (5) we obtain

Figure 2. The Chaplygin sleigh

I(t) = Is + m(1)
p (a2 + b2 sin2(Ωt)), k(t) = m(1)

p abΩcos(Ωt),

c1 =
ms

m
d1 +

m
(1)
p

m
a, c2(t) =

m
(1)
p

m
b sin(Ωt), m = ms + m(1)

p .

(6)

Let us define the dimensionless variables Z1, Z2, τ , X and Y

Z1 =
P

mbΩ
, Z2 =

L

mb2Ω
, τ = Ωt, X =

x

b
, Y =

y

b
,

where the angular momentum L is defined by the relation

L = c2(t)P + M. (7)

The reduced system of equations in these variables has the form

dZ1

dτ
=

�
Z2 − αµ cos τ

��
δZ2 − µ cos τ(αδ − J − µ(1− µ) sin2 τ)

�

(J + µ(1− µ) sin2 τ)2
,

dZ2

dτ
= −δ(Z2 − αµ cos τ)Z1

J + µ(1− µ) sin2 τ

(8)

where the following dimensionless parameters have been introduced:

α =
a

b
, δ =

c1

b
, µ =

m
(1)
p

m
, J =

Is + m
(1)
p a2

mb2
.
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We note that in this case 0 ≤ µ < 1 and J > 0, and hence the denominator in the system (8)

is always positive. Moreover, it follows from the condition Is −msd
2
1 > 0 that the following

inequality must be satisfied:

(1− µ)(J − δ2)− µ(α− δ)2 > 0. (9)

The equations of motion for the configuration variables are represented as

dϕ

dτ
= eω,

dX

dτ
= ev1 cos ϕ,

dY

dτ
= ev1 sin ϕ,

eω =
Z2 − αµ cos τ

J + µ(1− µ) sin2 τ
, ev1 =

JZ1 + µ sin τ
�
(1− µ)Z1 sin τ + Z2 − αµ cos τ

�

J + µ(1− µ) sin2 τ
.

(10)

Thus, the problem reduces to investigating the dynamics of the system (8), (10). Next,

we consider in detail the possibility of constant acceleration of the sleigh depending on

the mass distribution of the sleigh and the position of the oscillating point. By constant

acceleration we mean an unlimited increase in the translational velocity of the sleigh which

arises for unbounded trajectories of the reduced system. Consequently, this problem reduces

to investigating the conditions under which the trajectories of the system (8) are bounded.

2.2.1. The case α 6= 0 and δ = 0

If α 6= 0 and δ = 0, then the value Z2 = C2 remains unchanged, and for Z1 we obtain the

following quadrature:

Z1(τ) =

τZ

0

µ(C2 − αµ cos s) cos s

J + µ(1− µ) sin2 s
ds + C1.

In this case, for Z1(τ) (for the period of motion of the point) the following equation holds:

Z1(τ + 2π) = Z1(τ) +
2παµ

1− µ

 
1−

r
1 +

µ(1− µ)

J

!
.

Consequently, when αµ 6= 0, the function Z1(τ) moves away with time (indefinitely) from its

initial value C1, and hence the translational velocity of the sleigh increases and acceleration

is observed.

The equation for the angle specifying the orientation of the sleigh is represented as

ϕ′ =
C2 − αµ cos τ

J + µ(1− µ) sin2 τ
. (11)

In the case C2 = 0 the trajectories of equation (11) are periodic and have the form

ϕ(τ) = − α
√

µp
J(1− µ)

arctan

 p
µ(1− µ)√

J
sin τ

!
+ ϕ(0).

Possible motions of the point of contact are shown in Fig.3.
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Figure 3. Various trajectories of the point of contact of the sleigh for fixed parameters

α = 1
3
, δ = 0, J = 1

16
, µ = 1

4
and for the initial conditions Z1 = 0, τ = 0 ϕ = 0, X = 0, Y = 0.

2.2.2. The general case

Consider qualitatively the issue of acceleration of the sleigh depending on the position of the

oscillating point. For this purpose, we fix

δ = 0.13, µ = 0.43, J = 0.14,

and from inequality (9) we find α ∈ (−0.27, 0.53).

Let us represent the kinetic energy of the sleigh in the form

eT =
1

mb2Ω2
Ts|v2=0 =

1− µ

2
Z2

1 +
µ(1− µ) sin τ(Z2 − αµ cos τ)Z1

J + µ(1− µ) sin2 τ
+

+
(J − α2µ + µ2(1− µ) sin2 τ)(Z2 − αµ cos τ)2

2(J + µ(1− µ) sin2 τ)2
.

The dependence ∆ eT (α) is shown in Fig.4. It follows that when α < 0, the kinetic energy

always increases. Moreover, numerical experiments show that in this case the trajectories

are unbounded and therefore a constant acceleration is observed.

Detailed numerical investigations show that the following hypothesis holds:

In the case where αδ < 0, all trajectories of the system are unbounded (8), that is,

acceleration of the sleigh occurs under any initial conditions.

In order to investigate the case αδ > 0, we consider on the plane (Z1, Z2) a point map

for the period τ = 2π of the system (8). For the value α = 0.45 this map is shown in Fig. 5.

The trajectory of the point of contact of the sleigh for the trajectory on a strange

attractor is shown in Fig. 6.

The results of simulation show that the trajectory of the sleigh, with periodic oscillations

of the material point in the transverse direction depending on parameters, can be both

unbounded, accompanied by acceleration, and compact.
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Figure 4. Dependence of the change in the kinetic energy ∆eT = eT |τ=2πn − eT |τ=0 on α for

a trajectory with the initial condition Z1 = 1, Z2 = 0, τ = 0.

Figure 5. A Poincaré map of the system (8) for a period with α = 0.45, δ = 0.13, µ = 0.43,

J = 0.14.

3. Investigation of the dynamics of the motion of a spherical robot of combined

type

3.1. Equations of motion

In this section, we consider the dynamics of a spherical robot of combined type that uses

for its motion both the displacement of the center of mass and changes in the gyrostatic

momentum. The results of theoretical research into the dynamics of such a model of the

spherical robot rolling without slipping on a horizontal plane are presented in [15]. In this

paper, we present the results of experimental investigation of the motion of the spherical

robot of combined type.

Consider a spherical robot of combined type rolling without slipping on a horizontal
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Figure 6. Trajectory of the point of contact for fixed α = 0.45, δ = 0.13, µ = 0.43, J = 0.14

and the initial conditions τ = 0, Z1 = 0.5, Z2 = 0.5, ϕ = 0, X = 0, Y = 0.

a) b)

Figure 7. a - a schematic model of a spherical robot of combined type, b - a picture of a

full-scale specimen.

absolutely rough plane. The spherical robot is a spherical shell of radius Rs at the center

of which an axisymmetric pendulum (Lagrange pendulum) is fastened. We will simulate

the Lagrange pendulum by means of a weightless rod at the end of which a heavy rotor

is installed. The rotor is an axisymmetric body (disk) rotating about a symmetry axis

coinciding with the rod (see Fig. 7). The technical design of the spherical robot is such that

the pendulum can execute oscillations only in a given plane attached to the shell, which we

will call the plane of rotation of the pendulum.

To describe the dynamics of the spherical robot, we define two coordinate systems. The

first,Oαβγ, is a fixed (inertial) coordinate system with unit vectors α, β, γ. The second,

Ce1e2e3, is a moving coordinate system with unit vectors e1, e2, e3 and with axes attached

to the pendulum so that the unit vector e1 is perpendicular to the plane of rotation of the

pendulum and the unit vector e3 is directed along its symmetry axis. The origin of the

moving coordinate system coincides with the geometric center of the shell C (see Fig. 7).
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Further, we will refer all vectors to the axes of the moving coordinate system Ce1e2e3.

The position of the system will be specified by the coordinates of the center of the sphere

r = (x, y, 0), by the angles of rotation θ and ϕ of the pendulum about the axes e1 and e3,

respectively, and by the matrix of transition from the fixed coordinate system to the moving

coordinate system Q, whose columns are the coordinates of the fixed vectors α, β, γ referred

to the axes of the moving coordinate system Ce1e2e3.

Thus, the configuration space of the system is the product N = {(r, θ, ϕ,Q)} = R2 ×
T2 × SO(3).

The absence of slipping at the point of contact of the shell with the plane is described

by the nonholonomic constraint

F = v −RsΩ× γ = 0, (12)

where v and Ω are the velocity of the center and the angular velocity of rotation of the shell,

respectively. This constraint does not exclude spinning of the spherical shell relative to the

vertical, in contrast to the so-called rubber body model [16, 2].

The equations of the dynamics of the system can be written in the form of the d’Alembert –

Lagrange equations of genus 2 in quasi-velocities with undetermined multipliers and forcing

actions (for a detailed derivation, see [15]). As shown in [15], the equations of motion for

the variables ϕ̇, θ̇, Ω, γ decouple from the complete system and take the following form in

the moving axes Ce1e2e3:

(e3, Ib3(Ω̇ + e3ϕ̈)) = Kϕ,

(e1, Ib(Ω̇ + e1θ̈)−mbRbRse3 × (Ω̇× γ + Ω× γ̇))− (e1, mbRbRs(Ω× γ)× ((Ω + θ̇ e1)× e3))+

+(e1, Ω× (mbRbRs (Ω× γ)× e3 + (Is + Ib)Ω + e1Ib1θ̇ + e3Ib3ϕ̇)) + mbRbg(e1, γ × e3) = Kθ,

mbRbRs(Ω̇× γ + Ω× γ̇)× e3 + (Is + Ib)Ω̇ + e1Ib1θ̈ + e3Ib3ϕ̈−mbRbRs(Ω× γ)× ((Ω + θ̇ e1)× e3)+

+(Ω + e1θ̇)× (mbRbRs (Ω× γ)× e3 + (Is + Ib)Ω + e1Ib1θ̇ + e3Ib3ϕ̇) + mbRbg γ × e3 =

= Rs((ms + mb)Rs(Ω̇× γ + Ω× γ̇)−mbRb(Ω̇ + θ̈ e1)× e3)× γ +

+Rs((Ω + e1θ̇)× ((ms + mb)RsΩ× γ −mbRb(Ω + θ̇ e1)× e3))× γ,

γ̇ = γ × (Ω + e1θ̇).

(13)

where Ib = diag(Ib1, Ib1, Ib3) = diag(Ibc1 + mbR
2
b , Ibc1 + mbR

2
b , Ibc3) is the tensor of

inertia of the pendulum relative to the center of the sphere, ms, Is are, respectively, the

mass and the moment of inertia of the spherical shell, mb, Ibc = diag(Ibc1, Ibc1, Ibc3) are the

mass and the central tensor of inertia of the pendulum, and the velocity of the center of

mass of the pendulum vb and its angular velocity ω are given by the relations

vb = v −Rbω × e3, ω = Ω + e1θ̇ + e3ϕ̇, (14)
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where Rb is the distance from the center of the sphere to the center of mass of the pendulum.

Kϕ, Kθ are the moments of external forces (control actions) that set the pendulum in motion

relative to the ball and the rotor relative to the rod of the pendulum.

In [14], equations have been found to find controls implementing the motion along a

given trajectory. However, these equations are not always solvable on a given time interval;

this imposes some restrictions on possible trajectories and the maneuverability of the model

under consideration. One of the methods for eliminating the disadvantage of constructing

the control on the basis of a dynamical model is the development of a model of control using

elementary basic maneuvers (gaits), as described in [15, 14]. Steady-state solutions of the

free system and motions that transfer the system from one steady-state solution to another

are considered as elementary maneuvers. In [15] it is shown that the dynamical system

admits two types of steady-state solutions: motion in a straight line and motion in a circle.

By combining these solutions one can implement the motion from any initial point to any

end point. However, in practice, a moving spherical robot is acted upon by friction forces,

which are not taken into account in the nonholonomic model. Therefore, in what follows we

present experimental results that provide a better understanding of the process of motion of

the spherical robot of combined type and the influence of rolling friction on this motion.

3.2. Experimental investigations of the trajectory of a spherical robot

The model of a combined spherical robot shown in Fig. 7a has been implemented by using

a platform whose center of mass moves in the equatorial plane of a spherical shell. The

platform has a rotor fastened in such a way that the axis of rotation of the rotor is directed

along the radius of the spherical shell. A picture of a full-scale specimen is shown in Fig. 7b.

The spherical shell is made of a transparent polyethylene terephthalate material and

has the following characteristics (here and in what follows, all numerical values have been

brought in accordance with the SI system): Rs = 0.150 m, ms = 1.625 kg, Is = diag(25.27 ·
10−3, 20.73 · 10−3, 25.27 · 10−3) kg·m2. To ensure that there is no slipping, the platform’s

wheels, made of rubber, are synchronously actuated by two DC motors with a reduction gear.

The rotor is a homogeneous aluminum disk of radius Rr = 0.087 m, mass mr = 2.46 kg and

axial moment of inertia Ir = 5.64 · 10−3 kg·m2. The characteristics of the internal wheeled

platform (with a rotor installed on it) are: mb = 3.25 kg, Ib = diag(31.88 · 10−3, 30.59 ·
10−3, 8.76 · 10−3) kg·m2.

The controls for the spherical robot of combined type were given in the form of depen-

dences of the angles θ̇(t), ϕ̇(t).

Consider the most general case of controlled motion, which clearly demonstrates the

contribution of each control to the character of the trajectory. An illustrative example in
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this case is the impulse control, when at a constant value of control θ̇(t) the control action

ϕ̇(t) is switched on for some time and then it is switched off. In practice, this implies that, as

the spherical robot is moving in a straight line with constant velocity, the rotor accelerates

and after some time interval ceases to rotate, while the platform continues to move along

the rim of the sphere. The dependence of controls on time will be given as follows:

θ̇(t) =

8
>>>><
>>>>:

0, t < t1 = 0,

1.57 · sin(πt
3

)2, t1 ≤ t ≤ t∗1 = 1.5,

1.57, t > t∗1,

(15)

ϕ̇(t) =

8
>>>>>>>>>><
>>>>>>>>>>:

0, t < t2 = 1.9,

11.304 · sin(π
3
t− 19

30
π)2, t2 ≤ t ≤ t∗2 = 3.4,

11.304, t∗2 < t ≤ t3 = 6.9,

11.304 · sin(π
3
t− 23

10
π)2, t3 ≤ t ≤ t∗3 = 8.4,

0, t > t∗3.

(16)

Graphs of the time dependence of control actions are presented in Fig. 8a. The trajectory

along which the spherical robot moves with the control (15), (16) within the framework of

the theoretical model considered is shown as an intermittent line in Fig. 8b. This trajectory

can be divided into three segments: accelerated motion in a straight line t ∈ [t1, t∗1]; motion

along a trajectory close to the circle t ∈ [t∗2, t3]; motion along a trajectory close to a straight

line t > t∗3. The angle between the straight lines along which the spherical robot moves on

the first and the third segment depends on the duration of the impulse ∆tϕ = t3 − t∗2.

The trajectory of the spherical robot with the control actions (15), (16), which has been

retrieved from experimental data, is shown as a solid line in Fig. 8b. The markers in the

figure indicate the positions of the spherical robot at instants corresponding to changes in

the control actions. The numbers of the markers in Fig. 8b allow one to determine the

position of the spherical robot at the instant of the corresponding change in the control

action. As the rotor ceases to rotate ( t ∈ [t3, t∗3]), the spherical robot turns in the reverse

direction (relative to the original turn), and after some time the trajectory of the spherical

robot becomes rectilinear.

Depending on the value of ∆tϕ, there are three types of possible motions of the spherical

robot with impulse control:

1. ”Long” impulse — when the rotor rotates for a long time with constant velocity, the

motion of the spherical robot becomes rectilinear. After that the stop of the rotor leads to a

turn in the reverse direction. As a result, the final motion occurs in a straight line parallel
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Figure 8. (a) - Control actions, (b) - the corresponding trajectory of the spherical robot.

to the initial motion. The motion of the spherical robot with controls in the form (15), (16)

is close to this type. The trajectory of this motion is shown in Fig. 8b.

2. ”Medium” impulse — after acceleration of the rotor, the motion of the spherical robot

does not have time enough to become rectilinear. However, during the impulse ∆tϕ the force

of rolling friction affects considerably the trajectory of motion. As a result, after the maneu-

ver the spherical robot turns through some angle. However, this angle depends strongly on

the coefficient of friction, and the trajectory of the spherical robot differs considerably from

the theoretical one.

3. ”Short” impulse — during this impulse, the forces of rolling friction do not have

time enough to considerably influence the trajectory of the spherical robot. As a result, the

real trajectory is as close as possible to the theoretical trajectory. The angle of rotation can

be adjusted by both the amplitude of the impulse (the maximal value of ϕ̇) and its length

(within certain limits).

The motion of the spherical robot can be executed by using the above-mentioned ma-

neuvers, namely, by selecting appropriate characteristics of control actions and their combi-

nations, but to compensate for the oscillations that accompany the motion, it is necessary

to ensure a coordinated change in the controls taking into account the feedback about the

current state of the dynamical system under consideration. The development of a motion

model taking into account arising friction forces (especially spinning friction) is of the great-

est importance to spherical robots of this type, since these forces influence considerably the

trajectory and the pattern of motion.
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Time-varying spectral submanifolds: Analytic calculation of
backbone curves and forced responses of nonlinear mechanical

systems

Thomas Breunung, George Haller

Abstract: Spectral submanifolds (SSMs) have recently been shown to provide
exact and unique reduced-order models for nonlinear unforced mechanical vi-
brations. Here we extend these results to periodically or quasiperiodically
forced mechanical systems, obtaining analytic expressions for forced responses
and backbone curves on modal (i.e. two-dimensional) time dependent SSMs.
A judicious choice of the parameterization of these SSMs allows us to simplify
the reduced dynamics considerably. We demonstrate our analytical formulae
on numerical examples and compare them to results obtained from available
normal form methods.

1. Introduction

In drawing conclusions about a nonlinear mechanical system, an engineering analyst usually

faces the challenge of high dimensionality and complex dynamic equations. To reduce si-

mulation time and deduce general statements, it is desirable to reduce the dimension of the

system and simplify the resulting reduced equations of motion.

For linear systems, decomposition into normal modes is a powerful tool to derive reduced-

order models. While the lack of the superposition principle makes such a decomposition

impossible for nonlinear systems, various definitions of nonlinear normal modes are also

available in the literature (cf. [5, 16, 17]). Specifically, in [16] a nonlinear normal mode is

defined as a synchronous periodic orbit of a conservative system. Later Shaw and Pierre [17]

extended this definition to dissipative systems, by viewing a nonlinear normal mode as an

invariant manifold tangent to a modal subspace of an equilibrium point.

While there are generally infinitely many Shaw-Pierre type surfaces for each modal

subspace [12], Haller and Ponsioen [5] have shown that, under appropriate nonresonance

conditions, there is a unique smoothest one, which they called a spectral submanifold (SSM).

Due to their invariance, the SSMs are natural candidates for model order reduction, serving

as nonlinear continuations of the invariant modal subspaces spanned by the eigenvectors of

the linearized system. SSM-based moder-order reduction for unforced nonlinear mechanical

systems appear in [8, 15,19].
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While most of the above work focuses on unforced (autonomous) mechanical systems,

here we explore further the utility of SSMs for forced dissipative nonlinear mechanical sys-

tems. For this class of systems, the existence, uniqueness and regularity of SSMs has been

clarified in [5], relying on the more abstract invariant manifold results of [6]. In this context,

a nonlinear normal mode (NNM) is defined as the continuation of the trivial hyperbolic fixed

point of the time-independent system under the addition of small time-dependent forcing

with a finite number of frequencies. Depending on the frequency content of the time-varying

terms, this continuation is a periodic or quasi-periodic orbit [5]. The SSM will be a time-

dependent surface with the same frequency basis. This SSM is then tangent to the NNM

along directions associated with a spectral subspace of the linearization.

The first attempts to construct such a non-autonomous SSM can be found in [3, 10, 18]

who formally reduce an externally forced, dissipative mechanical system to a two-dimensional

time-varying invariant manifold. In [10] the reduction is carried out numerically for fixed

parameter values, aided by a Galerkin projection. This approach is extended to systems

with time-periodic coefficients in their linear part in [3, 18]. There the assumed invariant

manifold is expanded in a multivariate Taylor-Fourier series and the unknown coefficients are

obtained from the invariance of the manifold. The studies are limited to specific examples and

symbolic equations to derive general conclusions about the forced response are not obtained.

Furthermore, the uniqueness, existence and smoothness of their assumed invariant manifold

remains unclear from their procedure.

A generally applicable procedure for the simplification of the (formally) reduced dyna-

mics is the method of normal forms (cf. e.g. [4]). The method applies a series of smooth

transformations to obtain a Taylor series of the original dynamical equations, which con-

tain only the terms essential for the dynamics. Jezequel and Lamarque [9] and Neild and

Wagg [13] apply the method of normal forms to nonlinear mechanical systems. Since all

state variables are transformed, the resulting dynamics have the same dimensionality as the

original system and no model-order reduction is achieved. Furthermore, both of these normal

form approaches start from conservative systems and treat damping as a small bifurcation

parameter. Therefore, the unfolding from the conservative limit has to be discussed for every

damping type separately.

Touzé and Amabili [20] seek to unite normal form theory with model-order reduction

for the first time. After a normal form transformation, they restrict their calculations to

heuristically chosen submanifolds. As pointed out by the authors, a strict time-varying

normal form is not computed. Instead, the forcing is inserted directly into the normal form.

This represents phenomenological forcing aligned with a curvilinear coordinates, rather than

specific physical forcing applied to the system.
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The model reduction methods surveyed so far are often used as tools to approximate

backbone curves, which connect points of maximal response amplitude as a function of an

external forcing frequency. As an alternative, [7, 11, 14] define the backbone curve as the

frequency-amplitude relationship of a periodic solution family of the conservative unforced

limit of the system. They observe that along each nonlinear normal mode (i.e. periodic

orbit) of the conservative limit, weak viscos damping can be canceled by appropriately chosen

external periodic forcing. For a general damped and forced nonlinear system however, the

relevance of periodic orbits of the conservative limit for the forced response is not well

understood. Since the backbone curve is obtained for the unforced conservative limit in

these examples, another method is needed to actually calculate the maximum amplitude for

a given forcing.

Parallel to theoretical considerations, backbone curves have been approximated in ex-

periments through the force appropriation method. In this method, the nonlinear system is

forced with a harmonic forcing such that the response has a 90-degree phase lag in a modal

degree of freedom. While this force appropriation procedure is plausible for linear viscous

damping (or nonlinear damping that is an odd function of the velocities), the approach has

remained unjustified for general, nonlinear damping (cf. Peeters et al. [14]).

An experimental alternative to the force appropriation is the resonance decay method, in

which the system is forced, such that its response is close to an envisioned invariant surface

of the conservative limit. Then the forcing is turned off and the instantaneous amplitude-

frequency relationship is identified by signal processing. Peeters et al. [14], however, relate

this curve, which is essentially a feature of the damped system, to the orbits of the conser-

vative system only phenomenologically.

We also note that force appropriation and the resonance decay aim to reconstruct non-

linear normal modes of the conservative limit. The set formed by these orbits is expected to

deviate from the forced response of the actual dissipative system for lager amplitudes and lar-

ger damping. As a recent development, Szalai et al. [19] compute the backbone curves from

the frequency-amplitude relationship of decaying vibrations on SSMs reconstructed from

measured data. A connection with the backbone curve obtained from the forced response,

however, is not immediate.

In summary, available approaches to compute forced response via model reduction for

nonlinear mechanical systems suffer either from heuristic steps or omissions in the reduction

procedure, or from a unclear relationship between backbone-curve definitions different from

the one relevant for forced-damped vibrations in a practical setting. In the present work,

we show how these shortcomings can be eliminated simultaneously. First, we employ a

mathematically justified reduction process to time-dependent SSMs in the presence of general
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damping and forcing. Second, with universal, system-independent formulas for the dynamics

on the SSM at hand, we derive explicit, leading-order approximations to the actually observed

backbone curve of the time-dependent, dissipative response.

2. Set-up

We consider a general, quasi-periodically forced, nonlinear, N -degree-of-freedom mechanical

system of the form

Mq̈ + (C + G)q̇ + (K + N)q + fnl(q, q̇) = εfext(Ω1t, ...,Ωkt), q ∈ RN ,

fnl(q, q̇) = O(|q|2, |q||q̇|, |q̇|2), 0 ≤ ε� 1, k ≥ 1,
(1)

where the mass matrix M is positive definite and the nonlinear forcing vector fnl(q, q̇) is

at least quadratic in its arguments. Observe, that q≡ 0 is an equilibrium of the unforced

system (ε=0). The external forcing εfext does not depend on the generalized coordinates or

velocities and has finitely many rationally incommensurate frequencies (Ω1, ...,Ωk).

We denote the eigenvalues of the linearized system (1) by λ1, ..., λ2N , with multipli-

cities and conjugates included. We assume an underdamped configuration, i.e. complex

eigenvalues with nonzero imaginary part and negative real part ordered as follows:

λj = λj+N Im(λj) > 0, Re(λmin) ≤ Re(λj) < 0, j = 1, ..., N. (2)

By (2) the q = 0 equilibrium of the unforced limit of (1) is asymptotically stable. This

context is relevant for vibrations of lightly damped structures.

By letting x=(x1,x2)=(q, q̇) in (1), we obtain the first-order equivalent system of the

form

ẋ = Ax + Gnl(x) + εGext(Ω1t, ...,Ωkt),

A =

 0 I

−M−1(K + N) −M−1(C + G)

 , Gnl(x) =

 0

M−1fnl(x)

 .
(3)

and denote the eigenvector corresponding to the eigenvalue λj of the linear part of system (3)

with vj .

In [5] a 2q-dimensional spectral submanifold (SSM) for the general mechanical sy-

stem (1), or its equivalent first order form (3), is defined as the 2q-dimensional invariant

manifold W (E) serving as the smoothest nonlinear continuation of an eigenspace of the

form

E = span{v1, ...,vq,vN+1, ...vN+q}. (4)
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If the nonresonance conditions

q∑
j=1

mjRe(λj) 6= Re(λn), n = q + 1, ..., N, 2 ≤
q∑

j=1

mj ≤ Σ(E), mj ∈ N, (5)

hold, with the absolute spectral quotient Σ(E) defined as

Σ(E) = Int

 Re(λmin)

max
j=1,...,q

(Re(λj))

 , (6)

then a smoothest continuation W (E) of the modal subspace (4) uniquely exists for the

nonlinear system (1) in the class of CΣ(E)+1 manifolds [5]. The operator Int( ) extracts

the integer part of its argument. It follows from [1], that W (E) can be constructed via a

parameterization

x = W(z,Ω1t, ...,Ωkt), z ∈ R2q, (7)

where z is the parameterization variable. As shown in [6], the parameterization W can

be approximated as a polynomial in z, with time-dependent coefficients. The dynamics of

system (3) along W (E) is given by the reduced equation of motion

ż = R(z,Ω1t, ...,Ωkt), (8)

which can also be approximated by a Taylor series in z near the x=0 equilibrium of (3) .

Due to their robustness with respect to parameters (cf. [6]), the SSMs, as well as their

reduced dynamics, can be expanded in ε for small ε≥0.

3. Spectral submanifolds for the forced system

In order to construct frequency-amplitude response curves, we now assume canonical single

harmonic forcing (k=1) in the form of

fext = f cos(Ωt) (9)

and focus on two-dimensional SSMs (q = 1). Szalai et al. [19] construct a parameterization for

a two-dimensional SSM, continuing a modal subspace of (1) for the autonomous (unforced)

limit of system (3). They give an explicit parameterization of the autonomous SSM (W(z))

and its associated reduced dynamics (R(z)).

With the existence, uniqueness and smoothness results from [5], we give strict conditions

for the validity of the reduction of the system (1) to a two-dimensional non-autonomous SSM.
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We continue a given autonomous parameterization of the SSM and the reduced dynamics

under the addition of small forcing terms (cf. (1)). In case of near resonance forcing

Ω ≈ Im(λl), (10)

we eliminate arising small denominators by keeping terms in the reduced dynamics R(z,Ωt)

that could otherwise be eliminated. Focusing on vibrations around the q=0 equilibrium of

system (1), we can give an explicit parameterization of the non-autonomous SSM and the

reduced dynamics. Through judicious choice of the parameterization we simplify the reduced

dynamics significantly, such that we can solve for 2π/Ω-periodic responses analytically.

Having derived condensed formulas for the forced response, we solve for the forcing

frequency, at which the response amplitude is maximal. Such amplitude-frequency pairs

form a one dimensional curve (i.e. the backbone curve) as the forcing amplitude is varied

as a parameter. Furthermore we can analytically compute stability regions of the forced

response.

4. Numerical examples

We show the application of our SSM-based analytic results on forced responses and backbone

curves on two numerical examples. The first is a two-degree-of-freedom oscillator introduced

in [17], modified and further studied in [5,19]. The nonlinearity in this oscillator arises from

a single cubic spring. Our second example, taken from [20], also has two degrees of freedom,

but its nonlinearities are more complex, consisting of both quadratic and cubic terms.

On these examples, we compare our results with the second-order normal form approach

of Neild and Wagg [13] and with a normal-form type method of Touzé and Amabili [20]. To

compare the accuracy of these two methods to ours, we generate a benchmark solution via

numerical continuation, where we use the Matcont toolbox [2] of Matlab to calculate the

periodic responses in the two examples directly.

5. Conclusions

For backbone curve and forced response calculation we construct an approximation for the

two-dimensional, non-autonomous spectral submanifolds (SSMs) that act as nonlinear conti-

nuations of modal subspaces of the linearized system. Under low-order nonresonance condi-

tions on the eigenvalues of the linearization the existence, uniqueness and smoothness of the

SSMs are guaranteed [5]. Through a judicious choice of the parameterization, the reduced

dynamics are simplified significantly. Due to this simplification, we are able solve for the

forced response analytically. We apply our results on two numerical examples and compare

them with the results of the Neild-Wagg method [13], the Touzé-Amabili method [20] and
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numerical continuation.

Ponsioen et al. [15] describe an automated computational algorithm to approximate two-

dimensional SSMs of nonlinear mechanical systems up to arbitrary order. It is our ongoing

effort to couple these algorithm with the results of this work.

We have limited our discussion to two-dimensional SSMs. For multi-frequency forcing

and internally resonant structures a reduction to a higher-dimensional SSM is desirable.

Since the theory developed in [1,6] applies to higher-dimensional submanifolds, our calcula-

tions can be extended to the multi-frequency setting.
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[20] Touzé, C., and Amabili, M. Nonlinear normal modes for damped geometrically nonli-

near systems: application to reduced-order modelling of harmonically forced structures.

Journal of sound and vibration 298, 4 (2006), 958–981.

Thomas Breunung, M.Sc.: Institute for Mechanical Systems, ETH Zürich, Leonhardstrasse
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21 LEE M 210, 8092 Zürich, Switzerland (georgehaller@ethz.ch).

108



 

 

Parametric optimization in enumeration of alternative structures 
of mechanisms 

 
 Stefan Chwastek  

Abstract: The Machine and Mechanism Theory [1, 6] provides a method of 
enumerating kinematic chains which involves identification of all possible alternatives 
of kinematic structures with respect to the required number of degrees of freedom and 
field of work. This article outlines a methodology of selecting optimal structure from 
a set of possible solutions. By introducing a certain quality criterion, such as the 
minimum force or minimum energy, most often in the form of quadratic functionals,  
a set of parameters optimized for the full range of motion is determined for each 
structure. Accordingly, each structure is assigned a value of the optimum quality 
index. The method was illustrated for a one-link crane with bilateral constraints                   
(eg. lever mechanisms), and comparison was made with mechanisms in rope 
installations, optimized in previous works [3, 4]. For each of the optimized crane 
mechanisms, a separate optimization task was formulated by defining a specific 
objective function: 1) counterweight  mechanism  →  minimum  boom  lifting force, 
2) boom lifting mechanism → minimum boom pull force. Optimization tasks were 
formulated assuming the ideal stiffness of the structure in quasi-static conditions. 
Effectiveness was verified under dynamic impact conditions, taking into account rope 
flexibility.   

1. Cranes with a pivoting jib as complex dynamic systems 

During certain crane operations: hoisting/lowering the payload connected with a slewing jib, Euler 

and Coriolis forces are generated whose impacts should be minimized already at the stage of selection 

of the system parameters and mechanism structure. For each investigated crane mechanisms, the 

specific optimization task is formulated by defining the objective function,  typically in the form of 

quadratic functionals. Thus, for the assumed lifting capacity and distance jaunt we get the structure of 

the crane mechanism that guarantees the minimal energy consumption. This study investigates the 

energy efficiency of the jib lift mechanism structures: that with unilateral constraints (rope 

mechanisms) and with bilateral constraints (eg. lever mechanisms), so that they can be optimized 

together with the jib-balancing  mechanism.  Thus obtained optimal sets of parameters for the 

mentioned mechanisms were optimized for the full range of the slewing motion. A crane with a 

pivoting boom is considered whose structure is shown in Figure 1. Major parameters include the 

length and weight of the boom lOW = 30 m and GW = 45 kN and the weight of the load Q = 50 kN. 
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mechanism requires the alteration of the last of equation of motion. The structure and optimal 

parameters of the slewing mechanism were adopted on the basis of the work [3, 4]. Optimization of 

slewing mechanism discussed in [3, 4] in fact could be applied to the rope mechanism in a winch. The 

main objective was to ensure such roping configuration so as to minimize the horizontal hook 

trajectory error for the full variability range  of the change in the jib's angle of horizontal inclination 

when the winch is blocked [7, 8]. A similar problem was investigated in more recent works such as 

[2, 5, 9] with respect to the luffing crane and to the two rocker port crane. The considerations focused 

on the search for the optimal position of blocks in a compensation mechanism such that the boom's 

unbalance moment should be minimized. In the work [5] a minimum deviation of the vertical load is 

sought for a finite number of boom positions, basing on the linearized form of the objective function.   

2. Exploring the alternative structures of  counterweight mechanisms  

For the purpose of this study, two structures of counterbalance mechanisms are considered whose 

kinematic diagrams are shown in Table 1, together with the governing equations. Each structure was 

assigned a value of the optimum quality index - Lm. (index m – represents the number of the 

counterweight mechanism according to Table 1). The optimum quality index represents the value of 

the slewing work of the unloaded  boom which will be performed by the  mechanism with optimum 

parameters. Obviously, this will be the lowest value of work for a given structure, assuming the 

length and weight of the boom remain unchanged. The optimum index can be calculated from the 

following dependence:  

 





max

min

dMLm  (2) 

Where M(φ) is the residual moment of the boom unbalance (for Q = 0): 

        .sincos  OFPOSW LSLGM                                        (3) 

The moment M(φ) = M(φ, p1, p2, .., pk) depends on the angular position of the boom and the pi 

parameters (where i = 1, 2, ..., k) of the counterbalance mechanism. The set of optimal parameters is 

determined by the condition whereby the square function ought to be minimized: 

     .,...,,,,...,,
max

min






 dpppMpppJ kk
2

2121   (4) 

In the optimization procedure, pi – parameters become optimization variables belonging to a limited 

set of allowable solutions – Ω, where ⊂ Rk+r. Thus the limitations imposed on the parameters pi, 

need to be taken into account, as explained in more detail in [3]. 
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Dimensions (GW, LOS)  present in the  dependence (3), as unrelated to the counterbalance mechanism 

– are considered as constant parameters in the optimization procedure. Rearranging the equation (5) 

or (6) (depending on the type of mechanism under consideration) we obtain a formula representing 

the force acting in the cable in equations (1) and (3). However, in the optimization procedure, the 

influence of the counterweight acceleration in equations (5) and (6) is neglected in order to determine 

its dependence on force - SP. Comparing the quality index of the two optimized mechanisms shown in 

Table 1, the choice of the lever counterweight mechanism is obvious. It should be noted, however, 

that the optimization procedure takes into account only the mechanical properties of each solution, 

without considering the involved costs. The rope mechanism, due to unilateral constraints, excludes 

the occurrence of compressive forces in the line and therefore the optimum quality index has a 

relatively high value. When costs are considered in the optimization model, the function (6) can be 

transformed into a weight criterion.  

3. Exploring the alternative options  of the jib lifting mechanism 

Exploration of alternative design solutions of the boom lifting mechanisms was confined to two 

structures. It is worthwhile to mention that  optimization of the boom lifting mechanism is carried out 

for a particular counterbalance mechanism. Thus we get four variants of solutions and four 

optimization tasks are possible. When these are solved,  the values of the optimum quality index –

SWmn can be determined  (index n - represents the number of the boom lifting mechanism according to 

Table 2). Table 2 shows the kinematic diagrams of boom lifting mechanisms: rope and rack 

mechanics, alongside  the values of the optimum quality index - SWmn. The optimum quality index 

becomes the maximum value of the force acting in the lifting cable – SW  at the full slewing cycle of 

the boom under the nominal load – Q. The indices m, n identify the correlation: m – th  

counterbalance mechanism with the n – th boom lifting mechanism in the given crane structure 

variant. The set of optimal parameters is determined by the imposed condition that the square 

functional be minimized: 

     
   

     .,...,,,,...,,
max

min





  dpppSpppJ rkkkwrkkk

2
2121      

(7) 

The formula expressing the force SW in the optimization problem involving the boom lift mechanism 

is derived from equation (1) for zero angular acceleration, ie for ε = 0. The force 

SW(φ) = SW (φ, pk+1, pk+2, ..., pk+r) depends on the boom angle and parameters pj (where 

j = k +1, k +2, .., k +r) of the boom lifting mechanism. All parameters determined in previous sections 

remain constant throughout the entire optimization procedure.  
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The total value of the nominal lifting work - LQmn depends on the type and parameters of the 

counterbalance mechanism, and is independent on the type and parameters of the boom lifting 

mechanism. For the counterweight mechanisms with optimum parameters according to Table 1, we 

will get: LQ11 = 58.7 kJ, LQ12 = 7.353 kJ, LQ21 = 44.9 kJ, LQ22 = 6.6 kJ. The value LQ21 = 44.9 kJ is 

associated with the need to reduce the weight of the counterweight to 103 kN in the ropes mechanism 

lifting the boom combined with lever mechanism of counterweight. 

 

Figure 6.   Forces acting in the cables of the jib-lifting mechanism during the slewing motion 

Figure 6 confirms that in the task involving the synthesis of crane boom lifting mechanism, SWmn - is            

a better indicator of the optimality than the value of lifting work - LQmn.  

Advantages of minimizing the force acting in the rope in the jib lifting mechanism are: 

 Small rope diameter  →  small pulley  → low resistance during rope winding, 

 Low-power electric motors (approximately 8 kW) → reduced energy demand, 

 Small force variations in ropes → less overloading of electric motors → little overheating                                    

of engines.   
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4. Verification of optimization results under dynamic conditions 

To verify the optimization results in dynamic conditions it is required that flexibility  in the system, 

including rope flexibility, should be taken into account. Rope flexibility is inversely proportional to 

its effective length (sag – l ). Assuming the averaged value of the Young modulus E = 125 GPa for 

ropes with a non-metallic core, in accordance with [3, 4, 7, 8], the modulus of elasticity of the rope is 

obtained from the formula: 

 
l

ilk k
EA

 , (8) 

 
where: A – effective cross-section area of the rope, ik –  multiplicity of the pulley block. 

Rope cross-section areas in rope mechanisms are calculated basing on [10] and taken to be identical,      

ie. AP  =ASW  = AQ = 3.833 cm2. Damping in the ropes is assumed to be proportional to the modulus of 

elasticity through the dimensionless damping factor ζ0 (in this paper been assumed: ζ0 = 0).  

The effects of rope tension on its stiffness and damping are neglected.  

The duty cycle of each mechanism involves the following stages: start, steady-state motion and 

braking, yielding a trapezoidal characteristics of drive velocity. Basing on the catalogue data, the 

universal model of kinematic excitations is adopted differing in the steady-state velocity values for 

specific mechanisms. For the winch in the luffing mechanism steady-state velocity values is                            

VSw11 = VSw21 = 24 m/min, whilst for the rack-and-pinion lift mechanism combined with combined 

with lever mechanism of counterweight VSw22 = 9 m/min, but combined with rope mechanism of 

counterweight VSw21 = 7.2 m/min. The steady-state velocity for the load winch VQ = 27 m/min.                       

The start-up and braking times are taken to be identical ts/b = 3 s. Solving the Matlab-Simulink system 

of differential equations (1) yields the vibration acceleration patterns and rope tension variations. 

 

Figure 7.   Comparison of dynamic forces acting in ropes of the hoisting boom 
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Of particular importance is comparison of forces acting in ropes and power consumption in the crane  

with  the rope lifting mechanism and various counterbalance mechanisms under dynamic conditions. 

It appears (see Fig 7) that dynamic forces acting in ropes whilst lifting the boom in the entire motion 

range are smaller in the variant/ solution incorporating a counterweight lever mechanism, i.e. 

Sw21 (t)< Sw11(t) and Sw22(t)<Sw12(t) for T = 30s. In the context of energy consumption, of particular 

importance are bilateral constraints in the boom-lifting mechanism. It is well demonstrated in Fig 8, 

indicating that that PW22(t) < PW12(t) < PW21(t) < PW11(t) for T][0;⊂t . 

 

Figure 8.   Comparison of power demand in boom lifting mechanisms   

In this study the load characteristics of the drive motors are neglected, and for the purpose of 

comparison a more universal kinematic model governed by trapezoidal characteristics of velocity in 

normalized form – VSw  is considered. Multiplying the normalized speed values by the specific steady-

state velocity VSwmn, we obtain the drive characteristic for the relevant boom lifting mechanism. As 

shown in Fig 6, forces acting in the toothed rack in  cranes incorporating a rack-pinion lift mechanism 

are greater than forces acting in ropes. In terms of energy consumption, the optimal approach is to 

correlate the lever type counterbalance mechanism with the rack-pinion lifting mechanism, which is 

assumed to be self-locking.  

5. Concluding remarks 

Optimization tasks involving the two rope mechanisms and two lever mechanisms in a one-link jib 

crane lead us to the following  conclusions: 

Parametric optimization in the enumeration of alternative structures of mechanisms is aimed to yield 

the best combination of different mechanisms in a given structure from a previously selected set of 

structures with optimum parameters ΩO. Where ΩO ⊂ . The procedure adopted to select the set of 
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solutions acceptable in the context of functional requirements is explained in more detail in [3, 4].  

For the assumed lifting capacity and distance jaunt we get such combination of counterbalance 

mechanisms with the crane lifting mechanism that guarantees minimal dynamic force and minimal 

energy consumption. The extended method of exploring alternative structures of mechanisms for 

parametric optimization,  outlined in this paper, allows for  finding  globally optimal design solution 

and the method is a universal. Effective optimization, confirmed by dynamic analysis, allows the 

dynamic overload values to be significantly reduced at the stage of design of the steel structure, 

resulting in a lighter and cheaper structure. Application of dedicated  software (such as Mathcad) to 

solve variational problems such as finding a minimum of properly formulated quadratic functionals 

proves to be very effective and rapid solution to  parametric optimization problems. 
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Some value distribution and growth properties of solutions of
Painlevé and Riccati equations

Ewa Ciechanowicz

Abstract: By Malmquist theorem, the first order non-linear algebraic differ-
ential equations with rational coefficients and admitting transcendental mero-
morphic solutions were recognised to be the Riccati equations. Classification
of the second order ordinary differential equations without movable branch
points, on the other hand, led to recognition of so-called Painlevé equations.
Among them, six irreducible equations, usually denoted as P1 − P6, are best
known. The equations P1, P2, P4 and modified P3, P5 have only meromorphic
solutions. Moreover, for certain parameters, equations P2−P6 have particular
solutions, which can be expressed in terms of Riccati equations with rational
coefficients. Meromorphic solutions of both Riccati and Painlevé equations
have been thoroughly studied by methods of value distribution theory since
1950’s, with the topic gaining in popularity since 1990’s, yet still leaving space
for further research.

1. Introduction

In 1913 Malmquist proved that the differential equation f ′ = R(z, f), where R is a rational

function, admits a transcendental meromorphic solution if it is a Riccati equation or a linear

equation [10] (see also: [8]). By the term Riccati equation we mean here the first order

non-linear ordinary differential equation of the form

f ′ = a0 + a1f + a2f
2, (1)

where a0, a1, a2 are meromorphic functions, a2(z) 6≡ 0. If the coefficients of the equation

(1) are constant, all non-constant solutions are either transcendental meromorphic if S :=

1
2
(4a0a2 − a21) 6= 0 or rational (linear fractional transformations) if S = 0. Also in case

of polynomial coefficients the solutions are meromorphic and their basic value distribution

properties well known [21, Ch.5] (see also: [12, Ch.5]). More generally, if a0, a1, a2 are entire

then all local solutions of the equation can be extended to functions meromorphic in the

whole complex plane [12]. In we admit meromorphic coefficients, even rational ones, the

existence of meromorphic solutions is not guaranteed and depends on multiplicity of poles

of the coefficients (for examples see: [12, Ch.9]).
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By substitution u = a2f + 1
2
a1 + 1

2

a′2
a2
, the equation (1), preserving notation f for the

solution, is transformed into

f ′ = Q+ f2, (2)

where Q(z) = a0a2 − a21
4

+
a′1
2
− 3

4
(
a′2
a2

)2 − a1a
′
2

2a2
+

a′′2
2a2

[12]. This substitution sets a one-to-

one correspondence between solutions of (1) and (2). If a0, a1, a2 are rational, then also Q

is a rational function. Corresponding transcendental solutions of the equations differ by a

rational component. In our further considerations concerning Riccati equations we discuss

properties of solutions of (2), with additional assumption that Q(z) 6≡ const.
Painlevé equations are nonlinear second order ordinary differential equations of the form

f ′′ = F (z, f, f ′), where F is rational in f , algebraic in f ′ and analytic in z, which possess

the Painlevé property (solutions have no movable algebraic singularities). New functions

appearing among solutions of these equations are called Painlevé transcendents. In this

paper we concentrate on two equations out of original six irreducible ones on the list,

f ′′ = 2f3 + zf + α, (P2)

f ′′ =
f ′2

2f
+

3f3

2
+ 4zf2 + 2(z2 − α)f +

β

f
, (P4)

where α, β, are fixed complex parameters and f = f(z). We also discuss so-called equation

P34, given by

f ′′ =
(f ′)2

2f
+ 2Bf2 −Bzf − A

2f
, (P34)

where A, B are complex parameters. The equation is connected with P2 via the Hamiltonian

system. Hence all the local solutions not only of P2 and P4, but also of P34 can be extended

to meromorphic functions in C.
It is well-known that for special values of the parameters in the equation, Painlevé

equations P2−P6 possess special Riccati type solutions (the so-called classical solutions). In

this context the associated Riccati equations have rational coefficients. Thus all meromorphic

solutions of such an equation are of finite order of growth [12, Ch.9].

Painlevé second equation P2(α) admits Riccati solutions iff α = n+ 1
2
, where n ∈ Z [7].

If, for instance, α = ε/2, (ε = ±1, ) then the Riccati equation associated with P2(ε/2) is

f ′ = εf2 +
ε

2
z.

As it is a Riccati equation with constant coefficients and S 6= 0, all solutions are transcen-

dental meromorphic. It follows from the correspondence between P2 and P34 that P34(1, B)

also admits Riccati solutions [14].
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When dealing with P4(α, β) we meet with equations of the form

f ′ = a+ bzf + cf2, (3)

where a, b, c are complex constants depending on parameters α, β. By the substitution f =

1
c
(u− b

2
z) the equation can be we transformed into

u′ = P + u2 (4)

with P (z) = ac + b
2
− b2

4
z2. By Theorem 4.1 in [1], the equation (4) with the polynomial

P (z) of degree 2 admits at most one rational solution, the rest of them being transcendental

meromorphic functions. Thus also the equation (3) admits at most one rational solution.

More accurately, the equation P4(α, β) admits solutions expressible in terms of solutions

of a Riccati equation iff β = −2(2n + 1 + εα)2 or β = −2n2, where n ∈ Z, ε = ±1 [7]. For

β = 0, the accompanying equation is

f ′ = ε(f2 + 2zf)− 2(1 + εα).

Methods which were originally introduced to study Panlevé equations and thus also their

Riccati solutions, as a sort of ’backshift’, can be transferred to Riccati equations. Recently,

such an approach was shown, for example, in [19] and [20].

2. Basic notions of Nevanlinna theory

In the paper we apply the standard notations of Nevanlinna Theory [13]. By the term ’mero-

morphic function’ we always mean a function meromorphic in the whole complex plane.

Thus, for a meromorphic f and r > 0, m(r, f) denotes the mean proximity to infinity func-

tion and N(r, f) the integrated function counting poles, m(r, a, f) and N(r, a, f) respective

functions for a finite value a. Nevanlinna’s characteristic function is defined by

T (r, f) := m(r, f) +N(r, f).

By the First Main Theorem of Nevanlinna, for any value a ∈ C the equality

m(r, a, f) +N(r, a, f) = T (r, f) +O(1) (r →∞) (5)

holds. The Second Main Theorem of Nevanlinna states that for a meromorphic f and a

finite number of distinct values {ak}qk=1 ∈ C the inequality

q∑
k=1

m(r, ak, f) ≤ 2T (r, f) +O(log(rT (r, f))) (6)
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holds for r →∞, possibly outside a set E ⊂ [0,∞) of finite linear measure.

Inequality (6) in the Second Main Theorem can also be formulated in the following way:

(q − 2)T (r, f) ≤
q∑
k=1

N(r, ak, f) +O(log(rT (r, f))), (7)

where N(r, a, f) is the integrated function counting each a-point once, regardless of its mul-

tiplicity. Let us also add the notation N1(r, a, f) := N(r, a, f)−N(r, a, f).

The number a is a Picard defective value of a transcendental function f if f has only a

finite number of a−points. A Nevanlinna defective value, on the other hand is a value for

which the condition

δ(a, f) := lim inf
r→∞

m(r, a, f)

T (r, f)
= 1− lim sup

r→∞

N(r, a, f)

T (r, f)
> 0

holds. It follows from the Second Main Theorem, that
∑
a∈C

δ(a, f) ≤ 2.

Growth of a meromorphic function is measured with respect to the characteristic. Values

% := lim sup
r→∞

log T (r, f)

log r
and λ := lim inf

r→∞

log T (r, f)

log r

are called, respectively, order and lower order of a meromorphic function f .

In value distribution theory, if f is a meromorphic function, then any function s :

[0,∞)→ R with the property

s(r) = o(T (r, f)), r →∞, r /∈ E,

for a set E of finite linear measure, is usually denoted by S(r, f). If for a meromorphic

function a(z) we have

T (r, a) = S(r, f),

then we say that a is a small function of f or, sometimes a small target of f . The set of all

functions small with respect to f is denoted by S(f).

Let us end this section with the following result on defective values of Riccati equations.

Theorem 2.1 [12] Let f be a meromorphic solution of (1) with meromorphic coefficients

small with respect to f. Then δ(a, f) = 0 for a =∞ and for all a ∈ C such that

a0(z) + a1(z)a+ a2(z)a2 6≡ 0.

If a fulfills the equality above, then it is a Picard defective value of f.
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3. Special forms of the Second Main Theorem

Transcendental meromorphic solutions of Painlevé equations show extraordinary regularity.

It is visible, in particular, in the fact that the Second Main Theorem in their cases reduces

to the form of an asymptotic equality [9].

Theorem 3.1 If f is an arbitrary transcendental solution of equation P2 or P4, then

m(r, 1/f) +N(r, 1/f ′) +N1(r, f) = 2T (r, f) +O(log r) (r →∞).

For transcendental solutions of P34 we have a similar form of the theorem [3].

Theorem 3.2 Let f be an arbitrary transcendental meromorphic solution of

P34(A, B), A,B ∈ C. Then

m(r, 1/f) +N(r, 1/f ′) +N1(r, f) = 2T (r, f) +O(log r) (r →∞).

If, in addition, A 6= 0, then

N(r, 1/f ′) +N1(r, f) = 2T (r, f) +O(log r) (r →∞).

Let us now formulate a similar result concerning Riccati equations.

Theorem 3.3 Let f be an arbitrary transcendental meromorphic solution of a Riccati

equation with rational coefficients. Then the Second Main Theorem reduces to the asymptotic

equality

m(r, 1/f) +N(r, 1/f ′) +N1(r, f) = 2T (r, f) +O(log r) (r →∞).

In the proof of Theorem 3.3 we shall apply the following lemma [9, Ch. 3].

Lemma 3.4 Let f be an arbitrary transcendental meromorphic function satisfying

m(r, f ′) = O(log r) (r →∞) and m(r,
f

f ′
) = O(log r) (r →∞).

Then

m(r, 1/f) +N(r, 1/f ′) = N(r, f ′) +O(log r).

Proof of Theorem 3.3.

We consider the equation f ′ = Q + f2 with Q(z) rational and its transcendental

meromorphic solution f. As f is a meromorphic function of finite order, by lemma on the
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logarithmic derivative, we have m(r, f ′/f) = O(log r). Applying the properties of log+, we

get

m(r, f ′) ≤ m(r, f ′/f) +m(r, f).

Applying the Clunie lemma to (2), we get m(r, f) = O(log r) and thus m(r, f ′) = O(log r).

We now differentiate the Riccati equation and obtain

f ′′ = Q′ + 2ff ′,

which leads to
f

f ′
=

1

Q′
f ′′

f ′
f − 2

Q′
f2.

Applying the properties of the proximity function,

m(r,
f

f ′
) ≤ m(r,

1

Q′
) +m(r,

f ′′

f ′
) +m(r, f) +m(r,

2

Q′
) +m(r, f2) +O(1).

For a rational function q we have m(r, q) = O(log r), so m(r, 1
Q′ ) = O(log r) and m(r, 2

Q′ ) =

O(log r). Also, by the lemma on the logarithmic derivative and the fact that f (as a solution

of a Riccati equation with rational coefficients), and therefore also f ′, is of finite order we

have m(r, f
′′

f ′ ) = O(log r). Lastly, m(r, f2) ≤ 2m(r, f) = O(log r). The conclusion, that

m(r, f
f ′ ) = O(log r) follows. This way the conditions of Lemma 3.4 are fulfilled, so

m(r, 1/f) +N(r, 1/f ′) = N(r, f ′) +O(log r).

Now, the number of poles of Q is finite. The poles of f , which are not the poles of Q must

be simple. Thus N(r, f ′) = 2N(r, f) +O(log r) and N1(r, f) = O(log r). It follows that

m(r, 1/f) +N(r, 1/f ′) +N1(r, f) = N(r, f ′) +N1(r, f) +O(log r)

= 2N(r, f) +O(log r) = 2T (r, f) +O(log r).

4. Petrenko’s defective values

Proximity of a meromorphic function to a value a may also be estimated by means of a

different metric than in Nevanlinna theory. In 1969 Petrenko introduced the function

L(r, a, f) :=


max
|z|=r

log+ |f(z)| for a =∞,

max
|z|=r

log+ |f(z)− a|−1 for a 6=∞.

Hence a ∈ C is a defective value in the sense of Petrenko if

β(a, f) := lim inf
r→∞

L(r, a, f)

T (r, f)
> 0.
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The quantity β(a, f) is called Petrenko’s deviation.

In 1969 in [15] Petrenko proved that if f is a meromorphic function of finite lower order,

then for all a ∈ C we have

β(a, f) ≤ B(λ) :=

 πλ
sinπλ

if λ ≤ 0.5 ,

πλ if λ > 0.5 ,
(8)

and in 1990 in [11] Marchenko and Shcherba proved the inequality

∑
a∈C

β(a, f) ≤ 2B(λ). (9)

The estimates of deviations of solutions of P2, P4 and P34 were shown in [2]. Here we present

an estimate concerning Petrenko’s deviations for solutions o Riccati equations.

Theorem 4.1 Let f be a transcendental meromorphic solution of a Riccati equation (2)

with the coefficient such that T (r,Q) = S(r, f). Then, for all values a ∈ C such that

Q(z) + a2 6≡ 0,

we have L(r, a, f) = S(r, f) and β(a, f) = 0. If Q(z) + a2 ≡ 0, then β(a, f) ≥ 1.

To prove the theorem we need the following results from [2]. They are, respectively, analogues

of Clunie lemma and Mohon’ko-Mohon’ko lemma.

Lemma 4.2 Let f be a transcendental meromorphic solution of fnP (z, f) = Q(z, f),

where n is a positive integer, P (z, f), Q(z, f) are polynomials in f and its derivatives with

meromorphic coefficients aν , bν , respectively, which are small with respect to f in the sense

that

L(r,∞, aν) = S(r, f), L(r,∞, bν) = S(r, f).

If the total degree d of Q(z, f) as a polynomial in f and its derivatives is d ≤ n, then

L(r,∞, P (z, f)) = S(r, f).

Lemma 4.3 Let P (z, f, f ′, ..., f (n)) = 0 be an algebraic differential equation

(P (z, u0, u1, ..., un) is a polynomial in all arguments) and let f be its transcendental mero-

morphic solution. If a constant a does not solve the equation, then L(r, a, f) = S(r, f) and

β(a, f) = 0.
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Proof of Theorem 4.1. Equation (2) can be written as f2 = Q−f ′, so it fulfills conditions

of Lemma 4.2 with P (z, f) = f(z), Q(z, f) = Q(z)− f ′(z) and n = 1. It follows that

L(r, f) = L(r, P (z, f)) = S(r, f) (r →∞).

Next, we need to notice that if a constant a does not solve (2), by Lemma 4.3, we get

L(r, 1
f−a ) = S(r, f). Finally, we observe that if a constant a solves the equation (2) then,

by Theorem 2.1 it is a defective value of f in the sense of Picard. It means that this value

is assumed by f at most a finite number of times, so δ(a, f) = 1. Then the inequality

δ(a, f) ≤ β(a, f) completes the proof.

5. Small target functions

According to a conjecture of Nevanlinna, it is possible to replace in the Second Main Theorem

constants ak with meromorphic functions ak(z), provided that ak(z) are small functions of

f. Let us then consider the notion of a defective function. If for a meromorphic a, we have

δ(ak, f) := δ(0, 1
f−ak

) > 0, we say that ak is a defective function of f in the sense of

Nevanlinna, and if β(ak, f) := β(0, 1
f−ak

) > 0, we say that it is a defective function in the

sense of Petrenko. Since 1920’s Nevanlinna’s conjecture was approached a number of times.

Finally, in 1986 Steinmetz [18] proved the analogue of (6) for small functions in general and

in 2004 Yamanoi in [22] obtained the analogue of inequality (7).

For defective functions in the sense of Petrenko the problem of obtaining the exact

analogue of (9) has not been solved in generality. Ciechanowicz and Marchenko in 2007 [4]

showed the analogue of (9) for entire f and rational ak, and in 2011 [5] for rational ak and

f meromorphic with N(r, f) = S(r, f). The most general result in this direction so far was

given by the same authors in 2017 [6]. They showed that for f meromorphic and of finite

lower order the quantity of small targets defective with respect to f in the sense of Petrenko

is at most countable. However, the upper bound they received for the sum of deviations is

not sharp.

Assessment of behavior towards small target functions of solutions of the second and

fourth Painlevé equations was conducted by Shimomura [16,17].

Theorem 5.1 Let f be arbitrary transcendental meromorphic solution of P2 and let a

be a meromorphic function such that T (r, a) = S(r, f). Then

m(r,
1

f − a ) ≤ 1

2
T (r, f) +O(log r + T (r, a)) and δ(a, f) ≤ 1

2
.

Theorem 5.2 Let f be an arbitrary transcendental meromorphic solution of P4(α, β)
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and a be a transcendental meromorphic function such that T (r, a) = S(r, f). If β 6= 0, then

m(r,
1

f − a ) ≤ 1

2
T (r, f) +O(log r + T (r, a)) and δ(a, f) ≤ 1

2
;

and if β = 0, then

m(r,
1

f − a ) ≤ 1

4
T (r, f) +O(log r + T (r, a)) and δ(a, f) ≤ 1

4
.

The following result shows estimates of defects of a transcendental meromorphic solution of

P34 with respect to small target functions [3].

Theorem 5.3 Let a and f be arbitrary transcendental meromorphic solutions of P34(A,B),

A,B ∈ C, such that T (r, a) = S(r, f). Then

m(r,
1

f − a ) ≤ 1

2
T (r, f) +O(log r + T (r, a)) and δ(a, f) ≤ 1

2
.

If a does not solve P34 and T (r, a) = S(r, f), where f is an arbitrary transcendental mero-

morphic solutions of P34(A,B), then

m(r,
1

f − a ) = O(log r + T (r, a)) and δ(a, f) = 0.

Let us now present a similar result concerning solutions of Riccati equations and small

targets.

Theorem 5.4 Let f be arbitrary transcendental meromorphic solution of (2) such that

T (r,Q) = S(r, f) and let a be a meromorphic function such that T (r, a) = S(r, f). If a does

not solve the equation, then

m(r,
1

f − a ) = S(r, f) and δ(a, f) = 0.

If, on the other hand, a(z)2 − a(z)′ +Q(z) ≡ 0, then δ(a, f) = 1.

Proof. Put g(z) := f(z)− a(z). Then, inserting this in the equation (2) we get

(g + a)′ = Q+ (g + a)2,

so

g2 = g′ − 2ag − (a2 − a′ +Q) := g′ − 2ag − F (z, a). (10)

As f is transcendental, g is also transcendental and the coefficients in the equation above

are small with respect to f , hence also with respect to g. Thus, by Clunie lemma,

m(r, f − a) = m(r, g) = S(r, g) = S(r, f).
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Next, we notice that zero solves the equation (10) only if F (z, a) ≡ 0. If not, by Mohon’ko-

Mohon’ko lemma,

m(r,
1

f − a ) = m(r,
1

g
) = S(r, g) = S(r, f).

Assume now that F (z, a) ≡ 0. Then the equation (10) has the form

g′ = g2 + 2ag,

so it is a Riccati differential equation. By assumption, T (r, a) = S(r, g) and zero fulfills the

equation. Thus, by Theorem 2.1, zero is a Picard defective value of g, so

N(r,
1

f − a ) = N(r,
1

g
) = O(log r),

and δ(a, f) = 1.

Corollary 5.5 If f and q are, respectively, a transcendental and a rational solution of

(3), then δ(q, f) = 1. If f is a transcendental solution of (3) and q is a rational function

which does not solve the equation, then δ(q, f) = 0. Therefore∑
q∈Q

δ(q, f) = 1,

where Q denotes the set of all rational functions.

It is also possible to formulate the following theorem on Petrenko’s deviations from small

targets.

Theorem 5.6 Let f be arbitrary transcendental meromorphic solution of (2) such that

T (r,Q) = S(r, f) and let a be a meromorphic function such that T (r, a) = S(r, f). If a does

not solve the equation, then

L(r,
1

f − a ) = S(r, f) and β(a, f) = 0.

If, on the other hand, a(z)2 − a(z)′ +Q(z) ≡ 0, then β(a, f) ≥ 1.

Proof. As in the proof of Theorem 5.4 we put g(z) := f(z)−a(z), insert this in the equation

(2) and get

g2 = g′ − 2ag − F (z, a),

with F (z, a) := a(z)2 − a(z)′ + Q(z). Assuming that F (z, a) 6≡ 0, zero does not solve the

equation. By Lemma 4.3, we obtain

L(r,
1

f − a ) = L(r, 0, g) = S(r, g) = S(r, f)

and β(a, f) = 0. If, on the other hand, F (z, a) ≡ 0 then zero solves the equation (10) and,

by Theorem 2.1, we get β(a, f) = β(0, g) ≥ δ(0, g) = 1.
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A bifurcation and symmetry discussion of the Sommerfeld effect

Eoin Clerkin, Rubens Sampaio

Abstract:

The Arnold Sommerfeld effect is an intriguing resonance capture and release
series of events originally demonstrated in 1902. A single event is studied
using a two degree of freedom mathematical model of a motor with imbalance
mounted to laterally restricted spring connected cart. For a certain power
supplied, in general the motor rotates at a speed consistent with a motor on
a rigid base. However at speeds close to the natural frequency of the cart, it
seemingly takes on extra oscillations where for a single rotation it both speeds
up and then slows down. Therefore in a standard experimental demonstration
of the effect, as the supplied torque force is increased or decreased, this may give
the illusion that the stable operation of the motor is losing and gaining stability.
This is not strictly the case, instead small oscillations always present in the
system solution are amplified near the resonant frequency. The imbalance
in the motor causes a single resonance curve to fold back on itself forming
two fold bifurcations which leads to hysteresis and an asymmetry between
increasing and decreasing the motor speed. Although the basic mechanism
is due to the interplay between two stable and one unstable limit cycles, a
more complication bifurcation scenario is observed for higher imbalances in
the motor. The presence of a Z2 phase space symmetry tempers the dynamics
and bifurcation picture.

1. Historical background of and introduction to the Sommerfeld effect

Arnold Sommerfeld’s posthumous biography complied from his written correspondence [5],

mentions an intriguing engineering problem proposed by Prof. Hermann Boost also of the

Technical University of Aachen whereby a steam engine is to be installed in a building which

is itself to be supported by beams. As a demonstration to the district association of German

engineers (VDI), using a weighted motor with small imbalance screwed tightly to a table-

top, he caused the motor to become enthralled to the frequency of the table which induced

large vibrations highlighting to the audience the catastrophic potential of resonance. The

phenomenon is justified with reference to linear resonance curves for harmonic forced linear

differential equations in his seminal 1902 paper [16]. It was fifty years later with the work of

Blekhman [1,7] that the phenomenon was named in his honour and more than fifty years still

it has seen a renewed interest among the applied mechanics and mechanical engineering com-

munity, being a main discussion point at the 2015 IUTAM symposium in Frankfurt [2,8,10].
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Figure 1. Schematic diagram of laterally

restricted spring-connected and damped

cart with a driven rotor with imbalance.
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Figure 2. Sweep diagram showing the

rotor speed as the torque force is slowly

increased (red) and decreased (blue).

In order to study the Sommerfeld effect as a purely mechanical phenomenon, a transla-

tional oscillator rotational actuator, as schematically drawn in Fig. 1, has been investigated

by a number of authors [2,8,9,11] as a minimal model that is believed to encompasses only its

essential dynamical attributes. This paradigmatic example is made up of a rotor with a small

imbalance (m) a certain distance from its centre which is mounted to a laterally-restricted

spring-connected and damped cart. This drawing (Fig. 1) follows the normal applied me-

chanics convention whereby a single wall span implies restriction in two spatial directions.

In addition, the rotor would normally be orientated in the horizontal plane, so as to remove

any need to consider gravitational effects. Physical parameters expected to be important to

model such a scenario would be mass inertia of the cart, imbalance and rotor, the spring

and damping constants as well as a measure of the symmetry-brokenness in the rotor, i.e

the distance between the imbalance and its centre of rotation. The supplied power or torque

force to the rotor is varied to unveil the Sommerfeld effect.

As shown by the red curve in Fig. 2, as the power is monotony increased to the non-

ideal [6] motor, its angular velocity increases until it approaches the natural frequency of the

spring, which is normalised to one in this manuscript. After which, additional increases in

power does not increase the motor speed, but instead leads to the growth of oscillations in

the smooth operation of the motor and in the displacement of the cart (not seen). A log-scale

diagram of rotor speed versus the supplied torque is shown in Fig. 2 where a linear response

of the angular velocity to the torque appears as a logarithm function. Subsequently, as the

torque force is increased further (red curve), there comes a point where the oscillations in

the cart fall relatively silent and the rotor rapidly speeds up to match the expected speed

of the rotor had it been on a rigid base. Characteristic of the Sommerfeld effect is an
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ẋ
,
v
ec

lo
ci

ty

time, t

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

0 1 2 3 4 5 6

ϕ
,
a
n
g
le

o
f
im

b
a
la

n
ce

time, t

0.00

0.50

1.00

1.50

2.00

0 1 2 3 4 5 6

ϕ̇
,
a
n
g
u
la

r
v
el

o
ci

ty

time, t

Figure 3. For u = 0.1, time-traces showing a symmetric, resonance captured S-type cycle (5).

Period τ = 2π
avg(ϕ̇)

= 6.28
0.94

= 6.68. x can be seen to precede ẋ by τ
4
. ε = 0.0125.

asymmetry between increasing (red curve) and decreasing (blue curve) the power to the

motor, and significant hysteresis is seen, meaning that two distinct states for the system are

concurrently stable. In fact, this was already alluded to in Sommerfeld’s 1902 paper [16]

where he discussed temporarily grasping the table legs to change the motors speed to a state

operating at higher frequency. In our case, when the system is operating in the resonance

captured zone, a temporarily restriction on cart’s movement would allow the rotor to be

released from resonance. The succeeding section to the next will explain the dynamics behind

Fig.2, but first we introduce the equations of motion which were integrated to generate it.

2. Mathematical model of a translational oscillator rotational actuator

In order to investigate a single Sommerfeld resonance capture and release event, a model

for a translational oscillator rotational actuator as schematically drawn in Fig. 1 is studied.

The kinetic and potential energies of the cart and rotor are available from Appendix B of
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Ref. [15] which can be used to derive the system of equations with dimensions such as those

in Refs. [9, 11]. The following work uses the non-dimensionalised version of these equations

from Ref. [7] as it significantly saves on the number of required parameters.

d2tx+ βdtx+ x = −εd2t (cos (ϕ)) , (1a)

d2tϕ+ νdtϕ = u+ εκ sin(ϕ)d2tx. (1b)

The system has two degrees of freedom, the displacement of the cart x, defined positively

to the right and negatively to the left from its equilibrium position, and ϕ as the angle of

the imbalance in the rotor, defined by the normal mathematics convention from the right

horizontal axis as shown in Fig. 1. In this paper dt to the left of or a dot above a variable

represents the operation of differentiating with respect to non-dimensionalised time t.

The non-dimensionalised parameter β, ε, κ, ν encapsulates dependant dimensioned pa-

rameters such as the mass of the cart and imbalance, damping in the cart and rotor, level of

symmetry-brokenness, and moment of inertia. Parameter values were chosen to compare with

the work in Refs. [9, 11]. After transforming these parameter to their non-dimensionalised

form, the parameter values become β = 0.01983, κ = 0.017, ν = 857.143 and the natural

frequency in the spring-cart is normalised to one (cf. Fig. 2). ε = {0.005, 0.0125} is one of the

more important parameter as a measure of imbalance or symmetry-brokenness in the rotor

which results in the coupling between relations (1a) and (1b) in Eq. (1). For this parameter,

the following symmetry exists.x
ε

 7−→ −
x
ε

 parameter symmetry (2)

Physically ε is proportional to the length between the imbalance and its centre of rotation

and therefore the parameter symmetry (2) may be interpreted as a redefinition of orientation

of x displacement as the imbalance is translated by 180o after going to negative length.

The torque u is the force supplied to the rotor, which is the parameter used to unveil

the Sommerfeld effect and is the main sweep parameter in this study. A parameter space

symmetry also exists, namelyϕ
u

 7−→ −
ϕ
u

 parameter symmetry (3)

which allows one to obtain the dynamics due to clockwise driving of the rotor from the anti-

clockwise driving by means of the additive inverse of the displacement and angle, thereby

134



velocity and angular velocity of the cart and rotor. Because of these two parameter symme-

tries, we may limit this study to positive torque and positive ε only and still obtain the full

dynamical picture.

Unlike the two introduced parameter systems, a phase space symmetry such as the

following involutionary (a.k.a reflection) symmetry influences the dynamics by itself.x
ϕ

 7−→
 −x
ϕ+ π

 Z2 symmetry (4)

This means that if y1(t) is a solution to the Eq. (1) then so is y2(t) = Ry1(t) where R is

the action of the symmetry. As this study’s primarily interest is in periodic orbits in the

system as the resonance frequency of the cart is transversed by the rotor, it is of importance

to consider how symmetry (4) may affect limit cycles. To this aim, we will use the results

and language of Refs. [13, 14]. The phase space may be decomposed R4 = X+ ⊕X− where

the action of the symmetry (4) is Rv = v for v ∈ X+ and Rv = −v for v ∈ X−. Some

care needs be exercised when doing this as ϕ is not strictly in R, so we consider various

coordinate transforms such as {ϕ, ϕ̇} = {ϕ̇ cosϕ, ϕ̇ sinϕ} ∈ R2 which enforces this. It may

be thus deduced that X+ = ∅ and this has the immediate consequence to limit the types of

limit cycles permitted in system (1), namely limit cycles of fixed or mixed fixed-symmetry

type of Refs [13, 14] do not exist. The only cycles remaining which are invariant to Z2

symmetry (4) are of the following typex
ϕ

 (t) 7−→

 −x
ϕ+ π

 (t+
τ

2
), S- and M-type (5)

where τ is the minimal period of the limit cycle. In the nomenclature of Refs. [13,14], these

are called symmetric or S-type cycles. As can be seen after half the period of oscillation the

displacement is exactly its negative. Likewise this rule applies for the velocity. Therefore,

cycles invariant with respect to condition (5) must average to zero for these variables over

one cycle. A typical limit cycle of system Eq. (1) is shown in Fig. (3) which can be seen to

be invariant with respect to Eq. (5). It is known [12] that a period doubling bifurcation may

not occur in limit cycles of S-type due to a multiplicity of two in their Floquet multipliers.

In later sections, cycles which are symmetry-broken with respect to Eqs. (4) and (5) will be

discussed.

3. Basic mechanism of the Sommerfeld effect

By direct integration of the equations of motion (1) with different initial angular velocities,

Refs. [4, 11] highlight the existence of ”hidden” bistable attractors. The 2D diagram Fig. 4
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shows the ultimate limit cycles of these trajectories by the red and blue solid closed periodic

orbits. The red curve shows large variance in the displacement and velocity, hence large

potential and kinetic energy in the cart. Conversely, although the blue curve shows higher

eccentricity thus a higher ratio of kinetic to potential energy in the cart, both energies are

are substantially less than that of the red limit cycle, instead it has considerably greater

total energy in the rotating rotor. This can be seen in Fig. 5 where the blue limit cycle has

larger maximum angular velocity than the red limit cycle. In the case of the blue limit cycle,

the rotor operates at the frequency consistent with a motor on a rigid base whilst in the case

of the red limit cycle, the rotor rotates at an average frequency approximately consistent

with the natural frequency of the cart. This oscillation frequency persists over an extensive

change of torque as can be seen in Figs. 2 and 5 and the red limit cycle is captured by the

resonance. In the resonance captured range of torque, there is therefore at least bistability

of limit cycle states. which was, in fact, already alluded to in the seminal 1902 paper [16]

where Sommerfeld discussed temporarily grasping the table legs to change the motors speed

to a state operating at higher frequency. In our case, when the system is operating in the

resonance captured zone, a temporarily restriction on cart’s movement would allow the rotor

to be released from resonance.
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Figure 5. Continuation of the S-type cycle using

AUTO [3] showing a loss and gain of stability at

fold bifurcations of limit cycles (F). (cf. Fig 2)

In fact, a third limit cycle exists between the resonance captured and resonance released

dynamics as shown in Figs 4 and 5 by the green dashed line. This limit cycle has intermediate

energy in the cart and although it is unstable, it controls the limits of the stable dynamics. As

the torque is increased from its value in Fig. 4, there comes a point, actually a fold bifurcation
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of limit cycles, where the green unstable limit cycle collides with the red resonance captured

limit cycle. They annihilate one another leaving the blue limit cycle as the only stable

attractor. Consequently transience ensues as the dynamics is exponentially attracted to its

new higher in terms of rotating speed but lower in terms of cart vibrations state. Physically

this explains the resonance release event (cf. Fig 2) whereby the rotor is now free to rotate

at a frequency approximately consistent with its supplied torque. Conversely, decreasing the

supplied torque force from its value in Fig. 4, the blue resonance released limit cycle collides

with the green unstable limit cycle. They annihilate one another in a fold bifurcation of

limit cycles leaving only the red resonance captured limit cycle. This can also be seen in

Figs 2 and 5 but the speed-down for the rotor is more modest as the blue and red limit

cycles are much closer together at this bifurcation than the higher torque fold bifurcation.

It should be noted that the red limit cycle follows the normal operation of the limit cycle

on a rigid base for low torque force. We stress that the red limit cycle undergoes no change

in its dynamical state, i.e. bifurcation, as it becomes captured by the resonance of the cart.

Instead, small oscillations always present in the cart and rotating rotor are merely amplified

in the resonance zone. As is often the case when a resonance curved is transversed, there is

a phase difference of half the period between the red and blue limit cycles. This can been

seen in Fig. 3 as the displacement proceeds the velocity by a quarter period, the opposite

is the case for the resonance released cycle. Lastly we’d like to mention that the rate of

change of the torque is important in the physical observation of the effect as the torque may

be already significantly higher before the transient behaviour has had time to settle, this is

emphasised well in Ref. [6].

4. Larger imbalance in the motor - Symmetry-broken limit cycles

As imbalance is needed in the motor to create the resonance capture and therefore the

Sommerfeld effect, näively one may assume that an increase in the overall imbalance may

lead to resonance capture to occur over a greater range of the supplied torque. In this section,

it will be seen that this is not the case, but instead a different sequence of bifurcations than

in Sec. 3 are possible whilst still maintaining the Sommerfeld effect phenomenon. The red

points in Fig 6 are rastored data from an integration in time of the equations of motion (1)

as the torque parameter is varied, but sufficiently slowly to allow the dynamics to settle to

its steady state at each step. In order to concentrate on the resonance captured event, the

resonance released dynamics, the blue curve in Figs. 2, 4 and 5 are not displayed in Fig. 6.

As before, when the torque force is increased, the dynamics is captured into resonance. It

can be seen that the rotor speed becomes enthralled to the resonance frequency of the cart

but oscillates in ϕ̇ with an amplitude that modestly grows as the torque increases. After
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Figure 6. For ε = 0.0125, the torque is slowly increased showing the resonance captured

event. The dynamics undergo several bifurcations before at approximately u = 0.19 the

resonance captured dynamics is released. Over plotted lines shows the maximum rotor

speed of the limit cycles from continuation data. Blue line follows a S-type cycle (cf. Fig. 3),

the purple line are M-type cycles (cf. Fig. 7, and brown line shows a M-type cycle of

doubled period (cf. Fig 8). Solid lines are stable and dashed lines show unstable limit cycles.

Bifurcations points are shown as solid black dots and labelled P to denote a supercritical

pitchfork bifurcation of limit cycles and D to denote a period doubling bifurcation.

u = 0.1, there comes a point where the dynamics significantly changes. Continuation using

software AUTO [3] reveals the S-type cycle (Fig. 5), crucial to the basic Sommerfeld effect

mechanism outlined in Sec. 3, looses stability when a Floquet multiplier crosses the unit

circle at real part one. This is a supercritical pitchfork bifurcation which is labelled P in

diagram Fig. 5. After this point the S-type cycle although unstable continues in a similar

bifurcation sequence discussed in the previous section.

At the supercritical pitchfork bifurcation, stability is transferred to a not-previously-

discussed type of limit cycle, those that of course obeys the symmetry (5) but is no longer

invariant to it but is symmetry broken. For these cycles applying the action of the symme-

try (5) results in a different albeit congruent cycle. In the nomenclature of Ref. [14], these

are called M-type cycles for “mirror” as they occur as a twin pair. If a change of stability or

local dynamics happens to one of them, it must automatically happen to the other. However

as the symmetry is now broken, the symmetry (4) no longer restricts the dynamics and the

bifurcations that may occur individually. As the torque force is increased further, it can
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Figure 7. For u = 0.17, time-traces showing a symmetry-broken with respect to sym-

metry (4), resonance captured M-type cycle [14], which momentary rotor reversal. Period

τ = 2π
avg(ϕ̇)

= 6.28
0.97

= 6.48. x can be seen to preceed ẋ by τ
4
. ε = 0.0125.

be seen in Fig. 6 that eventually the rotor speed oscillations go through zero and become

negative. Physically this would mean that the rotor, momentarily reverses to rotate in the

clockwise direction before resuming its normal anti-clockwise revolutions. Dynamically the

point at which this occurs is not special, however we caution that for some coordinate sys-

tems, continuation of the M-type cycles may be difficult. A typical M-type cycle, displaying

this reversal of rotor direction is shown in Fig. 7. In these time-traces, applying the action of

the symmetry (4) to the purple limit cycle results in the pink limit cycle and visa-versa. The

two M-type cycles may now be distinguished by the purple limit cycle having lower maxi-

mum positive displacement but higher maximum velocity than the pink limit cycle. Both

share the same angular velocity and therefore are difficult to distinguish in Fig. 6. The next

significant change in dynamics seen in Fig. 6 is a period doubling bifurcation, labelled by

the letter D. We note that although S-type weren’t permitted to undergo a period doubling,

no such restriction occurs for M-type cycles. At this point the twin cycles loose stability
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Figure 8. For u = 0.18, time-traces showing a symmetry-broken M-type limit cycle with

respect to symmetry (4), with momentary rotor reversal. Period has doubled τ = 2π
avg(ϕ̇)

×2 =

6.28
0.98

× 2 = 12.87. x can be seen to preceed ẋ by τ
4
. ε = 0.0125.

and a new M-type cycle pair with double the original frequency is born. The displacement,

velocity, angle of imbalance, and angular velocity of the rotor for this limit cycle is displayed

in Fig. 8. The limit cycles are also symmetry-broken as can be seen from them having

significantly different average displacement and velocity in the cart. Applying symmetry 4

converts between the congruent purple and pink limit cycle pair as before. Shortly after the

torque force is increased further in Fig. 6 these period-doubled limit cycles in turn looses

stability at another period doubling bifurcation creating stable limit cycles of even higher

periods. Nevertheless, the stability of the resonance captured range is soon after lost and

the dynamics is released from resonance to enter the higher rotor speed state. Comparing

Figs. 2, 5 and 6, we note that this occurs at a significantly reduced torque strength than in

Sec. 3, meaning that the resonance captured region was reduced by the extra imbalance.
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5. Summary

In this manuscript we describe the basic Sommerfeld effect mechanism as a resonance curve

folded back on itself creating two fold bifurcations of limit cycles. Although this basic mecha-

nism has been known for some time, the authors are not aware of it being directly articulated

in a fashion similar to this paper. The fold bifurcations explain the jump phenomena when

the driving parameter is moved outside the domain of existance of a limit cycle solution

creating fast transience to a neighbouring attractor. This naturally leads to an asymmetry

between increasing and decreasing the driving parameter and a bistability of states. The

symmetries present are discussed in order to categorise the observed limit cycles.

In Sec. 4 we examine the Sommerfeld effect at a larger imbalance in the motor. A

different more complicated bifurcation sequence of pitchfork and period doubling bifurcations

are witnessed allowing for multistabilities of limit cycles. Although the effect is considerable

different than the lower imbalance in Sec. 3, both scenarios ought to fall under the general

term of the Sommerfeld effect. The same resonance capture and release events occur but the

general area of resonance captured has been significantly reduced by the symmetries in the

system and the increase of imbalance. It may be therefore hoped that a further study of the

bifurcation along with purposely added symmetries in the rotor and system may allow for a

smooth passage through resonance.
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On the acoustic metamaterial with negative effective mass 

 

 

Livija Cveticanin 

Abstract: Recently a significant attention is directed toward so called 'acoustic 

metamaterials' which have large similarity with already known 'electromagnetic 

metamaterials' which are applied for elimination of the electromagnetic waves. The 

stop of electromagnetic waves is realized with the negative refractive index, negative 

permittivity and negative permeability. Motivated by the mathematical analogy 

between acoustic and electromagnetic waves the acoustic metamaterials are 

introduced. It was asked the material to have negative effective mass. To obtain the 

negative effective mass the artificial material, usually composite, has to be designed. 

The basic unit is a vibration absorber which consists of a lumped mass attached with a 

spring to the basic mechanical system. The purpose of the unit is to give a band gap 

where some frequencies of acoustic wave are stopped. We investigated the nonlinear 

mass-in-mass unit excited with any periodic force. Mathematical model of the motion 

is a system of two coupled strong nonlinear and nonhomogeneous second order 

differential equations. The solution of equations is assumed in the form of the Ateb 

(inverse Beta) periodic function. The frequency of vibration is obtained as the 

function of the parameters of the excitation force. The effective mass of the system is 

also determined. Regions of negative effective mass are calculated. For these values 

the motion of the forced mass stops. It is concluded that the stop frequency gaps are 

much wider for the nonlinear than for the linear system. Based on the obtained 

parameter values the acoustic metamaterial could be designed. 

1. Introduction 

    Metamaterials represent a novel type of engineered materials characterized by exceptional 

properties which are not commonly found in natural materials. Properties of these materials are not 

the result of their chemical composition. Materials are man-made designed composites with special 

structures for energy absorption or elimination. Originally metamaterials started in the field of 

electromagnetic waves where researchers found that the negative electrical permittivity, negative 

magnetic permeability and negative refractive index available absorption of electromagnetic waves 

[1]. Recently, using the mathematical analogy between acoustic and electromagnetic waves, acoustic, 

also known as mechanical or elastic, metamaterials for mechanical sound and vibration attenuation 

are designed [2], [3]. The purpose of these materials is to absorb acoustic waves and vibrations at 

certain excitation frequency. To fulfill this task and due to analogy with electromagnetic 

metamaterials it is required that mechanical metamaterials have a negative mass property. It is well 
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known that there are no materials with negative mass, but a concept of 'negative effective mass' is 

introduced into consideration. The effective mass is a mathematically calculated parameter whose 

value may be negative. Milton [4] introduced the dynamics of metamaterials with such non-

conventional behaviour. It was seen that the negative effective nass density of metamaterial is 

obtained due to local resonators included as basic, units of material [5]. For the negative effective 

mass a stopband frequency area exists. The single mass-in-mass resonator offers negative effective 

mass property over a specific frequency range [6] – [8] and by connecting them into a system we 

obtain an acoustic metamaterial which exhibits negative effective mass density [9] – [11]. Based on 

the theoretical conclusion about negative effective mass systems the new acoustic metamaterials with 

local resonator units are designed [12] – [15]. The experimental investigation on these metamaterials 

give results which differ from those which would be predicted using the theoretical analysis. Because 

of that the modification of the model is necessary. 

    Our aim is to improve the model by introducing of the nonlinear property of the resonator unit and 

to investigate the influence of the nonlinearity on the resonance frequency bandgap. The resonator is 

assumed to be a two-degree-of-freedom mass-in-mass system with nonlinear elastic property. Already 

some investigation are done for the mass-in-mass unit where the spring is with cubic nonlinearity 

[16]. In this paper the generalization of the nonlinearity in the mass-in-mass system is done. The 

nonlinearity is assumed in the polynomial form of displacement with integer or noninteger order. The 

motion for the general periodic excitation is analyzed. The concept of effective mass is for the 

nonlinear system is newly defined and the negative effective mass is calculated. The bandgap for 

vibration at resonant case is determined and applied for explaining the property of the acoustic 

metamaterial in the chiral form. 

2. Concept of effective mass in linear mass-in-mass unit 

The single mass-in-mass unit is plotted in Fig.1. The unit contains the outer mass m₁ and the inner 

mass m₂. The inner mass is coupled to the outer by a linear spring of stiffness k₂ (Fig.1a). 

 

Figure 1.   Mass-in-mass system: a) linear model, b) nonlinear model.  
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The system has two degrees-of-freedom and two generalized coordinates: the displacement u₁ of the 

mass m₁ and u₂ of the mass m₂. If the subsystem is excited with a harmonic force or harmonic wave, 

the differential equations of motion are [17]: 
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211 tFuukum   (1) 

,0)( 12
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where F and Ω are the amplitude and the frequency of the excitation force. This system of coupled 

and linear second order differential equations has the exact closed form solution in the form:  

,cos,cos 21 tButAu   (3)  
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Analyzing the obtained results it is obvious that the inertial force of the subsystem under 

resonance works against the excitation and attenuates the vibration. Using this conclusion the concept 

of effective mass is introduced [18].  

  

Figure 2.   Mass-in-mass unit and its effective mass meff. 

The concept is based on the physical condition that the motion of the outer mass m₁ has to be equal to 

that of an equivalent effective mass meff depicted in Fig.2, i.e.,  tFumeff  cos1
  and 

FAmeff  2
. Thus, the effective mass is:  
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where 2

2

22 / mk . Analyzing (6) it is seen that the effective mass is negative for excitation 

frequency which satisfies the relation:  
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


 (7) 

According to (7) it is evident that for the negative effective mass a narrow band gap region exists 

which is near to the local resonance frequency (Ω/ω₂=1) of the internal mass m₂. In [6] it is shown 

that the negative effective mass region corresponds to the band gap region of the dispersion curve 

when wave propagation is considered. Namely, if the mass becomes negative the acceleration is in the 

opposite direction to the applied force according to the Newton's second law of motion and the 

response amplitude reduces. This effect is greatly increased for the resonant case when the excitation 

frequency Ω approaches the frequency of the system ω₂. From (7) it is clear that the band gap region 

can be broadened if mass m₂ is increased and m₁ decreased. So, maximizing of the band gap region 

can be reached by increasing of the mass ration m₂/m₁. Unfortunately, the effect of negative mass is 

significant only close to Ω/ω₂=1, while in the broadened region the amplitude of negative mass is 

small and little reduction during wave propagation occurs. 

3. Nonlinear vibration of the mass-in-mass unit 

In Fig.1b a nonlinear mass-in-mass nonlinear subunit is plotted. Masses m₁ and m₂ are connected with 

a spring with nonlinear properties. Let us assume that the elastic force in the spring is a nonlinear 

displacement function:  
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where 
2

k  is the coefficient of nonlinearity and α ≥ 1 ∈ Re₊ is the order of nonlinearity. For the 

nonlinear two degrees-of-freedom mass-in-mass subunit the mathematical model is:  
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where f is the excitation force and u₁ and u₂ are displacements of masses m₁ and m₂. Equations (9) 

and (10) are coupled and strong nonlinear. 

    Let us assume that the excitation force has the form of the cosine Ateb periodic function ca:  
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where F and Ω are amplitude and frequency of the force and α ≥ 1 is a positive constant of integer or 

non-integer type. (The Ateb function is the inverse Beta function [19]). The period of the force is:  

,
2

1
,

1

1
B22 













T  (12) 

where B is the Beta function which depends on α. Introducing (11) into (9) and (10) equations of 

motion are:  
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The procedure for solving of the system (13) and (14) is introduced. Let us transform equations (13) 

and (14) into a system:  
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which is suitable to be solved. The first equation is linear and nonhomogeneous, while the second is a 

homogenous strong nonlinear differential equation. For the forced vibrations the solution is assumed 

in the form [19]:  

),,1,(),,1,( 21 tBcautAcau    (17)  

where A and B are unknown constants. Using the second time derivative of the Ateb function [20] and 

substituting (17) into (15) and (16) we obtain a system of a linear and a nonlinear algebraic equation:  
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into (19) the unknown parameter B is the solution of:  
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Otherwise, for: 
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the relation for A is:  
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For simplification let us introduce the amplitude ratio C:  
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Introducing (24) into (18) it is:  
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For (25) the equation (21) transforms into:  
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Let us rewrite (26) into the form:  
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It is obtained that the motion of the outer mass 1 stops for C=0.  

4. Concept of effective mass in linear mass-in-mass unit 

Usually, it is suggested to transform the mass-in-mass model into a single effective mass whose 

motion corresponds to the motion of m₁. Namely, the linear momentum of effective mass with 

velocity u₁ is equal to the sum of the linear momentums of masses m₁ and m2:  

.22111 umumumeff
   (28)  

Using the relations (17) the effective mass is:  
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Substituting (27) we obtain:  
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where the amplitude of vibration B is the solution of the relation (21). The effective mass depends not 

only on the masses of the unit and rigidity properties of the spring, but also the parameters of 

excitation (amplitude and frequency). The relation (29) is negative for:  
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Introducing the notation for the eigenfrequency of the system:  
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We transform the relation (30) into:  
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It is evident that the band gap is broadened with increasing the nonlinear property of the spring. 

Besides, the position of the resonant regime varies dependently on the parameter α. For the linear 

case, when α=1, the width of the band gap frequency (7) is smaller than for any nonlinear case and the 

position is fixed for Ω/Ω₁=1.  

5. Acoustic metamaterial: Subunits connected in one dimensional lattice 

Let us consider the case when the mass-in-mass subunits are connected in lattice [21] (see Fig.3). 
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Figure 3.   Mass-in-mass subunits connected in a 1D lattice [21]. 

For the case when the elastic property of the connection is nonlinear, equations of motion for the unit 

cell follow as:  
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where γ∈Re₊ (integer or noninteger positive real number) is the order of nonlinearity and k is the 

rigidity constant. 

    Using the method of normal modes, suggested in the previous section, the relation between modes 

of vibration is:  

,,, )1(

2

)1(

1

)1(

2

)1(

1

)(

2

)(

1

  jjjjjj KuuKuuKuu  (34) 

where K is an unknown constant. Applying (34), equations (33) transform into:  
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The wave form solution is:  
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where L is the length, β is the wave number and i=√(-1) is the imaginary unit. Substituting (37) into 

(35) the equation transforms into:  
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Comparison of equations (36) and (38) yields:  
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The equation (36) is a second order strong nonlinear differential equation with general solution:  
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where the frequency of ca Ateb function is:  
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and B is the amplitude of vibration. According to 41) the constant C follows:  
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Substituting 42) into 39) the dispersion equation is obtained:  
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If the lattice system is reduced to a homogenous monoatom lattice system, where only effective 

masses meff are connected by springs with rigidity k, the homogenous lattice system is obtained. The 

dispersion equation of the system is:  
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Rewriting (44) into:  
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And substituting (45) into (43) we obtain:  
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For the case when the order of nonlinearity of the connecting elements of the absorber are equal, i.e., 

α=γ, it is:  
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The monoatom lattice system is equivalent to the original mass-in-mass system if their dispersion 

systems (43) and (47) are identical. 

5.1. Linear connection 

If the connection between subunits is linear the order of nonlinearity is γ=1. Then, reducing the lattice 

system to a homogenous monoatom one, we obtain that only effective masses meff are connected by 

springs with rigidity k and the dispersion equation is 
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Eliminating the wave number β and using the relation (46) the effective mass is: 
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Comparing (49) with the previous result for only one subunit (29) it is obtained that the monoatom 

lattice is equivalent to the original mass-in-mass system if the dispersion equations are identical. 

6. Conclusions 

Theory of acoustic metamaterial with resonators modelled as two-degree-or-freedom nonlinear mass-

in-mass systems is considered. Concept of the effective mass for the nonlinear unit is developed. The 

regions of negative effective mass are calculated. The theory is extended on the nomoatom lattice 

system which is often used in acoustic metamaterials.Based on the investigation the following is 

concluded that resonators, which are basic units of acoustic metamaterial, eliminate the wave 

propagation at certain vibration frequencies. The concept of effective mass, introduced in the paper, 

gives the possibility to obtain the region of negative values for which wave propagation band gaps 

exist. For the case when the mass-in-mass subunits are connected into an one-dimensional lattice, the 

effective mass of the monoatom lattice system is equivalent to the original mass-in-mass system if 

their dispersion equations and the mass ratio are identical. 
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Application of Pade approximations to the solution of nonlinear 

control problems 

 
Yulia Danik, Mikhail Dmitriev, Ekaterina Komarova, Dmitry Makarov  

Abstract: In this paper the Pade method of approximate solutions construction for 
various continuous control problems with a parameter, where it is possible to 
construct the control function asymptotics for small and large values of the parameter, 
is developed. As a result of constructing the asymptotic Pade interpolation (API), we 
obtain a control interpolation surface, where asymptotic approximations of the control 
are used as interpolation nodes. Such a dependence on parameters exists in numerous 
applications, where the large parameter value corresponds to large control gain 
coefficients, and small parameter values appear in case of weakly controlled systems, 
that is a family of controls with the varying gain is generated. For the case of a two-
point API the constructed surface serves as a “bridge” that is asymptotically close to 
the exact control surface for the parameter domains for which the asymptotics are 
constructed. The properties of stability and optimality of the resulting feedback 
controls are studied for linear quadratic optimal control problems with a parameter 
perturbations. The results of numerical experiments are discussed.  

1. Introduction  

The Pade approximation (PA) [1,2] is one of the asymptotic approaches that allows to approximate a 

function expanded in a Taylor series by a rational function of a given order – a ratio of two 

polynomials of degree m in the numerator and a power of n in the denominator. To construct the PA, 

it is necessary to solve a system of linear algebraic equations.  

One of the possible applications of this technique is the solution of control problems, namely the 

approximation of the optimal control law [3-4]. In papers [3-4], for example, the transfer function of a 

closed-loop control system is expanded into a series and is replaced by a Pade approximation. The 

unknown controller parameters are found from the equations and constraints obtained for the 

simplified transfer function of the second order.  

Here we will consider the matrix Pade approximation of the solution of a state dependent Riccati 

equation (SDRE) for a particular class of nonlinear control problems, namely, a control problem with 

a parameter that can take both small and large values, thereby determining either a weakly controlled 

system or a system with a large gain. For the corresponding SDRE we construct the asymptotic 

expansions of its solution for large and small values of the parameter. The well-known review [5] is 

devoted to the SDRE technique of suboptimal nonlinear control synthesis. The methods for 
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constructing approximate solutions of continuous and discrete matrix algebraic Riccati equations with 

state-dependent coefficients on the basis of asymptotics by a formally small parameter are presented 

in [6-10]. Each of the two mentioned asymptotic expansions is applicable in its local domain. It is 

possible to extend the results obtained by asymptotic methods and to get one single solution that has 

better quality (better approximation of the exact solution) than each of the asymptotics in the 

«middle» of the parameter values interval by the construction of the Pade approximation. 

This method allows to construct a solution for all possible values of the parameter by the 

combination of two asymptotics. The asymptotics splicing for the initial value problem solution of a 

singularly perturbed system of ordinary differential equations with the help of a two-point Pade 

approximation, or the so-called Pade-bridge, was carried out in [11] and also in [12]. In [11], a 

procedure for constructing approximations of the solutions of initial value problems with a parameter 

is proposed. In [12], an algorithm for constructing a parametric Pade-bridge for the solution of an 

optimal control problem with the free right end and two groups of motions is demonstrated. A 

singularly perturbed problem with left and right boundary layers is solved for small values of the 

parameter, and a regularly perturbed optimal control problem for large values of the parameter. The 

scalar Pade approximation constructed for this problem contains three series (with coefficients 

depending on t, fast and slow time, respectively) for each component of the solution vector, as in the 

Vasil'eva`s boundary functions method [13]. A system of equations for the coefficients of the Pade 

approximation was constructed, and a theorem on its solvability was presented. 

In this paper a procedure for constructing a matrix Pade-bridge for the feedback control gain 

matrix on the basis of two asymptotic approximations of matrix Riccati equation solutions obtained 

for small and large values of the parameter is proposed. Matrix Riccati equation is used in the SDRE 

approach (State Dependent Riccatti Equation) which is applied here to a particular class of SDC 

(State Dependent Coefficients [5]) control systems with a parameter which defines either the weakly 

controlled system, or a system with a large gain. The conditions of the closed-loop system stability for 

all positive values of the parameter in the case of a stationary linear system are given here, i.e. the 

conditions under which the Pade regulator ensures robust asymptotic stability properties of the 

closed-loop system with respect to the parameter value. Another advantage of the proposed approach 

is that there is no need to recalculate the solution once the parameter value changes, as in the 

traditional SDRE method. 

2. The control problem statement and the construction of asymptotic expansions of 

the Riccati equation solutions 

Let us consider the following optimal control problem for nonlinear continuous systems with a 

parameter 
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0( ) ( ) , (0) ,x A x x B x u x x    (1) 

 
0

( ) inf ,T T

u
x Q x x u Ru dt



   (2) 

where  ( ) , ( ) , 0,n rx t X R u t R t     , nX R  - is a certain fixed bounded state space 

subset, ( ) , ( ) , ( ) ,n n n rA x R B x R rank B x r x X      , ( ) 0Q x  , 0R  ,  0,   is a 

parameter which can take either small or large values. In the first case, system (1) is a weakly 

controllable system, in the second case, (1) is a system with a large control gain. All matrices` 

elements in (1) are rather smooth functions of their arguments. It should be noted that weight matrices
 

( )Q x  and R are defined subjectively. Our aim is to find an approximate solution of problem (1) as a 

function of parameter . The question is whether it is possible to construct a parametric synthesis in 

(1) for all values of  from a certain domain, including "middle" values, which provides good 

performance in comparison with the corresponding feedback control asymptotic approximations 

constructed in the specific domains of the parameter values.  

The system (1) has state-dependent coefficients. So we will use the SDRE approach scheme [5] 

to find a feedback control. Such a control is sought with the help of the solution scheme of the 

standard linear-quadratic optimal control problem with the infinite-time-horizon, i.e.   

 1 ( ) ( , ) , , 0,Tu R B x P x x x X        , (3) 

where ( , )P x   is a symmetric, positive-defined solution of the next matrix SDRE  

2 1( ) ( , ) ( , ) ( ) ( , ) ( ) ( ) ( , ) ( ) 0,T TA x P x P x A x P x B x R B x P x Q x          (4) 

which follows from sufficient optimality conditions. Regulator (3), (4) is often quite close to the 

corresponding optimal control. But the computational difficulties associated with the solution of (4) 

give rise to various approximate constructions, in particular, created on the basis of matrices 

representation in a weakly nonlinear form [9]. In this paper, taking into account the parameter 

variation domain, we will use the Pade approximation (PA) formalism to obtain an approximate 

solution of (4). The Pade approximation can be constructed both on the basis of individual asymptotic 

approximations in the regions of small and large parameter values, and on the basis of their 

combination, for example, two-point PA or Pade-bridges.  

At first, we construct the next formal second-order asymptotic approximation of ( , )P x   for 

small values of  
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2
2 0 1 2( , ) ( ) ( ) ( )P x P x P x P x     , (5) 

representing matrix ( )Q x  as  

2
0 1 2( , ) ( ) ( ) ( )Q x Q х Q x Q x     , (6) 

Substituting (5) into (4), and then equating the terms with the same powers of  , we obtain the 

following tree matrix relations 

0 0 0 1 1 1

1
2 2 0 0 2

( ) ( ) ( ) ( ) ( ) 0, ( ) ( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,

T T

T T

A x P x P x A x Q x A x P x P x A x Q x

A x P x P x A x P x B x R B x P x Q x

       

    
 (7) 

which are the Lyapunov matrix equations for 0 1 2( ), ( ), ( )P x P x P x . 

Next, we construct a second order formal asymptotic approximation of the solution of (4) for the 

case when  is rather large. Let’s make a substitution 
1




  and seek the solution of (4) as 

  2
2 0 1 2
ˆ ˆ ˆ ˆ, ( ) ( ) ( )P x P x P x P x      (8) 

Thus, we have 

2 2
0 1 2 0 1 2

0 1 2 0 1 2 0 1 22

ˆ ˆ ˆ ˆ ˆ ˆ( )( ( ) ( )) ( ( ) ( )) ( )
1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ( ( ) ( )) ( )( ( ) ( )) ( ) ( ) 0,

TA x P P x P x P P x P x A x

P P x P x S x P P x P x Q Q x Q x

   

 
   

      

        
 

where 1( ) ( ) ( )TS x B x R B x . After equating the terms with the same powers of , we obtain the 

following system of equations for terms of (8) 

0 0 2

0 1 1 0 1

0 0 0 2

2 0 1 1 0

ˆ ˆ( ) ( ) ( ) ( ) 0,
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

T

P x S x P x Q x

P x S x P x P x S x P x Q x

A x P x P x A x P x S x P x

P x S x P x P x S x P x Q x

 

  

   

   

 (9) 

The next statement follows from the Lyapunov`s linear matrix equations solvability  

Theorem 1. If matrices ( ), ( )A x В х  and the introduced positive definite matrices 

0 1 2( ), ( ), ( )Q x Q x Q x  satisfy the next conditions for each x X  

I. Re ( ( )) 0,A x x X    , 

II. 1
2 0 0( ) ( ) ( ) ( ) ( ) 0,TQ x P x B x R B P Xx x x    , 
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III. ( ) ,rank B x n x X   , 

IV. 0 0 0 1 1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0, ,TQ A x P x P x A x P x S x P x x X       

then the following is true 

1. The Riccati equation (9) has a positive definite solution 0̂ ( )P x  for all x X . 

2. The Lyapunov equations in (7) and (9) have unique positive definite solutions 0 ( ),P x  1( )P x ,

2 ( )P x , 1̂( )P x 2̂ ( )P x  for each x X . 

3. Asymptotic approximations  2 2̂( , ), ,P x P x   from (5) and (8) are positive definite matrices 

for all ,x X 0  . 

When the terms of representations (7), (9) are defined it is possible to establish the existence of a 

positive definite solution ( , )P x   of (4) in some domains of large and small parameter values with 

the help of successive approximations method and it is also possible to obtain some asymptotic 

estimates. Thus we have  

Theorem 2. Let us suppose that all the conditions from Theorem 1 are satisfied, then there exist 

a sufficiently small constant 1
0 0   and a sufficiently large constant 2

0 0   such that equation (4) 

has a positive definite solution ( , )P x   for all x X  and 1
00    , 2

0  , and the following is 

true 

3 1
2 0

2
2 03

( , ) ( , ) ( ), 0 ,

1 1ˆ( , ) , , ,

P x P x O x

P x P x O x

X

X

    

  
 

    

   
      

   

 (10) 

3. Pade bridge or a two-point PA. 

By splicing of the two asymptotic expansions (5) and (8), we can now obtain an approximate solution 

of (4) for the entire interval of  variation with the help of (10). That is, it is possible to construct a PA 

which will be close to (5) for small values of  and will be close to (8) for large values. For "middle" 

values of  it may be expected that such PA will be closer to an exact solution than any of these two 

asymptotics.  

Definition. A two-point matrix Pade approximation (PA) will be referred to as a matrix Pade-

bridge on the half-line for the solution of Riccati equation (4) if it exists for all 0    and 

estimates in (10) hold. 

Obviously, different РАs can be constructed, but here we restrict ourselves to constructing only 

the right-hand РА of [1/2] order (see [1]), which we seek in the form 
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    
12

[1/2] 0 1 1 2, ( ) ( ) ( ) ( ) ,PA x M x M x I N x N x   


     (11) 

where I is a n n  identity matrix. 

Note that if (11) exists for any x X , 0  , then such a Pade-bridge is an interpolation 

surface that approximates the surface ( , )P x   by splicing the asymptotic approximations obtained in 

the neighborhoods of small and large values of ε. 

Thus, taking into account (5) and (8) we have 

   

   

12 2 3
0 1 1 2 0 1 2

12
0 1 1 2 0 1 22 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

1 1 1ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) .





      

 
        

 

M x M x I N x N x P x P x P x O

M x M x I N x N x P x P x P x O

     

  
  

 

Multiplying both equalities on the right by  2
1 2( ) ( )I N x N x    and equating the terms for 

the same powers of ε we get the next systems for determination of matrices in (11) 

0
0 0 0 0 1 1 2 2

1
1 0 1 1 1 0 1 1 2

ˆ ˆ ˆ: ( ) ( ), ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ: ( ) ( ) ( ) ( ) 0, ( ) ( ) ( ) ( ) ( )

M x P x M x P x P x N x P x N x

M x P x N x P x M x P x N x P x N x





   

    
 

or 0 0( ) ( )M x P x  and 

0 11

1 2 1 0 0

20 1

( ) 0 ( )( )
ˆ ˆ ˆ0 ( ) ( ) ( ) ( ) ( ) .
ˆ ˆ ( ) 0( ) ( )

I P x P xM x
P x P x N x P x P x

N xI P x P x

     
    

     
            

 (12) 

Let us introduce the condition  

V. The system (12) is uniquely solvable, the matrix  2
1 2( ) ( )I N x N x    is nonsingular, 

and the real parts of the  [1/2] ,PA x   eigenvalues are positive for , 0x X    . 

The condition V actually determines the existence of the Pade-bridge (11) for the Riccati 

equation (4) solution for all (0, )    based on the asymptotic approximations (5), (8). 

Now we can introduce the next regulator for all , 0x X    

 1( , ) ( ) , ,Tu x R B x K x х     (13) 

where the symmetric matrix  
    [1/2] [1/2], ,

, 0
2

TPA x PA x
K x

 



   for all , 0x X   . 
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Theorem 3. Under conditions I, III-V, there exist the Pade-bridge  [1/2] ,PA x   (11), 

constructed for the solution of Riccati equation (4) on the basis of the asymptotic approximations (5), 

(8), for [0, )   . 

Remark 1. The condition II is not required in Theorem 3, since it is not used for the construction 

of the Pade-bridge (11). 

4. The Pade regulator and stabilization  

Let us consider the case of the stationary problem (1),(2), where all matrices do not depend on time. 

Accordingly, a positive definite matrix  K   can be used to construct the Lyapunov function 

 ( , ) TV x x K x   for such problem. 

Now let’s calculate the total time derivative along the trajectories of the closed-loop system 

(1),(13). We have 

          

     

           

            

2 2

2 2

2

( , ) ( )

[ ]

TT T T

T T
PA PA

T T T T T

T T T

dV x dх dхK x x K Ax Bu K x x K Ax Bu
dt dt dt

Ax SK x P x x P Ax SK x

x A K x x K SK x x K Ax x K SK x

x A K K A x x K SK K SK x


     

   

       

      

      

    

    

   

  

By the Lyapunov lemma (see, for example, [14]), there exist such matrix 1 0D  , that 

   1
TD A K K A    . So we get 2

1 2
( , ) 0, 0, 0,T TdV x x D x x D x x
dt


       

where    2 2 0D K SK   . Thus the next theorem is true 

Theorem 4. If all matrices in (1),(2) are constant, then under conditions I, III-V, the regulator 

(13), based on the Pade-bridge (11), stabilizes the system (1) for any (0, )   . 

Remark 2. Examples show that due to the positive definiteness of the matrix terms of asymptotic 

approximations (5),(8), and the special choice of matrices 0 1 2( ), ( ), ( )Q x Q x Q x , the condition V can 

be satisfied. 

Remark 3. The assertion of Theorem 4 can be generalized to weakly nonlinear systems by the 

scheme presented in [9], where the regulator (13) will be used in the zero order approximation. 

So, the stabilizing regulator (13) is robust by ε for (1) in the stationary case, because the 

asymptotic stability of a closed-loop system along this regulator is preserved for any perturbations of 

parameter ε in the admissible domain of its variation. 
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Remark 4. Stabilizing Pade regulators can be constructed not only for continuous, but also for 

discrete time control systems with a smooth dependence on a parameter, for which the results on the 

stabilizing regulators asymptotic approximation can be found in [7, 10]. 

5. Numerical experiments. 

Let us consider the following example with a vector control, where 

0 1 2

2 0.5 2 0.4 5 0.5 1 0 1 0 1 0
A= , B= , Q = , Q = ,Q = , R= ,

1 0.7 0.5 1.4 0.5 5 0 1 0 1 0 1
            
           
            

 0 1 1 Tx   . It clearly follows that here matrices 0 1 0 1 2 0
ˆ ˆ ˆ, , , , ,P P P P P M  are symmetric and positive 

definite, 0

2.315 -2.130
,

-2.130 5.093
M  

  
 

and matrices 1 1 2, ,M N N  have positive eigenvalues but are not 

symmetric 1 1 2

0.602 -0.635 0.070 -0.086 1.786 -1.317
, , .

-0.509 1.130 0.024 -0.022 -0.936 2.656
M N N     

       
     

A series 

of experiments were performed with different ε for the Pade regulator (13) and the SDRE regulator 

(3). The results of these regulators comparison by the quality criterion are presented in Table 1, and 

the trajectories of the corresponding closed systems are shown in Fig. 1. 
 

Table 1. A comparison of two control algorithms by criterion values 

 ε 0.01 0.3 1 6 15 

I(u) 

SDRE regulator 
(SDRE) 

9,109 7,385 3,697 1,870 1,728 

Pade regulator (PA) 9,109 7,592 3,720 7,186 20,143 

Asymptotics by large ε 
(second order) 1.253·104 17,702 3,947 1,870 1,728 

Asymptotics by small ε 
(first order) 

9,109 8,180 7,425 13,433 24,700 
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Figure 1.   System stabilization for different values of ε in the stationary case 

It can be seen from Table 1 that the Pade regulator demonstrates good performance almost for all 

values of ɛ except large values and Fig. 1 shows that it stabilizes the closed-loop system for the 

specified values of ɛ.  

6. Conclusion 

One of the possible stabilizing regulators for nonlinear control systems with a positive parameter 

 0,    is presented, which is based on the matrix Pade [1/2] approximation. The Pade 

approximation is constructed on the basis of two asymptotic approximations of the state-dependent 

matrix Riccati equation solution. For stationary control systems it was established that the constructed 

family of regulators is an approximate symbolic description of the parametric set of stabilizing 

controls. Numerical experiments show that two-point Pade regulators by using two asymptotic 

approximations can be more effective than regulators based on individual asymptotic expansions. For 

certain domains of parameter values the Pade regulator is close to the SDRE control, which is in some 

cases close to the optimal solution. The stabilizing Pade regulator is robust by the parameter in the 

stationary case, because the asymptotic stability of a closed-loop system along this regulator is 

preserved for any perturbations of parameter in the admissible domain of its variation. 
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Developments of non-linear dynamics FEM simulation of the impact 

performance of road safety barriers with use of experimental validation of 

models 

 

Irina Demiyanushko, Ilya Karpov, Beka Tavshavadze 
 

Abstract: A computer simulation with application use of the non-linear finite element 
programs developed to computational research of vehicle (cars, buses) collisions with 
road barriers having various original designs. It is demonstrated that for obtainment of 
adequate results of vehicle impact action on complex barrier structures an experimental 
validation of models is needed which allows obtain the main characteristics of the 
structures by calculation. Simulation calculations performed using approach virtually 
substitute field tests of the structures. Features of wave processes at single and repeated 
impacts, and corresponding power interactions in elements of designs investigate.  

Road barrier is a device designed for traffic arrangement: reducing the number of cross-median 

crashes, collision with oncoming vehicle, hitting on roadside structures. In Russia, traditionally 

installed–concrete barriers (Fig. 1a) and metal guardrail (Fig. 1b), that prevent penetration of a vehicle 

to the oncoming lane or accidental exit from the road.  

 

  
а) b) 

Figure 1.  Types of road barriers: a) concrete barriers; b) –guardrail barrier 

Due to the increase vehicle mass and size, traffic load on the main routes, increase in driving 

speed, for retention of vehicles it is necessary to enhance the impact energy of road barriers, which is 

the main characteristic of barrier structure. The lateral impact energy – U corresponds to kinetic impact 

energy – E kJ, occurring at vehicle impact on the barrier, which the barrier must withstand without 
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considerable destruction and at the same time provide for a variety called consumer-oriented 

characteristics [1].  

The impact energy calculated by 

𝐸 =
𝑚(𝑣 ∗ 𝑠𝑖𝑛𝛼)2

2
 (1) 

 – impact angle, degrees, m – vehicle mass, t; v– impact speed, m/s 

Normally, the U value of the most barriers is within 90 –700 kJ [1].  

Figure 2 shows the scheme of vehicle run into lateral barrier installed on the road center line and 

specifies some typical parameters, the target impact angles 20 degrees (average statistical value), value 

of barrier maximum dynamic deflection at the moment of impact.  

 

Figure 2. The scheme of vehicle running into the central line barrier  

Enhancement of the lateral impact energy of classic barriers provided with increase of their 

height and material volume. The barriers become increasingly bulky, they occupy a substantial part of 

road space and block the road perspective for the drivers, disturb the architectural look of the roads. 

Some years ago developed new barrier structures– roadside and median versions of the cable barrier 

(Fig. 3) and "front barriers" that designed for damping of direct impact and installed on V-junctions 

and in front of lateral barriers [3]. 

  

a) b) 
Figure 3. Cable median and roadside barrier (a) and front barriers (b) in front of the bridge footing 
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Evaluation of compliance with the requirements of basic barrier parameters is carried out by 

field testing of the barriers where vehicles run into a barrier. The tests carried out on special purpose 

testing grounds. However, in the design of the structures, benchmarking analysis, minor changes of the 

parameters and analysis of accident situations they currently widely use the computer simulation 

methods – so called "simulation analysis".  

At Moscow Technical University MADI researches are conducted with design of barrier 

systems, laboratory tests of the elements and development of the computational simulation analysis. 

Use of mathematical simulation analysis based on modern computer products and modern computing 

technology made it possible in a short span of time to address the issues related to rational choice such 

structures, as of cable barriers, demonstrate their operating peculiarities, efficiency in holding / 

retaining of different type vehicles, and consequences of running into. The impact process when a 

vehicle runs into a barrier represents a highly nonlinear and fast process, so average value of vehicle 

interaction from the moment the vehicle touches the structure to the exit normally lasts for 200-300 ms.  

A barrier structure normally consists of thin-walled elements (beams) and cables – in cable structures; 

vehicle body parts are thin-walled as well, thus during the impact, considerable mutual deformations 

and displacements, contact interactions, plastic deformations take place, therefore the run into tasks is 

highly nonlinear. The structural complexity dictates use of the finite element method (FEM) for the 

computations. In this context, for solution of impact simulation task when a vehicle runs into a barrier, 

the multi-purpose FEM program complex LS-Dyna DYNA (Livermore Software Technology Corp., 

California, USA) (licensed version) was used [2]. Our experience in numerical analysis of different 

barrier structures and comparison with field and experimental study results made it possible to lay down 

requirements to computations, which formed in appropriate specifications and guidelines. The basic 

principle for construction of FE-analysis models is the necessity to verify the built individual FE-

models of the structures and the full-size structure of colliding bodies system.  

Thus, when selecting FE models for cables, required for simulation of cable barriers, they 

studied the statics and dynamics (Fig. 4) of currently used steel cables, developed appropriate testing 

methods [3,4] resulting in selection of an adequate model consisting of beam-shell elements considered 

in [5]. Those studies showed that the propagation of deformation waves in the cable in case of impact 

is a complex process, and the impact energy absorption is mainly due to friction of cable wires and 

depends heavily on cable pre-tension. 

A similar verification study of impact on a barrier posts, mounted in a shell and concrete 

foundation or directly in the road top carried out both by experiment and simulation computation 

method (Fig.5) [6].  
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a) b) 

Figure 4. Test for cable dynamic model validation: (a) experiment, (b) FE model 

  
a) b) 

Figure 5. Cable barrier post's test: a) experiment b) FE simulation 

The studies show, that the simulation FE computation of impact on the posts reasonable 

accurately replicates the experiment results both qualitatively and quantitatively that afforded grounds 

for selection of appropriate FE models. Essential points in development of adequate simulation models 

are issues of selection and simulation of friction surfaces and work of connection elements in barrier 

structures under consideration.  

 The simulation analysis determines all characteristics of impact interaction of a vehicle with 

a barrier. Thus, the injury severity index I, which actually represents an average value of inertial 

accelerations in the center of vehicle mass, is one of the most important characteristics of the barrier. 

          The injury severity index determined by a formula [1] 
  

𝐼 = [(
𝑁𝑥

12
)
2
+ (

𝑁𝑦

9
)
2
+ (

𝑁𝑧

10
)
2
]
0,5

, (2) 
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where Nx, Ny, Nz are average values of inertial accelerations along vehicle axes in m/s2 are determined 

and analyzed in the simulation computation. Equally, important characteristics determined by the 

computational analysis are dimensions of so called "corridor", i.e. capabilities of impacted vehicle run 

beyond tolerable limits, as well as the coefficient of vehicle internal dimensions integrity determined 

by relative deformations of the vehicle body in the intended directions for each vehicle type.  

Following are the results of simulation analysis of cable barrier behavior run into and impacted 

by a bus (Fig.6). This is a typical analysis carried out in accordance with safety standards.  

  
a) b) 

Figure 6 – Simulation of cable barrier elements, а) – solid model, b) – FE model 

  
a) b) 

Figure 7. Initial moment of bus impact on the cable barrier a) FE model b) Test 

 

Tracking of bus runway identity in field tests and simulation computation (Fig. 7), as well as 

comparison of all parameters (Fig. 7- 9) makes it possible to establish adequacy of the computational 

model. 
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Figure 8. Change of cable forces in cables during the impact 

 
Figure 9. Accelerations in the center of bus masses when running into a barrier, I = 0.56, variation 

from the experiment equals to 7.5%. 

 Operating principle of different barrier structures is, certainly, different. If a cable barrier 

absorbs the impact energy due to the high friction and, consequently, damping in the system though the 

main forces in the cables are stretching forces then the barrier works as a beam system loaded with 

dynamic transverse forces. For these reasons, FE models of barrier railings differ from cable barriers. 

For simulation of a barrier beam, which is the main load-bearing element, they use shell elements; the 

appearance of FE models of the main barrier railing structural elements and their connections shown in 

Fig. 10 a, b. For connection of beam with a console-shock absorber are use a deformable destructible 

bolt connection. Connecting elements used for connection of the console-shock absorber with the poles 

are rigid and indestructible RBE-elements (Fig. 10b). 
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(a) (b) 

Figure10. Appearance of barrier railing connection elements: (а) bolt connection of the beam 
with compensators, (b) connection of compensators with the pole using RBE-elements 
 

Steel barrier beam is made of light-gauge sheet metal and FE model of the beam simulated with 

two-dimensional shell elements. Compensators, which along with the beam take the impact load, 

simulated with shell elements as well. The barrier post mounted (piled) in the soil body as well 

represents a beam of different section – a U-section for this example (Fig.11). 

 
Figure 11. FE model of guardrail road barrier 
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Fig.12 illustrate an example of calculated model behavior at different time intervals in 

simulation of a bus running into a barrier at E=300 kJ, along with representation of not only the first 

impact but the bus turn and repeated impact on the barrier with its rear part. 

  

  

  

a) b) 

Figure 12. Guardrail and bus interaction: a) side view b) top view 

 Accelerations in the center of mass making possible to assess the impact effect on the 

severity of consequences following computation results compared with the experimental results, Fig. 

13, the computation results are coincides with the experiment. 
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Figure 13. Acceleration in FE model in directions: X (red), Y (green), Z (blue) 

In this article, we, naturally, were unable to demonstrate all study materials on simulation of 

run into processes and impact of various type vehicles on road barriers of different structures. However, 

even these limited results show, that application of modern numerical methods of nonlinear dynamic 

computation to complex tasks of vehicle impact collision with deformable safety barrier systems 

provide sample opportunities for analysis of these processes. It should be noted, that the costs of initial 

development of adequate FE models are, certainly, heavy; these procedures require the compulsory 

verification of the models by comparison with the experiment, however, in the future those costs reduce 

significantly due to use of the analogies, specifically, in models of materials and structures. For 

instance, we had no opportunity here to demonstrate extremely interesting solutions on analysis of 

vehicle running into rigid concrete barriers, where a concrete destruction simulation task occurs, and 

which is of great interest and which was resolved along with the use of nonlinear analysis complex 

MSC. Software / MARC [7]. Analysis of running into front barriers with account of variety of their 

structures and used materials is a challenge as well. 
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Nonlinear differential-difference equations related
to the second Painlevé equation

Galina Filipuk

Abstract: As a result of classification of second order ordinary differential equa-
tions without movable branch points,

f ′′ = F (z, f, f ′), f = f(z), ′ = d/dz,

where F is rational in f , algebraic in f ′ and analytic in z, a number of the
so-called Painlevé equations was obtained. Among them, six irreducible equa-
tions are best known. They led to the recognition of new functions, called the
Painlevé transcendents. The Painlevé equations have numerous applications
in modern mathematics and mathematical physics. They can be obtained
by similarity reductions from certain integrable partial differential equations
(e.g., KdV, mKdV and others). They possess a number of other remarkable
properties (e.g., Bäcklund transformations, classical solutions, the Hamiltonian
structure). Via the Hamiltonian structure the Painlevé equations are related to
their associated equations, the so-called σ−equations. In this paper we derive
Bäcklund transformations for two σ−forms of the second Painlevé equation
(with respect to two different Hamiltonians) and use these transformations to
obtain nonlinear differential-difference and difference equations for the solu-
tions.

1. Introduction

The sixth irreducible Painlevé equations are nonlinear second order ordinary differential

equations of the form

f ′′ = F (z, f, f ′), f = f(z), ′ = d/dz, (1)

where F is rational in f , algebraic in f ′ and analytic in z, which possess the Painlevé prop-

erty (solutions have no movable algebraic singularities). They were obtained in the papers

of Painlevé [5] and his student Gambier [1]. In general, solutions of nonlinear differential

equations may have very complicated movable singularities, which depend on initial condi-

tions [3], but the Painlevé property guarantees that solutions have at most movable poles.

The Painlevé equations (and their associcated equations, including σ−forms and discrete

equations) have numerous applications in modern mathematics and mathematical physics.
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They can also be obtained by similarity reductions from certain integrable partial differ-

ential equations (e.g., KdV, mKdV and others). The Painlevé equations are irreducible in

the sense that they cannot be linearised or their solutions cannot be expressed in terms of

classical special functions for general values of the parameters in equations. However, for

special values of the parameters, Painlevé equations may possess either rational or algebraic

solutions, or solutions expressed in terms of classical special functions (e.g., Airy, Bessel,

(confluent) hypergeometric functions).

In this paper we shall concentrate on the second Painlevé equation given by

f ′′ = 2f3 + zf + α, (P2)

where α is a fixed complex parameter and f = f(z).

The Painlevé equations are known to possess the Hamiltonian structure [4]. Equation

P2(α) can be represented as a Hamiltonian system with the Hamiltonian

H2(p, q, z) :=
1

2
p2 − (q2 +

1

2
z)p−

(
α+

1

2

)
q,

such that
dq

dz
=
∂H2

∂p
= p− q2 − 1

2
z,

dp

dz
= −∂H2

∂q
= 2qp+ α+

1

2
,

(2)

where q solves P2 and p solves equation P34 given by

p′′ =
(p′)2

2p
+2p2−zp−

(
α+

1

2

)2
1

2p
. (P34)

The so-called σ−form of the second Painlevé equation is obtained as follows. By putting

σ(z) := H2(p, q, z),

it can be shown that the function σ solves the following second order second degree nonlinear

differential equation:

(σ′′)2 + 4(σ′)3 + 2σ′(zσ′ − σ) =
1

4

(
α+

1

2

)2

. (S2)

Conversely, if σ is a soluton of S2, then
q =

4σ′′ + 2α+ 1

8σ′
,

p = −2σ′
(3)
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solve P2 and P34 respectively. Note that we have a constant solution to equation S2 if

α = −1/2.

It is known [2] that the second Painlevé equation possesses the so-called Bäcklund trans-

formations. They relate solutions with different values of the parameter α. In particular, if

q = qα(z) is a solution of P2(α), then qα±1 given by

qα±1 = −q − 2α± 1

2q2 ± 2q′ + z
(4)

solve P2(α ± 1). Equations in (4) can be used to obtain a nonlinear difference equation for

the solutions of P2. Indeed, eliminating q′ between two equations (4), we get

2α+ 1

qα+1 + qα
+

2α− 1

qα + qα−1
+ 4q2 + 2z = 0. (5)

The main objective of this paper is to obtain Bäcklund transformations for the σ− form

of the second Painlevé equation and use them to find the analogue of (5). Moreover, we

shall also use another Hamiltonian system, derive the corresponding σ−form and examine

various properties of its solutions.

2. Bäcklund transformations for the σ− form of P2 and nonlinear difference

equations

From (2) we have

p =
1

2
(z + 2q2 + 2q′),

and the Hamiltonian, which is also the function σ in our notation, becomes

σ = −1

8
(z2 + 4(2α+ 1)q + 4zq2 + 4q4 − 4q′2). (6)

Next, we write the Hamiltonian system (2) for qα+1 and pα+1. Using (4) we can find

expression of pα+1 in terms of q = qα. Substituting this expression into σα+1 and eliminating

q′′ and higher order derivatives by using P2, we get

σα+1 =
1

8(z + 2q2 + 2q′)
(16α+ 8 − z3 − 2qg1 − 2q′g2 + 4(z + 2q2)q′2 + 8q′3), (7)

where g1 = 2z(2α− 1) + q(3z2 + 2q(2q3 + 3zq+ 4α− 2)) and g2 = z2 + 4q(2α− 1 + zq+ q3).

Substituting (3) into (7), we get an expression of σα+1 in terms of σ and its derivatives

up to order 3. We can now use equation S2 to get

σα+1 =
4σ′′ + 8σσ′ − 2α− 1

8σ′
. (8)
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Equation (8) is a (forward) Bäcklund transformation for the σ− form of the second Painlevé

equation. It relates solutions of equation S2 with parameters α and α+ 1.

To get a differential-difference equation for the solutions of S2 we can take (7) and (6)

and compute the resultant to eliminate q′. Next we can substitute (3) for q in terms of σ and

its derivatives and use equation S2 to eliminate the third and higher order derivatives of σ

and powers of σ′′. The resulting equation, which is quadratic in σα+1 and contains σ, σ′, σ′′,

is cumbersome and we shall not present it here.

Similar procedure yields

σα−1 =
1

8
(4q − z2 − 8αq − 4zq2 − 4q4 + 4q′2) (9)

and

σα−1 =
4σ′′ + 8σσ′ + 2α+ 1

8σ′
. (10)

Note that

σα−1 = σ + q. (11)

Thus, we have the following theorem.

Theorem 2.1 The Bäcklund transformations for equation S2 are given by (8) and (10).

Moreover, using (8) and (10), we get the following differential-difference equation:

σα+1 − σα−1 +
2α+ 1

4σ′
= 0.

We also remark that since σα+1 can be expressed in terms of q and q′, and since q = σα−1−σ,

q′ = σ′α−1 − σ′, we can find an expression of σα+1 in terms of σα−1, σ and their derivatives.

This will give another differential-difference equation.

To get the analogue of (5) for solutions of equation S2, we use expressions of σ and σα+1

in terms of q and q′, substitute there q = σα−1 − σ and compute the resultant to eliminate

q′. In the result, we get a nonlinear difference equation relating σα±1 and σ.

Theorem 2.2 Let σ = σα and σ±1 = σα±1 be solutions of equation S2 with parameter

α and α± 1 respectively. Then

((2α+ 1)σ − (2α− 1)σ1)σ + ((2α+ 1)σ1 − (2α+ 3)σ)σ−1 +
(2α+ 1)z

2
=

(2α+ 1)2

4(σ1 − σ−1)
.

(12)
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3. Classical solutions of the σ−form of P2

It is well-known that for special values of the parameter in the equation, P2 possesses special

Riccati type solutions (the so-called classical solutions). In particular, if α = 1/2, then

solutions of

q′ = q2 + z/2 (13)

also solve P2. For α = −1/2 we have another one-parameter family of classical solutions:

q′ = −q2 − z/2. (14)

Clearly, for family (13) we have p = z+ 2q2 and for family (14) p = 0 using the Hamiltonian

system (2). For equation S2 these two families of Riccati solutions correspond to σ = −q
and to σ = 0. Using (3) we have for α = 1/2

σ′′ = −1

2
(4σ′σ + 1).

Substituting this expression into S2(1/2) we get an equation for Riccati solutions for the

σ−form.

Theorem 3.1 Solutions of

σ′ = −1

2
(2σ2 + z)

solve S2 with α = 1/2. The Bäcklund transformations (8) and (10) for this family are

σ3/2 =
1

z + 2σ2
, σ−1/2 = 0.

Therefore, we have Airy functions as special solutions of S2.

4. Patterns for expansions

It is well-known that solutions of the second Painlevé equation are meromorphic functions

in the complex plane. There are two types of expansions around movable poles:

q(z) =
1

z − z0
− z0

6
(z − z0) − α+ 1

4
(z − z0)2 + a3(z − z0)3 +O((z − z0)4) (15)

or

q(z) = − 1

z − z0
+
z0
6

(z − z0) − α− 1

4
(z − z0)2 + a3(z − z0)3 +O((z − z0)4), (16)
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where a3 is an arbitrary constant. The corresponding expansions for p in the Hamiltonian

system are

p(z) = −2α+ 1

2
(z − z0) +

z20 + 180a3
36

(z − z0)2 +
(2α+ 1)z0

6
(z − z0)3 +O((z − z0)4)

or

p(z) =
2

(z − z0)2
+
z0
3

+
1

2
(z − z0) +

z20 + 36a3
36

(z − z0)2 +
z0
18

(z − z0)3 +O((z − z0)4).

Therefore, using the definition of σ we have the following expansions:

σ(z) = −z
2
0 + 180a3

35
+

2α+ 1

8
(z − z0)2 +O((z − z0)3)

or

σ(z) =
1

z − z0
− z20 − 180a3

36
− z0

6
(z − z0) − 1

8
(z − z0)2 +O((z − z0)3).

Next we shall study how corresponding expansions change after Bäcklund transformations.

For the solutions of P2 we have

qα+1(z) =
z20 + 180a3
18(2α+ 1)

+O((z − z0))

or

qα+1(z) =
1

z − z0
− z0

6
(z − z0) − α+ 2

4
(z − z0)2 +O((z − z0)3)

and

qα−1(z) = − 1

(z − z0)
+

1

6
z0(z − z0) − α− 2

4
(z − z0)2 +O((z − z0)3)

or

qα−1(z) =
z20 − 180a3
18(2α− 1)

+O(z − z0).

Note that for the expansion of q with residue 1 at z = z0 the forward Bäcklund transformation

gives a regular expansion, whereas the backward Bäcklund transformation gives a polar

expansion with residue −1. On the other hand, for the expansion of q with residue −1 at

z = z0 the forward Bäcklund transformation gives a polar expansion with residue 1 and the

backward Bäcklund transformation gives a regular expansion at z = z0.

For the solutions of S2 we have

σα+1(z) = − (3 + 2α)(z20 + 180a3)

36(2α+ 1)
+O(z − z0)
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or

σα+1(z) = −z
2
0 − 180a3

36
+

2α+ 3

8
(z − z0)2 +O((z − z0)3),

and

σα−1(z) =
1

(z − z0)
− z20 + 180a3

36
− z0

5
(z − z0) − 1

8
(z − z0)2 +O((z − z0)3)

or

σα−1(z) = −z
2
0 − 180a3

36
− 2α− 1

8
(z − z0)2 +O((z − z0)3).

Note that for the regular expansion of σ at z = z0 the forward Bäcklund transformation gives

a regular expansion, whereas the backward Bäcklund transformation gives a polar expansion

with residue 1. On the other hand, for the expansion of q with residue 1 at z = z0 both the

forward and the backward Bäcklund transformation give a regular expansion at z = z0.

Finally, we note that we can use equation (12) to get some information on the expansions

of solutions of equation S2. In particular, substituting the Ansatz

σ(z) =

∞∑
n=0

bn(z − z0)n, σα−1(z) =

∞∑
n=−1

cn(z − z0)n, σα+1(z) =

∞∑
n=0

dn(z − z0)n

with the assumption c−1 = 1 we can consecutively get a few relations between the unknown

coefficients bn, cn, dn. For instance, (2α+ 1)d0 = (2α+ 3)b0.

Similarly, substituting the Ansatz

σ(z) =

∞∑
n=−1

bn(z − z0)n, σα−1(z) =

∞∑
n=0

cn(z − z0)n, σα+1(z) =

∞∑
n=0

dn(z − z0)n

with the assumption b−1 = 1, we get d0 = c0, d1 = c1, d2 = c2 + (2α+ 1)/4 and so on. This

is similar to the results when we search for the expansions of (5) for instance in the form

q(z) =

∞∑
n=−1

bn(z − z0)n, qα−1(z) =

∞∑
n=−1

cn(z − z0)n, qα+1(z) =

∞∑
n=0

dn(z − z0)n

with b−1 = 1 and get c−1 = −b−1, c0 = −b0, c1 = −b1, c2 = −(b2 + (2α − 1)/4) or in the

form

q(z) =

∞∑
n=−1

bn(z − z0)n, qα−1(z) =

∞∑
n=0

cn(z − z0)n, qα+1(z) =

∞∑
n=−1

dn(z − z0)n

with b−1 = −1 and get d−1 = 1, d0 = −b0, d1 = −b1, d2 = −(b2 + (2α+ 1)/4).
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5. Another Hamiltonian

Recently a new Hamiltonian for the second Painlevé equation was introduced in [6]. It has

the form

H̃2(z, p, q) =
1

2
p2 − 1

2
q4 − 1

2
zq2 − αq.

The corresponding Hamiltonian system is

q′ = p, p′ = 2q3 + zq + α.

By introducing s(z) := H̃2(z, p, q), we get

s =
1

2
q′2 − 1

2
q4 − 1

2
zq2 − αq, (17)

s′ = −1

2
q2, s′′ = −qq′.

Next we derive the σ−form of P2 with respect to this Hamiltonian and present Bäcklund

transformations. We also briefly discuss differential-difference and difference equations, clas-

sical solutions and expansions of solutions around movable poles.

Theorem 5.1 The function s(z) := H̃2(z, p, q) satisfies the following second order fourth

degree differential equation:

(s′′)4 + 8s′(s′′)2(s+ s′(2s′ − z)) + 16(s′)2(2αs′ + (s+ s′(2s′ − z))2) = 0. (18)

Moreover,

q = − (s′′)2 + 8(s′)3 − 4z(s′)2 + 4ss′

4αs′
, q2 + 2s′ = 0.

The Bäcklund transformations are given (in terms if q and q′) in the following theorem.

Using expressions for q in the theorem above, we can get cumbersome expressions in terms

of s and its derivatives up to second order, but we omit these expressions.

Theorem 5.2 Let q be a solution of P2(α). Then

sα+1 =
1

2

(
q′2 − q(q3 + zq + 2α) +

2α+ 1

2q′ + 2q2 + z

)
(19)

and

sα−1 =
1

2

(
q′2 − q(q3 + zq + 2α) +

2α− 1

2q′ − 2q2 − z

)
(20)

solve (18) with parameters α+ 1 and α− 1 respectively. If s is defined by (17), then we have

the following differential-difference equation:

sα+1 − sα−1 =
2(αz + 2αq2 − q′)

z2 − 8αq − 8s
. (21)
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To get a nonlinear difference equation for s, sα+1 and sα−1 we use equation (21) to find

q′. Substituting this expression into (17) and into either (19) or (20) we can eliminate q by

computing the resultant. The resulting equation is very cumbersome.

As in the previous section, we can compute expansions of s, which correspond to expan-

sions (15) or (16). We have

s(z) =
1

2(z − z0)
+

7z20 − 360a3
72

+
z0
6

(z − z0) +
1

8
(α+ 1)(z − z0)2 +O((z − z0)3)

or

s(z) =
1

2(z − z0)
+

7z20 + 360a3
72

+
z0
6

(z − z0) − 1

8
(α− 1)(z − z0)2 +O((z − z0)3).

We also have

sα−1 =
1

2(z − z0)
+

7z20 − 360a3
72

+
z0
6

(z − z0) − α− 2

8
(z − z0)2 +O((z − z0)3)

or

sα−1 =
720a3(α− 1) + z20(14α− 5)

72(2α− 1)
+O(z − z0)

and

sα+1 = −720a3(α+ 1) − z20(14α+ 5)

72(2α+ 1)
+O(z − z0)

or

sα+1 =
1

2(z − z0)
+

7z20 + 360a3
72

+
z0
6

(z − z0) +
(α+ 2)

8
(z − z0)2 +O((z − z0)3).

Finally, for both (13) and (14) we have z2 = 8(αq + s), which, using q2 = −2s′, gives

the following Riccati equation of (18) with α = ±1/2:

128α2s′ + 64s2 − 16z2s+ z4 = 0.

For the family (13) we have

s3/2 =
2(2α+ 1) + z3 − 8zαq + 2z2q2 − 16αq3

8z + 16q2

and for the family (14) we have

s−3/2 =
z3 − 2(2α− 1) − 8zαq + 2z2q2 − 16αq3

8z + 16q2
.
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Kahan discretisation of a cubic Hamiltonian system

Galina Filipuk, Thomas Kecker

Abstract: We apply Kahan’s discretisation method, also known as the Hirota-
Kimura method or Runge-Kutta method, to a cubic Hamiltonian system of
Painlevé type. The system being non-autonomous it is not clear from the
start whether discretisation will preserve integrability. Although the resulting
discrete system is non-integrable, by introducing a parameter into the equations
one obtains a system with reduced (though non-zero) algebraic entropy.

1. Introduction

It is a by now well-established fact that the integrability of differential and difference equa-

tions is closely linked to the singularity structure of their solutions in the complex plane. In

the setting of (ordinary) differential equations the term ‘integrability’ is often synonymously

denoted by the Painlevé property, meaning that all (movable) singularities of every solution

of an equation are poles. The Painlevé test is a useful necessary criterion for an equation to

have this property: At every point in the complex plane there must exist a sufficiently large

family of Laurent series solutions with finite principle part (finitely many negative powers).

In the setting of discrete equations there is a known list of integrable difference equations,

known as discrete Painlevé equations which possess continuum limits to the classical Painlevé

equations [11]. There are several notions of discrete analogues for the Painlevé property,

namely singularity confinement, zero algebraic entropy [5], and the existence of sufficiently

many finite-order meromorphic solutions [4]. The method of singularity confinement has been

a successful tool to detect integrable discrete (difference) equations, although it only provides

a necessary criterion for the integrability of discrete systems, similar to the Painlevé test for

differential equations providing a necessary criterion for an equation to have the Painlevé

property. Within a given class of equations with a certain number of parameters or arbitrary

functions it allows to single out those equations which are in some sense exactly solvable.

A more refined criterion for the integrability of discrete systems is the degree growth of the

iterates under the discrete mapping, measured by the algebraic entropy,

ealg = lim
n→∞

log dn
n

, (1)

where dn, n = 1, 2, . . . , denotes the degree of the nth iterate of a rational solution under the

discrete mapping. For a generic (non-integrable) mapping φ with deg φ = d one would assume
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deg φn ∼ dn. When cancellations occur in the iterations the algebraic entropy will be less

than log(d) but possibly greater 0, meaning that the degree growth is still exponential. When

strong cancellations occur and the degrees only grow polynomially the algebraic entropy is

zero which, in most cases, means that the dynamical system is integrable. Equations which

have the singularity confinement property but which are not integrable as their the algebraic

entropy is greater 0 were denoted quasi-integrable in [9]. There it was also noted that apart

from second-order difference equations there are no known higher-order quasi-integrable

difference equations or systems of order two or higher.

In this article we study the discrete version of a system of equations studied earlier by

one of the authors in [10], given by a cubic Hamiltonian,

H =
1

3

(
p3 + q3

)
+ zpq + αp+ βq,

thus leading to a quadratic vector field given by

q′ =
∂H

∂p
= p2 + zq + α, p′ = −∂H

∂q
= −q2 − zp− β. (2)

This system is known to be related to the fourth Painlevé equation (P IV ), the combinations

wj = ωjp+ ω̄jq − z, j = 0, 1, 2, ω =
−1 + i

√
3

2
,

satisfying the equation

2ww′′ = w′2 − w4 − 4zw3 − (2α+ 2β + 3z2)w2 − (1− α+ β)2,

which can be re-scaled to P IV . In this way the solutions of (2) can be expressed by the

transcendents of two copies of P IV , with different sets of parameters. We remark that the

Hamiltonian system retains the Painlevé property if z is replaced by a linear function cz+d,

which can be achieved by a simple re-scaling of the independent variable.

The discretisation for the system (2) is performed using the Kahan method [8], which

is also explained e.g. in [1], where it was applied to autonomous quadratic vector fields

and also for instances of the Painlevé equations I, II and IV. Kahan’s method was also

applied to find integrable models for the discrete top [6, 7], and is thus also known as the

Hirota-Kimura method. Incidentally, for quadratic vector fields this is also equivalent to the

so-called Runge-Kutta method as was shown in [3]. We will apply the method to system

(2), re-written as an autonomous system in three dependent variables. We will also rescale

the variable z by introducing an additional parameter, c, into the equations. As we will

see when discretising the system using Kahan’s method, the resulting discrete system will

in general be non-integrable. Only when c takes on a specific value do we at least obtain a

quasi-integrable system.
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2. Singularity confinement

We describe briefly the method of singularity confinement, which can be seen as a discrete

analogue of the Painlevé test. Consider the second-order difference equation

xn+1 + xx−1 = xn +
a

x2n
, (3)

introduced by Hietarinta and Viallet [5]. When xn = 0 we encounter a singularity, xn+1 =∞
and xn+2 = ∞. The behaviour for xn+3 is indeterminate. To study the behaviour at

the singularity an infinitesimally small parameter ε is introduced, letting xn−1 = c (finite

non-zero constant) and xn = ε. Letting ε → 0 this gives rise to a definite sequence of

values, . . . , c, 0,∞,∞, c, c + a/c2, . . . , the sequence returning to finite values meaning that

the singularity is confined. However, the map (3) is known to be chaotic and singularity

confinement is too insensitive to detect this. In particular, the system has non-zero algebraic

entropy, which is a refined measure for integrability.

An example where singularity confinement successfully singles out integrable equations

is provided by the class of difference equations

xn+1 + xn−1 =
anxn + bn

x2n
. (4)

Here, the singularity confinement test leads to a sequence

xn+1 =
bn
ε2

+
an
ε

+O(1)

xn+2 = −ε+
an+1

bn
ε2 +O(ε3)

xn+3 =
bn+2 − bn

ε2
− an+2 − 2an+1 + an

ε
+O(1),

showing that singularities will be confined if the conditions an+2 − 2an+1 + an = 0 and

bn+2 − bn = 0 are satisfied. Thus equation (4) becomes

xn+1 + xn−1 =
(αn+ β)xn + γ + (−1)nδ

x2n
,

where α, β, γ, δ are constants. The iterates under this map have polynomial degree growth,

i.e. the algebraic entropy is zero and the system is known to be integrable, being a discrete

Painlevé equation with continuum limit to PI .

3. Kahan discretisation

We are now going to study a discrete version of this system obtained by a method of Kahan,

also known as the Hirota-Kimura method. Kahan first used this method in numerical calcu-

lations and found that the solutions of the discretised system are stable under small changes
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of parameters. Independently, Hirota and Kimura applied the same method to discretise the

equations of motion of a spinning top, namely for the integrable cases of the Euler top [6]

and Lagrange top [7]. These are, of course, autonomous systems and they have shown that

integrability is preserved under discretisation in these cases by finding a sufficient number

of conserved quantities. In [1] the method was also applied to some non-autonomous Hamil-

tonian systems, namely those for the Painlevé equations I, II and IV. Here it was noticed

that when discretising the system the integrability is only preserved in the case of the first

Painlevé equation and in some special cases for the fourth Painlevé equation. The Kahan

discretisation of systems of equations of the form

y′(t) = f(y), y(t0) = y0,

where f is a quadratic vector field, was shown to be equivalent to the Runge-Kutta method

y − ỹ

h
=

1

2
f(y)− 2f

(
y + ỹ

2

)
+

1

2
f(ỹ), (5)

with step size h [3]. We introduce an additional parameter c into the system (2) and apply

the method to the extended, autonomous system

q̇ = p2 + czq + α

ṗ = −q2 − czp− β

ż = 1,

where ȧ = da
dt

. Applying Kahan’s method (5) to the above system yields

x(n+ 1)− x(n)

h
= α+

1

2
hc[(nx(n+ 1) + (n+ 1)x(n)] + y(n+ 1)y(n)

y(n+ 1)− y(n)

h
= −β − 1

2
hc[(ny(n+ 1) + (n+ 1)y(n)]− x(n+ 1)x(n),

(6)

where x(n) and y(n) correspond to q(t), p(t) and z(t) = nh. Solving the equations (6) for

x(n+ 1), y(n+ 1) yields the first order difference system

x(n+ 1) =
(
−
(
h2cn+ 2

) (
x(n)

(
h2c(n+ 1) + 2

)
+ 2αh

)
+ 2hy(n)2

(
h2c(n+ 1)− 2

)
+ 4βh2y(n)

)/( (
h2cn− 2

) (
h2cn+ 2

)
− 4h2x(n)y(n)

)
y(n+ 1) =

(
−
(
h2cn− 2

) (
y(n)

(
h2c(n+ 1)− 2

)
+ 2βh

)
+ 2hx(n)2

(
h2c(n+ 1) + 2

)
+ 4αh2x(n)

)/( (
h2cn− 2

) (
h2cn+ 2

)
− 4h2x(n)y(n)

)
.

(7)
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We can interpret this system of difference equations as a rational map on complex

projective space CP2 by letting x(n) = u(n)/w(n), y(n) = v(n)/w(n) and re-writing the

dynamical system in the homogeneous variables [u(n) : v(n) : w(n)],

u(n+ 1) =− (cn+ 2)
(
u(n)w(n) (c(n+ 1) + 2) + 2αw(n)2

)
+ 2v(n)2 (c(n+ 1)− 2)

+ 4βv(n)w(n)

v(n+ 1) =− (cn− 2)
(
v(n)w(n) (c(n+ 1)− 2) + 2βw(n)2

)
+ 2u(n)2 (c(n+ 1) + 2)

+ 4αu(n)w(n)

w(n+ 1) = (cn− 2) (cn+ 2)w(n)2 − 4u(n)v(n).

(8)

The advantage of working in projective space is that singularities become just ordinary points

which can be analysed accordingly.

4. Singularities of the discrete system

We are going to apply the singularity confinement test to the difference system (7) which,

as we will see, fixes the parameter c. There are two major differences with this system

compared to the examples above. Firstly, the denominator in the system (7) is n-dependent

and so a singularity appearing in one step will move on. Secondly, there is a whole infinitude

of singularities (x(n), y(n)) defined by the equation

(
h2cn− 2

) (
h2cn+ 2

)
− 4h2x(n)y(n) = 0. (9)

Starting with any pair (x(n), y(n)) satisfying equation (9) one obtains a singularity in the

step, (x(n+1), y(n+1). For the singularity confinement test we here choose the factorisation

x(n) =
hcn

2
− 1

h
+ ε, y(n) =

hcn

2
+

1

h
+ ε,

where ε stands for an infinitesimally small quantity. In principle we should have put ε1

and ε2 here to express the fact that these small perturbations are independent, however,

this makes no difference for the confinement test. In the next step we obtain the following

singular behaviour,

x(n+ 1) =

(
2 + ch2n

)
(α− β − c)

2h2cnε
+O(1)

y(n+ 1) =

(
2− ch2n

)
(α− β − c)

2h2cnε
+O(1)

In the case c 6= α− β, continuing this procedure we obtain

x(n+ 2) =
hc(n+ 2)

2
+

1

h
+ ε, y(n+ 2) =

hc(n+ 2)

2
− 1

h
+ ε,
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and in the next step the singularity prevails in the expressions for x(n + 3) and y(n + 3).

However, in the case where c = α − β, the singular behaviour in the expressions x(n + 1)

and y(n+ 1) is avoided. Strictly speaking in this case, there is no singularity confined, but

rather the singularity doesn’t arise in the first place! The situation becomes clearer if we

perform the analysis in projective space. Starting from a point

[u(n) : v(n) : w(n)] =
[cn

2
− 1 + ε :

cn

2
+ 1 + ε : 1

]
, (10)

leads to[
2(2 + cn)(c− α− β) +

(
c2n(n+ 1) + 2c(1− 2n) + 4(β − 3)

)
ε+ 2(c(n+ 1)− 2)ε2 :

2(2− cn)(c− α− β) +
(
c2n(n+ 1)− 2c(1− 2n) + 4(α− 3)

)
ε+ 2(c(n+ 1)− 2)ε2 :

−4cnε− 4ε2
]
.

When we let the parameter c = α − β the O(1) terms in the expansions vanish and, since

we are in projective space, one can reduce the expressions by a common factor of ε, leaving

us with[
(α− β)2n(n+ 1) + 2(α− β)(1− 2n) + 4(β − 3) + 2((α− β)(n+ 1)− 2)ε :

(α− β)2n(n+ 1) + 2(α− β)(1− 2n) + 4(α− 3) + 2((α− β)(n+ 1)− 2)ε :

4(β − α)n− 4ε] .

A consequence of this cancellation is a reduction in the degree growth of iterates under the

rational map as explained in the next section. However, the cancellation are not strong

enough to render the system integrable unless, of course, α = β which, however results in

an autonomous system.

5. Algebraic entropy of the rational map

Algebraic entropy, defined in (1), is a measure for the degree growth of a family of rational

functions obtained by iteration under the difference equation. In the generic case of the

system (7), c 6= α−β, starting from a rational functions of degree 1, we obtain the sequence

of degrees 2, 4, 8, 16, 32, . . . , so the algebraic entropy is log(2). However in the case c = α−β,

where we observe singularity confinement, some cancellations in the rational expressions

obtained by iterating the difference system take place, and the first numbers of the degree

sequence obtained are

1, 2, 4, 8, 15, 28, 52, 96, 177, 326, 600, 1104, . . .

Although the first few terms obey a 2n rule, when cancellations take place the degrees of the

subsequent iterates are lower. The sequence above is consistent with the recursive formula

dn = 2dn−1 − dn−4,
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if we define dn = 0 for n < 0. This sequence still grows exponentially, dn ∼ λn, where

λ ≈ 1.839 . . . is the largest root of the characteristic equation of the resursive formula. The

algebraic entropy is 0 < ealg ≈ 0.609 · · · < log(2), meaning the system is quasi-integrable.

Although Kahan’s method did not preserve full integrability in this case, the example shows

that integrability can be improved upon by introducing some parameters into the equations.
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Computation of a Finsler-Lyapunov function
using meshless collocation

Peter Giesl

Abstract: We study the stability of invariant sets such as equilibria or peri-
odic orbits of a Dynamical System given by a general autonomous nonlinear
ordinary differential equation (ODE). A classical tool to analyse the stability
are Lyapunov functions, i.e. scalar-valued functions, which decrease along solu-
tions of the ODE. An alternative to Lyapunov functions is contraction analysis.
Here, stability is a consequence of the contraction property between two adja-
cent solutions (or incremental stability), formulated as the local property of a
Finsler-Lyapunov function. This has the advantage that the invariant set plays
no special role and does not need to be known a priori. In this talk, we nu-
merically construct a Finsler-Lyapunov function by solving a first-order partial
differential equation using meshless collocation. This method ensures that the
partial differential equation holds at a set of given collocation points. If the
equation is known to possess a smooth solution, error estimates are available.
These error estimates provide bounds of the error between the true solution
and the approximation in terms of the fill distance, measuring how dense the
collocation points are. While meshless collocation has been used to compute
classical Lyapunov functions, the computation of Finsler-Lyapunov functions
is new and has the advantage that no information about equilibria or periodic
orbits is required. In the talk we describe the method and present how it
performs in examples.

1. Introduction

We study the stability of invariant sets such as equilibria or periodic orbits of a Dynamical

System given by a general autonomous ordinary differential equation (ODE)

ẋ = f(x), x ∈ Rn. (1)

A classical tool to analyse the stability are Lyapunov functions. These are scalar-valued

functions, which decrease along solutions of the ODE and measure in some way the distance

of a point to the invariant set, thus being a global quantity. An alternative to Lyapunov

functions is contraction analysis [7]. Here, stability is a consequence of the contraction

property between two adjacent solutions, so formulated as a local property, e.g. of a Finsler-

Lyapunov function [1]. This has the advantage that the invariant set plays no special role

and does not need to be known a priori.
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We search for a Finsler-Lyapunov function of the form1 V : Rn × Rn → R+
0 , defined on

the tangential bundle of the manifold Rn for every (x, v) ∈ Rn × Rn which satisfies

LV (x, v) := 〈∇xV (x, v), f(x)〉+ (∇vV (x, v))TDf(x)v ≤ 0, (2)

where 〈·, ·〉 denotes the Euclidean scalar product in Rn, as well as the property c1‖v‖p ≤
V (x, v) ≤ c2‖v‖p for a p > 1 and 0 < c1 ≤ c2. The inequality (2) describes the contraction

between solutions through the point x and the point x+ v.

For more details on Finsler-Lyapunov functions and the relation to contraction analysis

see [1]. In particular, (2) implies that the system is incrementally stable, i.e. the evolution

of the distance between any two solution is bounded for all positive times. If the inequality

in (2) is replaced by sharper conditions, then the system can be shown to be incrementally

asymptotically stable (distance converges to 0) or even incrementally exponentially stable

(distance converges to zero exponentially fast).

While a Finsler-Lyapunov function satisfying (2) for all v ∈ Rn shows contraction in

every direction v, we can modify the condition to capture only contraction in specific direc-

tions, e.g. to study problems with symmetry or to show the existence of periodic orbits as

in this paper. To this end, a horizontal Finsler-Lyapunov function is defined in [1], where

the tangent space at x is divided into a direct sum Rn = Hx
⊕
Vx and (2) only is required

for all v ∈ Hx, i.e. the contraction is only guaranteed in horizontal direction.

Applied to periodic orbits, we choose Hx = {v ∈ Rn | v ⊥ f(x)} and Vx = span(f(x))

for all x which are no equilibria, and assume that (2) holds for all v ∈ Hx. If V (x, v) is a

quadratic form in v, then [6,8], see also [4, Section 2.10], have shown under some additional

assumptions that this implies the existence, uniqueness and stability of a periodic orbit and

gives information about its basin of attraction.

In this paper we numerically construct a Finsler-Lyapunov function by solving the PDE

〈∇xV (x, v), f(x)〉+ (∇vV (x, v))TDf(x)v = −‖v‖2 (3)

using meshless collocation [10], which has been used to compute classical Lyapunov functions

[2, 5]. One advantage of the proposed method is that the restrictions on the points v for

which (3) is required, such as all v perpendicular to f(x), can be easily implemented.

Let us give an overview of the contents: In Section 2 we introduce meshless collocation

in general and then apply it to our specific problem. Section 3 presents the application of

the method to three one- or two-dimensional with either an equilbrium or a periodic orbit.

Section 4 discusses existence results and error estimates for the case of an equilibrium before

we end with conclusions and an outlook in Section 5.

1Note that Finsler-Lyapunov functions as defined in [1] are more general than considered
in our case.
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2. Meshless collocation

In this section we introduce meshless collocation. We first introduce Reproducing Kernel

Hilbert Spaces, and then formulate the generalised interpolation problem, which in our case

is a linear PDE with fixed function values. We follow [5, Section 2], see also [10].

2.1. General method

We start with a short introduction to the general method of solving a generalized interpola-

tion problem in a Reproducing Kernel Hilbert space of functions with domain in R2n, which

is motivated by our application.

Let O ⊂ R2n be a bounded set with Lipschitz continuous boundary. A Reproducing

Kernel Hilbert Space (RKHS) is a Hilbert space H of functions g : O → R with inner product

〈·, ·〉H such that the following properties hold with a kernel Φ: O ×O → R:

1. Φ(·, x̃) ∈ H for all x̃ ∈ O,

2. g(x̃) = 〈g,Φ(·, x̃)〉H for all x̃ ∈ O and g ∈ H.

We want to solve the following generalized interpolation problem:

Given Ñ linearly independent functionals λ1, . . . , λÑ ∈ H
∗, where H∗ denotes the dual of

H, and Ñ numbers r̃i ∈ R, i = 1, . . . , Ñ , find the norm-minimal interpolant s ∈ H satisfying

1. λi(s) = r̃i for all i = 1, . . . , Ñ (interpolant),

2. ‖s‖H = min{‖s̃‖H | s̃ ∈ H,λi(s̃) = r̃i for all i = 1, . . . , Ñ} (norm-minimal).

It is well known that there is a unique norm-minimal interpolant, which is a linear com-

bination of the Riesz representers of the functionals, and the coefficients can be determined

by solving a system of Ñ linear equations. If H is a RKHS, then we have the following

formula for the norm-minimal interpolant s:

s(x̃) =

Ñ∑
j=1

α̃jλ
ỹ
jΦ(x̃, ỹ), (4)

where the superscript ỹ in λỹj denotes the application of the functional with respect to ỹ.

Note that α̃ ∈ RÑ is the solution of the linear system

Ãα̃ = r̃, (5)

where r̃ = (r̃i)i=1,...,Ñ ∈ RÑ and A = (aij)i,j=1,...,Ñ ∈ RÑ×Ñ is given by

ãij = λx̃i λ
ỹ
jΦ(x̃, ỹ). (6)
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The matrix Ã is positive definite, since the functionals are assumed to be linearly indepen-

dent. In the following we consider the Sobolev space W τ
2 (R2n) with τ > n, which is a RKHS.

While the reproducing kernel is rather complicated, there is a reproducing kernel, defined by

a Wendland function, see Definition 2.1, which generates the same Hilbert space, but with

a different, yet equivalent norm.

Definition 2.1 (see [9]) Let k ∈ N0 and l ∈ N. We define x+ = x for x ≥ 0 and x+ = 0

for x < 0. We define by recursion the Wendland function for r ∈ R+
0

φl,0(r) = (1− r)l+, φl,k+1(r) =

∫ 1

r

tφl,k(t) dt.

The following proposition follows from [5, Proposition 3.11] and the arguments in the

proof; note that the space dimension in our case is 2n.

Proposition 2.2 Let k ∈ N, c ∈ R+ and set l = n+ k + 1. Define ψ0(r) = φl,k(cr), where

φl,k was defined in Definition 2.1, and Φ(x̃, ỹ) = ψ0(‖x̃−ỹ‖), where ‖·‖ denotes the Euclidean

norm in R2n. Then Φ ∈ C2k is a reproducing kernel of W τ
2 (R2n) with τ = k + n + 1

2
(and

equivalent norm).

From now on, we choose a Wendland function with smoothness degree k ≥ 2 and choose Φ

to be the kernel of the RKHS H = W τ
2 (R2n) as above, with τ = k + n+ 1

2
.

Now let us apply the method to solve the problem

LV (x̃) = r(x̃) for x̃ ∈ O, (7)

V (x̃) = r0(x̃) for x̃ ∈ Γ, (8)

where L is a first-order differential operator of the form

LV (x̃) =
∑
|β|≤1

cβ(x̃)DβV (x̃), (9)

cβ : O → R, r(x̃) and r0(x̃) are given functions and O,Γ ⊂ R2n. We call a point x̃ ∈ R2n a

singular point of L if cβ(x̃) = 0 for all |β| ≤ 1.

We choose collocation points X1 = {x̃1, . . . , x̃N} ⊂ O and X2 = {ξ̃1, . . . , ξ̃M} ⊂ Γ and

define the functionals λj = δx̃j ◦ L, j = 1, . . . , N and λN+j = δξ̃j ◦ id, j = 1, . . . ,M to find

the norm-minimal interpolant.

These Ñ = N +M functionals are linearly independent if the collocation points xj are

no singular points of L, see [5, Proposition 3.3]; note that τ > 1 + n.

We then have error estimates in terms of the mesh-norms hX1,O = supx̃∈O minx̃j∈X1 ‖x̃−
x̃j‖ and hX2,Γ = supỹ∈Γ minξ̃j∈X2

‖ỹ− ξ̃j‖, which measure how dense the collocation points

X1 lie in O or X2 in Γ, respectively. Note that the error estimates in [5, Corollary 3.12] hold

in the same way if Γ is not part of the boundary of O, but a smooth subset of O.
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Theorem 2.3 Let Γ be a smooth subset of O. Let cβ ∈ W k+n
∞ (O) and let the solution V

of (7) and (8) satisfy V ∈ W k+n+1/2
2 (O). Let X1 = {x̃1, . . . , x̃N} ⊂ O be pairwise distinct

points, which are not singular points of L, and X2 = {ξ̃1, . . . , ξ̃M} ⊂ Γ be pairwise distinct

points. We denote by s the norm-minimal interpolant of the data.

Then, for sufficiently small mesh-norms, we have

‖LV − Ls‖L∞(O) ≤ Ch
k−1/2
X1,O

‖V ‖
W

k+n+1/2
2 (O)

, (10)

‖V − s‖L∞(Γ) ≤ Ch
k+1/2
X2,Γ

‖V ‖
W

k+n+1/2
2 (O)

, (11)

where C is a constant independent of V .

2.2. Application to our specific problem

We denote x̃ = (x, v) ∈ R2n. We define the differential operator L acting on a function

V (x, v), where x, v ∈ Rn by

LV (x, v) = 〈∇xV (x, v), f(x)〉+ (∇vV (x, v))TDf(x)v. (12)

We wish to solve the problem LV (x, v) = −‖v‖2,
V (x, 0) = 0.

(13)

Note that the first equation in (13) is (3). The second equation in (13) fixes the values

of V (x, 0) = 0 at v = 0, since otherwise the function V will in general not satisfy the

requirement c1‖v‖p ≤ V (x, v).

Lemma 2.4 (x, v) ∈ R2n is a singular point of L as defined in (12) if and only if f(x) = 0

(x is equilibrium) and Df(x)v = 0.

We fix a bounded set K ⊂ Rn with Lipschitz continuous boundary and define Br(0) :=

{v ∈ Rn | ‖v‖ ≤ r} with r > 0 small. We choose points x̃j ∈ K × Br(0) for j = 1, . . . , N ,

which are no singular points of L, see Lemma 2.4, and denote this set of points by X1 :=

{x̃1, x̃2, . . . , x̃N}. Moreover, we choose points for which we fix the values of V (x, 0), namely

ξ̃j = (ξj , 0) ∈ K × {0} =: Γ for j = 1, . . . ,M ; we denote this set of points by X2 :=

{ξ̃1, . . . , ξ̃M}.
The ansatz for the approximant v of the function V is given by (4), namely

s(x̃) =

N∑
k=1

αk(δx̃k ◦ L)ỹψ0(‖x̃− ỹ‖) +

M∑
k=1

βkψ0(‖x̃− ξ̃k‖). (14)
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where ψ0 was defined in Proposition 2.2. The coefficient vector is the solution of the following

system of linear equations, see (5),

Ã

 α

β

 =

 a

b

 with Ã :=

 A D

DT B

 ∈ R(N+M)×(N+M). (15)

The right-hand side of the linear system (15) is determined by aj = −‖vj‖2 for 1 ≤ j ≤ N

and bj = 0 for 1 ≤ j ≤ M . The sub-matrices A = (ajk) ∈ RN×N , B = (bjk) ∈ RM×M and

D = (djk) ∈ RN×M have the elements, see (6),

ajk = (δx̃j ◦ L)x̃(δx̃k ◦ L)ỹψ0(‖x̃− ỹ‖),

bjk = ψ0(‖ξ̃j − ξ̃k‖),

djk = (δx̃j ◦ L)x̃ψ0(‖x̃− ξ̃k‖).

To compute djk and ajk explicitly, let us define recursively ψk+1(r) = 1
r
∂ψk(r)
∂r

for k = 0, 1

and r > 0. Note that under our assumptions, these functions can be continued continuously

up to r = 0.

We have, denoting x̃ = (x, v), ỹ = (y, w), x̃k = (xk, vk) and ξ̃j = (ξj , ηj)

djk = −ψ1(‖x̃j − ξ̃k‖)
[
〈ξk − xj , f(xj)〉+ (ηk − vj)TDf(xj)vj

]
.

Using the notation xjk = xj − xk and vjk = vj − vk we have

ajk = −ψ2(‖x̃j − x̃k‖)
[
〈xjk, f(xj)〉〈xjk, f(xk)〉+ 〈xjk, f(xj)〉vTjkDf(xk)vk

+〈xjk, f(xk)〉vTjkDf(xj)vj + vTjkDf(xj)vj · vTjkDf(xk)vk
]

−ψ1(‖x̃j − x̃k‖)
[
〈f(xk), f(xj)〉+ vTj Df(xj)

TDf(xk)vk
]
.

We have, similarly to the computation of ajk the following formula, using the notation

x·k = x− xk and v·k = v − vk,

Ls(x, v) =

N∑
k=1

αk(δx̃ ◦ L)x̃(δx̃l ◦ L)ỹψ0(‖x̃− ỹ‖) +

M∑
k=1

βk(δx̃ ◦ L)x̃ψ0(‖x̃− ξ̃k‖)

= −
N∑
k=1

αk

{
ψ2(‖x̃− x̃k‖)

[
〈x·k, f(x)〉〈x·k, f(xk)〉+ 〈x·k, f(x)〉vT·kDf(xk)vk

+〈x·k, f(xk)〉vT·kDf(x)v + vT·kDf(x)v · vT·kDf(xk)vk
]

+ψ1(‖x̃− x̃k‖)
[
〈f(xk), f(x)〉+ vTDf(x)TDf(xk)vk

]}
−

M∑
k=1

βkψ1(‖x̃− ξ̃k‖)
[
〈ξk − x, f(x)〉+ (ηk − v)TDf(x)v

]
.
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3. Examples

3.1. One-dimensional example

We consider n = 1 and the dynamical system given by

ẋ = x− x3 (16)

which has one asymptotically stable equilibrium at 0 and two unstable equilibria at ±1. We

use the Wendland function ψ0(r) = φ4,2(r) = (1−r)6
+(35r2+18r+3) and the collocation grids

X1 = {(x, v) | x ∈ [−0.7, . . . ,−ρ, 0, ρ, . . . , 0.7], v ∈ [−0.1, . . . ,−τ, 0, τ, . . . , 0.1]} and X2 =

{(x, 0) | x ∈ [−0.7, . . . ,−ρ, 0, ρ, . . . , 0.7]} with ρ = 0.7/19 = 0.0368 and τ = 0.1/3 = 0.0333.

The grids have N = 272 and M = 39 points, respectively, so together Ñ = N +M = 311.
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-0.1

v

0

0.1

0.2

-0.02

0

0.02

0.04

L
s

Figure 1. Example (16). Left: The function s(x, v). Right: The function Ls(x, v) which

approximates −‖v‖2 well.

x

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

v

-0.1

-0.05

0

0.05

0.1

Figure 2. Example (16): The collocation points as well as the level set Ls(x, v) = 0 (red) and

s(x, v) = 0, 0.005, 0.01 (blue). Note that Ls(x, v) < 0 holds in the area where the collocation

points are placed, apart from a small area near v = 0.
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Figure 1 (left) shows the computed function s(x, v) which satisfies c1‖v‖2 ≤ s(x, v) ≤
c2‖v‖2 as well as Ls(x, v) which approximates −‖v‖2 well. Figure 2 shows the collocation

points, the area where Ls(x, v) = 0 (red) as well as some level sets of s(x, v) (blue) in the

area where s(x, v) satisfies the conditions.

3.2. Two-dimensional example – stable equilibrium

We consider n = 2 and the dynamical system given by ẋ = −x(1− x2 − y2) + y

ẏ = −y(1− x2 − y2)− x
(17)

which has one asymptotically stable equilibrium at the origin and an unstable periodic orbit

at the unit sphere. We denote x = (x, y) ∈ R2 and v = (v, w) ∈ R2.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

Figure 3. Example (17): Some points in the x = (x, y)-plane, where the sign of L(x,v) is

calculated: if the sign of L(x,v) is negative for a v, then a blue circle is plotted, if the sign is

non-positive for a v, then a red cross is plotted. The points with the correct, negative sign

are thus points with a blue circle only.

We use the Wendland function ψ5,2(r) = (1 − r)7
+(16r2 + 7r + 1) and the collocation

grids defined below containing N = 8580 and M = 441 points, respectively; altogether we

have Ñ = N +M = 9021 points.

X1 =
{

(x,v) ∈ B0.9(0, 0)× R2 | x, y ∈ {−0.7, . . . ,−0.07, 0, 0.07, . . . , 0.7},

v ∈ {r(cos(a), sin(a)), r ∈ {0.05, 0.1}, a = 2kπ/10, k = 1, . . . , 10}
}
, and

X2 = {(x, 0) ∈ R2 × R2 | x, y ∈ {−0.7, . . . ,−0.07, 0, 0.07, . . . , 0.7}},
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Figure 3 shows points x where L(x,v) was evaluated for many v 6= 0. For each v where

L(x,v) < 0, a blue circle was plotted at the position x, while for each v where L(x,v) ≥ 0

a red cross was drawn at position x. Points x can thus have both a blue circle and a red

cross, meaning that some directions v have the correct (negative) sign, while others have

not. Points with only a blue circle are points where L has the correct sign, while points with

any red cross are not. One can clearly see that the square [−0.7, 0.7]2, where the collocation

points where placed, contains only blue circles.
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Figure 4. Example (17). Left: The function Ls((0.5, 0.5), (v, w)) which approximates

−‖(v, w)‖2 well. Right: The function s((0.5, 0.5), (v, w)) which has its minimum 0 at

(v, w) = (0, 0). Note that the point x = (0.5, 0.5) does not belong to the collocation grids.

Figure 4 shows the functions s(x,v) and Ls(x,v) for a fixed x0 = (0.5, 0.5); note that

there is no collocation point with this value. The function Ls(x0,v) approximates −‖v‖2

well (left) and the function s((0.5, 0.5),v) (right) satisfies c1‖v‖2 ≤ s(x0,v) ≤ c2‖v‖2.

3.3. Two-dimensional example – stable periodic orbit

We consider the dynamical system given by ẋ = x(1− x2 − y2) + y

ẏ = y(1− x2 − y2)− x
(18)

which has one unstable equilibrium at the origin and an asymptotically stable periodic orbit

at the unit sphere. This time we solve the problem LV (x, v) = −‖v‖2 for v ⊥ f(x)

V (x, 0) = 0.
(19)
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Figure 5. Example (18): Some points in the x = (x, y)-plane, where the sign of L(x,v) is

calculated: if the sign of L(x,v) is negative for all directions v ⊥ f(x), then a blue circle is

plotted, if the sign is non-positive for all directions v ⊥ f(x), then a red cross is plotted, and

if some directions v result in a negative and some in a non-negative sign, then both a red

cross and a blue circle are plotted. The points with the correct, negative sign are thus points

with a blue circle.

We use the Wendland function ψ5,2(r) = (1− r)7
+(16r2 + 7r + 1) and the points

X1 =
{

(x,v) ∈ B1.2(0, 0) \ {(0, 0)} × R2 | x, y ∈ {−1.2, . . . ,−ρ, 0, ρ, . . . , 1.2},

v ∈ {±0.05 f(x)/‖f(x)‖,±0.1 f(x)/‖f(x)‖}
}

X2 = {(x, 0) ∈ B1.2(0, 0)× R2 | x, y ∈ {−1.2, . . . ,−ρ, 0, ρ, . . . , 1.2}},

where ρ = 1.2/9 = 0.1333, with N = 1168 and M = 293 points, respectively, altogether

Ñ = N +M = 1461 points.

Figure 5 shows points x where L(x,v) was evaluated for several v ⊥ f(x). For each v

where L(x,v) < 0, a blue circle was added, while for each v where L(x,v) ≥ 0 a red cross

was drawn. Points with only a blue circle are points where L has the correct (negative) sign,

while points with any red cross are not. One can clearly see that the ball of radius 1.2, where

the collocation points where placed, contains only blue circles.

4. Existence and error estimates

In certain dynamical situations we can prove the existence of a function satisfying (13),

enabling us to obtain error estimates.
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Proposition 4.1 Assume that x0 is an exponentially stable equilibrium of (1), where f ∈
Cσ(Rn,Rn), σ ≥ 2, with basin of attraction A(x0).

Then there is a function V ∈ Cσ−1(A(x0),Rn) satisfying (13) for all (x, v) ∈ A(x0)×Rn.

Proof: Choose the positive definite matrix C = I ∈ Sn, where Sn denotes the symmet-

ric matrices in Rn×n. By [3, Theorem 4.4] there exists a matrix-valued function M ∈
Cσ−1(A(x0), Sn) satisfying

Df(x)TM(x) +M(x)Df(x) +M ′(x) = −I for all x ∈ A(x0). (20)

Here, M ′(x) denotes the matrix with entries 〈∇xMij(x), f(x)〉, i, j = 1, . . . , n, the orbital

derivative of M(x). Defining the Cσ−1(A(x0),Rn) function V (x, v) = vTM(x)v we have

V (x, 0) = 0 for all x ∈ A(x0) and

LV (x, v) = 〈∇xV (x, v), f(x)〉+ (∇vV (x, v))TDf(x)v

= vTM ′(x)v + vTM(x)Df(x)v + vTDf(x)TM(x)v

= −‖v‖2 by (20)

for all x ∈ A(x0) and v ∈ Rn. �

In the situation as above, where we know that a solution V with a certain smoothness

exists, we can use the error estimate Theorem 2.3.

Proposition 4.2 Let k ≥ 2 be the smoothness degree of the Wendland function. In the

situation of Proposition 4.1 let f ∈ Cσ(Rn,Rn) with σ ≥ k + n + 1, K ⊂ K ⊂ A(x0) be an

open bounded set with Lipschitz boundary and Γ = {(x, 0) | x ∈ K}. Then, for the collocation

points as described in Theorem 2.3 the estimates (10) and (11) hold.

Proof: Let O = K × BR(0) with R > 0. We check that the assumptions of Theorem 2.3

are satisfied: we have cβ ∈ Cσ−1(Rn) ⊂ W k+n
∞ (O) and by Proposition 4.1 we have for the

solution V ∈ Cσ−1(A(x0),Rn) ⊂W k+n+1/2
2 (O). �

5. Conclusion and outlook

We have presented a method to numerically construct Finsler-Lyapunov functions, which

show incremental stability of solutions of an ODE ẋ = f(x), x ∈ Rn. A Finsler-Lyapunov

function is a scalar-valued function with domain (x, v) ∈ Rn×Rn, where x denotes a point in

the phase space and v a point in the tangent space at x. We have used meshless collocation

with a Wendland function, and have solved a first-order PDE with prescribed values at v = 0.

203



Finsler-Lyapunov functions can be used to show existence, uniqueness and stability for

different kinds of attractors, such as equilibria or periodic orbits, and give information about

their basin of attraction. Depending on the set of v for which the contraction condition holds,

we can distinguish between different types of attractors. This can be implemented easily in

the proposed method by choosing collocation points in the respective set. Further work will

explore this feature further, studying symmetric systems and higher dimensional-ones. We

have shown existence results and error estimates in the case of equilibria and seek to extend

these results to other attractors such as periodic orbits in the future.
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Abstract: The work is devoted to the development of the theoretical foundations and 
further application of an effective universal complex chaos-dynamical approach to 
description of the deterministic chaos, bifurcations and strange attractors in dynamics 
of the environmental radioactivity systems. In particular, the atmospheric radon 222Rn 
concentration temporal dynamics is studied and computed. The analysis methods 
include advanced versions of the correlation integral, fractal analysis, algorithms of 
average mutual information, false nearest neighbors, Lyapunov exponents, surrogate 
data, non-linear prediction schemes, predicted trajectories algorithms, spectral 
methods etc. to solve problems quantitatively complete modeling and analysis of 
temporal evolution of the atmospheric radon 222Rn concentration. There are firstly 
received data on topological and dynamical invariants for the time series of the 222Rn 
concentration, discovered a deterministic chaos phenomenon using detailed data of 
measurements of the radon concentrations at SMEAR II station of the Finnish 
Meteorological Institute in the Southern Finland (2000-2006).  

1. Introduction 

The importance of studying a phenomenon of stochasticity or chaos in dynamical systems is 

provided by a whole number of applications, including a necessity of understanding chaotic 

features in different geophysical (hydrometeorological, environmental etc) systems. New 

field of investigations of these systems has been provided by a great progress in a 

development of a chaos and dynamical systems theory methods [1-28]. In our previous 

papers [21-38] we have given a review of new methods and algorithms to analysis of 

different systems of environmental and Earth sciences, quantum physics, electronics and 

photonics and used the nonlinear method of chaos theory and the recurrence spectra 

formalism to study stochastic futures and chaotic elements in dynamics of 

hydrometeorological, environmental and physical (namely, atomic, molecular, nuclear 

systems in an free state and an external electromagnetic field) systems. The non-trivial 

manifestations of a chaos phenomenon have been discovered. The studies concerning non-

linear behaviour in the time series of atmospheric constituent concentrations are sparse, and 

their outcomes are ambiguous. In ref. [12,21] there is an analysis of the NO2, CO, O3 
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concentrations time series and there is no evidence of chaos received. Also, it was shown 

that O3 concentrations in Cincinnati (Ohio) and Istanbul are evidently chaotic, and non-

linear approach provides satisfactory results. In Ref. [21,22,25,29] the detailed analysis of 

the NO2, CO, CO2 concentration time series has been fulfilled in the Odessa and industrial 

regions of the Ukraine and Poland) and the evidence of a chaos has been definitely obtained. 

Moreover, a short-range forecast of atmospheric pollutants time evolution using non-linear 

prediction method has been given. These studies show that chaos theory methodology can be 

applied and the short-range forecast by the non-linear prediction method can be satisfactory. 

Time series of concentrations are however not always chaotic, and chaotic behaviour must 

be examined for each time series.  

The work is devoted to the development of the theoretical foundations and further 

application of an effective universal complex chaos-dynamical approach to the atmospheric 

radon 222Rn concentration changing analysis and prediction from beta particles activity data 

on radon monitors. The approach presented consistently includes a number of new or 

improved methods of analysis (correlation integral, fractal analysis, algorithms, average 

mutual information, false nearest neighbors, Lyapunov exponents, surrogate data, non-linear 

prediction, spectral methods, etc.) to solve problems of quantitatively complete modeling 

and analysis of temporal evolution of the atmospheric radon 222Rn concentration. 

Topological and dynamical invariants data for the time series of the 222Rn concentration has 

been received. By means (or Using) of detailed data of radon concentrations measurements 

at SMEAR II station of the Finnish Meteorological Institute during 2003 a deterministic 

chaos phenomenon has been revealed that is agreed with the preliminary data [9]. 

2. Universal chaos-dynamical approach in analysis of dynamics of the complex 

geosystems 

As many blocks of the used approach have been developed earlier and need only to be 

reformulated regarding the problem studied in this paper, here we are limited only by the 

key moments following to Refs. [1, 11-33]. Let us formally consider scalar measurements 

s(n) = s(t0 + nt) = s(n), where t0 is the start time, t is the time step, and is n the number of 

the measurements. Further it is necessary to reconstruct phase space using as well as 

possible information contained in the s(n).  Such a reconstruction results in a certain set of d-

dimensional vectors y(n) replacing the scalar measurements. Packard et al.  [14] introduced 

the method of using time-delay coordinates to reconstruct the phase space of an observed 

dynamical system. The direct use of the lagged variables s(n + ), where  is some integer to 

206



 

 

be determined, results in a coordinate system in which the structure of orbits in phase space 

can be captured.  Then using a collection of time lags to create a vector in d dimensions, 

      y(n) = [s(n), s(n + ), s(n + 2), …,s(n + (d1))],                                                          (1) 

the required coordinates are provided. In a nonlinear system, the s(n + j) are some unknown 

nonlinear combination of the actual physical variables that comprise the source of the 

measurements. The dimension d is called the embedding dimension, dE. Any time lag will be 

acceptable, is not terribly useful for extracting physics from data. If  is chosen too small, 

then the coordinates s(n + j) and s(n + (j + 1)) are so close to each other in numerical value 

that they cannot be distinguished from each other. Similarly, if  is too large, then s(n + j) 

and s(n + (j + 1)) are completely independent of each other in a statistical sense. Also, if  

is too small or too large, then the correlation dimension of attractor can be under- or 

overestimated respectively [1]. Therefore it is necessary to choose some intermediate (and 

more appropriate) position between above cases. First approach is to compute the linear 

autocorrelation function                                       
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and to look for that time lag where CL() first passes through zero. This gives a good hint of 

choice for  at that s(n + j) and s(n + (j + 1)) are linearly independent. However, a linear 

independence of two variables does not mean that these variables are nonlinearly 

independent since a nonlinear relationship can differ from linear one. It is therefore 

preferably to utilize approach with a nonlinear concept of independence, e.g. the average 

mutual information. Briefly, the concept of mutual information can be described as follows. 

Let us assume there are two systems, A and B, with measurements ai and bk. The amount one 

learns in bits about a measurement of ai from measurement of bk is given by arguments of 

information theory [20,21].  The average mutual information between any value ai from 

system A and bk from B is the average over all possible measurements of IAB(ai, bk),                                                           
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To place this definition to a context of observations from a certain physical system, let us 

think of the sets of measurements s(n) as the A and of the measurements a time lag  later, 

s(n + ), as B set. The average mutual information between observations at n and n +  is                                                   
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                                                                                    (4)                                                                   

Now we have to decide what property of I() we should select, in order to establish which 

among the various values of  we should use in making the data vectors y(n). One could 

remind that the autocorrelation function and average mutual information can be considered 

as analogues of the linear redundancy and general redundancy, respectively, which was 

applied in the test for nonlinearity. The general redundancies detect all dependences in the 

time series, while the linear redundancies are sensitive only to linear structures. Further, a 

possible nonlinear nature of process resulting in the vibrations amplitude level variations can 

be concluded.  

The goal of the embedding dimension determination is to reconstruct a Euclidean space Rd 

large enough so that the set of points dA can be unfolded without ambiguity. In accordance 

with the embedding theorem, the embedding dimension, dE, must be greater, or at least 

equal, than a dimension of attractor, dA, i.e. dE > dA. However, two problems arise with 

working in dimensions larger than really required by the data and time-delay embedding [1, 

14-16, 21-24]. Firstly, many of computations for extracting interesting properties from the 

data require searches and other operations in Rd whose computational cost rises 

exponentially with d. Secondly, but more significantly from the physical point of view, in 

the presence of noise or other high dimensional contamination of the observations, the extra 

dimensions are not populated by dynamics, already captured by a smaller dimension, but 

entirely by the contaminating signal. When an embedding space one is too large it is 

unnecessarily to spend time working around aspects of a bad representation of the 

observations which are solely filled with noise. It is therefore necessary to determine the 

dimension dA. There are several standard approaches to reconstruct the attractor dimension 

(see, e.g., [11-24]), but let us consider only two methods in this study. The correlation 

integral analysis is one of the widely used techniques to investigate the signatures of chaos 

in a time series. The analysis uses the correlation integral, C(r), to distinguish between 

chaotic and stochastic systems. The Grassberger-Procaccia algorithm [19] is the most 
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commonly used approach to compute the correlation integral.. If the time series is 

characterized by an attractor, then the integral C(r) is related to the radius r given by  

       r
rCd

N
r log

)(loglim
0






,                                                                                                              (6) 

where d is correlation exponent that can be determined as the slop of line in the coordinates 

log C(r) versus log r by a least-squares fit of a straight line over a certain range of r, called 

the scaling region. The saturation value of the correlation exponent is defined as the 

correlation dimension (d2) of the attractor. The method of surrogate data [1,8,9] is an 

approach that makes the use of the substitute data generated in accordance to the 

probabilistic structure underlying the original data. Often, a significant difference in the 

estimates of the correlation exponents, between the original and surrogate data sets, can be 

observed. In the case of the original data, a saturation of the correlation exponent is observed 

after a certain embedding dimension value (i.e., 6), whereas the correlation exponents 

computed for the surrogate data sets continue to increase with the increasing embedding 

dimension. It is worth consider another method for determining dE that comes from asking 

the basic question addressed in the embedding theorem: when has one eliminated false 

crossing of the orbit with itself which arose by virtue of having projected the attractor into a 

too low dimensional space? By examining this question in dimension one, then dimension 

two, etc. until there are no incorrect or false neighbours remaining, one should be able to 

establish, from geometrical consideration alone, a value for the necessary embedding 

dimension. Advanced version is presented in Refs. [21]. The Lyapunov’s exponents (LE) are 

the dynamical invariants of the nonlinear system. In a general case, the orbits of chaotic 

attractors are unpredictable, but there is the limited predictability of chaotic physical system, 

which is defined by the global and local LE. A negative exponent indicates a local average 

rate of contraction while a positive value indicates a local average rate of expansion. In the 

chaos theory, the spectrum of LE is considered a measure of the effect of perturbing the 

initial conditions of a dynamical system. In fact, if one manages to derive the whole 

spectrum of the LE, other invariants of the system, i.e. Kolmogorov entropy (KE) and 

attractor's dimension can be found. The inverse of the KE is equal to an average 

predictability. Estimate of dimension of the attractor is provided by the Kaplan-Yorke 

conjecture:                                                                         
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There are a few approaches to computing the LE. One of them computes the whole spectrum 

and is based on the Jacobi matrix of system. In the case where only observations are given 

and the system function is unknown, the matrix has to be estimated from the data. In this 

case, all the suggested methods approximate the matrix by fitting a local map to a sufficient 

number of nearby points. To calculate the spectrum of the LE from the amplitude level data, 

one could determine the time delay  and embed the data in the four-dimensional space. In 

this point it is very important to determine the Kaplan-Yorke dimension and compare it with 

the correlation dimension, defined by the Grassberger-Procaccia algorithm.  The estimations 

of the KE and average predictability can further show a limit, up to which the amplitude 

level data can be on average predicted.  Other details can be found in Refs. [1,9,11-24].  

3. Analysis of the SMEAR station atmospheric radon concentration time series 

(2003) and conclusion 

The first application of the chaos-dynamical approach to analysis of chaotic time series of 

the environment radioactivity has been preliminarily presented in [9] on the example of 

analysis of the atmospheric radon concentration time series during 2001 year.  

Measurements of the radon concentrations at SMEAR II station (61 ° 51'N, 24 ° 17'E, 181 m 

above sea level; near the Hyytiälä, Southern Finland) has been performed by group of 

experts of the Finnish Meteorological Institute (FMI) and actually integrated into the system 

long-term measurements (see details in Ref. [5] and [8,9] too). Here we list the analysis of 

the corresponding data on the atmospheric radon for 2003. It is worth to note (look details in 

Refs. [9]) that the  continuous measurement was performed during 2003 on the seventh 

heights (from 4.2 m to 127 m). Technologically, a device with a pair of the Geiger-Müller 

counters, arranged in the lead corymbs is used for the beta particles detection. Registration 

of the beta particles was cumulatively carried in 10-minutes intervals. Effectiveness of a 

detection was 0.96% and 4.3% for beta radiation from 214Pb and 214Bi respectively. Estimate 

of the 1-σ statistical counting is ± 20% for stable concentrations of 222Rn (1 Bq/m3). The 

mean-daily values of atmospheric 222Rn concentrations were in the range from <0.1 to 11 
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Bq/m3. In fact, the lower limit of this range was limited by a hardware detection limit of the 

radon monitors. The average geometric value for the daily average radon concentrations was 

amounted to 2.3 to 2.6 Bq m-3 per year. In general during 2003 as hourly, as daily values of 

a parameter, which corresponds to the radon concentration, were ranged from about 1 to 5 

Bq/m3. In Figure 1 there is presented the typical time dependent curve of the radon 

concentration, received on the base of measurements at SMEAR II station (61° 51'N, 24° 

17'E, 181 m above sea level; near the Hyytiälä, Southern Finland) [5]). 

 

Figure 1.   Time dependent curve of the radon concentration, received on the base of measurement 

(SMEAR II station) 

In Table 1 we list the results of computing different dynamical and topological invariants 

(time delay ,correlation dimension (d 2), embedding space dimension (d E), Lyapunov 

exponent (i), Kolmogorov entropy (Кent ), Kaplan-York dimension (d L),  and chaos 

indicator (Kсh ) [13] for Rn concentration time series (2003). For comparison there also 

listed data of the analogous analysis of the Rn data during 2001 year [9].  

Table 1. Time delay ,correlation dimension (d 2), embedding space dimension 

(d E), Lyapunov exponent (i), Kolmogorov entropy (Кent ), Kaplan-York dimension 

(d L), and chaos indicator (Kсh ) for the radon concentration time series (2003) 

Year  d 2 d E 1 2 Кent d L K 

2001 12 5,48 6 0,0182 0,0058 0,024 5,36 0,80 

2003 14 5,72 6 0,0198 0,0064 0,026 5,58 0,84 

The analysis of the dynamical and topological invariants shows that, for example, the 

resulting Kaplan- York dimension is very close to the correlation dimension and is smaller 

than the dimension of attachment, which confirms the correctness of the choice of the latter. 
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This conclusions is fully analogous the conclusions [10]. To conclude, let us underline that 

the presented results of application of the chaos-dynamical approach to analysis of temporal 

evolution of the atmospheric radon 222Rn concentration and received values of the 

topological and dynamical invariants for the time series of the 222Rn concentration allows to 

reveal the deterministic chaos elements. It can be of a great theoretical and practical interest 

for the further studying environmental radioactivity time series for different radionuclides 

and by the way give the basis for the construction of the corresponding forecasting temporal 

and space distribution models (look in details [17, 1,21-24,28]).  
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Stochastic bifurcations in discontinuous and impacting nonlinear
systems

Sayan Gupta, Pankaj Kumar, Sadagopan Narayanan

Abstract: The non-smooth dynamics of Duffing van der Pol (DVDP) oscillator
under additive Gaussian white noise excitation with unilateral or bilateral non-
elastic constraints is numerically investigated. Applying the Zhuravlev-Ivanov
non-smooth variable transformation, the discontinuous problem is first mapped
into a continuous phase plane. A stochastic bifurcation analysis of the system
is carried out using concepts of D- and P-bifurcations. P-bifurcations involve
analysing the topological changes in the joint probability density function as-
sociated with the state variables. The joint pdf is obtained by solving the cor-
responding Fokker-Planck equation numerically using finite element method.
D-bifurcation analysis is carried out by studying the behaviour of the largest
Laypunov exponnet (LLE), computed using the Nordmark-Poincare map in
conjunction with Wedig’s algorithm. A measure based on Shannon entropy
has been developed to quantitatively estimate the onset of P-bifurcations. A
global parametric study carried out to identify the stochastic stability regimes
using the concepts of D- and P-bifurcations reveal that the regimes could be
slightly different. More studies on the interpretation of this phenomenon is
currently being investigated.

1. Introduction

Nonlinear dynamical behaviours resulting due to impacts of elements of dynamical systems

with rigid or elastic barriers exhibit many complex behaviour that cannot be explained us-

ing theory of smooth dynamical systems[4]. The fundamental nature of the non-smooth

dynamics of the impacting systems, and the resulting qualitative changes in the dynamics

is a matter of great interest[2]. Selection of appropriate mathematical model for impact is

crucial for simulating accurately the behavior of the dynamical system. The simplest way

of modeling impacts is based on the hypothesis of hard collision, which assumes infinitesi-

mally small contact duration time and constant value of the coefficient of restitution. This

model is based on the assumption that the impact is instantaneous, hence works well when

impacting surfaces are hard. For many other practical applications, impact can be modeled

more realistically by modelling it as soft impact described by using continuous functions of

force-deformation relations during contacts. The Hertz impact law is such an example. A

comprehensive survey for various impact models can be found in [4].
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The presence of noise in the excitations for such non-smooth nonlinear systems leads

to further complexities in the system behaviour of these systems. Noise has the potential

to alter the stability boundaries and can play an important role in the design and life of

non-smooth mechanical system. This has prompted investigations on the influence of noise

on the dynamical behaviour and bifurcation characteristics for these non-smooth dynamical

systems.

This study focusses on the development of a methodology for the stability and bifurcation

analyses of a stochastically excited discontinuous Duffing-Van der Pol(DVDP) oscillator,

with impacts modeled with hard as well as soft nonlinear elastic-damping structures (Hertz’s

damping contact model). The main objective is to analyze qualitatively and quantitatively

the influence of Gaussian white noise on these two different models and to compare the

resulting response. The analysis is carried out using two distinct approaches. Changes in the

dynamical stability of the system is examined through the largest Lyapunov exponent (LLE)

associated with the trajectories of the system. In computing the LLE, the discontinuities in

the equation of motion on account of impact present difficulties which are bypassed by using

the Nordmark-Poincare mapping [1] approach. Additionally, the bifurcation characteristics

are examined using the topological structure of the joint probability density function(pdf)

of the state variables. The difficulties in writing the Fokker-Planck (FP) equation associated

with the vibro-impact system whose governing equations of motion are discontinuous, are

addressed by using the Zhuravlev-Ivanov transformation [9, 5, 2]. A numerical solution to the

FP equation in the transformed space is obtained using a recently developed finite element

method [6]. Subsequently, a measure based on the Shannon entropy [7] is used to quantify

the regimes where P-bifurcations take place. Parametric studies are carried out to examine

the D- and P- bifurcation characteristics where the position of the barriers, the intensity

of the excitation and the damping are taken as control parameters. The advantages and

disadvantages of both models are discussed.

2. Mathematical model of the system

Discontinuous DVDP oscillator under stationary, zero-mean Gaussian process W (t) as pre-

sented in Fig. 1 is considered. ∆/2 represents the locations of the barriers on either side of

the equilibrium position (taken to be at the origin). The barrier has been modeled as rigid

Fig. 1(a) or elastic-damped (Hertz’s damping contact) model Fig.1(b). The corresponding

governing equations of motion for the oscillator with rigid barriers are

Ẍ − αX − cẊ + β0X
3 − β1X

2Ẋ + β2X
4Ẋ = σW (t); − ∆

2
< X <

∆

2
(1)
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a) b)

Figure 1. Schematic of the (a) impact based on restitutional model (b) Hertz contact

impact model.

with the impact condition being mathematically expressed as

Ẋ+ = −eẊ−, X = ±∆

2
0 < e ≤ 1, (2)

where α and c denote the linear stiffness and damping coefficients, {βi(t)}2i=0 are system

parameter constants that define the nonlinear stiffness and damping and e is the coefficient

of restitution. The corresponding governing equations of motion for the oscillator with

impacts based on Hertz contact model is given by

Ẍ − αX − cẊ + β0X
3 − β1X

2Ẋ + β2X
4Ẋ + f(X, Ẋ) = W (t), (3)

where using Hertz’s contact model of nonlinear damping the collision force f(X, Ẋ) is math-

ematically expressed as

f(X, Ẋ) =


kh(X + ∆

2
)3/2(1 + chẊ) if X < −∆

2

0 if −∆
2
≤ X ≤ ∆

2

kh(X − ∆
2

)3/2(1 + chẊ) if X > ∆
2
,

(4)

here, kh and ch denote the stiffness and damping coefficients corresponding to the Hertz

contact model.

3. Vibro impact oscillator

The non-smooth nature of the governing equations of motion for vibro-impact dynamical

systems pose analytical and numerical challenges in their analysis. These difficulties can be

overcome by invoking suitable non-smooth variable transformations that enable rewriting the

governing equations of motion in a transformed variable space without any discontinuities.

For oscillators with one sided rigid barrier a non-smooth variable transformation - known

as the Zhuravlev transformation - has been proposed in [9]. Mathematically, Zhuravlev
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transformation involves mapping the problem from the (X, Ẋ) space to the (Y, Ẏ ) space

such that

X = |Y | = Y sgn(Y ), Ẋ = Ẏ sgnY, (5)

where, sgn(·) is the signum function. While this transformation removes the discontinuity in

the phase plane, the effect of impact and the consequent abrupt change in velocity is modelled

into the governing equations of motion as an additional dissipative term (1−e)Ẏ |Ẏ |δ(Y ). The

presence of the discontinuous functions such as | · | and the δ(·) presents numerical difficulties

which can be bypassed by approximating using arc-tangent and Gaussian distribution of very

low variance respectively.

The double sided impact changes the nature of the dynamics and the Zhuravlev-Ivanov

transformation which is essentially a mirror image transformation cannot be applied. Instead,

a piecewise differentiable periodic transformation proposed by Zhuravlev [9] for double sided

barriers can be used to convert the equations of motion without any discontinuities. As a

first step, a non-dimensional displacement variable Y = Xπ/∆ is defined. The equation of

motion between impacts can now be expressed as

Ÿ − αY − cẎ + β
′
0Y

3 − β
′
1Y

2Ẏ + β
′
2Y

4Ẏ = σ
′
W (t), −π

2
< Y <

π

2
, (6)

with the impact condition defined as

Ẏ + = −eẎ −, Y = ±π
2
, 0 < e ≤ 1. (7)

The superscript primes that appear in Eq.(6) refer to the corresponding non-dimensional

parameters of the problem. Next, Eqs.(6-7) need to be transformed into the constraint

free form. For case of elastic impacts e = 1, the following 2π periodic functions are first

introduced [9]:

Π(Z) =

 Z if −π
2
≤ Z ≤ π

2
,

−Z + π if π
2
≤ Z ≤ 3π

2
,

(8)

M(Z) = Π
′
(Z) =

 1 if −π
2
≤ Z ≤ π

2
,

−1 if π
2
≤ Z ≤ 3π

2
.

(9)

The prime on Π
′
(Z) denotes differentiation with respect to Z. This enables expressing the

displacement variable Y and its time derivatives in terms of Π(Z) and M(Z) as

Y = Π(Z), Ẏ = M(Z)Ż, Ÿ = M(Z)Z̈ +M ′(Z)Ż2. (10)
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Substituting Eq.(10) in Eq.(6), the equations of motion can be expressed as

Z̈ −αM(Z)Π(Z)− cŻ + β
′
0M(Z)Π3(Z)− β

′
1Π2(Z)Ż + β

′
2Π4(Z)Ż = σ

′
M(Z)W (t). (11)

For inelastic impacts, when (0 < e < 1), a modified smooth variable transformation has been

suggested in [3] where

Y = Π(Z + λN(Z), Ẏ = (M(Z) + λΠ(Z))Ż,

Ÿ = M
′
(Z)Ż2 +M(Z)Z̈ + λM(Z)Ż2 + λΠ(Z)Z̈. (12)

Here, N(Z) is 2π periodic i.e., N(Z + 2π) = N(Z) and is given by

N(Z) =

 Z2

2
− π2

8
if −π

2
≤ Z ≤ π

2
;

−(Z−π)2

2
+ π2

8
if π

2
≤ Z ≤ 3π

2
,

, λ =
2

π

(
1− e
1 + e

)
. (13)

3.1. Stochastic bifurcation

Bifurcations in nonlinear dynamical systems are characterized by the birth or destruction

of attractors at different parameter regimes, leading to dramatic and abrupt changes in its

behaviour. Typically, it has been observed in the literature that systems subjected to noise

could undergo bifurcations in two distinct modes: (a) dynamical or D-bifurcations occur

when there are drastic topological changes associated with the phase space trajectories,

and (b) phenomenological or P-bifurcations are observed when the underlying probabilistic

structure of the long term behavior of the state variables undergo topological changes. More

details on D- and P- bifurcations for the vibro-impact system being studied is discussed in

the following sections.

3.1.1. P-bifurcation

P-bifurcation is characterized by changes in the probabilistic structure of the stationary joint

pdf of the state variables at different parameter regimes. A parameter change leading to the

changes in the attractor would lead to a corresponding change in the topology associated

with the joint pdf; this is defined as a P-bifurcation. Under Gaussian white noise excitation,

the state vector Z = [Z1 Z2]T corresponding to the equations of motion Eq.(11) will be

Markovian, and hence, the time and space evolution of the joint pdf p(Z, t|Z0, t0), is governed

by the following FP equation.

∂p

∂t
= −Z2

∂p

∂Z1
− ∂

∂Z2

{
[αM(Z1)Π(Z1) + cZ2 − β

′
0M(Z1)Π3(Z1)

+β
′
1Π2(Z1)Z2 − β

′
2Π4(Z1)Z2]p

}
+
σ

′2

2

∂2p

∂Z2
2

. (14)
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The FP equation for the inelastic case corresponding to Eq.(12) is given by

∂p

∂t
= −Z2

∂p

∂Z1
+

σ
′2

2[A]2
∂2p

∂Z2
2

−∂[cZ2 + [A]−1[α(B)− β
′
0(B)3 − λM(Z1)z2

2 ] + β
′
1(B)2Z2 − β

′
2(B)4Z2]p

∂Z2
, (15)

where, A = M(Z1) + λΠ(Z1), B = Π(Z1) + λN(Z1). In this study, the recently developed

finite element method [6] has been used to numerically estimate the stationary j-pdf of the

response variables.

3.1.2. D-bifurcation

The dynamical stability characteristics of the attractors are estimated by investigating the

long term behaviour of the trajectories and are best measured in terms of the LLE. Using

the principle of Oseledec’s multiplicative theorem, the LLE is mathematically defined as

λ̃m = max

{
lim

t→∞E

[
1

t
log
||u(t)||
||u(0)||

]}
, (16)

where {u(t) : t > 0} are the solution trajectories of the linearized differential equations when

the governing equations of motion are linearized about a reference solution. However the

presence of discontinuities through the signum functions lead to difficulties in the compu-

tation of the Jacobian essential for estimating the LLE. Instead one can use discontinuity

mapping proposed in [1], which provides a local decomposition of a Poincare mapping into

a sequence of four classes to distinguish between the contributions from the flow and those

from the impact process. When the flow trajectory is continuous, a small perturbation v to

the trajectory X0(t) - the solution of Eq.(1), is governed by the linearized equation

v̇ = J(t)v

 X > ∆ for one sided barrier;

−∆
2
< X < ∆

2
for both sided barriers,

(17)

where, J is the Jacobian matrix obtained for the corresponding equations of motion. The

approximate discrete map, for the perturbation v at the time of impact can be constructed

using the Nordmark local map

v+
k =

[
DPc

]
X0(t)

v−k ,

 X1 = ∆ for one sided impact,

X1 = ±∆
2

for both sided impacts,
(18)

where, DPc is a compound map which describes the impact process through the Jacobian

matrix

DPc =

 −e 0
(1+e)(αX1k

+β0X
3
1k

+σW (tk))

X2k
−e

 . (19)
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3.2. Boundaries of stochastic bifurcation regimes

D-bifurcations are characterized by a sign change in the LLE and the locus in the parameter

space where these sign changes occur indicates the boundaries for D-bifurcations. In contrast,

P-bifurcation analysis is primarily a qualitative analysis, based on visual inspection of the

structure of the pdf of the response. This makes it difficult to define the stability boundaries

in terms of P-bifurcations. A quantitative measure based on the Shannon entropy has been

recently proposed in [7] for identifying P-bifurcations quantitatively. The Shannon’s entropy

of X(t) at time t is defined as

H(a, t) = −
∫ ∞
−∞

p(a, t) logb p(a, t)da, (20)

where, b is an arbitrarily chosen logarithmic base, usually taken to be Euler’s number. It

has been shown in [8] that under stationary conditions, the entropy flux is proportional to

the negative sum of the Lyapunov exponents implying that the entropy changes depend on

the phase space contraction and a correction term that depends on the noise strength σ.
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Figure 2. p(X1X2) for e = 0.98, σ = 0.1, c = −0.1, (a) ∆ = −0.75, (b) ∆ = 0, (c) ∆ = 0.25.

3.3. Numerical results

For the numerical calculations, the parameters in Eq.(1) are taken to be β0 = 0.5, c = −0.1,

β1 = β2 = 1. The offset position ∆, coefficient of restitution e and the noise intensity

σ are taken to be the control parameters which are varied. To investigate the effect of

position of the barrier offset ∆, on the stability characteristics of the dynamical system, the

stationary pdf are computed for the cases ∆ = −0.75, 0 and 0.25, when α = −1, σ = 0.1, e =

0.98. Figure 2 shows the j-pdf for these three cases while Fig. 3 shows the corresponding

contour plots. With barrier offset at relatively large distance ∆ = −0.75, Figures 2(a)

and 3(a) clearly reveal the bistable character of the pdf; the two stochastic attractors -

one representing small amplitude oscillations while the other represents large amplitude
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oscillations - are clearly visible in the contour plot. This is indicative of the presence of two

stable attractors. As ∆ is decreased to ∆ = 0, one observes that the strength of attractor

at origin increases while the large amplitude oscillations weakens and is significantly less

pronounced; see Figs. 2(b) and 3(b). This can be attributed to the greater energy loss due

to increasing damping effect upon impact, hence system has less energy for large amplitude

oscillations.The corresponding contour plot in Fig. 3(b) shows that system exhibits small

amplitude oscillations at this parameter regime. On further increasing ∆ = 0.25, the barrier

X1

X
2

 

 

−0.5 0 0.5 1 1.5

−2

−1

0

1

2

0.1

0.2

0.3

0.4

0.5

(a)

X1

X
2

 

 

0 0.5 1 1.5 2
−2

−1

0

1

2

0.5

1

1.5

2

2.5

3

(b)

X1

X
2

 

 

0.5 1 1.5 2
−2

−1

0

1

2

0.2

0.4

0.6

0.8

1

(c)

Figure 3. Contour plot of p(X1X2) e = 0.98, σ = 0.1, c = −0.1, (a) ∆ = −0.75, (b) ∆ = 0, (c)

∆ = 0.25.

forces the system to move away from the attractor at the origin to the large amplitude

oscillations. This is the reason why the attractor at the origin no longer exists and the

system exhibits only large amplitude oscillations; see Figs. 2(c) and 3(c). These changes

in the topological characteristics associated with the stochastic attractors is indicative of

P-bifurcation.
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Figure 4. LLE for σ = 0.1, α = −1 using Nordmark mapping (a) c = −0.08, (b) c = −0.1, (c)

c = −0.14.

To investigate the dynamical bifurcation characteristics, the LLE are computed using
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Nordmark mapping. Figure 4 shows the variation of the LLE as a function of the barrier offset

for different values of c and e. An inspection of these figures clearly shows that in all cases,

the LLE denoted by λ̂max, is negative for ∆ < 0. However, as the barrier offset is varied,

there is a dramatic change in λ̂max and at ∆ = 0, λ̂max > 0 indicating loss of dynamical

stability. Hence D-bifurcation occurs at ∆ = 0. This type of stochastic instability is referred

to in the literature as discontinuity-induced instability. This can be explained by the fact

that placing a barrier at the origin prevents the system from reaching the attractor causing

the system to lose stability.
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Figure 5. Identifying stochastic stability regimes for c = −0.1, σ = 0.1 based on (a)

qualitative analysis of the joint pdf pX1X2
(x1, x2) (b) Shannon entropy measure estimated

from the pdf of amplitude, PA(a) and (c) sign of the largest Lyapunov exponent.

Next, a global parametric study is undertaken for identifying the stability regimes in

the ∆− e plane for the noisy DVDP vibro-impact oscillator. Figure 5(a) shows the different

regimes identified based on visual inspection of the joint pdfs computed from the solution of

the FP equation; this is the traditional P-bifurcation analysis based on qualitative changes

in the structure of the joint pdf. Figure 5(b) shows the bifurcation diagram using the

Shannon entropy definition H(a) based on pA(a). Here, the regimes are demarcated based

on the quantitative approach to P-bifurcation analysis. The bifurcation diagram shown in

Fig. 5(c) is obtained based on D-bifurcation analysis from the computation of the LLE. The

parameter space in Fig.5(a) is mainly subdivided into three different zones, the nomenclature

of which is as follows: (i) half limit cycle − the only attractor is the limit cycle where one

obtains large amplitude oscillations in the positive half space (due to impact) (ii) unimodal

− only one attractor exists at the fixed point, characterzied by small amplitude oscillations,

and (iii) bistable − both stochastic attractors - large amplitude as well as small amplitude

oscillations exist simultaneously. It must be emphasised here that the boundaries of these

zones do not have sharp demarcations and these are based on qualitative analysis based on
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visual inspection of the joint pdf. On the other hand, Fig. 5(b) is divided into regimes based

on the sign of H(a); H(a) > 0 in the regions marked by the plus signs. It is observed that

there are very close similarities between Figs.5(a) and (b). The parameter ranges where

H(a) > 0 in Fig.5(b) correspond to regimes where the system exhibits bistability. This

indicates the usefulness of the Shannon entropy approach in quantifying P-bifurcations. The

demarcation of the regimes in Fig.5(c) is based on the sign of LLE. A comparison of the

bifurcation diagrams in Fig. 5(c) with either Fig.5(a) or (b) clearly indicates that D- and P-

bifurcations need not occur simultaneously for certain parameter ranges.
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(x1, x2); σ = 0.1, c = −0.1, e = 1; (a) ∆
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Next, the numerical calculations are presented for the case when the barriers are placed

symmetrically about the equilibrium position of the attractor and α = 1, σ = 0.1, e = 0.98.

Figures 6(a)-(c) show the j-pdf of the response variables when the distance between the

barriers are 1.5, 2.0 and 2.8 respectively, while Figures 7(a)-(c) show the corresponding
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contour plots. An inspection of these figures clearly indicate, that when barriers are closer to

the system stable point, pdf has singular peak at both the barrier and system gains stability

as barrier move away. When barrier is sufficiently apart such as case of ∆
2

= ±1.4, (see

Figure 6(c)), the oscillator is free from any impact, and reveals the existence of two attractors.

Figures 8-9 show the corresponding j-pdf of the state variables and the corresponding contour
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Figure 8. Stationary joint pdf pX1X2
(x1, x2); σ = 0.25, c = −0.1, e = 1; (a) ∆

2
= ±0.75, (b)

∆
2

= ±1, (c) ∆
2

= ±1.4.

plots for the case σ = 0.25. A comparison of Fig. 6 with Fig. 8 reveal that as the intensity

increases the two distinct attractors appear to merge together. This can be attributed to

the fact that the higher energy available to the system enables it to move from the basin

of attraction of one attractor to the other. Also as observed in Fig. 8 increase of noise

intensity leads to decreasing its peak value while increasing the probability in the tail region

significantly. Hence now even for the case of ∆
2

= ±1.4, system will have sufficient energy

to touch both the barriers.
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Figure 9. Contour plots for pX1X2
(x1, x2); σ = 0.25, c = −0.1, e = 1; (a) ∆

2
= ±0.75, (b)

∆
2

= ±1, (c) ∆
2

= ±1.4.

225



4. Impact based on Hertz contact model

The DVDP oscillator with a barrier as presented by Eqs. (3) and (4) can be written equiva-

lent to three stochastic system, which have a continuous and differential vector field defined

as follows;

f1 : Ẍ−αX−cẊ+β0X
3−β1X

2Ẋ+β2X
4Ẋ+kh(X+

∆

2
)3/2(1+chẊ) = W (t), X < −∆

2
,

f2 : Ẍ − αX − cẊ + β0X
3 − β1X

2Ẋ + β2X
4Ẋ = W (t), −∆

2
≤ X ≤ ∆

2
, (21)

f3 : Ẍ−αX−cẊ+β0X
3−β1X

2Ẋ+β2X
4Ẋ+kh(X−∆

2
)3/2(1+chẊ) = W (t), X >

∆

2
.

The responseX1, X2 of Eqs. (21), is a Markov vector and the transitional joint pdf p(X, t|X0, t0),

is governed by the following FP equation;

∂p

∂t
= −X2

∂p

∂X1
− ∂(h(X1, X2) + f(X1, X2))p

∂X2
+
σ2

2

∂2p

∂X2
2

, X < −∆

2
,

∂p

∂t
= −X2

∂p

∂X1
− ∂(h(X1, X2))p

∂X2
+
σ2

2

∂2p

∂X2
2

, −∆

2
≤ X ≤ ∆

2
, (22)

∂p

∂t
= −X2

∂p

∂X1
− ∂(h(X1, X2) + f(X1, X2))p

∂X2
+
σ2

2

∂2p

∂X2
2

, X >
∆

2
,

where h(X1, X2) = αX1 + cX2 − β0X
3
1 + β1X

2
1X2 − β2X

4
1X2 and p = p(X, t|X0, t0), the

joint transition pdf of the state variables is used for notational convenience.

4.1. Numerical Results

First, case of a single sided barrier fixed at equilibrium position at X = 0 is considered and

for α = −1, σ = 0.1, c = −0.1, barrier damping, ch will be varied. Fig. 10 shows the j-pdf,for

three different values of damping coefficient of damped-elastic barrier with ch = 0.01, 0.1

and 0.5. With increasing the damping of barrier to 0.5 the LCO is completely destroyed

and only one stable attractor - the fixed point at the origin, emerges, see Fig. 10(c). Hence

similar to case of vibro impact, increasing the damping of barrier dissipates more energy and

hence reduces the large amplitude oscillation. The topological changes in the nature of the

stochastic attractor - from a stable limit cycle to a regime of bistability and subsequently

the weakening and destruction of one attractor to the birth of another - is indicative of

P-bifurcation.

Next, we consider bilateral impact, when α = 1, σ = 0.1, c = −0.1. System dynamics of

oscillator with bilateral barrier is completely different from that of single sided barrier. The

barrier modeled on the Hertz contact model adds additional stiffness as well as damping to

main oscillator. Hence depending on proximity of barrier position overall system behaviour
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(a) ch = 0.1 (b) ch = 0.75 (c) ch = 2.5

Figure 10. Stationary joint pdf of pX1X2 (x1, x2) with ∆ = 0

is similar to barrier free DVDP oscillator of combined stiffness and damping. As shown in

Fig. 11 for ∆ = ±1.5, when barrier is away from oscillator, system dynamics is similar

to barrier free oscillator. For ∆ = ±0.25, when barrier is very close to oscillator, barrier

stiffness and damping added with main oscillator and hence system dynamics is very much

resemble to equivalent stiffness and damping of oscillator.

(a) ∆ = ±0.25 (b) ∆ = ±0.5 (c) ∆ = ±1.5

Figure 11. Stationary joint pdf of pX1X2
(x1, x2) with bilateral offset.

5. Conclusions

Investigations on the stochastic bifurcations for a DVDP oscillator having hard or elastic-

damped single or double sided barrier subjected to Gaussian white noise excitation has

been carried out. Offset position, noise intensity, coefficient of restitution and stiffens of

elastic barrier have been taken to be the control parameters. P-bifurcation analysis has been

carried out by solving for the stationary probability density function of the state variables

from the corresponding Fokker-Planck equation using a finite element based approach. The

estimated largest Lyapunov exponents have been used for carrying out D-bifurcation analysis.

The locus of the parameters at which the sign of the LLE changes indicates the dynamical

stability boundaries. A newly developed quantitative measure based on the Shannon entropy

associated with the amplitude process has been used to identify the onset of P-bifurcations.

A global parametric study has been carried out to identify the stochastic stability regimes
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based on visual inspection of the pdf of the state variables, the sign of the Shannon entropy

measure and the sign of the largest Lyapunov exponent.
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Study of dynamical systems by fast numerical computation of
Lyapunov functions

Sigurdur Freyr Hafstein, Asgeir Valfells

Abstract: In this paper we discuss a computational method of numerically
searching for Lyapunov functions for nonlinear systems and demonstrate its
efficacy. The method is built upon applying various theoretical Lyapunov func-
tions, given by integrating some specific positive functions along solution trajec-
tories in the state space, to the vertices of a simplical complex. Then we assign
the remaining values by convex interpolation over the simplices. The benefits
of explicitly constructing the candidate functions in this manner are twofold.
Firstly it is computationally inexpensive, growing linearly with the number
of vertices we calculate a candidate function on, and secondly the freedom in
choosing a positive function allows us flexibility to not be overly constrained
by the shape of the attractor. Finally we will demonstrate the method on
two planar examples. Most notably we will see that the constructed Lyapunov
functions give us lower bounds on basins of attraction that are significantly
larger than those found by other methods in the literature.

1. Introduction

Consider the dynamical system, whose dynamics are given by the ODE

x′ = f(x), (1)

where f : D → Rn, D ⊂ Rn, is locally Lipschitz. We denote the (unique) solution to (1)

with initial value ξ ∈ D at t = 0 with t 7→ φ(t, ξ). If η ∈ D is an equilibrium point for (1),

i.e. f(η) = 0 and consequently φ(t,η) = η for all t ∈ R a constant solution, its stability

properties are of much practical interest. The equilibrium point η is said to be asymptotically

stable if it is stable (in the sense of Lyapunov) and attractive. The former means that for

all ε > 0 there exists δ > 0 such that ‖ξ − η‖ < δ implies ‖φ(t, ξ) − η‖ < ε for all t ≥ 0

and the latter denotes that there exists a neighbourhood Nη of η such that ξ ∈ Nη implies

limt→∞ ‖φ(t, ξ) − η‖ = 0. The set of all points that are attracted to the asymptotically

stable equilibrium η as t → ∞, i.e. the largest possible Nη, is called its basin of attraction

and its spatial extension is a measure of the robustness of the equilibrium’s stability.

Stability of equilibrium points and basins of attraction are concepts of fundamental rele-

vance in applications of dynamical systems. They are usually dealt with using the Lyapunov
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stability theory. Some good references are [12,16,18]. The centerpiece of the Lyapunov sta-

bility theory is the so-called Lyapunov function, a scalar-valued function from the state-space

of the dynamical system that is decreasing along all solutions of the system in a neighbour-

hood of the equilibrium in question. Lyapunov functions deliver lower bounds on basins of

attraction through their sublevel sets and for linear systems x′ = Ax they can be constructed

explicitly using algebraic methods. For nonlinear systems there is no general method, but

one can resort to linearization around the equilibrium in question and construct a Lyapunov

function for the linearization. This Lyapunov function is also a Lyapunov function for the

nonlinear system in a neighbourhood of the equilibrium, but it is not a good Lyapunov

function in the sense that it does in general deliver very conservative lower bounds on the

equilibrium’s basin of attraction. For exact formulas see, e.g. [9].

2. Method to Compute Lyapunov Functions

For the reasons discussed in the last section there have been numerous methods proposed in

the literature to generate Lyapunov functions for nonlinear systems [8]. One approach is to

approximate numerically formulas for Lyapunov functions [1,4,5,10] from classical converse

theorems [11, 14, 19] in the Lyapunov stability theory. These converse theorems assert the

existence of Lyapunov functions for systems with asymptotically stable equilibria and give

formulas, in terms of the systems’s solution, for these Lyapunov functions. Because these

formulas include solutions to the systems, that are in general not obtainable for nonlinear

systems, one resorts to approximate their values at a finite number of points. The Lyapunov

function must be decreasing along solution trajectories in a whole neighbourhood of the

equilibrium in question. If this cannot be asserted the constructed (Lyapunov) function

is of little use, i.e. an approximation to a Lyapunov function is of little value. Therefore

the computed values must be interpolated such that the resulting function is a Lyapunov

function in a whole area. This can be achieved by using the linear programming (LP)

problem from [7], but instead of using LP to compute the values of the Lyapunov function

at the vertices of a simplicial complex, one uses a formula from a converse theorem to assign

values at the vertices and then verifies if the linear constraints of the LP problem are fulfilled

using these values. If the linear constraints are fulfilled for all vertices of a certain simplex,

then the affine interpolation of these values over the simplex defines a function, whose orbital

derivative is negative along all solution trajectories passing through this simplex. This was

already shown in [1].

We improve this method in two ways. First, we incorporate sharper error estimates in

the next section for the LP problem from [7], which leads to less conservative conditions in

its linear constraints. Second, we tune the positive definite function in an integral formula
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from [14] to enlarge the lower bound on the basin of attraction, i.e. we approximate the

Lyapunov function

V (x) =

∫ T

0

‖φ(τ,x)‖2

δ + ‖φ(τ,x)‖p dτ (2)

for some appropriately chosen T, δ, p > 0 at the vertices, instead of using

V (x) =

∫ T

0

‖φ(τ,x)‖2dτ. (3)

3. Sharper Error Bounds

The error bounds in the LP problem form [7, Def. 6] that served as basis for the constructions

in [1,10] can be sharpened using more regular triangulations and results from [13]. Further,

the statement of the essential part of the LP problem can be considerably simplified.

To achieve this the linear constraints LC4 from [13] must first be rewritten in the notation

of [7]. Denote by Symn the set of the permutations of {1 : n} := {1, 2, . . . , n}, by P({1 : n})
the powerset of {1 : n}, and set Z := Nn0 × P({1 : n}). Let Γ and PSi, i = 1 : n,

be strictly increasing functions R → R that vanish at zero and define PS : Rn → Rn,

PS = (PS1,PS1, . . . ,PSn)>. Define RJ (x) =
∑n
i=1(−1)χ(i)xiei for every J ∈ P({1 : n}),

xσi :=

n∑
j=i

eσ(j) for every σ ∈ Symn and every i = 1 : n+ 1, and (4)

y
(z,J )
σ,i := PS(RJ (z + xσi )) for every (z,J ) ∈ Z, every σ ∈ Symn and every i = 1 : n+ 1.

Assume that the components of f in the system (1) are C2 and let B
(z,J )
rs for every (z,J ) ∈ Z

and r, s = 1 : n be a constant fulfilling

B(z,J )
rs ≥ max

x∈PS(RJ (z+[0,1]n))
k=1:n

∣∣∣∣∂2fk(x)

∂xr∂xs

∣∣∣∣ (5)

For every (z,J ) ∈ Z, every k, i = 1 : n, and every σ ∈ Symn, define

A
(z,J )
σ,k,i := |ek · (y(z,J )

σ,i − y
(z,J )
σ,n+1)|. (6)

The constraints LC4 from [13] can now be written as: For every (z,J ) ∈ Z, every

σ ∈ Symn, and every i = 1 : n+ 1:

−Γ[‖y(z,J )
σ,i ‖] ≥

n∑
j=1

V [y
(z,J )
σ,j ]− V [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

fσ(j)(y
(z,J )
σ,i ) (7)

+
1

2

n∑
r,s=1

B(z,J )
rs A

(z,J )
σ,r,i (A

(z,J )
σ,s,i +A

(z,J )
σ,s,1 )

n∑
j=1

∣∣∣∣∣ V [y
(z,J )
σ,j ]− V [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

∣∣∣∣∣
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In [13] the vectors

xzJσ
i := RJ

(
z +

i∑
j=1

eσ(j)

)
for i = 0 : n are used. (8)

The relationship between the (4) and (8) is with 1 := e1 + e2 + . . .+ en that

xzJσ
i−1 + y

(z,J )
σ,i = PS(RJ (z)) + PS(RJ (z + 1)) (9)

for every (z,J ) ∈ Z, every σ ∈ Symn, and every i = 1 : n+ 1. Thus with α ∈ Symn defined

through α(i) = σ(n+ 1− i) for i = 1 : n, we have σ(i) = α(n+ 1− i) and y
(z,J )
σ,i = xzJα

n+1−i.

Hence, from (6)

A
(z,J )
σ,k,i = |ek · (y(z,J )

σ,i − y
(z,J )
σ,n+1)| = |ek · (xzJα

n+1−i − xzJα
0 )| =: AzJα

k,n+1−i

and (7) can be rewritten as

− Γ[‖xzJα
n+1−i‖] ≥

n∑
j=1

V [xzJα
n+1−j ]− V [xzJα

n−j ]

eα(n+1−j) · (xzJα
n+1−j − xzJα

n−j )
fα(n+1−j)(x

zJα
n+1−i)

+
1

2

n∑
r,s=1

B(z,J )
rs AzJα

r,n+1−i(A
zJα
s,n+1−i +AzJα

s,n )

n∑
j=1

∣∣∣∣∣ V [xzJα
n+1−j ]− V [xzJα

n−j ]

eα(n+1−j) · (xzJα
n+1−j − xzJα

n−j )

∣∣∣∣∣ .
Thus by renaming i← n+ 1− i and σ ← α, the linear constraints LC4 from [13] in (7) are

fulfilled, if and only if for every (z,J ) ∈ Z, every σ ∈ Symn, and every i = 0 : n, we have

−Γ[‖xzJσ
i ‖] ≥

n∑
j=1

V [xzJσ
j ]− V [xzJσ

j−1 ]

eσ(j) · (xzJσ
j − xzJσ

j−1 )
fσ(j)(x

zJσ
i ) (10)

+
1

2

n∑
r,s=1

B(z,J )
rs AzJσ

r,i (AzJσ
s,i +AzJσ

s,n )

n∑
j=1

∣∣∣∣∣ V [xzJσ
j ]− V [xzJσ

j−1 ]

eσ(j) · (xzJσ
j − xzJσ

j−1 )

∣∣∣∣∣ .
We now show the connection between (10) and the statement of the constraints using

the gradient of the Lyapunov function ∇V as in [7, Def. 6]. The so-called shape-matrix

XzJσ of the simplex SzJσ := co
(
xzJσ
0 ,xzJσ

1 , . . . ,xzJσ
n

)
is defined by writing the vectors

xzJσ
1 −xzJσ

0 , xzJσ
2 −xzJσ

0 , . . . ,xzJσ
n −xzJσ

0 consecutively in its rows. For the affine function

VzJσ : SzJσ → R defined through

VzJσ

(
n∑
j=0

λjx
zJσ
j

)
=

n∑
j=0

λjV [xzJσ
j ] (11)

for all convex combinations of the vertices of SzJσ, it is not difficult to see that with

vzJσ :=
(
V [xzJσ

1 ]− V [xzJσ
0 ], V [xzJσ

2 ]− V [xzJσ
0 ], . . . , V [xzJσ

n ]− V [xzJσ
0 ]

)>
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we have

VzJσ(x) = (X−1
zJσvzJσ) • (x−xzJσ

0 ) +V [xzJσ
0 ] = v>zJσX

−T
zJσ(x−xzJσ

0 ) +V [xzJσ
0 ] (12)

for all x ∈ SzJσ. This is a simple consequence of the fact that (11) and (12) are affine

functions with identical values at the vertices of SzJσ. Thus the gradient of VzJσ is given by

(the column vector) ∇VzJσ := X−1
zJσvzJσ. The linear constraints in [7, Def. 6] corresponding

to (10), but for more general triangulations than discussed here, can be formulated as

−Γ[‖xzJσ
i ‖] ≥ ∇VzJσ • f(xzJσ

i ) + EzJσ‖∇VzJσ‖1, (13)

where EzJσ is a simplex-dependent error bound.

To shorten formulas in the following computations we fix the simplex SzJσ and thus

z, J , and σ and set X := XzJσ. It is not difficult to see that X = LSP , where S :=

diag(s1, s2, . . . , sn) is a diagonal matrix with si = PS(RJ (z + ei))−PS(RJ (z)),

L =


1 0 · · · 0

1 1 · · · 0

...
...

. . .
...

1 1 · · · 1

 with L−1 =



1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −1 1


, (14)

is a lower-triangular matrix Lij = 1 if i ≥ j, and P is a permutation matrix, e>i P = e>σ(i)

for i = 1 : n. Especially P−1 = P>. Now set xi := xzJσ
i , Vi := V [xi], ∇V := ∇VzJσ, and

v := (V1 − V0, V2 − V0, . . . , Vn − V0)> = vzJσ and note that

∇V • f(xi) = v>X−T f(xi) =
(
v>X−>f(xi)

)>
= f(xi)

>X−1v = f(xi)
>P>S−1L−1v

= f(xi)
>P>S−1L−1


V1 − V0

V2 − V0

...

Vn − V0

 = f(xi)
>P>S−1


V1 − V0

V2 − V1

...

Vn − Vn−1


=

n∑
j=1

Vj − Vj−1

sj
f(xi)

>P>ej =

n∑
j=1

Vj − Vj−1

sj

(
e>j P f(xi)

)
=

n∑
j=1

Vj − Vj−1

sj
e>σ(j)f(xi) =

n∑
j=1

Vj − Vj−1

sj
fσ(j)(xi).

This implies that in our setting (10) is equivalent to (13) and we can replace the error bound

EzJσ in [7, Def. 6] with the sharper estimate from (10):

1

2

n∑
r,s=1

B(z,J )
rs AzJσ

r,i (AzJσ
s,i +AzJσ

s,n ), which is always ≤ EzJσ. (15)
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Remark 1: Notionally it is often more convenient to suppress the dependance on zJ σ
and just refer to a simplex Sν rather than SzJσ. When using this simplified notation one

then refers to Bνrs and not B
(z,J )
rs for all simplices Sν such that Sν ⊂ PS(RJ (z + [0, 1]n)),

and it is not difficult to see that one can use different estimates Bνrs for the different Sν ⊂
PS(RJ (z + [0, 1]n)), although this hardly justifies the effort.

Remark 2: From the decomposition X = LSP one can easily derive concrete upper

bounds on some matrix norms of X−1 = X−1 = PTS−1L−1. For any matrix norm induced

by a vector norm we have ‖X−1‖ ≤ ‖PT ‖ ‖S−1‖ ‖ L−1‖ . For ‖ · ‖ = ‖ · ‖1 and ‖ · ‖ = ‖ · ‖∞
one can easily see from (14) that for n ≥ 2 we have

‖L−1‖1 = ‖L−1‖∞ = 2, ‖S−1‖1 = ‖S−1‖∞ = max
i=1,2,...,n

|si|−1, and ‖PT ‖1 = ‖PT ‖∞ = 1.

It follows that ‖X−1‖1 ≤ 2s∗ and ‖X−1‖∞ ≤ 2s∗ with s∗ := maxi=1:n |si|−1 and from the

well known ‖X−1‖22 ≤ ‖X−1‖1‖X−1
ν ‖∞ it additionally follows that ‖X−1‖2 ≤ 2s∗.

4. Examples

We present two examples for our method, where we approximate the Lyapunov function

from (2) at the grid points with some appropriately chosen T, δ, p > 0. Then we interpolate

and verify the negativity of the orbital derivative of the interpolation as in [1], but use

the sharper error estimate (15) in the LP program. Note that the orbital derivative of

the Lyapunov functions computed by our method is not guarantied to be negative very

close to the equilibrium. This is a known feature of the method, that can, however, be easily

accounted for by using a local Lyapunov function for the linearized system at the equilibirum

to assert its local stability.

We compare our results with the Massera construction from [1], i.e. where the Lyapunov

function is approximated using (3) at the vertices, and to two other approaches suggested

in the literature. The computations were programmed in C++ and run on a PC with an

i9-7900X processor.

4.1. Example 1

The first example is a planar system from [6, Ex. 6],

x′ = f(x) with f(x, y) =

 −x+ y

0.1x− 2y − x2 − 0.1x3

 . (16)

We assign in the LP problem (notation from Remark 1 in Section 3)

Bν1,1 = 2 + 0.6 max
(x,y)∈Sν

|x| and Bν1,2 = Bν2,1 = Bν2,2 = 0.
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We set T = 20 for (3) and (2) and for the latter we set δ = 0.6, and p = 0.6. The grid

used for the vertices of the simplices was 2001 × 2001 with 4,004,001 points and 8,000,000

simplices/triangles. This corresponds to using the simplices SzJσ for z ∈ {0 : 999}2, J ∈
{∅, {1}, {2}, {1, 2}}, and σ ∈ {(1, 2), (2, 1)} in the notation of Section 3. The computation of

the Lyapunov function using (3) was done on the rectangle [−20, 20]2, i.e. the mapping PS

from Section 3 is given by PS(x) = 0.02x (because 0.02 · 1000 = 20). The computation took

43.6 s and the verification of the negativity of the orbital derivative took 0.45s. In 11.96% of

the triangles/simplices the orbital derivative was not negative. For the computation using

(2) on the rectangle [−20, 20]× [−40, 40], i.e. PS(x, y) = (0.02x, 0.04y)>, the corresponding

runtimes were 51.8 s and 0.45 s. In 10.05% of the triangles/simplices the orbital derivative

was not negative. In Figure 1 the Lyapunov functions using formulas (3) and (2) respectively

are plotted. In Figure 2 the level sets {x ∈ R2 : V (x) ≤ 33} and {x ∈ R2 : V (x) ≤ 9}
for these functions respectively are plotted. These level sets are chosen such that they do

not intersect with the areas where the orbital derivative is nonnegative and thus give lower

bounds on the basin of attraction.

Figure 1. The Lyapunov functions computed for system (16) using formula (3) [left] and

formula (2) [right].

In Figure 3 we compare our results with the approach from [17] as implemented in [15],

where a rational Lyapunov function is computed for the same system, and to the method

presented in [3], where Lyapunov functions that are sums of squared polynomials (SOS) are

computed. The software SMRSOFT from [3] was downloaded and used for the computations.

We computed 4th, 6th, and 8th order polynomial Lyapunov functions, but only draw the

level set for the 4th order one, because it delivered the least conservative estimate. It is

notable, that even though this method delivers a much smaller estimate of the basin of
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Figure 2. Level-sets of the Lyapunov functions computed for the system (16) using formula

(3) [left] and (2) [right]. The area where the orbital derivative is not negative is drawn in

red. Since the level-sets do not intersect the area where the orbital derivative is nonnegative

they are lower bounds on the basin of attraction of the equilibrium at the origin.

attraction, it is not a proper subset of our estimates.

4.2. Example 2

The second example is a planar system from [2, Ex. 1],

x′ = f(x) with f(x, y) =

 −x+ y + 1
2
(ex − 1)

−x− y + xy + x cos(x)

 . (17)

We assign

Bν1,1 = max
(x,y)∈Sν

max(ex/2, 2| sin(x)|+ |x cos(x)|), Bν1,2 = Bν2,1 = 1, and Bν2,2 = 0.

Further, we set T = 20 for (3) and (2) and for latter we set δ = 0.4, and p = 0.3. As in

Example 1 the grid was 2001×2001 with 4,004,001 points and 8,000,000 simplices/triangles.

The computation of the Lyapunov function using (3) was done on the rectangle [−8, 4] ×
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Figure 3. Level-sets of the Lyapunov functions computed for the system (16) using formula

(2) (outermost, black), (3) (red), the method from [15, 17] (blue), and using the software

SMRSOFT [3] (green).

[−8, 8] and took 35.6 s and the verification of the negativity of the orbital derivative took

0.4 s. In 27.9% of the triangles/simplices the orbital derivative was not negative. In most of

the area where the orbital derivative was not negative the Lyapunov function was not defined

because the initial-value problems diverge too fast on the interval [0, T ] for the numerical

solver.

For the computation using (2) on the rectangle [−8, 3] × [−10, 10] the corresponding

numbers were 45.2 s and 0.4 s. In 23.4% of the triangles/simplices the orbital derivative was

not negative, also mostly because the numerical solver was not able to assign values to the

Lyapunov function at the grid points.

In Figure 4 the Lyapunov functions using formulas (3) and (2) respectively are plotted.

In Figure 5 the level sets {x ∈ R2 : V (x) ≤ 8} and {x ∈ R2 : V (x) ≤ 5.9} for these functions

are plotted. These level sets are chosen such that they do not intersect with the ares where

the orbital derivative is nonnegative and thus give lower bounds on the basin of attraction.

In Figure 6 we compare our results with the approach from [17] as implemented in [15],

where a rational Lyapunov function is computed for the same system. We also compared it

with the method from [2], but the level sets obtained are very close to the ones from [15]

and we omit drawing them.

237



Figure 4. The Lyapunov functions computed for system (17) using formula (3) [left] and

formula (2) [right].

Figure 5. Level-sets of the Lyapunov functions computed for the system (17) using formula

(3) [left] and (2) [right]. The area where the orbital derivative is not negative is drawn in

red. Since the level-sets do not intersect the area where the orbital derivative is nonnegative

they are lower bounds on the basin of attraction of the equilibrium at the origin.

5. Conclusions

We presented an improved method to estimate the basin of attraction for equilibria of dy-

namical systems. The method is based on approximating the values of Lyapunov functions

from converse theorems and assign these values to the variables of a linear programming

problem. The linear constraints of the problem are then verified and in simplices, of which

they are fulfilled at all vertices, the function defined by interpolating these values over the

simplex has a negative orbital derivative along the solutions of the system. Our method is an

advancement of the method presented in [1], but with sharper error estimates and thus less
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Figure 6. Level-sets of the Lyapunov functions computed for the system (17) using formula

(2) (outermost, black), (3) (middle, red), and by using the method from [15,17] (innermost,

blue). In [2] results very close to the ones from [15,17] are obtained using SOS programming.

conservative linear constraints and a more general positive definite function of the solution

under the integral in the Massera construction. We compared our novel method for two

systems with the method from [1] and two other approaches from the literature; one using

rational Lyapunov functions [15,17] and another using sum-of-squares programming [2,3]. In

all cases our method delivered considerably larger inner estimates of the basins of attraction.
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Energy dissipation, free and forced modes in dynamics of two 
classes of fractional order systems  

 

 

Katica R. (Stevanović) Hedrih 

Abstract: Generalized functions of fractional order dissipation of energy in the discrete 

system and in multi-body system with interconnections by discrete continuum 

fractional order layers are defined. Energy dissipations in dynamics of two analogous 

classes of the fractional order systems are analyzed. Fractional order modes of the free 

and forced oscillations in dynamics of those two analogous classes of the fractional 

order systems are identified as eigen independent free as well as forced fractional order 

modes. Also, using formulas of transformation of a system of independent generalized 

coordinates and eigen main coordinates of considered classes of fractional order system 

dynamics relation between total mechanical energy (sum of kinetic and potential 

energies) and generalized function of fractional order energy dissipation on one eigen 

main fractional order mode is derived. On the basis of these relations, two theorems of 

energy fractional order dissipation of a class of the fractional order system with finite 

number of degrees of system are defined and proofed. A number of electrical fractional 

order oscillators and analogous mechanical fractional order oscillators with one, two or 

three degrees of freedom are described. For each of these analogous system expressions 

of kinetic and potential energies and generalized function of total system energy 

dissipation are formulated with corresponding analogies and corresponding physical 

explanations. Corresponding analogous energy analysis for each of analogous pairs is 

done. A number of energy change theorems are defined. 

1. Introduction  

 The conception of this paper is to indicate an analogy between separately published different 

results of energy analysis and energy dissipation of two class of different mechanical systems, by 

identifications of structural, qualitative and mathematical analogies between models  giving in result 

formally same vibration phenomena in different type of vibration of fractional order system dynamics 

as it is discrete system with finite number of degree of freedom and multi-body fractional order system 

containing same number of coupled deformable bodies with standard light discrete continuum 

fractional order layers. Also, it is possible an identification of analogies [14, 15, 17] with some electrical 

circuit chains.  

For that reason, for first, let’s to present a number of author’s previous published research results 

in series of the papers. 
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In the Refs. [5] and [6]  а generalized function of creep fractional order dissipation of  fractional 

order system total mechanical energy and generalized forces of  system no ideal visco-elastic creep 

fractional order dissipation of system energy for generalized coordinates are introduced and defined. A 

theory of generalized function of visco-elastic creep fractional order dissipation of system energy is 

defined. In the Ref. [5], extended Lagrange differential equations second kind for fractional order 

system dynamics in matrix formal form are introduced.  By use presented matrix method, as special 

case, the fractional order chain system dynamics is considered.  One example of the fractional order 

system with two degrees of freedom as an abstraction of the real part of geared planetary system 

dynamics is considered and solved for special case.  

In the Ref. [2] а theory of free vibrations of discrete fractional order systems with a finite number 

of degrees of freedom is developed. A fractional order system with a finite number of degrees of 

freedom is defined by means of three matrices: mass inertia, system rigidity and fractional order 

elements. By adopting a matrix formulation, a mathematical description of a class of fractional order 

discrete system free vibrations is determined in the form of coupled fractional order differential 

equations. The corresponding solutions in analytical form, for the special case of the matrix of fractional 

order properties elements, are determined and expressed as a polynomial series along time. For the 

eigen characteristic numbers, the system eigen main coordinates and the independent eigen fractional 

order modes are determined. A generalized function of viso-elastic creep fractional order dissipation of 

energy and generalized forces of system with no ideal visco-elastic creep fractional order dissipation of 

energy for generalized coordinates are formulated. Extended Lagrange fractional order differential 

equations of second kind, for fractional order system dynamics, are also introduced. Two examples of 

fractional order chain systems are analyzed and the corresponding eigen characteristic numbers 

determined. It is shown that the oscillatory phenomena of a fractional order mechanical chain have 

analogies to electrical fractional order circuits. A fractional order electrical resistor is introduced and 

its constitutive voltage - currency is formulated. Also, a function of thermal energy fractional order 

dissipation of a fractional order electrical resistor is discussed. 

In the Reference [7], dynamics of multi deformable, ideal linear elastic bodies (beams, plates, 

membranes, belts with corresponding same boundary conditions, see Fig.1) coupled by standard light 

fractional order discrete continuum layers is considered by using Petrović’s theory of elements of 

mathematical phenomenology (see Refs. [15] and [16]). The sixth chapter of Petrović’s theory contain 

phenomenological analogies and include the mathematical and structural analogies and qualitative 

analogy. Starting with coupled partial fractional order differential equations  along transversal 

displacements of the linear elastic beams, same boundary conditions, and coupled by fractional order 

discrete continuum layers, system of coupled ordinary fractional order differential equations along 

eigen time functions  in each eigen amplitude  functions is obtained. Independent eigen main fractional 
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order modes and set of characteristic numbers of the corresponding eigen time function corresponding 

to eigen amplitude function are obtained. Using Petrović’s theory of mathematical analogy and 

qualitative analogy properties of eigen main fractional order modes and characteristic numbers of time 

functions of transversal vibrations of multi-plates as well as multi-membranes coupled by fractional 

order discrete continuum layers are obtained. Energy analysis in fractional order discrete continuum 

layer is done. Generalized function of fractional order energy dissipation in fractional order discrete 

continuum layer is defined. 
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a*                                                                     b* 

Figure 1.   Figure 1.  Models of multi membrane hybrid system: Five membranes, same contours and 

boundary conditions, coupled by discrete continuum fractional order layers with translator 

and rotator inertia properties: (a*) circular membranes; and (b*) rectangular membranes 

(from Reference [13]). 

 

In the Reference [13], see Fig.1, a model of multi membrane fractional order oscillations is 

presented and corresponding partial fractional order differential equations are solved. A hybrid 

fractional order element with translator and rotator inertia properties is introduced by corresponding 

constitutive relations. Generalized function of fractional order energy dissipation is introduced. 

Generalized forces of two membrane and fractional order layer as well as of its constitutive element are 

expressed by energies and generalized function of fractional order energy dissipation.  For obtaining 

solution of system of partial fractional order differential equations, it is used Euler-Bernoulli method 

of particular integral and transformation of the system of ordinary fractional order differential equations 

along eigen time functions introducing eigen main coordinates of fractional order system. In result it is 

obtained a system of independent ordinary fractional order differential equations each along one eigen 

fractional order main coordinates. Eigen fractional order main modes of an eigen tine function in each 

of infinite number of eigen amplitude shapes are defined.  Energy analysis of the multi membrane 

system vibrations as well as energy analysis of eigen fractional order modes are presented. 
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In the Refs. [3] and [4] elements of mathematical phenomenology, and especially focused to 

mathematical, structural and qualitative analogies, are presented by numerous examples. 

In the series of author’s published References, starting from [1], and continued by [8-12] , 

serries of research results concerning vibrations and energy analysis in different mechanical 

conservative and no conservative discrete and/or discrete continuum systems, as well as in bio-

dynamical systems are presented.  Also, a series of theorems of mechanical energy change in dynamics 

of discrete fractional order system and of a multi-deformable body fractional order system are defined 

with corresponding proofs. Using structural, qualitative and mathematical analogies between 

mechanical chain system and electrical chain system the theorems of total mechanical energy change 

in mechanical fractional order system are presented as analogous with the theorems of total electrical 

energy change in electrical fractional order system. Also, see Ref. [16] by Rosikin Yuri and Maria 

Shitikova. 

 

2. List of some selected earlier published theorems 

 Using previous published results and formulated theorems it possible to point out some of these 

for their use to obtain new conclusion of energy change, fractional order dissipation of energy in the 

system dynamics and point out some main mathematical, structural and qualitative analogies. 

For that reason we made some list of selected energy change theorems: 

 Theorem 1: For a class of fractional order no conservative discrete system dynamics, with n  

degrees of freedom, determined by matrix column of independent generalized coordinates  x , and 

defined by: matrix of system inertia properties    nk

njkja
,...,3,2,1

,...,3,2,1




A   , matrix of system rigidity  

properties   nk

njkjc
,...,3,2,1

,...,3,2,1




C   , matrix of system visco-elastic creep fractional order properties 

  nk

njkjc
,...,3,2,1

,...,3,2,1,



C  and matrix of system viscous-linear  properties   nk

njkjb
,...,3,2,1

,...,3,2,1




B , the rate 

of fractional order degradation of system total mechanical energy 
pEEE k    is equal to negative 

sum of double classical Rayleigh function 2  and matrix product between velocity  x  and first 

partial derivative 

  x


tD

P of generalized function P  of fractional order energy dissipation with 

respect to fractional order derivative  xt

D  and presented in the mathematical form:  

  
0,2

1 1





 











 for
x

x
dt

d nk

k

nj

j j

k

tD
PE

   and 10                                      (1) 
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where  
tD  is fractional order differential operator of the 

th  derivative with respect to time t in 

the following form: 

 
 

 
 

 


 


 d

tdt

d

dt

d
t

t 










0
1

1D
                                                                                       (2) 

and   1  is Euler Gama function; P  is generalized function of fractional order energy dissipation 

in the form: 

                xcxxxx t

nk

njkjtttt





 DDDDD ,...,3,2,1

,...,3,2,1,
2

1

2

1 

 CP                              (3) 

  is classical Rayleigh function  in the form:      xxx  B
2

1
 .    

For proof of this theorem see References [2,5].  

 Theorem 2: For a class of fractional order no conservative discrete system dynamics, with n  

degrees of freedom, determined by matrix column of independent generalized coordinates  x , and 

defined by: matrix of inertia properties    nk

njkja
,...,3,2,1

,...,3,2,1




A   , matrix of rigidity  properties 

  nk

njkjc
,...,3,2,1

,...,3,2,1




C , matrix of viscoelastic creep fractional order   properties   nk

njkjc
,...,3,2,1

,...,3,2,1,



C  

and matrix of viscous linear   properties   nk

njkjb
,...,3,2,1

,...,3,2,1




B ,  with properties that both side product  

by modal matrix      nk

ns

s

nk

s

nk KK
,...,3,2,1

,...,3,2,1




R  of corresponding linear system produce all system 

matrix in diagonal form:  ssadiag ~ ARRA
, 

 sscdiag ~ CRRC
, 

 ssbdiag
~

 BRRB
,   sscdiag 

~ RCRC , then rate of each system independent eigen 

main fractional order mode total mechanical energy spotskins ,, EEE    degradation is equal to 

negative sum of double Rayleigh function s2  and matrix product between velocity s
  and first 

partial derivative 

  s




tD

P of generalized function of fractional order energy dissipation with respect 

to fractional order derivative  s

tD :  

  
nsfor

dt

d

s

sss
s ...,3,2,1,10,0,2 




 








tD
PE  ,                              (4) 

or in the form: 
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   nsforc
dt

d
sssss

s ,...,3,2,1,10,0,~2 ,   
 tDE

                    (5) 

where s , ns ,...,3,2,1  eigen (main) fractional order system normal coosdinates. 

 Shaoes of independent eigen fractional order modes   ,ts , ns ,...,3,2,1  for 10   

in function of time and fractional order drivative  , graphycally are presented in References [2] and  

[5]. 

 

 Theorem 3: For a class of fractional order no conservative discrete system dynamic, with n  

degrees of freedom, determined by matrux column of independent generalized coordinates  x , and 

defined by: matrix of inertia properties    nk

njkja
,...,3,2,1

,...,3,2,1




A   , matrix of rigidity  properties 

  nk

njkjc
,...,3,2,1

,...,3,2,1




C , matrix of visco-elastic creep fractional order   properties 

  nk

njkjc
,...,3,2,1

,...,3,2,1,



C  and matrix of viscous linear   properties   nk

njkjb
,...,3,2,1

,...,3,2,1




B ,  with 

properties that both side product  by modal matrix      nk

ns

s

nk

s

nk KK
,...,3,2,1

,...,3,2,1




R

 
 of corresponding 

linear system produce all system matrix are not in no diagonal form:  ssadiag ~ ARRA
, 

 sscdiag ~ CRRC
, 

 ssbdiag
~

 BRRB
,   sscdiag 

~ RCRC ,then each of the 

system eigen main fractional order mode, determined by coordinates s , ns ,...,3,2,1  are coupled 

and no independent one to other.  

For thise case, by use matrix formula of coordinate 
transformation    sx R ,

 
following 

matrices  rsb
~

 BRRB  amd
    nk

nsskc
,...,3,2,1

,...,3,2,1

~ 


  RCRC

 
are not diagonal, and then expressions 

of kinetic
 energy, potential energy expressed by new coordinates s , ns ,...,2,1 are same as in 

previous case defined in theorem 2. , but Rayleigh function of linear energy dissipation and generalized 

function of energy fractional order dissipationof energy take the following form:    

        

















ns

s

ns

r

sr

ns

s

ns

r

rssrs bxx
1 11 1

2
~

2   BB                                                      (6) 
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where 
sr  and 

sr.0P  are denotations of the term in the functions of linear and fractional order energy 

dissipation which are  dependent of all coordinates 
s , ns ,...,2,1 , and which express interactions 

between fractional order modes, which are not independent.  

3. Main coordinates and main eigen normal fractional free and forced modes of eigen 

time functions of eigen amplitude shape of transversal vibrations of multi-

deformable body system with discrete continuum fractional order layers 

Transversal free and forced vibrations, of a hybrid multi membrane system, are analytically 

investigated in multi frequency vibration regimes on the basic of result obtained for corresponding 

structurally analogous with multi beam, as well as multi plate  system transversal vibrations (for detail 

see Refs. [13] and [7]).  

Using obtained conclusions for fractional order free as well as forced transversal vibrations of three 

deformable body (beam, plate or membrane) fractional order system with same contour and boundary 

conditions is possible on the basis analogies and generalization of these analogies between generalized 

coordinates of vibration of the discrete fractional order chain systems with finite number of degrees of 

freedom M and finite number of eigen time functions in each eigen amplitude shape function of 

transversal vibration of bodies in fractional order system and to write following analogies between 

kinetic parameters and eigen time functions in one eigen amplitude shape function describing fractional 

order free vibrations: 

1* eigen amplitude shape functions for membrane ),( yxnmW ,  ,....,4,3,2,1,mn  are analogous 

with eigen amplitude shape functions for plates ),( yxmnW ,  ,....,4,3,2,1,mn , (as well as for beam with 

)(xmW ,  ,....,4,3,2,1m ; 

2* Eigrn time functions in an eigen amplitude shape function for transversal vibrations of 

membranes and plates   )(tT nmk
, Mk ,....,3,2,1 ,  ,....,4,3,2,1,mn  are analogous with eigen time 

functions in an eigen amplitude shape function for transversal vibrations of beams 
  )(tT mk

,

Mk ,....,3,2,1 ,  ,....,4,3,2,1m  in vorresponding eigen amplitude shape function; 

3* Eigrn main normal coordinates (as well as eigen normal fractional order modes) of eigen time 

function in an eigen amplitude shape function for membranes and plates    tsnm , Ms ,....,3,2,1 , 

 ,....,4,3,2,1,mn   are analogous with eigen normal coordinates (as well as eigen normal fractional 

order modes) of eigen time functions in an eigen amplitude shape function for  beams 
   tsm , 

Ms ,....,3,2,1 ,  ,....,4,3,2,1m ; 
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4* eigen square of circular frequencies  
2~

snm  and   
2~

snm , Ms ,....,3,2,1 , 

 ,....,3,2,1,mn  of eigen normal fractional order modes of an eigen time function in a eigen 

amplitude shape function of free transversal vibrations of plates and membranes are analogous with 

eigen square of circular frequencies  
2~

sm  and   
2~

sm , Ms ,....,3,2,1 ,  ,....,4,3,2,1m  of 

eigen normal fractional order modes of correspodning eigen time fubctions in an eigen amplitude shape 

function of free transvesal vibrations of beams;  

5* Eigen normal fractional order modes     
      snmsnm tLikesnm t




~cos
, Ms ,....,3,2,1 , 

 ,....,3,2,1,mn , of corresponding eigen time function in an eigen amplitude shape function of free  

transversal vibrations of plates or membranes are analogous with eigen normal fractional order modes 

    
      smsm tLikesm t




~cos
, Ms ,....,3,2,1 ,  ,....,4,3,2,1m  of corresponding eigen time 

function in an eigen amplitude shape function of free  transversal vibrations of beams; 

6* Eigen normal fractional order modes 
    

      snmsnm tLikesnm t



~sin

, Ms ,....,3,2,1 , 

 ,....,3,2,1,mn  of corresponding eigen time function in an eigen amplitude shape function of free  

transversal vibrations of plates or membranes are analogous with eigen normal fractional order modes 

    
      smsm tLikesm t




~sin
, Ms ,....,3,2,1 ,  ,....,4,3,2,1m  of corresponding eigen time 

function in an eigen amplitude shape function of free  transversal vibrations of beams; 

7*Ordinary fractional order differential equations of each independent fractional order oscillator of 

eigen time functions in an eigen amplitude shape function of plates or membranes along normal 

coordinates in the form 
                  0~~ 22  ttt snmtsnmsnmsnmsnm  

 D , Ms ,....,3,2,1 ,

 ,....,3,2,1,mn  are analogous with ordinary fractional order differential equations of each 

independent fractional order oscillator of eigen time functions in an eigen amplitude shape function of 

beams  along normal coordinates in the form: 
                  0~~ 22  ttt smtsmsmsmsm  

 D ,

Ms ,....,3,2,1 ,  ,....,4,3,2,1m  and present analogous eigen fractional order independent 

oscillatory modes of eigen time function in an eigen amplitude shape function in free vibrations regimes 

of multi body system dynamics. 

7* Corresponding system of three independent ordinary fractional order differential equations 

along eigen main coordinates    tsnm , 3,2,1s ,  ,....,4,3,2,1,mn .of eigen time function in 

an eigen amplitude shape function for forced transversal vibrations of three plate or three membrane 
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system excited by three surface single frequensy forces distributed along deformable bodies, and with 

different frequencies, are in the following forms: 

                 
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                      (11) 

                                                                                               3,2,1s ,  ,....,4,3,2,1,mn  

 

Previous system (9)-(11) of ordinary fractional order differential equations of each independent 

fractional order forced oscillator of eigen time functions in one eigen amplitude shape of plates or 

membranes along eigen normal coordinates    tsnm , Ms ,....,3,2,1 ,  ,....,3,2,1,mn  are analogous with 

corresponding system of ordinary fractional order differential equations of each independent fractional 

order oscillator of eigen time functions in one eigen amplitude shape of beams  along eigen normal 

coordinates    tsm , Ms ,....,3,2,1 ,  ,....,4,3,2,1m  and present analogous eigen fractional order 

independent forced oscillatory modes of eigen time function in one eigen amplituude sjape function in 

forced vibrations regimes of multi body system dynamics. 

From previous, last,  system of ordinary fractional order differential equations, three eigen main 

coordinates     tsnm  of eigen fractional order time functions   )(tT nmk
, 3,2,1k , 

 ,....,4,3,2,1,mn  in one eigen amplitude shape function ),( yxnmW ,  ,....,4,3,2,1,mn  of 

forced transversal vibrations of the three plate system is possible to obtain by use Laplace transform 

and developmement in time series, and result after inverse Laplace transforms. Also, this system is 

possible to solve by use the generalized Lagrange method of variation constants using obtained 

particular solutions.  We can see that these vibrations will be like four frequency fractional order 
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vibrations, as a result of combinations of free fractional order like one frequency vibrations and 

additional three of three frequency external excitation three forces distributed along each of middle 

surfaces of the bodies (plates, membranes or beams). But, our aim is to present analogies and 

mathematical phenomenology in this paper, no to present solutions and analogies between changes of 

energies carried on the eigen main fractional modes. .  

4. Conclusions in the form energy analysis  

 In part 3, from pointed results, we can conclude that eigen main coordinates of eigen time function 

in one eigen amplitude shape of transversal vibrations of a class of multi-body fractional order system 

correspond to eigen main coordinates of a chain fractional order system for free as well as for forced 

vibrations and that in considered class of the systems appear independent fractional order modes for 

free as well as for forced vibration regimess. 

Previous conclusions directed us to the two previous theorems 1 and 2 from chapter 2. From these 

theorems   mathematical formulation (1), (4) and (5) present change of total mechanical energy of 

fractional order system dynamics carried on vibration system dynamics, and also carried on each of 

eigen fractional order modes in a class of discrete fractional order oscillatory system dynamics in 

analogy applicable in full to a class of multi-deformable body (beams, plated and membranes) system 

with coupling discrete continuum fractional layers, but for free vibrations.  

For forced vibration it is necessary to take into account power of active transversal forces 

distributed along middle surface of all deformable bodies along transversal displacements during 

transversal vibrations in the system and expression (1) from Theorem 1 take the following form: 

 

  
     0,,,,,,2

1 1
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










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 fordAtyxwtyxq
x

x
dt

d nk

k

nj

j

k

k A

kk

j

k


tD
PE   and 10                              

 Also, expressions (4) and (5)  from theorem 2,  for forced vibrations,  need correction by an 

additional term presenting power of generalized force for eigen normal coordinate s , 

ns ,...,3,2,1  along system motion along this coordinate. 
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Estimates of asymptotic solution of linear-quadratic optimal control
problems with cheap controls of two different orders of smallness

Margarita Kalashnikova, Galina Kurina

Abstract: This paper is devoted to a linear-quadratic optimal control problem
with a performance index containing two different powers of a small parame-
ter at quadratic forms with respect to controls. Problems of such type arise,
for instance, as a result of applying the convolution method to problems with
three performance indices, where the cost of one cheap control is negligible
in comparing with another one. Estimates of the proximity of the solution of
the original problem to an approximate asymptotic solution are obtained for
the control, trajectory, and performance index. The used asymptotic solution
has been constructed with the help of the so-called direct scheme method con-
sisting of immediate substituting of a postulated asymptotic expansion of a
solution into the transformed problem condition and determining optimal con-
trol problems for finding terms of the asymptotic expansion. The transformed
problem is obtained from the original one as a result of variables change. It is a
singularly perturbed optimal control problem with three-tempo state variables
in a singular case. The constructed asymptotic solution contains regular and
boundary functions of four types. It is also proved that a value of the perfor-
mance index does not increase when higher order asymptotic approximations
to the optimal control are used. The illustrative example is given.

1. Introduction

The motivation for a study of cheap control problems is justified in [4] by the pole assignment

problem if eigenvalues that are ”infinite” of different orders may be desired. Problems of such

type also arise under research of models of multi-sector economics where control functions

have different levels of ”cheapness”. If we apply the convolution method to problems with

several performance indices, where the cost of one control is negligible in comparing with

the other ones, we again obtain a problem with cheap controls.

Publications devoted to cheap control problems basically deal with the case where con-

trols in a performance index have the same order of smallness (see surveys of such publica-

tions, for instance, in [2,5,8]). The papers [3–5,7,10] concerning cheap controls with different

order costs are reviewed in [9].
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The present paper deals with a problem, having controls of two different levels of ”cheap-

ness”, of the form

J(
(1)
v ,

(2)
v ) = 1/2

T∫
0

(z′W (t, ε)z +

2∑
k=1

ε2k
(k)

v′
(k)

R (t, ε)
(k)
v ) dt→ min, (1)

dz/dt = A(t, ε)z + C(t, ε)v, t ∈ [0, T ], z(0, ε) = z0, (2)

where T > 0 is fixed,
(k)
v (t, ε) ∈ Rnk , v(t, ε) = (

(1)
v (t, ε)′,

(2)
v (t, ε)′)′, z(t, ε) ∈ Rn, the matrices

W (t, ε),
(k)

R (t, ε), A(t, ε) and C(t, ε) are assumed to be sufficiently smooth with respect to their

arguments, W (t, ε),
(k)

R (t, ε) are symmetric, W (t, 0),
(k)

R (t, 0) are positive definite, k = 1, 2,

n = n1 + n2, the matrix C(t, 0) is invertible for all t ∈ [0, T ]. Here and further in this paper

ε ≥ 0 is a small parameter and the prime denotes the transposition.

The formalism of constructing asymptotic solution of problem (1), (2) of the first and

higher orders has been presented respectively in [5] and [9]. It is based on the so-called direct

scheme method (see [1], [2]) and boundary function method (see [12]) applied to transformed

problem obtained from (1), (2) with the help of variables change. This method consists of

immediate substituting of a postulated asymptotic expansion of a solution of the boundary

layer type into the problem condition and determining optimal control problems for finding

terms of the asymptotic expansion.

In this paper, we will estimate the proximity of an approximate asymptotic solution

constructed in [5] and [9] to the solution of original problem (1), (2) with respect to the

control, the trajectory and the performance index. It is established that a value of the

minimized functional does not increase when higher order asymptotic approximations to the

optimal control are used. Moreover, we provide an example, which illustrates the paper’s

results.

2. Formalism of constructing asymptotic solution

In this section, we present some results from [5, 9] concerning the algorithm of constructing

asymptotic solution of problem (1), (2).

At first, using the variables change
(k)
u (t, ε) = εk

(k)
v (t, ε),

(k)
y (t, ε) =

∫ t

0

(k)
v (s, ε) ds, y(t, ε) =

(
(1)
y (t, ε)′,

(2)
y (t, ε)′)′, x(t, ε) = z(t, ε) − C(t, ε)y(t, ε), w(t, ε) = (x(t, ε)′, y(t, ε)′)′, u(t, ε) =

(
(1)
u (t, ε)′,

(2)
u (t, ε)′)′ original problem (1)-(2) is reduced to the following three-tempo optimal

control problem

Pε : Jε(u) = 1/2

T∫
0

(w′W(t, ε)w + u′R(t, ε)u) dt→ min, (3)
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dx/dt = A(t, ε)x+B(t, ε)y, εkd
(k)
y /dt =

(k)
u , k = 1, 2, (4)

x(0, ε) = z0, y(0, ε) = 0, (5)

whereW(t, ε) =

 W (t, ε) W (t, ε)C(t, ε)

C(t, ε)′W (t, ε) C(t, ε)′W (t, ε)C(t, ε)

,R(t, ε) = diag(
(1)

R (t, ε),
(2)

R (t, ε)),

B(t, ε) = A(t, ε)C(t, ε)− dC(t, ε)/dt.

Since for sufficiently small ε > 0 the matrix R(t, ε) is positive definite and the matrix

W(t, ε) is positive semi-definite then problem (3)-(5) is uniquely solvable and the optimal

control can be found from the equality

B′ξ −R(t, ε)u = 0, (6)

where the costate variable ξ(t, ε) = (ζ(t, ε)′, η(t, ε)′)′, η(t, ε) = (
(1)
η (t, ε)′,

(2)
η (t, ε)′)′, is a

solution of the problem

E(ε)
dξ

dt
=W(t, ε)w −A(t, ε)′ξ, (7)

ξ(T, ε) = 0, (8)

A(t, ε) =


A(t, ε)

(1)

B (t, ε)
(2)

B (t, ε)

0 0 0

0 0 0

, B(t, ε) =

[
(1)

B (t, ε)
(2)

B (t, ε)

]
, B =


0 0

In1 0

0 In2

,

Ik denotes an identity matrix of the order k, E(ε) = diag(In, εIn1 , ε
2In2).

According to [12], [13] a solution of problem (3)-(5) is sought in the following form

v(t, ε) = v(t, ε) +

1∑
i=0

(Πiv(τi, ε) +Qiv(σi, ε)), (9)

where v(t, ε) = (w(t, ε)′, u(t, ε)′)′, v(t, ε) =
∑

j≥0 ε
jvj(t), t ∈ [0, T ], τi = t/εi+1, σi =

(t− T )/εi+1, Πiv(τi, ε) =
∑

j≥0 ε
jΠijv(τi), Qiv(σi, ε) =

∑
j≥0 ε

jQijv(σi), i = 0, 1, vj(t) are

regular functions, Πijv(τi) are boundary functions of the exponential type in a neighbour-

hood of t = 0, Qijv(σi) are boundary functions of the exponential type in a neighbourhood

of t = T .

The algorithm of the direct scheme method consists of immediate substituting expansion

(9) into problem condition (3)-(5) and determining the optimal control problems P j , ΠijP ,

QijP for finding vj(t), Πijv(τi), Qijv(σi), i = 0, 1, respectively. The explicit expressions for

these problems are given in [9].
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3. Asymptotic estimates for control, trajectory and performance index

Suppose that optimal control problems P j , ΠijP , QijP , i = 0, 1, j = 0, n, have been

solved. Let us estimate the proximity between the asymptotic solution of problem (1)-

(2):
(̃k)
v n−k(t, ε) =

(̃k)
u n(t, ε)/εk, z̃n(t, ε) = x̃n(t, ε) +

∑n
j=0[C(t, ε)]j [

(̃k)
y n(t, ε)]n−j , k = 1, 2,

constructed by the direct scheme method and the exact solution. Here for the expansion

of a function ω = ω(ε) with respect to ε: ω(ε) =
∑

j≥0 ε
jωj we use the following notation

[ω]n = ωn, ω̃n =
∑n

j=0 ε
jωj .

We write down the costate variable in the form of expansion (9)

ξ(t, ε) = ξ(t, ε) +

1∑
i=0

(Πiξ(τi, ε) +Qiξ(σi, ε)), (10)

where the each summand is represented as a series with respect to non-negative integer

powers of ε with corresponding coefficients ξj(t), Πijξ(τi), Qijξ(σi), i = 0, 1.

Further we write the relations for the remainder terms of asymptotic solution of problem

(4)-(8). Let us introduce the notation rnw = (rnx
′, rny

′)′ = w−w̃n, rnξ = (rnζ
′, rnη

′)′ = ξ−

ξ̃n, X =

 x

ζ

,
(k)

Y =

 (k)
y

(k)
η

 , X̃n =

 x̃n

ζ̃n

,
(̃k)

Y n =

 (̃k)
y n

(̃k)
η n

, rnX =

 rnx

rnζ

, rn
(k)

Y =

 rn
(k)
y

rn
(k)
η

, k = 1, 2. Taking into account that state equations and costate equations for

constructed optimal control problems P j , ΠijP , QijP , i = 0, 1, are obtained by substituting

expansions for v(t, ε) and ξ(t, ε) into (4), (6), (7) and equating coefficients of the same power

of ε separately depending on t, τi, σi, i = 0, 1, we get for sufficiently small ε > 0 from (4),

(6), (7) the following system

drnX

dt
= A(t, ε)rnX +

(1)

B (t, ε)rn
(1)

Y +
(2)

B (t, ε)rn
(2)

Y +
(0)

V (t, ε),

ε
drn

(1)

Y

dt
=

(1)

A(t, ε)rnX +
(1)

B 1(t, ε)rn
(1)

Y +
(1)

B 2(t, ε)rn
(2)

Y +
(1)

V (t, ε),

ε2 drn
(2)

Y

dt
=

(2)

A(t, ε)rnX +
(2)

B 1(t, ε)rn
(1)

Y +
(2)

B 2(t, ε)rn
(2)

Y +
(2)

V (t, ε),

(11)

whereA =

 A 0

W −A′

,
(i)

B =

 (i)

B 0
(i)

S 0

, i = 1, 2,

[
(1)

S
(2)

S

]
= WC,

(1)

A =

 0 0
(1)

S′ −
(1)

B′

,

D = C′WC =

 D11 D12

D′12 D22

,
(1)

B 1 =

 0
(1)

R−1

D11 0

,
(1)

B 2 =

 0 0

D12 0

,
(2)

A =

 0 0
(2)

S′ −
(2)

B′

,
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(2)

B 1 =

 0 0

D′12 0

,
(2)

B 2 =

 0
(2)

R−1

D22 0

 ( for brevity, the arguments t, ε in the notation of

matrices are dropped),
(0)

V (t, ε) = A(t, ε)X̃n +
(1)

B (t, ε)
(̃1)

Yn +
(2)

B (t, ε)
(̃2)

Yn − dX̃n/dt,
(1)

V (t, ε) =

(1)

A(t, ε)X̃n +
(1)

B 1(t, ε)
(̃1)

Yn +
(1)

B 2(t, ε)
(̃2)

Yn − εd
(̃1)

Y n/dt,
(2)

V (t, ε) =
(2)

A(t, ε)X̃n +
(2)

B 1(t, ε)
(̃1)

Yn +

(2)

B 2(t, ε)
(̃2)

Yn − ε2d
(̃2)

Y n/dt.

Taking into consideration conditions for terms of expansions (9), (10) and the equalities

Π00x(τ0) = 0, Π10x(τ1) = Π11x(τ1) = 0, Π10
(1)
y (τ1) = 0 we obtain from (5) and (8) the

boundary conditions

rnw(0, ε) = −Q̃0nw(−T/ε, ε)− Q̃1nw(−T/ε2, ε),

rnξ(T, ε) = −Π̃0nξ(T/ε, ε)− Π̃1nξ(T/ε
2, ε).

(12)

In view of the algorithm of constructing asymptotics (9), (10) the functions
(k)

V , k = 0, 2,

satisfy for sufficiently small ε > 0 the following estimates:

‖
(0)

V (t, ε)‖ ≤ c(εn+1 + εn(exp(−æt/ε)+

+ exp(æ(t− T )/ε)) + εn−1(exp(−æt/ε2) + exp(æ(t− T )/ε2))),

‖
(1)

V (t, ε)‖ ≤ c(εn+1 + εn(exp(−æt/ε2) + exp(æ(t− T )/ε2))), ‖
(2)

V (t, ε)‖ ≤ cεn+1,

(13)

where positive constants c, æ in this paper are independent of t, ε.

Using the variables change ρnw(t, ε) = rnw(t, ε) + Q̃0nw(−T/ε, ε) + Q̃1nw(−T/ε2, ε),

ρnξ(t, ε) = rnξ(t, ε) + Π̃0nξ(T/ε, ε) + Π̃1nξ(T/ε
2, ε) we get from (11), (12) the system

dρnX

dt
= A(t, ε)ρnX +

(1)

B (t, ε)ρn
(1)

Y +
(2)

B (t, ε)ρn
(2)

Y +
(0)

V (t, ε), (14)

ε
dρn

(1)

Y

dt
=

(1)

A(t, ε)ρnX +
(1)

B 1(t, ε)ρn
(1)

Y +
(1)

B 2(t, ε)ρn
(2)

Y +
(1)

V (t, ε),
(15)

ε2 dρn
(2)

Y

dt
=

(2)

A(t, ε)ρnX +
(2)

B 1(t, ε)ρn
(1)

Y +
(2)

B 2(t, ε)ρn
(2)

Y +
(2)

V (t, ε),
(16)

ρnw(0, ε) = 0, ρnξ(T, ε) = 0. (17)

Expressions for
(k)

V (t, ε), k = 0, 2, can be easily written. They satisfy respectively esti-

mates of form (13).

SinceD(t, 0) is positive definite for all t ∈ [0, T ] then the matricesD22(t, 0) and D̃11(t, 0) =

D11(t, 0)−D12(t, 0)D22(t, 0)−1D12(t, 0) are also positive definite. Therefore Λ1(t) =
(1)

B 1(t, 0)−
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(1)

B 2(t, 0)
(2)

B 2(t, 0)−1
(2)

B 1(t, 0) =

 0
(1)

R (t, 0)−1

D̃11(t, 0) 0

 and Λ2(t) =
(2)

B 2(t, 0) =

=

 0
(2)

R (t, 0)−1

D22(t, 0) 0

 are positive Hamiltonian matrices. For each t ∈ [0, T ] they

have non-zero real eigenvalues which are symmetric with respect to the origin.

Assume that the following condition takes place

(i) for all t ∈ [0, T ] eigenvalues of the matrices Λk(t), k = 1, 2, are different and arranged in

the order of increasing.

In view of the forms of Λk(t) the boundary value problems

εkd
(k)

Y /dt = Λk(t)
(k)

Y ,
(k)
y (0) = 0,

(k)
η (T ) = 0, k = 1, 2, (18)

are uniquely solvable.

It is easy to see if (
(k)
y1 , ...,

(k)
y nk

,
(k)
η1 , ...,

(k)
η nk

)′ is an eigenvector of the matrix Λk(t) for

the eigenvalue λ, then (−
(k)
y1 , ...,−

(k)
y nk

,
(k)
η1 , ...,

(k)
η nk

)′ is the eigenvector of the same matrix

for the eigenvalue −λ. It follows from the assumption (i) that eigenvectors of the matrix

Λk(t) are linearly independent. If we consider the matrix
(k)

B =

 (k)

B 11

(k)

B 12

(k)

B 21

(k)

B 22

 consisting

of eigenvectors of the matrix Λk(t) corresponding to eigenvalues arranged in the order of

increasing then it is obvious that matrices
(k)

B 11,
(k)

B 22 of the order nk are non-singular. Hence

the conditions from [13, p.125] are fulfilled and following to [13] it is possible to construct

for boundary value problems (18) the matrix Green functions
(k)

G (t, s, ε), which satisfy the

inequalities ‖
(k)

G (t, s, ε)‖ ≤ c exp(−æ|t− s|/εk), t, s ∈ [0, T ], k = 1, 2.

Note that a limit passage of initial value problem solutions for systems of differential

equations containing small parameters in front of the higher derivatives has been studied

in [11] under small parameters tending to zero. Following to the terminology of [11], equations

(18) are called as associated systems of the second (k=1) and first (k=2) orders. The limit

passage of boundary value problem solutions for systems of such type has been researched

in [6].

Further the following two lemmas are needed.

Lemma 1 If G(t, s) is a matrix Green function of the uniquely solvable on [0, T ] boundary

value problem

dx/dt = A(t)x+ f(t), P1x(0) = 0, (I − P1)x(T ) = 0
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where the operator A(t) is invertible for all t ∈ [0, T ] and P1 is a projector then

∂G(t, s)

∂t
= −A(t)

∂G(t, s)

∂s
A(s)−1, t 6= s.

Let G be a contractive mapping acting in a Banach space X, i.e. there exists a number

0 < q < 1 such that for all x1, x2 ∈ X the inequality ‖G(x1)−G(x2)‖ ≤ q‖x1 − x2‖ is valid.

Lemma 2 If x0 = 0, xk = G(xk−1), k = 1, 2, ..., and ‖x1‖ ≤ a, then ‖xk‖ ≤ a/(1− q).

Theorem 1 Under sufficiently small ε > 0 for a solution
(k)
v ∗(·, ε), k = 1, 2, z∗(·, ε) of

problem (1), (2) the inequalities ‖
(k)
v ∗(t, ε) −

(̃k)
v n−k(t, ε)‖ ≤ cεn+1−k, ‖z∗(t, ε) − z̃n(t, ε)‖ ≤

cεn+1, t ∈ [0, T ], are realized.

For the proof of this theorem system of differential equations (14)-(16) with boundary con-

ditions (17) is reduced with the help of Lemma 1 to a system of integral equations. Lemma

2 and the estimates for the matrix Green functions
(k)

G (t, s, ε), k = 1, 2, allow us to apply the

principle of contracting mappings.

Problem (4), (5) with some control
(k)
u (t), k = 1, 2, belongs to the critical case in the

singular perturbations theory. Such case has been studied in [14]. One of the approaches for

finding asymptotic solution for controlled systems consists of searching a feedback control

ensuring the system stability (see, for instance, [3], [10]). However according to specific

structure of the considered problem for a special control the following lemma is valid.

Lemma 3 Asymptotic solution of form (9) can be constructed for problem (4), (5) with

the control u = ũn = (
(̃1)
u n,

(̃2)
u n). Moreover asymptotics terms Πijx, Qijx, Πij

(1)
y , Qij

(1)
y ,

i = 0, 1, Π1j
(2)
y , Q1j

(2)
y with j = 0, n,

(1)

yj , Π0j
(2)
y , Q0j

(2)
y with j = 0, n− 1, and xj,

(2)

yj with

j = 0, n− 2 coincide with the corresponding terms in the expansion of the optimal trajectory

x∗,
(1)
y ∗,

(2)
y ∗.

Theorem 2 For sufficiently small ε > 0 the inequality J(
(̃1)
v n−1,

(̃2)
v n−2) − J(

(1)
v ∗,

(2)
v ∗) ≤

cε2n−2 takes place.

Theorem 3 For sufficiently small ε > 0 the values of the performance index do not increase

if the next approximation to the optimal control is used, i.e. the inequalities J(
(̃1)
v j−1,

(̃2)
v j−2) ≤

J(
(̃1)
v j−2,

(̃2)
v j−3), j = 1, n, are valid.

The proof of the last two theorems is based on Lemma 3.

Unfortunately, in view of the limitation of the paper size we cannot present here proofs

of the statements in details.
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4. Example

Consider the following optimal control problem of form (1), (2)

J(
(1)
v ,

(2)
v ) = 1/2

1∫
0

((
(1)
z )2 + (

(2)
z )2 + ε2(

(1)
v )2 + ε4(

(2)
v )2) dt→ min,

d
(1)
z /dt =

(1)
z /2 + (5− 10ε)

(1)
v , d

(2)
z /dt =

(2)
v ,

(1)
z (0, ε) = 10,

(2)
z (0, ε) = 5.

Using the control optimality condition in the Pontryagin maximum principle form, it is

not difficult to obtain the exact solution of this problem.

With the help of the variables change
(1)
u = ε

(1)
v ,

(2)
u = ε2(2)

v ,
(k)
y (t, ε) =

∫ t

0

(k)
v (s, ε) ds,

(1)
x =

(1)
z − (5 − 10ε)

(1)
y ,

(2)
x =

(2)
z −

(2)
y , we get the following three-tempo optimal control

problem of form (3)-(5)

Jε(u) = 1/2

1∫
0

(〈w,Ww〉+ 〈u,Ru〉) dt→ min
u
,

d
(1)
x /dt =

(1)
x /2 + (5− 10ε)

(1)
y /2, d

(2)
x /dt = 0, εd

(1)
y /dt =

(1)
u , ε2d

(2)
y /dt =

(2)
u ,

(1)
x (0, ε) = 10,

(2)
x (0, ε) = 5,

(1)
y (0, ε) = 0,

(2)
y (0, ε) = 0,

W =


1 0 5− 10ε 0

0 1 0 1

5− 10ε 0 (5− 10ε)2 0

0 1 0 1

, A =


1/2 0 (5− 10ε)/2 0

0 0 0 0

0 0 0 0

0 0 0 0

, R =

 1 0

0 1

.

The symbols Wi, Ai, Ri will denote coefficients with εi in expansions of three last matrices

with respect to non-negative integer powers of ε.

Following to [9] we present here optimal control problems for finding asymptotics terms

of the second order for the transformed problem solution. Symbol ψ denotes the costate

variable in constructed optimal control problems.

P 0 : J0 = 1/2

1∫
0

(〈w0,W0w0〉+ 〈u0,R0u0〉) dt→ min
u0

,

d
(1)

x 0/dt =
(1)

x 0/2 + 5
(1)

y 0/2, d
(2)

x 0/dt = 0, 0 =
(k)

u 0, k = 1, 2,
(1)

x 0(0) = 10,
(2)

x 0(0) = 5.

Π00P : Π00J = 1/2

+∞∫
0

(〈Π00w,W0Π00w〉+ 〈Π00u,R0Π00u〉) dτ0 → min
Π00u

,

dΠ00
(k)
x /dτ0 = 0, k = 1, 2, dΠ00

(1)
y /dτ0 = Π00

(1)
u , 0 = Π00

(2)
u ,

(1)

y 0(0) + Π00
(1)
y (0) = 0.
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Q00P : Q00J = 1/2

0∫
−∞

(〈Q00w,W0Q00w〉+ 〈Q00u,R0Q00u〉) dσ0 → min
Q00u

,

dQ00
(k)
x /dσ0 = 0, k = 1, 2, dQ00

(1)
y /dσ0 = Q00

(1)
u , 0 = Q00

(2)
u .

Π10P : Π10J = 1/2

+∞∫
0

(〈Π10w,W0Π10w〉+ 〈Π10u,R0Π10u〉) dτ1 → min
Π10u

,

dΠ10
(k)
x /dτ1 = 0, k = 1, 2, dΠ10

(1)
y /dτ1 = 0, dΠ10

(2)
y /dτ1 = Π10

(2)
u ,

(2)

y 0(0) + Π00
(2)
y (0) + Π10

(2)
y (0) = 0.

Q10P : Q10J = 1/2

0∫
−∞

(〈Q10w,W0Q10w〉+ 〈Q10u,R0Q10u〉) dσ1 → min
Q10u

,

dQ10
(k)
x /dσ1 = 0, k = 1, 2, dQ10

(1)
y /dσ1 = Q10

(1)
u , 0 = Q10

(2)
u .

P 1 : J1 =

1∫
0

(〈w1, 1/2W0w1 + (W1w0 −A′1ψ0)〉+ 〈u1, 1/2R0u1〉) dt→ min
u1

,

d
(1)

x 1/dt =
(1)

x 1/2 + 5
(1)

y 1/2− 5
(1)

y 0, d
(2)

x 1/dt = 0, d
(2)

y 0/dt =
(1)

u 1, 0 =
(2)

u 1,

(k)

x 1(0) + Π01
(k)
x (0) + Π11

(k)
x (0) = 0, k = 1, 2.

Π01P : Π01J =

+∞∫
0

(〈Π01w, 1/2W0Π01w + (W1Π00w −A′1Π00ψ)〉+

+〈Π01u, 1/2R0Π01u〉) dτ0 → min
Π01u

,

dΠ01
(1)
x /dτ0 = Π00

(1)
x /2 + 5Π00

(1)
y /2, dΠ01

(2)
x /dτ0 = 0,

dΠ01
(1)
y /dτ0 = Π01

(1)
u , dΠ00

(2)
y /dτ0 = Π01

(2)
u ,

(1)

y 1(0) + Π01
(1)
y (0) + Π11

(1)
y (0) = 0.

Q01P : Q01J = 1/2

0∫
−∞

(〈Q01w,W0Q01w〉+ 〈Q01u,R0Q01u〉) dσ0 → min
Q01u

,

dQ01
(1)
x (σ0)/dσ0 = Q00

(1)
x /2 + 5Q00

(1)
y /2, dQ01

(2)
x /dσ0 = 0, dQ01

(1)
y /dσ0 = Q01

(1)
u ,

dQ00
(2)
y /dσ0 = Q01

(2)
u .

Π11P : Π11J = 1/2

+∞∫
0

(〈Π11w,W0Π11w〉+ 〈Π11u,R0Π11u〉) dτ1 → min
Π11u

,

dΠ11
(k)
x /dτ1 = 0, k = 1, 2, dΠ11

(1)
y /dτ1 = Π10

(1)
u , dΠ11

(2)
y /dτ1 = Π11

(2)
u ,
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(2)

y 1(0) + Π01
(2)
y (0) + Π11

(2)
y (0) = 0.

Q11P : Q11J = 1/2

0∫
−∞

(〈Q11w,W0Q11w〉+ 〈Q11u,R0Q11u〉) dσ1 → min
Q11u

,

dQ11
(k)
x /dσ1 = 0, k = 1, 2, dQ11

(1)
y /dσ1 = Q10

(1)
u , dQ11

(2)
y /dσ1 = Q11

(2)
u .

P 2 : J2 =

1∫
0

(〈w2, 1/2W0w2 + (W1w1 +W2w0 −A′1ψ1)〉+ 〈u2, 1/2R0u2〉) dt→ min
u2

,

d
(1)

x 2/dt =
(1)

x 2/2 + 5
(1)

y 2/2− 5
(1)

y 1, d
(2)

x 2/dt = 0, d
(1)

y 1/dt =
(1)

u 2, d
(2)

y 0/dt =
(2)

u 2,

(k)

x 2(0) + Π02
(k)
x (0) + Π12

(k)
x (0) = 0, k = 1, 2.

Π02P : Π02J =

+∞∫
0

(〈Π02w, 1/2W0Π02w + (W1Π01w +W2Π00w −A′1Π01ψ)〉+

+〈Π02u, 1/2R0Π02u〉) dτ0 → min
Π02u

,

dΠ02
(1)
x /dτ0 = Π01

(1)
x /2 + 5Π01

(1)
y /2− 5Π00

(1)
y , dΠ02

(2)
x /dτ0 = 0, dΠ02

(1)
y /dτ0 = Π02

(1)
u ,

dΠ01
(2)
y /dτ0 = Π02

(2)
u ,

(1)

y 2(0) + Π02
(1)
y (0) + Π12

(1)
y (0) = 0.

Q02P : Q02J = 1/2

0∫
−∞

(〈Q02w,W0Q02w〉+ 〈Q02u,R0Q02u〉) dσ0 → min
Q02u

,

dQ02
(1)
x /dσ0 = Q01

(1)
x /2 + 5Q01

(1)
y /2− 5Q00

(1)
y , dQ02

(2)
x /dσ0 = 0,

dQ02
(1)
y /dσ0 = Q02

(1)
u , dQ01

(2)
y /dσ0 = Q02

(2)
u .

Π12P : Π12J = 1/2

+∞∫
0

(〈Π12w,W0Π12w〉+ 〈Π12u,R0Π12u〉) dτ1 → min
Π12u

,

dΠ12
(1)
x /dτ1 = Π10

(1)
x /2 + 5Π10

(1)
y /2, dΠ12

(2)
x /dτ1 = 0, dΠ12

(1)
y /dτ1 = Π11

(1)
u ,

dΠ12
(2)
y /dτ1 = Π12

(2)
u ,

(2)

y 2(0) + Π02
(2)
y (0) + Π12

(2)
y (0) = 0.

Q12P : Q12J = 1/2

0∫
−∞

(〈Q12w,W0Q12w〉+ 〈Q12u,R0Q12u〉) dσ1 → min
Q12u

,

dQ12
(1)
x /dσ1 = Q10

(1)
x /2 + 5Q10

(1)
y /2, dQ12

(2)
x /dσ1 = 0,

dQ12
(1)
y /dσ1 = Q11

(1)
u , dQ12

(2)
y /dσ1 = Q12

(2)
u .

The results of calculations are given in Fig. 1, 2 and in the table.
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Figure 1. Control
(1)
v (t, ε) with ε = 0.3. Figure 2. Trajectory

(1)
z (t, ε) with ε = 0.3.

ε J(
(1)

v −1,
(2)

v −2) J(
(̃1)
v −1,

(̃2)
v −2) J(

(̃1)
v 0,

(̃2)
v −1) J(

(̃1)
v 1,

(̃2)
v 0) J(

(1)
v ∗,

(2)
v ∗)

0.3 98.5 36.46 18.80 12.60 9.21

0.1 98.5 4.99 1.54 1.40 1.39

0.05 98.5 1.51 0.60 0.59 0.59

5. Conclusions

Estimates of the proximity of the asymptotic solution to the exact one, given in this paper,

show that the direct scheme is an effective method for asymptotic solving the considered class

of problems. Moreover, according to lack of growth of values of the performance index under

using new asymptotics terms of the optimal control, we obtain for some ε the minimizing

sequence of controls {ũn(t, ε)}. The presented example demonstrates this property.
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On some exact solutions for a forced response of nonlinear 

oscillators 

 
 

Ivana Kovacic 

Abstract: This work presents a theoretical concept for obtaining exact solutions for a 
forced response of a wide class of externally excited nonlinear oscillators. This 
includes Duffing-type (hardening, softening, bistable, pure cubic) oscillators and 
purely nonlinear oscillators whose power of nonlinearity can be any positive real 
number higher than unity. For that purpose, the external excitation is designed in a 
special way as having the appropriate form related to the free response of these 
oscillators, i.e. it is modelled in terms of Jacobi elliptic and Ateb functions. The 
concept also enables one to design the external excitation of a nonlinear oscillator in 
such a way that it responds as a completely different type of nonlinear oscillator or as 
a linear one. In addition, certain known approximate solutions for harmonically 
excited oscillators in primary resonance can be derived from these exact solutions.  

1. Introduction 

Nonlinear oscillators with a single or multi-term power-form restoring force appear in many systems 

in science and engineering [1, 2]. Of interest for this study are those whose free response can be 

expressed in terms of an exact, closed-form solution. They are governed by the following equation of 

motion: 

𝑥̈ + 𝑐1𝑥 + 𝑐𝛼sgn(𝑥)|𝑥|𝛼 = 0. (1) 

This model includes the following Duffing-type oscillators (DO) with cubic nonlinearity (𝛼 = 3): 

hardening (𝑐1 > 0, 𝑐3 > 0), softening (𝑐1 > 0, 𝑐3 < 0),  bistable (𝑐1 < 0, 𝑐3 > 0), and pure cubic 

(𝑐1 = 0, 𝑐3 > 0). This also includes purely nonlinear oscillator (𝛼 > 1,  𝑐1 = 0, 𝑐𝛼 > 0). The aim of 

this study is to show how to design a periodic external excitation 𝐹(𝑡) acting on them, so that the 

corresponding equation of motion 

𝑥̈ + 𝑐1𝑥 + 𝑐𝛼sgn(𝑥)|𝑥|𝛼 = 𝐹(𝑡), (2) 

has the steady-state response obtained as an exact solution as well. The motivating methodology is 

presented in Section 2. Section 3 contains its extension to Duffing-type oscillators, followed by an 

illustrative example. Section 4 is structured in the same way but it is concerned with purely nonlinear 

oscillators. Section 5 contains the derivation showing that the well-known approximate solution for 
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harmonically excited Duffing oscillator in primary resonance can be derived from the exact solution 

obtained for the system with an elliptic-type excitation. 

 Given the fact that the oscillators listed above have the exact solutions in terms of Jacobi elliptic 

and Ateb functions, the external excitation 𝐹(𝑡) will also be expressed in terms of these functions.  

Thus, the external excitation will be periodic, but not harmonic as in the case 𝐹(𝑡) = cos(Ω𝑡), which 

has been widely studied in the literature (see, for example, [1] and [2] and the references cited 

therein). Dynamics of such harmonically excited nonlinear oscillators have been thoroughly 

investigated and associated with approximate solutions for their steady-state responses. However, the 

investigations presented herein are fundamentally different as they are associated with exact solutions 

for their steady-state responses. It has already been demonstrated that some of the already known 

approximated solutions can be derived from such exact solutions obtained for a specially designed 

periodic excitation [3, 4], which makes this approach very interesting and general. The idea of a 

special design of the external excitation to obtain the exact solution for the resulting steady-state 

response dates back to Hsu [3]. This idea has recently been extended to forced one-degree-of-freedom 

undamped nonlinear oscillators with cubic and quadratic nonlinearities [5], multi-degree-of-freedom 

purely nonlinear chains [6] as well as to pure cubic bars exhibiting longitudinal vibration [7]. The 

results presented subsequently are the continuation of these investigations, aiming to contribute to 

their further extensions.  

2. On the motivating methodology 

Let us start with a simple harmonic oscillator (SHO) governed by Eq. (1) with 𝑐𝛼 = 0, where 𝑐1 > 0. 

Its free response corresponding to the following initial conditions 𝑥(0) = 𝐴, 𝑥̇(0) = 0 has the form 

𝑥 = 𝐴 cos(√𝑐1 𝑡). (3) 

Although the initial amplitude A and the coefficient c1 in front of the linear term (the square of the 

natural frequency) can be both made equal to unity by an appropriate normalization, they are left in 

this form for the sake of clarity and clear generalizations. 

 If one takes the external excitation F as proportional to the displacement F=B x, where B stands 

for the coefficient of proportionality, the equation of motion is 

𝑥̈ + (𝑐1 − 𝐵)𝑥 = 0. (4) 

The solution satisfying 𝑐1 > 𝐵 is easily obtained based on Eqs. (3) and (4) in the form: 

𝑥 = 𝐴 cos(Ω 𝑡),   Ω = √𝑐1 − 𝐵. (5a,b) 
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Equations (5a,b) can now be used to transform Eq. (1) with 𝑐𝛼 = 0 into the equation of motion of the 

forced SHO 

𝑥̈ + 𝑐1𝑥 = 𝐵𝐴 cos(√𝑐1 − 𝐵 𝑡), (6) 

whose response has the form given by Eq. (5a,b). Note that since there is no damping in the system 

and the excitation acts from t=0, the resulting response does not have a transient part and a steady-

state part, but it goes straight to the latter. It should be emphasized that there are three parameters 

involved in the solution A, B and  Ω and only one relationship between two of them, Eq. (5b). This 

implies that A can be arbitrarily chosen, while one a priory decides whether to define B or Ω, and the 

other parameter should then be calculated based on Eq. (5b). 

The external force is assumed here to be proportional to the displacement to yield the forced 

response in a straightforward way, but it can actually be interpreted as being proportional to the 

restoring force. This interpretation enables one to apply the same methodology to nonlinear 

oscillators, which will be demonstrated subsequently.  

3. Application to Duffing-type oscillators 

Let us consider now conservative Duffing-type oscillators listed after Eq. (1). Their free response can 

be expressed as in terms of different Jacobi elliptic functions [4, 5, 8] as follows 

𝑥 = 𝐴 ep[𝜔 𝑡|𝑚],  (7) 

where ep stands for the cn or sn Jacobi elliptic function,  is their frequency and m is the 

corresponding elliptic parameter. Note that both the frequency of these elliptic functions and the 

elliptic parameter are amplitude-dependent. Only in the case of the pure cubic oscillator, the latter is 

constant and equal to ½. Note also that for 𝑐1 > 0, 𝑐3 = 0, the elliptic function turns into the 

trigonometric function [4] and the solution of motion for the SHO is obtained, Eq. (3). 

Let us now focus on externally excited DOs, assuming that this excitation has the form of the 

Duffing-type restoring force 𝐹 = 𝐵𝑥 + 𝐷𝑥3, where B and D are constants. With this substitution, Eq. 

(2) becomes 

𝑥̈ + (𝑐1 − 𝐵)𝑥 + (𝑐3 − 𝐷)𝑥3 = 0. (8) 

By comparing Eq. (8) to Eq. (1) with 𝛼 = 3, and using Eq. (7), the exact solution for the resulting 

response 𝑥𝑟 is found to be 

𝑥𝑟 = 𝐴 ep[𝜔𝑟  𝑡|𝑚𝑟],  (9) 
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where 𝜔𝑟 and 𝑚𝑟 now differs from the one in Eq. (7) in the fact that the constant 𝑐1 is replaced by 

𝑐1 − 𝐵, and the constant 𝑐3 is replaced by 𝑐3 − 𝐷. The external excitation is then 

𝐹 = 𝐵𝐴 ep[𝜔𝑟  𝑡|𝑚𝑟] + 𝐷𝐴 ep3[𝜔𝑟  𝑡|𝑚𝑟]. (10) 

Note that if the signs of the expressions (𝑐1 − 𝐵) and (𝑐3 − 𝐷) are the same as in the original 

unforced DO, then the type of ep and the expressions for its frequency and elliptic parameter  stay the 

same, but if their signs change, resulting in another type of the DO, then one needs to use the 

appropriate forms of the solution for such type of the oscillator [4, 5, 8]. Thus, not only that this 

approach can be used for obtaining the exact solution for the steady-state forced response, but it 

enables one to design the external excitation to make DOs respond as free DOs of the same or 

different types. This approach is illustrated subsequently on an example. 

3.1. Example 1 

The methodology presented can be used for choosing the external force to change the type of the 

oscillators governed by Eq. (8) and there are several possibilities for doing so. The case D=0 when the 

external force is proportional to the displacement, i.e. to the linear part of the restoring force, is 

considered in [5]. The general case when 𝐵  and D are different from zero, i.e. when the external 

force is related to the overall restoring force is analysed in [3]. Here, the case that is not covered in 

these publications is considered: 𝐵 = 𝑐1 and 𝑐3 > 𝐷. With these conditions used, Eq. (8) turns into a 

pure cubic oscillator, with the exact solution  for the response 

𝑥𝑟 = 𝐴 cn [𝜔𝑟  𝑡|
1

2
] ,  𝜔𝑟 = √𝑐3 − 𝐷 𝐴. (11a,b) 

By introducing this solution into the expression for the force and then into Eq. (2) with 𝐵 = 𝑐1, the 

following equation of motion is obtained 

𝑥̈ + 𝑐1𝑥 + 𝑐3𝑥3 = 𝑐1𝐴 cn [√𝑐3 − 𝐷 𝐴 𝑡|
1

2
] + 𝐷𝐴3cn3 [√𝑐3 − 𝐷 𝐴 𝑡|

1

2
]. (12) 

There are three parameters A, D and 𝜔𝑟   here and one relationship between them, which is given by 

Eq. (11b). Thus, two of them are arbitrary. If the amplitude is to be calculated, the frequency-

amplitude relationship (11b) needs to be used. Note that for 𝑐3  close to 𝐷, the value of A can be very 

large, which might be undesirable and should be carefully dealt with. 

In order to illustrate the results derived, let us make the requirement that the period of the 

response T is fixed. This period is related to the frequency of the cn function via the relationship 

𝑇 = 4𝐾(𝑚𝑟)/𝜔𝑟, where 𝐾(𝑚𝑟) ≡ 𝐾 is the elliptic integral of the first kind, which gives 𝜔𝑟   =

4𝐾(𝑚𝑟)/𝑇 . By choosing D as well, the amplitude A can be calculated from Eq. (11b). The 

corresponding example with the period of 10s is shown in Figure 1a (the rest of the parameters 𝑐1, 𝑐3, 
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D are given in the figure caption, while the amplitude is calculated to be  𝐴 = 2√2𝐾 (
1

2
) /5 ≈

1.04882. As another example, the additional requirement is introduced: let the period, the parameters 

𝑐1 and 𝑐3 stay the same, but the amplitude is reduced for 50%. Equation (11b) leads 𝐷 = −1, and the 

corresponding responses are presented in Figure 1b. Numerical solutions of the original equation of 

motion of the hardening DO, Eq. (1) are also plotted as the green dotted line, clearly illustrating the 

change caused. 

 

Figure 1. Time response corresponding to 𝑐1 = 1,  𝑐3 = 1 and: a) 𝐷 = 0.5  𝐴 = 2√2𝐾 (
1

2
) /5, b) 

𝐷 = −1  𝐴 = √2𝐾 (
1

2
) /5. Numerical solutions of Eq. (12) - black solid line, the analytical response 

(11a,b) - red dots, the numerical solution of the original equation of motion of the hardening Duffing 

equation (1) - green dotted line. 

 

To provide additional insights into the harmonic content of the response for the case shown in 

Figure 1b, the Fourier series expansion for the cn function with the elliptic parameter 𝑚 = 1/2  is 

used. It gives: 
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...,)39823.4(cos00008.0)14160.3(cos00186.0

)88496.1(cos04305.0)62832.0(cos95501.0





tt

tt
A
xr

 (13) 

leading to the conclusion that the first harmonic takes 95,5% of the overall response, the third 

harmonic 4.3% and the rest of them all together contribute less than 0.2%. The corresponding force 

from the right-hand side of Eq. (12) can be developed into the following Fourier series  

...)14160.3(cos00481469.0)88496.1(cos0175306.0)62832.0(cos401959.0  tttFapp  (14) 

The expression for the force given by Eq. (14) defines how this tuned excitation can be generated in a 

lab - as a multi-term harmonic excitation. Figure 2 is plotted based on it. It contains: i) the numerical 

solution of Eq. (12) (black thick solid line); ii) the numerical solution of Eq. (12) where the right-hand 

side is approximated by Eq. (13), labelled by the green dotted line; iii) the numerical solution of Eq. 

(12), where the right-hand side is approximated by first two terms from Eq. (14) and labelled by the 

blue dashed line; iv) the numerical solution of Eq. (12), where the right-hand side is approximated 

only by the first term from Eq. (14) and labelled by red solid line. It is seen that the approximations 

described under ii) and iii) are in good agreement with the exact one, while the last one described 

under iv) shows some discrepancy around the maximal displacement, as better seen in the enlarger 

part of the time-response plotted in Figure 2b. 

4. Applications to purely nonlinear oscillators 

Let us consider now purely nonlinear oscillators governed by Eq. (1) with 𝛼 > 1,  𝑐1 = 0, 𝑐𝛼 > 0. 

Their free response can be expressed in terms of the Ateb function [9 - 11], as follows 

𝑥 = 𝐴 ca(𝛼, 1, 𝜔 𝑡), 𝜔 = 𝐴(𝛼−1)/2√
𝑐𝛼(𝛼+1)

2
 . (15a,b) 

When 𝛼 = 1, this Ateb-form solution transforms into the Cosine solution, Eq. (3). 

 Focusing now on the external excitation in Eq. (2) with 𝑐1 = 0, it is assumed that 𝐹(𝑡) =

𝐵sgn(𝑥)|𝑥|𝛼, so that the equation of motion becomes 

𝑥̈ + (𝑐𝛼 − 𝐵)sgn(𝑥)|𝑥|𝛼 = 0. (16) 

Assuming that 𝑐𝛼 > 𝐵, the steady-state response has the form (15a) with 𝑐𝛼 in (15b) replaced by 

(𝑐𝛼 − 𝐵). So, the equation of motion and its response 𝑥𝑟  are  

𝑥̈ + 𝑐𝛼sgn(𝑥)|𝑥|𝛼 = 𝐵𝐴 ca (𝛼, 1, 𝐴(𝛼−1)/2√
(𝑐𝛼−𝐵)(𝛼+1)

2
 𝑡), (17) 
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𝑥𝑟   = 𝐴 ca (𝛼, 1, 𝐴(𝛼−1)/2√
(𝑐𝛼−𝐵)(𝛼+1)

2
 𝑡).  (18) 

Another possible modification is that one assumes the excitation force in the form 

𝐹(𝑡) = 𝑐𝛼sgn(𝑥)|𝑥|𝛼 − 𝐸sgn(𝑥)|𝑥|𝛽,  (19) 

where E>0 and 𝛽 > 1. The resulting response will have the form (15a,b) but with 𝛼 replaced by 𝛽, 

and 𝑐𝛼  replaced by E. So, the response will correspond to a free purely nonlinear oscilaltor with a  

different power of nonlinearity 𝛽. One example is given subsequently to illustate this methodology. 

 

 

Figure 2. Time response corresponding to  𝑐1 = 1,  𝑐3 = 1,  𝐷 = 1, 𝐴 =
√2𝐾(

1

2
)

5
: a) several 

periods; b) an enlarged part around the maximal displacement. The numerical solution of 

Eq. (12) - black thick solid lines, the numerical solution of Eq. (12) with the right-hand side 

approximated by Eq. (14) - green dotted lines, the numerical solution of Eq. (12) with the 

right-hand side approximated by first two terms from Eq. (14) - blue dashed lines, the 

numerical solution of Eq. (12) where the right-hand side is approximated by only the first 

term from Eq. (14) - blue solid lines. 
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4.1 Example 2 

If 1 , the resulting oscillator is the SHO. Its solution has the form of the Cosine function:  

 ,cos tEAxr   (20) 

which should be substituted into Eqs. (1) and (19) to derive the equation of motion: 

        .cos cos cos sgnsgn tEEAtEAtEAcxxcx 







  (21) 

If 3 , the excitation in Eq. (19) would yield the equation of motion corresponding to a pure 

cubic DO. The corresponding response is given by 

.
2
1cn 









 AtEAxr  (22) 

After substituting it into Eqs. (1) and (19), the equation of motion of externally excited purely 

nonlinear oscillators that respond as a conservative pure cubic DO is derived: 

  .
2
1cn 

2
1cn 

2
1cn sgnsgn 33









































 AtEEAAtEAAtEAcxxcx








  (23) 

It is believed that this can be a convenient way for modifying the stiffness characteristics without 

influencing internal elements, but by using the external excitation. 

Figure 3 contains the time responses of the original oscillator with the power of nonlinearity  

2/1  as well as time responses for all the following cases: 1  (Figure 3a),  3  (Figure 3b). 

It is clearly seen that the change of the power of nonlinearity causes the extension of the period. The 

shape of vibrations also changes implying the modification of the harmonic content.  
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Figure 3. Time responses for purely nonlinear oscillators corresponding to 2/1c =1,  

2/1 , E=1, A=1 and a) 1 ; b)  3 . Numerical solutions of the externally excited 

original oscillator with the force given by Eq. (20) - black solid line, the resulting analytical 

response - red dots, the numerical solution of the original conservative oscillator Eq. (1) - 

green dotted line. 

5. On some approximations 

Let us consider now the case when the external force is propotional only to the linear part of the 

restoring force, which is given by Eq. (8) with D=0 [3]. Using the well known exact solution for the 

Duffing conservative oscillator [4], its solution can be written down as: 

 
 

.
12

,1,,cn 2
3

2
32

3 AcB
AcmAcBmtAx rr


   (24a-c) 

Equations (24b,c) yield the following expressions for amplitude of the response A and the constant  

B : 

 .211,2 2

3

mB
c
mA rr    (25a,b) 
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Thus, the excitation F=Bx is given by 

   .,cn]211[2 2

3

mtm
c
mF rrr    (26) 

It will be demonstarted now that this case can be transformed into a harmonically excited Duffing 

oscillator and the exact solution (24a-c) can be simplified to the well-known approximation for its 

steady-state primary resonance response. The harmonic excitation with the amplitude F0 and the 

angular frequency  is  

.cos0 tFF   (27)  (26) 

Comparing it with Eq. (26) and using (25a), one finds that  

 ],211[ 2
0 mAF r    (28) 

while the equality of periods of the elliptic and harmonic function imposes  /2/4 rK , where 

  KmK  . This yields Kr 2/ . Using this expression, Eq. (25a) and the series expansion 

 24

22 1 mK   , one can derive 

.02 22
3  mAc  (29) 

Analogously, Eq. (28) transforms into 

.
2
31 022

A
Fm   (30) 

Equations (29) and (30) give: 

,
4
31 02

3
2

A
FAc   (31) 

which is the well-known frequency-amplitude equation of a conservative harmonicallz excited 

Duffing oscilaltor [1, 2]. Furthermore, the exact solution (24a) can be developed into the Fourier 

series, expanding also the first two coefficients into series with respect to m to derive 

 

   .3cos
32
1cos

32
13cos

16
cos

16
1

...
2

3cos
2

cos,cn

3
3

3
3

31

tActAcAtmAtmA

t
K

CAt
K

CAmtAx rrr





































 







 (32) 

274



 

 

This approximate solution has the form of the well-known solution obtained by the classical method 

of multiple scales [1, 2]. The fact that the exat steady-state response of the Dyffing oscillator with an 

elliptic-type forcing can be transformed into the well-known and widely used expressions for the 

harmonically forced Duffing oscillator speaks in favour of the presented methodology involving 

specially designed external excitation, despite the fact that it is given in terms of special functions.  

6. Conclusions 

This study has been concerned with a methodology related to the design of external excitation of 

conservative nonlinear oscillators that enables one to obtain the exact solution for the corresponding 

steady-state response. The nonlinear oscillators considered have included Duffing-type oscillators 

(hardening, softening, bistable, pure cubic) and also purely nonlinear oscillators. They have the exact 

solutions in terms of Jacobi elliptic functions and the Ateb function, respectively. These solutions 

have been used to express the external excitation in terms of these functions as well. It has also been 

demonstrated how one can design the external excitation of a nonlinear oscillator in such a way that it 

responds as a completely different type of nonlinear oscillator or as a linear one. Furthermore, it has 

been shown that certain known approximate solutions for harmonically excited Duffing oscillators in 

primary resonance can be derived from these exact solutions, which speaks in favor of their generality 

and requires further investigations of these approximations for other nonlinear oscillators.  
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Derivation and investigation of the generalized nonlinear 
Schrödinger equation of cosmogonical body forming  

 

Alexander M. Krot 

Abstract: This work considers the statistical theory of gravitating spheroidal 

bodies to derive a new generalized nonlinear Schrödinger-like equation of a 

gravitating cosmogonical body formation. The statistical theory for a cosmogonical 

body forming (so-called spheroidal body with fuzzy boundaries) has been proposed in 

our previous works. This paper investigates different dynamical states of a gravitating 

spheroidal body and respective forms of the generalized nonlinear time-dependent 

Schrödinger equation. In particular, the derived time-dependent generalized nonlinear 

Schrödinger-like equation describes not only the state of virial mechanical 

equilibrium and the quasi-equilibrium gravitational condensation state, but the initial 

equilibrium gravitational condensation state taking place in a forming gas-dust 

protoplanetary cloud as well as the soliton disturbances state occurring in a spheroidal 

body under formation and also the gravitational instability states providing a 

formation of core of cosmogonical body.  

1. Introduction 

A statistical theory of a gravitating cosmogonical body formed by a numerous of interacted particles 

isolated from an influence of external fields and bodies has been proposed in our previous works [1–

4]. Within framework of this theory, the forming cosmogonical bodies are shown to have fuzzy 

contours and are represented by spheroidal forms (unlike ordinary macroscopic bodies having distinct 

contours). It has been pointed out that a spheroidal body has a clearly outlined form if the potential 

energy of gravitational interaction of its particles is sufficiently great and the body’s mass itself is 

relatively small. 

A process of slow-flowing-in time initial gravitational condensation of a spheroidal body has 

been investigated in Ref. [1–3]. Within framework of this approach, the equations have been derived 

for description of a slow-flowing gravitational condensation of a spheroidal body in a vicinity of 

equilibrium and quasi-equilibrium state.  

For the first time the problem of gravitational condensation was investigated by J. Jeans [5]. Let 

us note that the gravitational condensation problem of an infinitely distributed substance is directly 

connected with the gravitational instability problem, see for example Ref. [6]. The main difficulty of 
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Jeans’ theory is connected with the gravitational paradox [6]: for an infinite homogeneous substance 

there exists no potential of gravitational field 
g in accord with Poisson equation. 

E. Nelson [7] and later on L. Nottale [8, 9] have developed their theories to describe both 

deterministic and stochastic behavior of a particle in gravitational field. The important point in 

Nelson’s work [7] is that a diffusion process can be described in terms of a Schrödinger-type 

equation, with help of the hypothesis that any particle in the empty space, under the influence of any 

interaction field, is also subject to a universal Brownian motion. 

In this work, we derive the generalized nonlinear Schrödinger equation of cosmogonical body 

forming within framework of the statistical theory [1–4]. With its help, we also investigate the 

dynamical states of a process of gravitational condensation of cosmogonical body. 

2. The mass density and potentials in result of an initial gravitational condensation of 

a molecular cloud 

To solve the mentioned problems of gravitational condensation of a molecular cloud we will use the 

statistical theory [1–4]. We consider the statistical theory beginning from the derivation of a 

distribution function of particles in a space filled in homogeneous and isotropic initially gaseous 

nebula. The statistical aspect of the problem results from the fact that the considered body consisting 

of gaseous matter is a system containing a large number of particles interacting among themselves by 

oscillations in a cosmic vacuum. In microphysics, the cosmic vacuum represents a ground energetic 

state of quantum fields, and its experimental manifestation is Casimir effect [10 p.1154]. The similar 

oscillations modifying forms of particle trajectories have been considered by Nelson [7] and Nottale 

[8, 9], so that we can say about the initial oscillatory interactions of particles. In macrophysics, it is 

alleged that the cosmological constant describes the cosmic vacuum [10, 11].  

According to our previous work [1] the volume probability density function Φ describing a 

particle distribution into a rotating gaseous cloud (being in a state of relative mechanical equilibrium) 

can be expressed in spherical coordinates as follows: 

2/)sin1(2

0

2/3
22

0
2

)1()2/(),Φ(
 


r

er ,  (1)               

where r  is a distance,   and  are polar and azimuth angles,  is a parameter of gravitational 

condensation,
 0  is a constant of stabilization of the variable  . 

Obviously, when 02

0  then the equation (1) goes to the describing volume probability density 

equilibrium function in the non-rotational case (or slowly rotational one) [1, 3]: 

2/2/3 2

)2/()( rer   ,  (2)                                               

278

/kazimir


If M  is a mass of gaseous body then its mass density is  M  simply. Therefore, the mass 

density for a rotating gaseous body can be written in spherical coordinate system [1, 3]:  

,)1(),(
2/)sin1(2

00

22
0

2  


r
er  (3)                                   

where 2/3

0 )2/(  M . Obviously, the iso-surfaces (isostera) of the mass density (3) are flattened 

ellipsoidal ones, and 2

0  is a parameter of their flatness (
0  

is the eccentricity of ellipse). As a 

rule 10  , so that these mass density iso-surfaces become spheroidal surfaces. Thus, under the 

influence of the initial oscillations of particles an isolated gaseous cloud can be transformed to the 

spheroid-like gaseous body or, simply say, spheroidal body [1–4]. 

Let us consider the important particular case of spheroidal body which is sphere-like gaseous 

body. Really, we can see that if 02

0  then the equation (3) becomes the mass density function for a 

slowly rotating or immovable spheroidal body [1–4]: 

2/

0

2

)( rer   . (4) 

Calculating the derivatives of   (3) with respect to the spatial coordinates h
 
and z  as well as 

the parameters   and 
0 (supposing them as slowly changing functions, i.e. )(t  and )(00 t  ) we 

can obtain the following general equation of antidiffusion with regard to a deformation of spheroidal 

body as a result of its rotation [3]: 


 2)(G

~
 t

dt

d , (5) 

where )(G
~

t  
is the generalized gravitational compression function (GCF): 

.
)1(

1

)(2

1
)(G

~ 0

2

00

2 dt

d

dt

d

t
t











  (6) 

In the particular case when const0   and 00  , Eqs.(5) becomes the pure antidiffusion equation 

of initial gravitational condensation of immovable (or slowly rotating) spheroidal body [1–4]: 

,)( 2






t

t
G  (7) 

where .
)(2

1
)(

2 dt

d

t
t




G  (8) 

Analogous equation of initial gravitational condensation of gaseous substance is true for the 

distribution function Φ
 
of an immovable (slowly rotating) spheroidal body [1–3]: 

.)( 2



t

t
G  (9) 
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Thus, initial gravitational interactions of particles stipulated by their quantum oscillations in an 

isolated gaseous cloud form a spheroidal body and lead to gravitational field becoming. Namely, there 

is a threshold (critical) value 
c that if

c  then gravitational field arises in the spheroidal body [1–

3]. In the simplest case (4) we can seek a spherically symmetric solution of the Poisson equation: 

  .
4

0

20
g

2






r
x

dxe
r

r





  (10) 

In the general case of a rotating spheroidal body, the axial rotation creates a flattening of its 

core, therefore the gravitational potential of a uniformly rotating spheroidal body is described by the 

following expression: 

  .
])1(2[2

)1(22,
0

2

0

2

cos

)1(2

sin)1(

2

00g

22

2
0

222
0















ss

ds
eer s

r

s

r


 






  (11) 

3. The density of antidiffusion mass flow and the antidiffusion velocity into a slow-

flowing gravitational compressible spheroidal body 

Taking into account that GCF )(tG as well as )(G
~

t does not depend on the spatial variable (see (6) 

and (8)) we can note therefore the both equations (5), (7) remind completely the continuity equation 

expressing the law of conservation of mass in a nonrelativistic system [12]: 

0



j

t


div

   (12) 

if j


 is a continuum flow density (like a conductive flow) arising at the slow-flowing gravitational 

condensation of both spheroidal bodies [1–3]: 

;grad)( tj G


                          .grad)(
~

tj G


   (13a, b)  (21a) (2) 

The conductive (owing to diffusion or thermal conductivity) flows satisfying analogous Eq. (12) 

in dissipative systems were investigated by I. Prigogine and his co-workers (see, for example, [13, 

14]). As it follows from Eq. (13a,b) directly, there exists an antidiffusion mass flow density in a 

slowly compressible gravitating spheroidal body [1–3]. Indeed, applying the equation of continuity 

(12) to this antidiffusion flow density (13a) (or (13b)) we obtain again the linear antidiffusion 

equation (7) (or (5)) of initial gravitational condensation. In this connection, let us introduce a 

conductive velocity for the antidiffusion mass flow density or, simply say, the antidiffusion velocity 

(unlike of the ordinary hydrodynamic velocity v


) for an immovable (or a slowly rotating) spheroidal 

body [2, 3]: 
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)./ln(grad)(
/

)/(
)G()(u 0

0

0 







ttt GG 







  (14) 

Since the mass density of spheroidal body is directly proportional to the probability volume density 

function  , then antidiffusion velocity (14) can be defined by the probability volume density 

function: 

.lngrad)()(u 



 tt GG

   (15) 

Now let us estimate the antidiffusion velocity (14) of particles into a spherically symmetric 

slow-flowing compressible spheroidal body taking account of its mass density function (4): 

  .)()(2/)()()/ln()G(),(u 2

0 rttrttttr


 GG    (16) 

We can see that the antidiffusion velocity u


 is expressed by the very simple relation (16) in the case 

of a spherically symmetric cosmogonical body.  

In the general case of rotating ellipsoid-like cloud when 00   we can also estimate the 

antidiffusion velocity of particles using the general equation (5) of antidiffusion mass transfer and the 

formula (3) of mass density [3]: 

       


 2/11lngrad)(G
~

/),(lngrad)(G
~

)(G
~

u 22

0

22

00 zhtzhtt 




   zzhhzh eeezeht

 uu1)(G

~ 2

0  (17a) 

where 
he


 and 
ze


 
are the basis vectors of cylindrical frame of reference, 

hu and 
zu are the radial h -

projection and the axial z -projection of antidiffusion velocity respectively: 

  ;1)(G
~

u 2

0 hth                      .)(G
~

u ztz    (17b, c) 

3.1. The derivation of the equations of substance movement into a slow-flowing 

gravitational compressible spheroidal body  

Without loss of generality, we suppose 00  , so that
 
we are going to use Eq. (7) of the slow-

flowing gravitational compression of sphere-like cosmogonical body. Since the antidiffusion velocity 

u


 of antidiffusion mass flow satisfies the mentioned continuity equation (12): 

0)u( 


 



div

t
 (18) 

then we can calculate the partial derivative of the antidiffusion velocity (14) with respect to the time: 
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Let us rewrite Eq. (19) based on the familiar formulas of vector analysis [12, 15]: 

   ;urotuuuugrad
2

1 2 
               ).urot(rot)ugrad(u2 

 div   (20a, b) 

Taking into account Eq. (14) we can see that 0urot 


, so that Eqs. (20a, b) become respectively: 

  ;uu2ugrad 2 
                                    ).ugrad(u2 

div   (21a, b) 

Substituting Eqs. (21a, b) in Eq. (19) we obtain: 

  .u
)(ln

uu2u)(
u 2 


dt

td
t

t

G
G 



   (22) 

Substituting Eq. (21a) again, the equation (22) can be written as follows: 

  .u
)(ln

u)()2/ugrad(uu
u 22 


dt

td
t

t

G
G 



   (23) 

The obtained equation (23) is similar to Navier–Stokes equation of motion of a viscous liquid [12, 15] 

under conditions that a gas-dust substance of spheroidal body is isolated from influence of external 

fields and const)( s GG t . 

Along with the antidiffusion velocity u


 there exists an ordinary hydrodynamic velocity v


 (or a 

convective velocity [13, 14]). In principle, the hydrodynamic velocity v


 of mass flow arises as a 

result of powerful gravitational contraction of a spheroidal body on the next (field) stages of its 

evolution. The growing magnitude of gravitational field strength a


 induces the significant (i.e. 

observable) value of hydrodynamic velocity v


 of mass flows moving into spheroidal body. This 

means that the value of antidiffusion velocity (14) becomes much less than the value of 

hydrodynamic velocity, i.e. vu


 . Under this condition, a common (hydrodynamic and 

antidiffusion) mass flow density inside a spheroidal body satisfies the hydrodynamic equation of 

continuity [12, 15]: 

.0)v( 


 



div

t
  (24) 

Taking into account Eq. (24) we can also calculate the partial derivative of the antidiffusion velocity 

(14) with respect to the time: 

.u
)(ln

)uvgrad()vgrad()(vv)(u
)(ln

))v((
1

)(u
)(

1)(1
grad)(lngrad

)(u






dt

td
tt

dt

td

t
tdt

td

t
t

dt

td

t

G
divGG

G

divG
G

G
G

G








 



















































 (25) 
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 As known from a fluid-like description [12, 15], the complete time-derivative of the common 

(hydrodynamic plus antidiffusion) velocity uv


  inside a spheroidal body defines the common 

acceleration (or gravitational field strength of spheroidal body) including the partial time-derivatives 

and convective derivatives [2, 3]: 

  .uu
u

v)v(
v)uv( 





















ttdt

d
a  (26) 

Taking into account Eq. (23) as well as Eq. (21a), the complete acceleration (26) can be represented 

in the form [2, 3]: 

  .u
)(ln

u)(uuv)v(
v)uv( 2 




dt

td
t

tdt

d
a

G
G 







  (27) 

Let us note that 0urot 


for the antidiffusion velocity (17a), too. So, we can see that Eqs. (21a,b) are 

also true. Thus, if we replace GCF )G(t  on the generalized GCF )(G
~

t  in the Eqs. (19), (23), (25)-(27) 

they remain valid in the general case of a rotating ellipsoid-like cosmogonical body. Obviously, the 

antidiffusion velocity (15) of probability volume flow density also satisfies the same equations.  

3.2. The derivation of the dimensionless equations  

Using Eqs. (25), (27) we can carry out an analysis of dynamical states of a spheroidal body by 

introducing the scales of physical values 
s,,,,, GFUVLT and the respective dimensionless 

variables gfuv ,,,,,


  as follows: 

),()(;;u;v;; s tgtfFauUvVLrTt GG 


  (28) 

where constG)G( s t
 
under the condition of mechanical equilibrium state.  

By substituting Eqs. (28) in Eqs. (25), (27) we obtain: 

;
)(ln

)grad()grad()(
2

u
dt

td

T

U
uv

L

VU
v

L

V
t

u

T

U 


G
divG 






   (29a) 

.
)(ln

)grad()()2/grad((
2

2
22

u
dt

td

T

U
u

L

U
tu

L

U
v)v

L

V
fF

v

T

V 
G

divG 





   (29b) 

Similarly to [15], dividing Eq. (29b) by LV /2  and Eq. (29a) by LVU / we derive the following 

dimensionless equations: 

;
)(ln

Sh)grad()grad(
ReK

1
Sh s u

dt

tgd
uvv

u 









div

G



 (30a)  
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,
)(ln

KSh)grad()(
Re

K
)2/grad(K(

Fr

1
Sh 22 u

dt

tgd
utguv)vf

v s






div

G


 (30b) 

where VTL /Sh  is the Strouhal number, FLV /Fr 2  is the Froude number, /Re VL is the 

Reynolds number (  is a kinematic coefficient of viscosity of flow of particles [15]), VU /K   is a 

new number of similarity. 

The new number of similarity is a measure of the values u


versus v


 
prevailing: 

.v/uK


  (31) 

When this similarity number exceeds unity ( 1K  ) the antidiffusion contraction of a spheroidal 

body occurs exclusively, so that the value of hydrodynamic velocity is negligible )0v( 


because a 

gravitational field is absent practically. If the similarity number becomes close to unity ( 1K  ) then 

the hydrodynamic velocity v


 of mass flow arises as a result of a gravitational contraction of a 

spheroidal body on the field stage of its evolution. As mentioned, the value of antidiffusion velocity 

(14) becomes much less than the value of hydrodynamic velocity vu


 when 1K  . This means 

that the growing magnitude of powerful gravitational field strength a


 induces the significant value 

of hydrodynamic velocity v


 of mass flows moving into a spheroidal body. Thus, like the Mach 

number M  [15] the new number of similarity K  is a control parameter of dynamical states of a 

forming spheroidal body. 

In particular, in the special case 1K   the dimensionless Eqs. (30a), (30b) can be reduced to 

the one dimensionless equation of the kind: 

,Sh)grad()(
Re

1
)2/Kgrad( s2

 




u
utgu




div
G  (32) 

which corresponds the following equation: 

.
u

)ugrad()()2/ugrad( 2

t
t









divG
 (33) 

Excepting the antidiffusion solution, Eq. (33) has a wave solution when consts G
 
and 1u 


: 

.uu s
2i

0

tkrk
e

G
 

  (34) 

i.e. in the quasi-equilibrium gravitational condensation state (when const)( s  GG t ) the wave 

solutions (34) are generated. 
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4. The derivation of the generalized nonlinear Schrödinger-like equation in the 

statistical theory of spheroidal bodies 

The considerations in the previous sections point to an initial quasi-equilibrium gravitational 

condensation occurring in a forming spheroidal body. However, a sharp increase of the antidiffusion 

velocity of particles inside a spheroidal body can lead to the coherent displacement of particles and, 

as a consequence, a resonance increase of the parameter of gravitational condensation )(t occurs
 

[2]. This means that nonlinear phenomena arise owing to self-organization processes [14] into a 

spheroidal body under its formation. These nonlinear phenomena induce nonlinear soliton-type waves 

[16] satisfying a nonlinear undulatory Schrödinger-like equation. 

To obtain a nonlinear generalized Schrödinger equation, let us consider again Eqs. (25), (27) 

with regard to the simple formulas (21a, b). We intend to investigate some special solution of these 

equations in the case that the acceleration (or gravitational field strength) comes from a gravitational 

field potential [17]: 

ggrada


  (35) 

under the assumption that the hydrodynamic velocity v


 is a gradient of a statistical action   which 

reminds a potential of velocity [12, 15]: 

).)(2grad(grad)(2v  tt GG


  (36) 

In the special case of )(tG as 
02/ m  Eq. (36) becomes the Nelson’ formula [7]:  grad)/(v 0m


. 

In this connection, 0vrot 


, i.e. )2/vgrad(v)v( 2
 . Since u


 is also a gradient due to Eq. (15) as 

well as a


 and v


 according to Eqs. (35), (36), so that Eqs. (25), (27) become the following: 

;lngrad)(}/)(ln{)uvgrad()vgrad()(
)ln)((

grad 



tdttdt

t

t
GGdivG

G   (37a) 

.lngrad)(}/)(ln{)ugrad()()2/ugrad()2/vgrad(grad
))(2(

grad 22 



tdttdt

t

t
g GGdivG

G 
      (37b) 

Integrating these Eqs. (37a, b) and taking into account a simplification 

dttdtdttd /)()(}/)(ln{ GGG  , we can find that 

;ln
)(

uvv)(
)ln)((






dt

td
t

t

t G
divG

G   (38a) 

.ln
)(

u)(
2

u

2

v))(2( 22






dt

td
t

t

t
g

G
divG

G 


  (38b) 

Let us carry out a change of dependent variable: 

285



;ln
2

1
                    ,i e  (39a, b) 

where  is defined by Eq. (36), 1i  . Obviously, as follows from Eqs. (39a, b) directly 

,i e  (40) 

so that 
2

   as usually. According to the first change (39a) it is not difficult to see that 

;
)(

2)(4)(2
))(2( 2 





dt

td
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t

t G
GG

G 22  (41a) 

.
)(

2)(2))((2))((2
))(2( 222 





dt

td
ttt

t

t
g

G
GGG

G 222   (41b) 

Let us rewrite these two Eqs. (41a, b) as one. To this end, after multiplication of the second Eq.(41b) on 

imaginary unit and then addition both of Eqs. (41a, b), we can obtain the following: 

    .
)(

i1(2)i()(2i)i)((2ii)i)((2 222 




dt

td
ttt

t
g

G
)GGG 2  (42) 

Taking into account the second change (39b) we can see that 

,/)(/)i(;/ln)i(;lnlnln2;lni 22222
 

so that Eq. (42) takes the form: 

  .ln
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G
)GG 2   (43) 

After some transformations and simplifications Eq. (43) can be represented as follows: 
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ln
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whence we can obtain a nonlinear time-dependent generalized Schrödinger-like equation of the kind: 
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




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
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t

t
t g

G
2GG 2    (45) 

5. Concluding remarks on particular cases of the generalized nonlinear time-

dependent Schrödinger-like equation 

Let us consider different dynamical states of a gravitating spheroidal body as well as the respective 

forms of the generalized nonlinear time-dependent Schrödinger-like equation (45). Indeed, the 

derived Eq. (45) describes not only the mentioned state of virial mechanical equilibrium [1–3] when 

GCF R const)( sGG t  and RΨ  or CΨ : 

286



Ψ
2

1Ψ 2

s 












gs

t
i 

2
GG  (46) 

and the quasi-equilibrium gravitational condensation state const))( s  G(G t when R)(tG  and 

RΨ  or  CΨ : 
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but the initial equilibrium gravitational condensation state occurring in a forming gas-dust 

protoplanetary cloud: 

Ψ
Ψ 2

s



G

t
i  (48) 

as well as the soliton disturbances state taking place in a spheroidal body under formation (see Fig.1): 
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Figure 1.   Soliton solution of the generalized cubic time-dependent Schrödinger-like equation  

and finally the gravitational instability states when GCF C)(tG  and C argie : 

 ΨargΨΨln
)(

Ψ
2

1
)(

Ψ
)( 2 














dt
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t

t
ti g

G
GG 2   (50) 

including the increase of gravitational compression of spheroidal body providing a formation of core 

of cosmogonical body if 2argΨ0  and the case of unlimited gravitational compression leading 

to a collapse if Z nn,2argΨargΨ   in Eq. (50). 
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General theory of geometrically nonlinear size dependent shells taking into 
account contact interaction.  

Part 1. Chaotic dynamics of geometrically nonlinear axially symmetric one-
layer shells  

 
Vadim A. Krysko - jr., Jan Awrejcewicz, Irina V. Papkova, Vadim A. Krysko 

 

Abstract: A mathematical model of flexible flat rectangular in plan shells is proposed. 

A special case for spherical axisymmetric shells taking into account nanoscale effects 

has been studied. Shell structure material is homogeneous and isotropic, and the 

nanoscale factors has been taken into account. Partial differential equations for 

axisymmetric spherical shallow shells were reduced to the Cauchy problem by the 

method of finite differences of the second order of accuracy. The Cauchy problem was 

solved by the Runge-Kutta method of the 4th order. Convergence of the obtained results 

in dependence of the number of partitions along the radius was investigated. The system 

was studied as a system with an infinite number of degrees of freedom. The effect of 

the size-dependent parameter, which significantly affects the nonlinear dynamics of the 

shell, was taken into account.  

Keywords: Mathematical model, rectangular shell, spherical axisymmetric shell, moment theory of 

elasticity, loss of stability, chaos, numerical experiment, geometric nonlinearity, distributed mechanical 

structure. 

1. Introduction 

In experimental studies of metals, polymers and metallic glass, a size dependent effect was observed 

when the thickness of mechanical structures in the form of rods, plates, and full shells was compressed 

to a micron [1, 2]. This effect plays an important role when taking into account the mechanics of the 

mentioned structures [3].  

Experimental studies of the real microstructures are extremely complex and expensive. Chong and 

Lam [4] observed that the flexural rigidity increases by about 2.4 times with a decrease in thickness 

from 115 to 20 μm when testing the micro-rod from epoxy polymers for bending. From the works of 

these interesting experiments can be concluded that the size-caused behavior is an inherent property of 

materials that can not be neglected when designing optimal dynamic devices using MEMS [5], [6].  
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Young et al. [7] developed couple stress based strain gradient theory for elasticity using the theory 

of higher order of continuous media. The behavior of the pairs of forces was determined by an additional 

symmetrical equilibrium relation, at which only one additional parameter of the scale of the length of 

the material took place. 

Based on the modified theory of moment stresses, static mechanical properties [2], elastic bending 

[1], fluid transfer [8], dynamic characteristics [9-11], nonlinear vibration [12-13] of micro-rods were 

studied.  

Modified couple stress theory of moment stresses for computation the size dependent plates was 

applied. The theory of moment stresses of microstructurally dependent pairs of forces applied to 

functionally graded rods and the Timoshenko rod was investigated by Reddy et al. [14-15]. Ciata [6] 

studied the static analysis of isotropic microplates using the Kirchhoff plate model. Iain et al. [16] 

analyzed the types of dynamic behavior of the Kirchhoff microplate, based on a modified theory of 

moment stresses. Lazopoulos [17], adopting the Kirchhoff model for plates, investigated the stress 

gradient in the bending of thin plates to determine the size effect. Ke et al. [5] performed studies using 

the moment theory for plates of Mindlin plates. Reddy et al. [18] applied the theory of the third 

approximation (model of Sheremetyev-Pelekh) [19] taking into account piezo effects. Stress-strain state 

size dependence microstructures: plates, rods and shells take into account temperature effects for 

homogeneous materials was studied in papers [19-32]. In conclusion, it is important to note that the 

study of nonlinear dynamics of the size effect for rods, plates and shells is not done. The main goal of 

this paper is the construction of a general theory and study of nonlinear dynamics of size dependent 

plates and shells in a temperature field with account for couple of deformation fields and  temperature. 

Algorithms and software complexes for analysis of nonlinear dynamics of size dependent effects of the 

flat in plan axisymmetric shells under the action of a transverse periodic load were created. 

 

2. Mathematical background 

In the classical theory of elasticity, the work of deformation and the strain energy depend on the stress 

tensor and do not depend on the rotation vector due to material independence. However, the gradient 

of the rotation vector can be an important factor in the equations of state. Based on the modified couple 

stresses theory  of moment stresses presented by Yang et al. [7], the strain energy density is a function 

of both the couple stress tensor (conjugate to the strain tensor) and the curvature tensor (conjugate to 

the tensor of moment stresses). In deformed isotropic linear elastic material, located in the region Ω, 

strain energy Π is expressed by the following equations 

П = ∫ (𝜎𝑖𝑗𝛺
𝜀𝑖𝑗 + 𝑚𝑖𝑗𝜂𝑖𝑗)𝑑𝛺     (𝑖, 𝑗 = 1,2,3)     (1) 
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Here 𝜎𝑖𝑗 is the Cauchy stress tensor, 𝜀𝑖𝑗 is the stress tensor, 𝑚𝑖𝑗 is a deviator component of the stress 

tensor, а 𝜂𝑖𝑗  - symmetric curvature tensor. The parameter of the material length scale related to the 

microstructures of the material was developed for the purpose of interpreting the dimensional effect in 

the non-classical Kirchhoff-Love model. These tensors are defined by formulas 

𝜎𝑖𝑗 = 𝜆𝑡𝑟(𝜀𝑖𝑗)𝐼 + 2𝜇𝜀𝑖𝑗, (2) 

𝜀𝑖𝑗 =
1

2
[𝛻𝑢 + (𝛻𝑢)𝑇], (3) 

𝑚𝑖𝑗 = 2𝑙2𝜇𝜒𝑖𝑗 , (4) 

𝜂𝑖𝑗 =
1

2
[𝛻𝜑 + (𝛻𝜑)

𝑇
], (5) 

 

where: u - displacement vector; 𝜆 =
𝐸𝑣

(1+𝑣)(1−2𝑣)
 and 𝜇 =

𝐸

2(1+𝑣)
 - constants of Lamé; Е, ν represent the 

Young's modulus and Poisson's ratio for the shell material, respectively; l — this parameter is a scale 

of the length of the material, understood as a property of the material, characterizing the effect of the 

moment stress [15]. The latter parameter describes mathematically the square of the ratio of the 

curvature module to the shear modulus and it can be determined by experiments for thin torsion 

cylinders [33] or for thin rods for bending [34] on a micron scale; φ — this rotation vector, represented 

as 𝜑𝑖=
1

2
𝑟𝑜𝑡(𝑢𝑖). 

From the analysis of equations (3) and (5) it follows that the stress tensor εij and the curvature tensor 

ηij  are symmetric, and, consequently, equations (2) and (4) yields the stress tensor σij and deviator 

component of the stress tensor mij also symmetric. In deriving the equations of flexible, dimensionally 

dependent shallow shells, the following hypotheses are used: 

 shell is homogeneous, isotropic, and elastic; 

 shallow shells are defined by the Reissner [35] or by V.Z. Vlasov [36]; 

 shell is subjected to the hypothesis of Kirchhoff-Love; 

 geometric nonlinearity is introduced by the Kármán model [37]. 

Let a shallow shell be considered in rectangular system of coordinates (see Fig.1) introduced in 

the following way: Ω = {𝑥, 𝑦, 𝑧|(𝑥, 𝑦) ∈ [0; 𝑎] × [0; 𝑏], 𝑧 ∈ [−ℎ; ℎ]}, 0 ≤ 𝑡 < ∞. 

 

Fig. 1. Single-layer rectangular in plan shell 
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According to the principle of Hamilton-Ostrogradsky; 

∫ (

𝑡1

𝑡0

𝛿𝐾 − 𝛿П + 𝛿ˊ𝑊)𝑑𝑡 = 0, 

(5)() 

(6) 

where: K, П – kinetic and potential energy, respectively;  𝛿′𝑊 - work of external forces.  

The system of nonlinear PDEs governing dynamics of the flexible rectangular shells on the basis of 

couple stress theory has the following form: 

(𝐷0 + 𝐷𝑙)∇4𝑤 − ∆𝑘
2𝐹 − 𝐿(𝑤, 𝐹) + 𝑝ℎ𝜀ẇ −

𝑞

ℎ
+ 𝑝ℎẅ = 0, 

∇𝑘
2𝑤 +

1

2
𝐿(𝑤, 𝑤) +

1

𝐸ℎ
∇4𝐹 = 0, где 𝐷𝑙 =

𝐸𝑙2ℎ

2(1+𝜇)
 , 𝐷0 =

𝐸ℎ3

12(1−𝜇2)
, 

(7) 

𝐿(𝑤 , 𝐹 ) = 2 [
𝜕2𝑤

𝜕𝑥2

𝜕2𝐹

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑦2

𝜕2𝐹

𝜕𝑥2
− 2

𝜕2𝑤

𝜕𝑥𝜕𝑦

𝜕2𝐹

𝜕𝑥𝜕𝑦
],  

∇𝑘
2(∙) = 𝐾𝑦

𝜕2(∙)

𝜕𝑥2 + 𝐾𝑥
𝜕2(∙)

𝜕𝑦2  ,   

where  ∇𝑘
2(∙) −  4th order Laplace operator;  𝐾𝑥 and 𝐾𝑦 -  curvature of the shell or can be interpreted 

small initial irregularities; 𝑡- time;  𝜀 - coefficient of resistance of the medium in which the shell moves; 

𝐹 - stress function; 𝑤 - deflection function; ℎ - shell thickness; 𝜇 - Poisson’s coefficient; 𝑞 - external 

load parameter; l – size-dependent parameter.  

 

Fig. 2. Spherical axisymmetric shell. 

 

To obtain the axial symmetric theory of size dependent shells, we employ the cylindrical coordinate 

system. The second equation of the system is multiplied by r, integrated and a new resolving function 

Ф =
𝜕𝐹

𝜕𝑟
 is introduced [1]. 

Equations for nano axisymmetric shells have the following form 

𝜕2𝑤

𝜕𝑡2 + 𝜀
𝜕𝑤

𝜕𝑡
= − (1 +

𝛾𝜂

2(1 + 𝜇 )
)

𝜕4𝑤

𝜕𝑟4 −
2

𝑟

𝜕3𝑤

𝜕𝑟3 +
1

𝑟2

𝜕2𝑤

𝜕𝑟2 −
1

𝑟3

𝜕𝑤

𝜕𝑟

+
𝜕Ф

𝜕𝑟
(1 +

1

𝑟

𝜕𝑤

𝜕𝑟
) +

Ф

𝑟
(1 +

𝜕2𝑤

𝜕𝑟2 ) + 4𝑞. 

(5)() 

(8) 

We introduce the following dimensionless quantities:  
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𝑡 = 𝜔0𝑡;  𝑥̅ = 𝑏
𝑥

𝑐
; 𝑦̅ = 𝑏

𝑦

𝑐
; 𝜔0 = √

𝐸𝑔

𝛾𝑅2 ;  𝜀̅ = √
𝑔

𝛾𝐸

𝑅

ℎ
𝜀; 𝐹̅ = 𝜂

𝐹

𝐸ℎ3 ;  𝑤̅ = √𝜂
𝑤

ℎ
; 𝑟̅ = 𝑏

𝑟

𝑐
;         

𝑞̅ =
√𝜂

4

𝑞

𝐸
(

𝑅

ℎ
)2; 𝜂 = 12(1 − 𝜇2);  𝛾 =

𝑙2

ℎ2 ;  𝑏 = √ 𝑐2

𝑅ℎ
;    

 

where:  𝑅,  𝐶 - the main radius of curvature of the reference contour and the radius of the reference 

contour in the circumferential direction, respectively; 𝑏 -  parameter of flatness; 𝑟 - distance from the 

axis of rotation to the point on the middle surface. In the given equations, the bars over dimensionless 

quantities are omitted for simplicity. For an axisymmetric problem, the boundary conditions are written 

in the following form.  

1) Simple movable contour in the meridional direction:  

Ф = 𝑤 = 0,
𝜕2𝑤

𝜕𝑟2 +
𝑣

𝑏
𝑤 = 0, for   𝑟 = 𝑟̅. 

(9) 

2) Rigidly clamed contour   

𝜕Ф

𝜕𝑟
− 𝑣

Ф

𝑏
= 0, 𝑤 = 0,

𝜕2

𝜕𝑟2 +
𝑣

𝑟

𝜕𝑤

𝜕𝑟
= 0,    for   𝑟 = 𝑟̅. 

(10) 

3) Sliding clamping of the contour:  

Ф = 𝑤 = 0,
𝜕𝑤

𝜕𝑟
= 0,   for   𝑟 = 𝑟̅. 

(11) 

4) Simple nonmovable contour:  

𝜕Ф

𝜕𝑟
− 𝑣

Ф

𝑏
= 0, 𝑤 = 0,

𝜕𝑤

𝜕𝑟
= 0,   for  𝑟 = 𝑟̅. 

(12) 

and the following initial conditions:  𝑤 = 𝑓1(𝑟, 0) = 0, 𝑤′ = 𝑓2(𝑟, 0) = 0  0 ≤ 𝑡 < ∞.  

In addition, the following conditions in the vicinity of the shallow top are employed: 

Ф ≈ 𝐴𝑟; Ф′ ≈ 𝐴; 𝑤 ≈ 𝐵 + 𝐶𝑟2; 𝑤′ ≈ 2𝐶𝑟; 𝑤′′ ≈ 2𝐶; 𝑤′′′ ≈ 0. 

In order to reduce the problem (8) - (12) governing dynamics of the considered continuous system 

into a system with lumped parameters, the method of finite differences (FDM) with approximation 

)( 2O  is used. PDEs as well as the boundary and initial conditions (9) - (12) are recast to the following 

finite difference formulas with respect to the spatial coordinate r and time:     

𝑤′′ + 𝜀𝑤′ = −
𝑤𝑖+1 − 𝑤𝑖−1

2∆
(

1

𝑟𝑖
3 −

Ф𝑖+1 − Ф𝑖−1

2𝑟𝑖∆
) +

𝑤𝑖+1 − 2𝑤𝑖 + 𝑤𝑖−1

𝑟𝑖∆2 (Ф𝑖 +
1

𝑟𝑖
) + 

+
Ф𝑖+1 − Ф𝑖−1

2∆
+

Ф𝑖

𝑟𝑖
− (1 +

𝛾𝜂

2(1 + 𝜇)
)

𝑤𝑖+2 − 4𝑤𝑖+1 + 6𝑤𝑖 + 4𝑤𝑖−1 + 𝑤𝑖−2

∆2  

−
𝑤𝑖+2−2𝑤𝑖+1+2𝑤𝑖−1−𝑤𝑖−2

𝑟𝑖∆3 + 4𝑞, (13) 
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Ф𝑖+1 (−
1

∆2 −
1

2𝑟𝑖∆
) + Ф𝑖 (

2

∆2 +
1

𝑟𝑖
2) + Ф𝑖−1 (−

1

∆2 +
1

2𝑟𝑖∆
) =

𝑤𝑖+1 − 𝑤𝑖−1

2∆
(1 −

𝑤𝑖+1 − 𝑤𝑖−1

4𝑟𝑖∆
), 

 

where ∆= 𝑏/𝑛 and 𝑛 denotes the number of modes of the shell radius.  

The counterpart difference forms of the boundary conditions are as follows: If small terms are 

neglected and the differential operators are substituted by the central finite differences for ,r  the 

following conditions are obtained in the shell top:  

Ф0 = Ф2 − 2Ф1;  𝑤0 =
4

3
𝑤1 −

1

3
𝑤2;  𝑤−1 =

8

3
𝑤1 −

8

3
𝑤2 + 𝑤3 

(14) 

The transverse load can be changed arbitrarily with respect to the spatial coordinate and time. In 

this work the harmonic transverse load of the form 𝑞 = 𝑞0sin (𝜔𝑝𝑡) where 𝑞0 stands for an amplitude 

and 𝜔𝑝 =
2𝜋

𝑇
 is a frequency of the excitation, is used. 

After reduction of the problem (14) to the normal form, we solve the Cauchy problem by the Runge-

Kutta method of the fourth order of accuracy. The time step is chosen from the stability condition of 

the solution (∆𝑡 = 2.441 ∙ 10−4). 

 

3. Results and discussions 

Investigate complex vibrations shallow spherical shell with the boundary conditions: simple movable 

contour in the meridional direction (9), the parameter shallowness 𝑏 = 4, 𝛾 = 0;  0.3;  0.7. When 

solving the problem by the method of finite differences 𝑟 ∈ [0; 𝑏] the interval of integration was divided 

into 120 parts. This number of partitions of the integration interval made it possible to treat the shell 

structure as with distributed parameters, rather than as a structure with lumped parameters, i.e. 

considered it as a system with an infinite number of degrees of freedom. Figures 3, 4, 5 show the 

dependence of the deflection at the center of the shell in dependence of the alternating transverse load 

𝑞0  (load on the shell uniformly distributed, changing according to law 𝑞 = 𝑞0𝑠𝑖𝑛(𝜔𝑝𝑡), where 𝜔𝑝 =

0.516 is a frequency of the excitation, which is close to the fundamental frequency of linear vibration).  

Colored dots in Figures 3-5 denote the free vibrations (the dependence of the deflection at the top of 

the shell in time W(0), phase portraits W(W’), Fourier frequency power spectra, S(𝜔), and their 

characteristics are given in Table 1. 
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Fig. 3. Dependence W(q) for n=120, ɤ= 0.0 

 

 

Fig. 4. Dependence W(q) for n=120, ɤ= 0.3 

 

Fig. 5. Dependence W(q) for n=120, ɤ= 0.7 
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Table 1 

 Type of vibrations 

 Time history  Phase portrait Power spectrum 

𝑞0 = 0.07   

1 

   

𝑞0 = 0.07351     

2 

   

𝑞0 = 0.07822 
 

3 

 

 
  

𝑞0 = 0.07933  

4 
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𝑞0 = 0.0954  

5 

   

𝑞0 = 0.0786  

6 

   

𝑞0 = 0.08  

8 

 
  

 

4. Conclusion 

The analysis of the results shows that an increase in the value of the parameter 𝛾 is simplifies the shell 

vibrations and transition from chaotic vibrations to harmonic vibrations has been observed. Complex 

vibrations with the effect of loss of stability are characteristic for the shells with   = 0. Increasing   

parameter does not yield loss of stability. In this case, the vibrations become periodic. The amplitude 

gradually increases together with increase of the load (  = 0.7). For MEMS devices, this effect is of 

great importance, as no chaotic vibration MEMS devices results in greater system reliability and 

durability. 
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General theory of geometrically nonlinear size dependent shells taking into 
account contact interaction.  

Part 2. Contact interaction of two-layer axially symmetric shells  
 

Vadim A. Krysko – jr., Jan Awrejcewicz, Irina V. Papkova, Vadim A. Krysko  

 

Abstract: In this paper a mathematical model of the nonlinear dynamics of flexible 

two-layer axisymmetric spherical shells of equal curvature is proposed. The geometric 

nonlinearity is taken into account by the model of Theodore von Karman. The shell 

material is isotropic and homogeneous. For each layer, the Kirchhoff-Love hypothesis 

is applied. The contact interaction between them is taken into account according to the 

Cantor model. The problems are considered as systems with an infinite number of 

degrees of freedom. The method of finite differences of the second order of accuracy, 

and the Runge-Kutta type methods are used. The impact of the size-dependent 

parameter, amplitude and frequency of the forcing load on the contact interaction of 

shells is studied. 

 

Keywords: spherical shell, contact interaction, nonlinear dynamics, chaos, power spectra, phase 

portrait, Poincaré map, wavelet analysis, phase synchronization.  

 

1. Introduction  

The study of the nonlinear dynamics of mechanical systems with contact interaction is a necessary 

direction of research for many areas of life and human activity. Multi-layer systems are elements of 

structures in engineering construction, consumer equipment, medical equipment, military and 

aerospace engineering, and nuclear power engineering. Questions of studies of nonlinear vibrations of 

mechanical systems are discussed in [1-4]. Method of solving a differential equation with a nonlinear 

relationship between components, based on replacement of non-linear terms by integrals from their 

derivatives is proposed in these works. The obtained solutions allowed to improve the accuracy of a 

gyroscope by analytical error compensation. One-dimensional mathematical models of beams, panels 

of infinite length and shells are constructed into account geometric, physical, constructive kinematic 

nonlinearity and their different combinations. Many problems were solved by various methods: finite 

differences method, Bubnov-Galerkin method, Rayleigh-Ritz method. Scenarios of transition of 

mechanical systems from periodic vibrations to temporal and space-temporal chaos are obtained. By 

analogy with the phenomenon of the universality of the onset of chaos in simple systems, the existence 

of a certain universality of the turbulence transition in the spatial problems of the theory of one-
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dimensional mechanical structures is shown. Studies of nonlinear dynamics of multilayer structures are 

devoted in references [5-10]. The features of analysis of complex vibrations of a two-layer mechanical 

structures in the form of beams, rectangular plates supported by beams, cylindrical shells are 

considered. An analysis of the modern literature shows  that the problems considered in this paper have 

not been investigated previously. 

 

2. Problem statement  

Mathematical model of nonlinear dynamics of flexible two-layer spherical round in plan hinged-

supported shells, taking into account their size properties has been built. The geometric nonlinearity is 

taken into account by the von Kármán model. Shells material is elastic, isotropic, and homogeneous 

with constant density. The contact interaction between them is taken into account according to the 

Cantor [11] model. For each layer the Kirchhoff-Love hypothesis is applied. Between the shells there 

is a gap, and hence the shells are connected via boundary conditions. 

According the modified couple stress theory we consider the two-layer flexible spherical shell on a 

rectangular plane under the action of transverse dynamic loading. Load is evenly distributed on the 

surface of the first shell 𝑞(𝑡) = 𝑞0sin⁡(𝜔𝑝𝑡) (Fig. 1). Each layer system satisfies the Kirchhoff 

hypotheses.  

 

Fig. 1. The construction of two axisymmetric spherical shells of equal curvature connected through 

boundary conditions 

 

 

The system of nonlinear PDEs control dynamics of a design from nano-axisymmetric shells has the 

following form 

𝜕2𝑤𝑖

𝜕𝑡2
+ 𝜀

𝜕𝑤𝑖

𝜕𝑡
= −(1 +

𝛾𝜂𝑖

2(1+𝜇𝑖)
)
𝜕4𝑤𝑖

𝜕𝑟4
−

2

𝑟

𝜕3𝑤𝑖

𝜕𝑟3
+

1

𝑟2
𝜕2𝑤𝑖

𝜕𝑟2
−

1

𝑟3
𝜕𝑤𝑖

𝜕𝑟
+

𝜕Ф𝑖

𝜕𝑟
(1 +

1

𝑟

𝜕𝑤𝑖

𝜕𝑟
) +

Ф𝑖

𝑟
(1 +

𝜕2𝑤𝑖

𝜕𝑟2
) + 4𝑞 + (−1)𝑖𝐾𝑖(𝑤1 − 𝑤2 − ℎ𝑘)Ψ, 

 

 

 

(1) 
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𝜕2Ф𝑖

𝜕𝑟2
+

1

𝑟

𝜕2Ф𝑖

𝜕𝑟2
−

1

𝑟2
Ф𝑖 = −

𝜕𝑤𝑖

𝜕𝑟
(1 +

1

2𝑟

𝜕𝑤𝑖

𝜕𝑟
) , 

𝐷0 =
𝐸ℎ3

12(1−𝜇2)
, 𝐷1 =

𝐸𝑙2ℎ

2(1+𝜇)
,   𝐿(𝑤𝑖 , 𝐹𝑖) = 2 [

𝜕2𝑤𝑖

𝜕𝑥2
𝜕2𝐹𝑖

𝜕𝑦2
+

𝜕2𝑤𝑖

𝜕𝑦2
𝜕2𝐹𝑖

𝜕𝑥2
− 2

𝜕2𝑤𝑖

𝜕𝑥𝜕𝑦

𝜕2𝐹𝑖

𝜕𝑥𝜕𝑦
]. 

 

For the simple movable contour in the meridional direction we have:   

Ф = 𝑤 = 0,
𝜕2𝑤

𝜕𝑟2
+

𝑣

𝑏
𝑤 = 0, for⁡⁡𝑟 = 𝑟̅,                (2) 

the following initial conditions are taken  

𝑤 = 𝑓1(𝑟, 0) = 0,𝑤′ = 𝑓2(𝑟, 0) = 0, 0 ≤ 𝑡 < ∞, (3) 

and the following conditions in the vicinity of the shallow top are employed 

Ф ≈ 𝐴𝑟,Ф′ ≈ 𝐴;𝑤 ≈ 𝐵 + 𝐶𝑟2;𝑤′ ≈ 2𝐶𝑟, 𝑤′′ ≈ 2𝐶;⁡𝑤′′′ ≈ 0. 

The following nondimensional quantities (with bars) are introduced: 

𝑡̅ = 𝜔0𝑡; ⁡ 𝑥̅ = 𝑏
𝑥

𝑐
;⁡𝑦̅ = 𝑏

𝑦

𝑐
;⁡𝜔0 = √

𝐸𝑔

𝛾𝑅2 ; ⁡𝜀̅ = √
𝑔

𝛾𝑅2

𝑅

ℎ
𝜀, 𝐹̅ = 𝜂

𝐹

𝐸ℎ3
; ⁡𝑤̅ = √𝜂

𝑤

ℎ
; 

⁡𝑟̅ = 𝑏
𝑟

𝑐
; ⁡ 𝑞̅ =

√𝜂

4

𝑞

𝐸
(
𝑅

ℎ
)2; ⁡𝜂 = 12(1 − 𝜇2); ⁡𝛾 =

𝑙2

ℎ2
; 𝑏 = √𝜂

𝑐2

𝑅ℎ
, 𝐾 =

𝑏4𝐾

ℎ5
, 

where: t - time; 𝜀- coefficient of viscous-type external damping in which the shell moves; F- stress 

function; w- displacement function; R, C - main radius of the shell curvature and the radius of the shell 

contour, respectively; h - shell thickness; b- parameter of flatness; 𝜇- Poisson's ratio; r -  distance from 

the axis of rotation to the point on the middle surface; q - external load parameter; l - size-dependent 

parameter; ℎ𝑘 - casing gap; K - bulk modulus of elasticity. 

In order to reduce the problem (1)-(3) governing dynamics of the considered continuous system 

into a system with lumped parameters, the method of finite differences (FDM) with 

approximation⁡𝑂(∆2) is used. PDEs as well as the boundary and initial conditions (2)-(3) are recast to 

the following finite difference formulas with respect to the spatial coordinate r and time: 

𝑤′′ + 𝜀𝑤′ = −
𝑤𝑗+1,𝑖 − 𝑤𝑗−1,𝑖

2∆
(
1

𝑟𝑗
3 −⁡

Ф𝑗+1,𝑖 −Ф𝑗−1,𝑖

2𝑟𝑗∆
) +

𝑤𝑗+1,𝑖 − 2𝑤𝑗,𝑖 +𝑤𝑗−1,𝑖

𝑟𝑗∆
2  

(Ф𝑗 +
1

𝑟𝑗
) +

Ф𝑗+1,𝑖−Ф𝑗−1,𝑖

2∆
+

Ф𝑗,𝑖

𝑟𝑗
− (1 +

𝛾𝑖𝜂

2(1+𝜇𝑖
), 

𝑤𝑗+2,𝑖 − 4𝑤𝑗+1,𝑖 + 6𝑤𝑗,𝑖 − 4𝑤𝑗−1,𝑖 + 𝑤𝑗−2,𝑖

∆4
−
𝑤𝑗+2,𝑖 − 2𝑤𝑗+1,𝑖 + 2𝑤𝑗−1,𝑖 − 𝑤𝑖−2

𝑟𝑗∆
3 + 

+4𝑞𝑖 + (−1)𝑖𝐾(𝑤𝑖,1 − 𝑤𝑖,2 − ℎ𝑘)𝜓, 

 

 

 

(4) 
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Ф𝑗+1,𝑖 (−
1

∆2
−

1

2𝑟𝑗∆
) +Ф𝑗,𝑖 (

2

∆2
+

1

𝑟𝑗
2) + Ф𝑗−1,𝑖 (−

1

∆2
+

1

2𝑟𝑗∆
)

= −
𝑤𝑗+1,𝑖 − 𝑤𝑗−1,𝑖

2∆
(1 −

𝑤𝑗+1,𝑖 − 𝑤𝑗−1,𝑖

4𝑟𝑗∆
), 

 

where: ⁡∆= 𝑏
𝑛⁄ ; n  -  denotes the number of modes of the shell radius.  

Boundary conditions for the shell is pivotally-movable in the meridian direction supporting contour: 

Ф𝑛 = 0;𝑤𝑖+1 =
𝑣∆−2b

2𝑏+𝑣∆
𝑤𝑖−1⁡𝑤𝑛 = 0⁡⁡for⁡⁡𝑟𝑛 = 𝑏      (5) 

and the following initial conditions are taken 

𝑤𝑛 = 𝑓1(𝑟𝑘, 0), 𝑤′𝑛 = 𝑓2(𝑟𝑘 , 0), (0 ≤ 𝑘 ≤ 𝑛), 0 ≤ 𝑡 ≤ ∞. (6) 

If small terms are neglected and the differential operators are substituted by the central finite 

differences for 𝑟 = ∆, the conditions are obtained in the shell top. If we neglect the small terms and 

replace the central differential operators with finite-difference we obtain the conditions at the vertex: 

Ф0 = Ф2 − 2Ф1; ⁡𝑤0 =
4

3
𝑤1 −

1

3
𝑤2; ⁡𝑤−1 =

8

3
𝑤1 −

8

3
𝑤2 + 𝑤3. (7) 

The transverse load can be changed arbitrarily with respect to the spatial coordinate and time. In 

this work the harmonic transverse load of the form 𝑞 = 𝑞0sin⁡(𝜔𝑝𝑡), where 𝑞0 stands for an amplitude 

and p  is a frequency of the excitation, is used. 

After reducing the task (1) – (3) to the normal form, we solve the Cauchy problem by the Runge-

Kutta method of the fourth order of accuracy. The time step is chosen from the stability condition of 

the solution(∆𝑡 = 1.2207 ∙ 10−4). 

 

3. Numerical results 

We study the vibrations of axisymmetric for the simple movable contour in the meridional direction (2) 

construction consists of two nano shells (b = 4) under the action of an alternating load on the upper 

shell. Signals, phase portraits, Poincaré section, autocorrelation function, Fourier spectrum, sign 

changes the highest Lyapunov exponent in time was analyzed for each of the shells. Impact magnitudes 

the size dependent parameter γ between the shells was studied. Change  the contact area in time has 

also been studied. 

The method of phase chaotic synchronization of mechanical dynamical systems on the basis of 

wavelet analysis is used. To describe and analyze phase chaotic synchronization, the phase of the 

chaotic signal is introduced. Phase chaotic synchronization means that the phase of chaotic signals is 

captured. Time as the amplitudes of these signals remain unrelated  together  and look chaotic. The 
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phase capture entails coincidence of frequencies signals. The dark zones of the wavelet spectrum 

correspond to phase synchronization of the beam vibrations. 

The influence of magnitude  the size-dependent parameter γ on the vibration character of a two-

layer packet shells has been studied. Particular attention is drawn on initial joint vibrations, i.e. from 

the moment of contact of the shells. In Table 1 are given signals, phase portraits and power spectra for 

the construction from shells with a small gap 01.0 and 𝛾 = 0; ⁡⁡0.7. In both cases, before the 

contact, the first shell experiences harmonic vibrations, and the second shell is on rest. Increase 

parameter γ yield the system more rigid and resistant to loads, and deflection at depending on ascending  

loads increases slower. Contact for shells with the parameter γ = 0 comes at an amplitude of the sign of 

the variable load 𝑞0 = 0.0002, and for shells with the parameter 𝛾 = 0.7 , at the load amplitude 𝑞0 =

0.0005. In Tables 2 and 3, the results are in the following way: a) the signal of joint vibrations of the 

two shells; b) the phase portrait for the first shell; c) the phase portrait for the second shell; d) the power 

spectrum based on the fast Fourier transform for the first shell; e) the power spectrum for the second 

shell; e) the phase difference. 

 

Table 1. 

𝑏 = 4, 01.0kh , 𝛾 = 0.0 

𝑞0 = 2 ∙ 10−4 

   

𝑏 = 4, 01.0kh , 𝛾 = 0.7 

𝑞0 = 2 ∙ 10−4 
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Table 2. 

𝑏 = 4, 01.0kh , 𝛾 = 0.0 

𝑞0 = 5 ∙ 10−4 

  
 

 
 

 
𝑞0 = 5 ∙ 10−3 
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Table 3. 

𝑏 = 4, 01.0kh , 𝛾 = 0.7 

𝑞0 = 5 ∙ 10−4 

   

 
  

𝑞0 = 5 ∙ 10−3 
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Consider the vibrations of a two-layer package with a gap ℎ𝑘 = 0.01 between the shells and with 

parameter 𝛾 = 0. At increase amplitude of the load there is a contact of the shells. Both shells vibrate 

chaotically. The phase portrait for the first envelope represents a thickened orbit. In the phase portrait 

of the second shell three centers of attraction of phase trajectories are visible. On the power spectrum 

of the first shell, chaos is observed at low frequencies, and for a second shell, on a solid pedestal. The 

phase difference indicates that the frequencies present in the signal are not synchronized. Further 

increase of the amplitudes of excitation also generates chaotic vibrations of the shells. Phase portraits 

of shells have a similar shape. Power spectra have noisy components. On the graph, the phase difference 

increased the number of dark spots, which means synchronization of some frequencies. 

Now we will analyze the situation when the vibrations of a two-layered packet with a gap⁡ℎ𝑘 =

0.01⁡and parameter 𝛾 = 0.7 between shells are studied. At initial joint vibrations of a two-layer package  

shells with an amplitude of the driving force 𝑞0 = 0.0005 shell power spectrum of the first shell 

demonstrates  frequencies 𝜔𝑝, 
𝜔𝑝

2
, and⁡⁡

ωp

4
 and in the signal of the second shell there are frequencies: 

ωp, 
ωp

2
, ⁡⁡

ωp

4
. 
ωp

12
. In the phase portrait of the first shell two orbits are visible, and the second shell has 12 

thickened orbits. When increasing the amplitude excitation to 𝑞0 = 0.005, the vibrations become 

chaotic. 

 

4. Concluding remarks  

 

A mathematical model of the contact interaction of two spherical axisymmetric circular nano-shells has 

been constructed. The nonlinear dynamics of the contact interaction of two axisymmetric nano-shells 

has been investigated. Comparison vibrations depending on from increase the size-dependent parameter 

has been carried out. It is revealed that with the increase in the dimension-dependent parameter, the 

stability of the system increases. On the other hand, a contact between shells implies chaotic vibrations. 
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Free vibration analysis of laminated functionally graded shallow 

shells by the R-functions method  

 
 

 Lidiya Kurpa, Tetyana Shmatko, Jan Awrejcewicz 

Abstract: The R-functions theory and Ritz approach are applied for analysis of free 
vibration laminated shallow shells with different types of curvatures and complex 
planform. Shallow shells are considered as sandwich ones of the different types: a) 
face sheets of the shallow shells are made of functionally graded material (FGM) and  
core is isotropic material; b) face sheets of the shallow shells are isotropic, but core is 
made of FGM. It is assumed that FGM layers are made of a mixture of metal and 
ceramics and effective material properties of layers are varied accordingly to Voight’s 
rule. Formulation of the problem is carried out using the refined theory of shallow 
shells of the first order (Timoshenko’s type). The different types of boundary 
conditions including clamped, simply supported, free edge and their combinations are 
studied. The proposed method and created computer code have been examined on test 
problems for shallow shells with rectangular planforms. In order to demonstrate the 
possibility of the developed approach, new results for laminated FGM shallow shells 
with complex planform are presented. Effects of the different material distributions, 
mechanical properties of the constituent materials, lamination scheme, boundary 
conditions and geometrical parameters on natural frequencies are shown and 
analyzed. 

1. Introduction  

Functionally graded materials (FGMs) can be considered as a new class of the composite materials 

used extensively for manufacture of shell structural elements. The main advantages of these materials 

in comparison with conventional composite materials are the smoothness and continuous change of 

material properties along the thickness of the object. This avoids the appearance of stress 

concentration that is found in laminated composites. Analysis of vibration of laminated and FGM 

shallow shells has been carried out by numerous investigators [1-3]. Last decade analysis of nonlinear 

free and force vibrations of the FG shells have been extensive studied in addition to the linear 

vibration (see [4-6]). Joint application of the FGM and pure metallic and ceramic is widely used for 

design of many elements of the modern constructions. However, the number of publications devoted 

to the study of multilayered FGM shallow shells is rather small [2, 3]. 

The main goal of this paper is to present efficient and enough universal approach to analyze the 

laminated functionally graded shallow shells with complex shape of their planforms and different 
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boundary conditions. The proposed method is based on matching both the R-functions theory and 

variational Ritz method [5-6]. Formulation of the problem is carried out using the refined theory of 

shallow shells of the first order (FSDT).  In the present study this approach is applied to three-layered 

shallow shells like sandwich ones. Two types of lamination schemes are considered. Type 1-2 

corresponds to sandwich shallow shells with FGM face sheets and isotropic core. Type 2-2 describes 

sandwich shallow shells with isotropic face sheets (pure ceramics or metal), and  core made of FGM. 

It is assumed that FGM layers are made of a mixture of metal and ceramics and effective material 

properties of layers are varied according to Voight’s rule. The proposed method is validated by 

investigation of test problems for shallow shells with rectangular plan-form and different boundary 

conditions. The current method is also employed to novel vibration problems for doubly- curved 

shallow shells with complex form of the cut.   

2. Mathematical formulation 

Consider three-layered functionally graded shallow shell with uniform thickness h. It is assumed that 

the FGM layers are made of a mixture of ceramics and metals. Double curved shallow shell can have 

an arbitrary planform.  The effective material properties of layers vary continuously and smoothly in 

thickness direction and can be estimated by the Voight’s law: 

 

                                r
l

r
c

r
l

r
u

rr
l

r
c

r
l

r
u

rr
l

r
c

r
l

r
u

r VEVEVEEE   ,, ,  (1) 

where       r
u

r
u

r
uE  ,,  and      r

l
r

l
r

lE  ,, are Young modulus, Poisson’s ratio and mass density of 

the upper and lower surfaces of the r -layer, respectively, and  r
cV  is the volume fraction of 

ceramic. As example the value  r
cV  is shown for the scheme lamination of types 1-2 and 2-2 in 

Table 1. 

Shallow shells of type 1-2 correspond to sandwich shallow shells with FGM face sheets and 

isotropic (metal) core (Fig.1, Table 1). The shells of type 2-2 correspond to sandwich shallow shell 

with FGM core and ceramics on top face sheet and metal on bottom face sheet (Fig. 2, Table 1).  Let 

us note that the values 321 ,, ppp are the power-law FGM exponents of the corresponding layer. The 

thickness of the layers may be varied.  The ratio of thickness of layers from bottom to top is denoted 

by the combination of three numbers. For example, “1-2-1” denotes that ratio of thickness of the 

layers is defined as      1 2 3: : 1: 2 :1,h h h   where 
    ,,2/ 12

2
1

1 hhhhhh    
2

3 2/ hhh   

(see Fig.1, 2). According to the first order shear deformation theory of shallow shell (FSDT) , the 

displacements components  321 ,, uuu  at a point ),,( zyx  are expressed as functions of the middle 
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surface displacements vu,  and w  in the OyOx,  and Oz  directions and the independent rotations 

yx  ,  of the transverse normal to middle surface about the Oy  and Ox  axes, respectively [1-4]: 

wuzvuzuu yx  321 ,,  .   (2) 

 

Table 1.  Value of volume fraction  r
cV  for two types laminated FGM shallow shells 

  

 

Figure 1. Type 1-2 Figure 2. Type 2-2 
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Strain components  T122211 ;;   ,  T122211 ;;  
 
at an arbitrary point of the shallow 

shell are: 

        xyyyxx vuRwvRwu ,,/,/, 122211   ,    (3) 

yyxx ww   ,,, 2313 , xyyxyyxx ,,,,, 122211   .         (4) 

In-plane force resultant vector  TNNNN 122211 ,, , bending and twisting moments resultant vector  

 TMMMM 122211 ,, and transverse shear force resultant  Tyx QQQ , are calculated by 

integration along Oz -axes and defined as:  

                                              DBMBAN  , .    (5) 

313



 

 

Elements ijijij DBA ,,
 
of the matrices A, B and D in relations (4) are calculated by formulas:  

 
 


3

1

1

r

z

z

r
ijij

r

r

dzQA ,    
 


3

1

1

r

z

z

r
ijij

r

r

zdzQB ,  
 


3

1

21

r

z

z

r
ijij

r

r

dzzQD .  (6) 

Values    3,2,1, jiQ r
ij  are defined by the following expressions     

   
 

  22211
1 r

r
rr EQQ



 ,            
   

  
,

1
212 r

rr
r EQ









         

 
 

  r

r
r EQ




1266
  (7)

 

Transverse shear force resultants ,xQ  yQ  are defined as follows 

2333
2

1333
2 ,  AKQAKQ sysx  ,     (8) 

where sK 2  denotes the shear correction factor. In this paper, it will be fixed to 5 / 6 .  

Further, we consider materials with Poisson’s ratio independent of temperature and with the same 

for ceramics and metal i.e. cm   . Then coefficients ijijij DBA ,,  can be calculated directly. 

Analytical expressions of these coefficients for the shells of Types 1-2 and 2-2 are presented below 

provided that the following designations have been inserted:  

mccm EEE
as

bs
as

bshhashhas 







 ,

22
12,

12
11,

2
2,

2
1 21 . 

Type 1-2:        11 2
1 3

1 1 2 ,
1 11 cm m

as asA E E h
p p

  
            

1 2
11 2

1 1 3 3

1 21 2 ,
1 2 1 21

cmE h as h asas as
p p p p

   
               

B

 
2 2
1

11 12
1 1 1

2 2
32

2
3 3 3

1 2 1 11
1 2 31

2 22 2 .
3 2 1 12

cm

m

h as asD E as h
p p p

Eas as has h h h
p p p



   
           

 
          

 

Type 2-2:       2 1
11 22

2

1 ,
1 21 cm c m

h h hA E h E E
p

  
         

 
2

21
11 2 22

2 2

1 1 ,
2 1 2 41

cmE as h hh h
p p

   
               

B  
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 2 2 3
31 2

11 12
2 2 2

1 2 1 11 .
1 2 3 3 241

m c
cm

E Eh as as hD E as h h
p p p

    
                

 

Note that values 12 66 12 66 12 66, , , , , ,A A B B D D  for all types of the lamination schemes, are defined as 

follows 

12 11 22 11 66 11
1, , .

2
R R R R R R




    

3. Solution method  

To solve the free vibration problem let us present the vector of unknown functions in the following 

way 

     

     

( ( , , ), , , , , , , , , , ( , , ))

( , , ( , ), , , , , ( , ))sin ,
x y

x y

U u x y t v x y t w x y t x y t x y t

U u x y v x y w x y x y x y t

 

  




                (9) 

where   stands for vibration frequency. Applying the principle of Ostrogradskiy-Hamilton, we get 

the variational equation in the form 

  0max
2

max  TU  ,                   (10)  

Expressions for strain U  and kinetic energy T  are defined by relations:  

 max 11 11 22 22 12 12 11 11 22 22 12 12 13 23
1 ,
2 x yU N N N M M M Q Q dxdy       



         (11) 

     2 2 2 2 2
max 0 1 2

1 2 ,
2 x y x yT I u v w I u v I dxdy   



        (12) 

where 0 1 2, ,I I I  are defined by the following expressions: 
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Minimization of the functional (10) will be performed using the Ritz’s method. Necessary 

sequence of coordinate functions we will build employing the R-functions theory [7].  

4. Numerical results  

4.1. Validation of the presented results 

To verify the accuracy of the present results obtained by the proposed approach, we consider the 

solution of several test problems. 

Case study 1. Natural frequencies of laminated FGM square shallow shells of Type 1-2 and 2-2 

with various boundary conditions and geometrical parameters: 2.0;1/;1.0/  xRaabah  

are analyzed. The material constituents M1 and M2 are assumed to be aluminum and alumina [1-4].  

The material properties of the FG mixture used in the present study are  

3/270,3.0,70: mkgGPAEAl ccc             
3

32 /3800,3.0,380: mkgGPAEOAl ccc    

The boundary conditions are defined as follows: 

(i) CCCC- shell is clamped on sides , ;
2 2
a bx y     

(ii) SSSS-shell is simply supported on sides , ;
2 2
a bx y     

(iii) SFSF-shell is free on sides  
2
ax 

 
and simply-supported on sides ;

2
by    

(iv) SCSC-shell is simply supported on sides  
2
ax 

 
and clamped on sides .

2
by   

 

Values of the fundamental linear frequency parameters (1)
1 /L c ch E    of the cylindrical and 

spherical shells of Types 1-2 and 2-2 for thickness scheme 1-2-1 are presented in Table 2.  
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Table 2. Comparison of the fundamental frequency parameter  
ccL Eh /1

1   of cylindrical and 

spherical shallow shells with square plan-form  and various boundary conditions (Type of the shell 1-

2, thickness scheme 1-2-1). 
 
 

p Methods Cylindrical shell 

k1=0.2,k2=0 

Spherical  shell  

k1=k2=0.2 

SFSF SSSS CCCC SCSC SFSF SSSS CCCC SCSC 

0.6 [3] 0.833 1.686 2.800 2.299 0.838 1.733 2.846 2.345 

RFM 0.834 1.692 2.829 2.319 0.840 1.738 2.874 2.365 

5 [ 3] 0.627 1.274 2.132 1.746 0.632 1.313 2.170 1.784 

RFM 0.628 1.278 2.152 1.760 0.633 1.317 2.189 1.798 

20 [ 3] 0.519 1.060 1.797 1.466 0.525 1.099 1.833 1.504 

RFM 0.520 1.063 1.811 1.476 0.525 1.101 1.847 1.513 

 

These results were obtained using 28 admissible functions to approximate each of the functions

yxvu  ,,, , and 36 admissible functions in order to approximate deflection w.  

Due to the doubly-symmetric nature of the shell, at numerical implementation of the developed 

software the integration is performed above only on one-quarter domain. It can be observed that 

presented results are in excellent agreement with those reported in reference [3].  

 

4.2. Free vibration of the functionally graded shells with complex form of a plan 

In order to present new results and to illustrate the versatility and efficiency of the proposed method 

and the developed computer code let us consider the shallow shell with shape of the plan presented in 

the Fig. 3. Its geometrical parameters are fixed: ),2.0,2.0,0(2/,2.02/ 21  aRkaRk yx

1 2/ 1, / 2 0.125, / 2 0.25, / 2 0.1.b a r a r a h a     

Suppose that shell is clamped at the internal border of the region. However, on the outer boundary 

of the region the shell can be either clamped or simply supported or may have the mixed boundary 

conditions like boundary conditions in Task 1 (CCCC, SSSS, SFSF and SCSC). Then the solution 

structure for shells with complete clamped on inside and outside borders can be taken as: 

54321 ,,,,,   yxvuw .  (13) 
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Figure. 3. Shape of the plan of the laminated FGM shallow shell 

 

For another type of the boundary conditions we propose to take solution structure satisfying 

kinematic boundary conditions in the following form: 

       
1 2 3 4 5, , , , , ,yxw u v

x yw u v 
                 (14) 

where 5,1,  ii are indefinite components of the structure [6,7] presented as an expansion in a 

series of some complete system (power polynomials, trigonometric polynomials, splines etc.), 0  

is equation of the whole border of the shell plan-form. The functions       ,,, wvu     yx   ,  

are constructed by the R-functions theory in such a way that they vanish on those parts of the 

boundary where the functions yxwvu  ,,,,   are zero. To realize the solution structure (13) and 

(14) we should construct the equation of whole border and functions      ,,, wvu     yx   ,  . 

Using the R-operations [7], we build the equation of border in the form:     

                                            outsideinside  0  
 , (15) 

where  

            6050403040302010201 ffffffffffinside  , 

807 ffoutside  . 

Functions 8,1, if i are defined as follows: 

    03,03,0
3

1,0
3

1
4321 





























 xyfxyfxyfxyf , 
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        0,0,0,0 22
8

22
7

222
26

222
15  ybfxafyxrfyxrf .

 

Below, we write down expressions for functions          yxwvu   ,,,,  
for different 

boundary conditions on outside part of the region border provided that cut of the shell is clamped. We 

have 

CCCC:                       ,yxu v w 
           (16) 

SSSS:                
          ,yxu v w 

           (17) 

SFSF:                      
0 8, ,yxw u v

inside insidef 
           

 (18)
 

SCSC:                    
0 7, .yxw u v

inside f
            

 (19) 

Indefinite components 5,1,  ii  in solution structures (13)-(14) were approximated by a system 

of power polynomial taking into account the doubly–symmetric of the problem. As earlier, the 

integration procedure is performed over one-quarter domain.   

 

Table 3. Fundamental frequency parameters   hEa ccL //2
1

1   for shells of Type 2-2 with 

clamped cut and simply supported on outside contour of the domain (See Fig.1) 

Thickness 
scheme 

p k1=0.2,k2=0 k1=0.2,k2=-0.2 k1=0.2,k2=0.2 

 

2-1-2 

0.5 23.66 23.68 23.65 

5 22.84 22.87 22.83 

10 22.76 22.79 22.74 

 

2-2-1 

0.5 23.37 23.40 23.37 

5 22.24 22.27 22.22 

10 22.09 22.12 27.07 

 

In Table 3 the fundamental frequency parameters   hEa ccL //2
1

1 
 
for SSSS cylindrical, 

spherical and hyperbolic paraboloidal shells of Type 2-2 and two thickness schemes  (2-1-2) and (2-2-

1) are presented. Note that fundamental frequencies parameters for considered shells with general 

thickness h/2a=0.1 are close for cylindrical, spherical and hyperbolic paraboloidal shells.  Effects of 

power – law exponent 321 ,, pppp 
 

on fundamental frequency parameter  

  hEa ccL //2
1

1 
 
for cylindrical, spherical and hyperbolic paraboloidal shells of Type 1-2 and 

2-2 with different boundary conditions are shown in Fig. 4, 5, 6. 
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The different thickness schemes are taken for shallow shells under consideration. The obtained 

results for cylindrical shells with thickness scheme (1-2-1) are presented in Fig.4.  

  

Figure. 4. Variation of the fundamental frequency parameter   hEa ccL //2
1

1 
 
of cylindrical 

shells with increasing power-law exponent p ( thickness scheme 1-2-1). 

 

Figure. 5. Variation of the fundamental frequency parameter   hEa ccL //2
1

1   of the spherical 

shells with increasing power-law exponent p (thickness scheme 2-1-2) 

The effects of material types and power-law exponents on frequency parameter of spherical shells 
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with (2-1-2) thickness scheme are presented in Fig. 5. Similar results for hyperbolic paraboloid shells 

with (1-1-1) thickness scheme are shown in Fig. 6. 

 

Figure. 6. Variation of the fundamental frequency parameter   hEa ccL //2
1

1 
 
of Type 1-2 

and 2-2 with thickness scheme (1-1-1) of hyperbolic paraboloidal shells with increasing p. 

 

As follows from Fig. 4-6 the value of fundamental frequency parameters depends essentially on 

the material type, thickness schemes, and boundary conditions. Obvious that the fundamental 

frequencies parameters for all considered cases decrease with increasing power-law exponent. For 

shells of type 1-2 the decrease is more essential than for shells of Type 2-2.  

5. Conclusions 

This paper proposes a method of investigation of free vibration of laminated functionally graded 

shallow shells with complex shape of plan form. The method is based on the theory of R-functions 

and Ritz variational method. Comparison of the obtained results for shallow shells of the doubly-

curved with square planform confirms the validation of the developed software. New solution 

structures are proposed for shallow shells with clamped hole of the different form. In addition, the 

novel results are obtained for cylindrical, spherical and hyperbolic paraboloidal shallow shells of 

FGM sandwich FGM type with cutout of the complex shape. Effects of material types, power-law 

exponents, thickness schemes and different boundary conditions are studied for shells with clamped 

hole of the complex shape.    
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Spectral approach for dynamic analysis of a composite structure
under random excitation

M.R. Machado, L. Khalij, A.T. Fabro

Abstract: The application of the composite materials in aeronautical and aerospace
industries has been increasing on the last several decades. Compared to metal-
lic material composites, they present better strength to weight and stiffness to
weight ratio. However, the high level of uncertainty in composite materials is
mainly associated with the manufacturing processes. The uncertainty in the
composite material parameters is reflected in the variability of stiffness and
strength descriptors affecting the overall performance, mainly on the struc-
tural dynamic response. Randomness can be present in geometry, mechanical
properties, and external sources like random excitation. This paper treats the
dynamic analysis of a composite plate under random excitation. The plate is
modelled by the Spectral Finite Element method, a wave propagation tech-
nique. A numerical example is used to study the influence of random source
on the dynamic composite structure behaviour.

1. Introduction

Wave based models at high-frequency analysis require a large number of elements to obtain an

accurate solution. An alternative to Finite Element Method (FEM), which can become too

expensive or even infeasible from a computational point of view is to use the Spectral Element

Method (SEM). As the SEM assumes the exact frequency-domain solution, it implies high

accuracy. Other advantages of the method are the reduction of the problem size and DOFs,

low computational cost, effectiveness in dealing with frequency-domain problems and with

the non-reflecting boundary conditions of the infinite or semi-infinite-domain problems [1, 2,

7]. SEM has been also applied to laminate composite (e.g. [13, 11, 5, 4] ).

The main dynamic excitations are typically arising from natural phenomena such as

impacts, gusty winds, earthquake ground motion, sea waves, etc. In some cases, harmonic

excitation is considered; however, it is easy the situations where devices are operating under

unknown or random excitations. For structural analysis purposes, random excitation is

commonly modelled as a Gaussian stochastic processes[12]. Several approaches have been

proposed to cope with the challenging problem of characterizing the random response of

a structural system under stochastic excitation, it is addressed in [9, 8, 6]. The random

excitation is usually specified in terms of its Power Spectral Density (PSD), which it is a

function that describes the power content distribution of a quantity over a frequency range.
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This paper presents a study of the dynamic response of a composite beam subjected

to random excitation. For a given configuration of ply-angle, random excitation is taken

into account to evaluate the affects of the randomness in the excitation into the structural

response. Three different random excitations, described by typicall PSDs, are used in the

analysis. Numerical tests show the influence of the random excitation on the dynamic com-

posite beam behaviour.

2. Wave motion in laminated composite beam

Wave based methods have been applied during last decades in laminated and delaminated

composites. It is a powerful tool to non-destructive damage detection. In order to obtain the

wave parameters (wave number and group velocity), we need to perform a spectral analysis

on the governing equation(s) of motion. In this paper, a multilayer composite beam, showed

in fig. 1, is treated.

x

y

z

v1   T1

1   M1

v2   T2

2   M2

Figure 1. Model of a composite beam.

It is considered the first order shear (FSDT) axial and transverse motion displacement
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field, given by

u(x, y, t) = −yφ(x, t), (1)

v(x, y, t) = v0(x, t),

where, u and v are the axial and transverse displacements, φ and v0 denotes independent

rotation and transverse displacement along the x − axis, respectively. The constitutive

relation for transversely orthotropic laminated composite is based on the laminated theory

[3], which is given by σxx

τxx

 =

 Q̄11 0

0 Q̄66

 εxx

γxx

 . (2)

The Hamilton’s principle along with eqs. 1 and 2 was used to derive the governing wave

equation, expressed as

I0v̈
0 −A66(v0

xx − φx) = 0, (3)

I2φ̈−A66(v0
x − φ)−D11φxx = 0,

where 〈〉x 〈〉xx are derivatives of the field variables with respect to x. The stiffness coefficients,

which are functions of the individual ply properties and orientation, and the coefficients

associated with the inertial terms are integrated over the beam cross-section, i.e.

[Als, Bls, Dls] =
∑
s

∫ zl+1

zl

Q̄ls[1, z, z2]bdz, (4)

[I0, I1, I2] =
∑
l

∫ zl+1

zl

ρ[1, z, z2]bdz,

coefficients b is the width of the beam, ρ is the density of composite, and zl and zl+1 denotes

z-coordinate of the top and bottom surfaces of the lth layer. The spectral solution for the

primary displacement field variables can be obtained by using the Discrete Fourier Transform

(DFT) for the temporal field, it can be expressed as

u(x, t) =

N∑
n=1

e−ωnt =

N∑
n=1

(
4∑

j=1

uje
ikjx

)
eiωnt, (5)

where i =
√
−1, ωn is the circular frequency at nth sampling point, and N is the Nyquist

point in DFT. Assuming the solution for the displacements as uj , it is suitable to calculate the

wavenumbers kj associated with the jth wave mode. Since there are only two independent

variables vj and φxj from the FSDT assumption, Eq. 1, the following solutions are assumed

vj = v0,je
−i(kx−ωt), (6)

φj = φ0,je
−i(kx−ωt), (j = 1, ..., 4)
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Substituting eqs. 6 into 3, it gives the characteristic equation −I0ω2 +A66k
2 −ikA66

ikA66 −I2ω2 +A66 +D11k
2

 v0,j

φ0,j

 =

 0

0

 . (7)

A non-trivial solution of the displacement field, Eq. 7, yields a fourth order characteristic

polynomial equation in kj

A66D11k
4 − (A66I2ω

2)k2 + (I2ω
2 −A66)I0ω

2 = 0. (8)

The characteristic equation is quadratic in k2 and hence can be easily solved. There are four

roots, representing two sets of wave mode pairs, in the form

k1 = ±

√
(D11I0 +A66I2)ω2 −

√
4A2

66D11I0ω2 + (D11I0 −A66I2)2ω4

A66D11√
2

,

k2 = ±

√
(D11I0 +A66I2)ω2 +

√
4A2

66D11I0ω2 + (D11I0 −A66I2)2ω4

A66D11√
2

. (9)

This solution gives the dispersion relation, i.e. the wavenumber as a function of the

circular frequency and can be used to find the group velocity, by cg1,2(ω) = ∂k1,2/∂ω. The

next section presents the spectral element formulation for a laminated beam.

3. Laminated multilayer composite beam spectral element

The spectral element model for analysis of flexural-shear coupled wave propagation ap-

proached in this paper was proposed by Palacz et al. [10].

Figure 2. Multilayer composite beam spectral element.

Figure 2 shows a laminated multilayer composite beam spectral element of two nodes

with transverse displacement and independent rotation per node. The beam is assumed to

have total length L , width b, and height h. The spectral element nodes are given by the
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displacement v and rotation φ, from the FSDT assumption, such that

v(x) = R1A1e
−ik1x +R2A2e

−ik2x −R1A3e
−ik1(L−x) −R2A4e

−ik2(L−x),

φ(x) = A1e
−ik1x +A2e

−ik2x +A3e
−ik1(L−x) +A4e

−ik2(L−x), (10)

where i =
√
−1, k1 and k2 are roots of the characteristic equation given in Eq.9, and

Rn(n = 1, 2) is the amplitudes ratio as given by Doyle [2],

Rn =
iknA66

A66k2
n − I0ω2

, for (n = 1, 2). (11)

The coefficients Aj(j = 1 − 4) are calculated as a function of the nodal spectral dis-

placements, using the boundary conditions, having the form at the left end of the element

(x = 0)

v1 = q1, (12)

φ1 = q2, (13)

and at the right end of the element (x = L)

v2 = q3, (14)

φ2 = q4. (15)

The boundary conditions can then be used to write Eq. 10 in a matrix form as
R1 R2 −R1e

−ik1L −R2e
−ik2L

1 1 e−ik1L e−ik2L

R1e
−ik1L R2e

−ik2L −R1 −R2

e−ik1L e−ik2L 1 1


︸ ︷︷ ︸

Ψ


A1

A2

A3

A4


=


q1

q2

q3

q4


. (16)

The element has two nodes and two degrees of freedom (DOF) per node, where the

unknown coefficients Aj(j = 1, 2, 3, 4) are calculated from Eq. 16 as a function of nodal

spectral displacements. The nodal spectral forces (shear force and bending moment) for the

left hand side of the beam (x = 0) can be determined as

M1 = D11
∂2v1(x)

∂x2
(17)

T1 = −D11
∂3v1(x)

∂x3
− I2ω2 ∂v1(x)

∂x
(18)
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and the nodal spectral forces for the right hand side of the beam (x = L) as follows

M2 = D11
∂2v2(x)

∂x2
(19)

T2 = −D11
∂3v2(x)

∂x3
− I2ω2 ∂v2(x)

∂x
(20)

Equation 11 can be applied to Eq. 16 leading to

q1

q2

q3

q4


=



d∗1 d∗2 d∗1z1 d∗2z2

iD11k1 iD11k2 (iD11k1)z1 (iD11k2)z2

d1z1 d2e
z
2 d1 d2

(iD11k1)z1 (iD11k2)z2 −iD11k1 −iD11k2


︸ ︷︷ ︸

Γ



A1

A2

A3

A4


, (21)

where d∗1 = −D11k
2
1 + I2ω

2, d∗2 = −D11k
2
2 + I2ω

2, d1 = D11k
2
1 + I2ω

2, d2 = D11k
2
2 + I2ω

2,

z1 = e−ik1L and z2 = e−ik2L. Taking into account relations of the Eqs. 16 and 21 the

frequency dependent dynamic stiffness matrix, which relate the nodal spectral forces with

the nodal spectral displacements, can be written as

{P} = [K(ω)]{q}, (22)

where {P} is vector content the forces, {q} is the displacement vector, and the dynamic

stiffness matrix are obtained as [K(ω)] = Ψ−1Γ.

4. Random excitation

Composite structures are typically subjected to random dynamic loads, like earth-quakes and

wind loads, in civil, aeronautic and aerospace industry. This loads are usually modelled as

second order stationary Gaussian stochastic processes with a given autocorrelation funcion

R(τ), describing the smoothness, ou roughness, of the time series. The WienerKhinchin

theorem relates R(τ) to a frequency domain Power Spectral Density (PSD) S(ω) by a Fourier

transform pair [9]. The time series can be numerically generated by a FFT-based algorithm,

by taking the inverse discrete Fourier transform (IDFT) of the discretized target PSD, being

its amplitude is estimated as the square root of the discretized PSD,
√
Sk, and a random

phase is generated from a uniform distribution within the interval [0, 2π].

A very common PSD model is the white noise, given by S(ω) = S0. It is a idealization

in which the signal frequency content is equally distributed over the frequency band (band-

limited white noise). This assumption is not physically sound and other PSD models can be
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used, like a First Order Filter (FOF),

S(ω) =
S0

ν2 + (2 ∗ π ∗ ω).2
(23)

or Kanai-Tajimi model, a second order type of filter given by

S(ω) =
1 + 4ξ2

g(ω/ωg)S0

(1 + (ω/ωg)2 + 4ξ2
g(ω/ωg)2

(24)

where the constant ν, ξ and ωg are adjusted according to specific features of the random

load. An important relations used in the analysis of the dynamic response of any system to

random excitation is that the PSD of the response of a system So(ω) to an input PSD Si(ω)

is given by [9]

So(ω) = |H(ω)|2 Si(ω), (25)

where the function H(ω) is the frequency response function (FRF) between the input and

the output.

5. Numerical simulations

For de numerical examples, a free-free multilayer composite beam modelled by a two nodes

spectral element, as showed in fig. 2, is made out of glass-epoxy with 10 layers orientated of

0◦. Each layer’s thickness is 1 mm, the length of the beam is 2 m, and the width is 0.02 m.

The physical properties Young’s modulus, Poisson ration , Kirchhoff modulus and density of

the matrix-epoxy are: EM = 3.43 GPa, νM = 0.35, GM = 1.27 GPa, ρM = 1250 (km/m3);

for of the fibers-glass are: EF = 66.5 GPa, νF = 0.23, GF = 27.0 GPa, ρF = 2250 (km/m3).

The calculated FRF simulates the transfer receptance with force excitation at node 1 and

displacement response measured at node 1 and 2.

Random excitation includes a mixture of different levels of external forces or externally

imposed displacements that contain components of many different frequencies, according to

its corresponding PSD. It is verified the influence of three different random excitations and

a sinusoidal harmonic force in the dynamic response of the composite beam. The random

excitation signals were generated as specified in Section (4).

Figure 3 shows a sample of the time domain input for different PSD models which were

used to excite the composite beam, i.e. the white noise excitation, FOF and the Kanai-Tajimi

as well as the harmonic force. Additionally, The Power Spectral Density of tip excitation

force for each signal is also shown in fig. 4.

The PSD of the beam displacement in the frequency and time domain are shown in

figure 5 to figure 8. The dynamic response of the beam excited with a sinusoidal harmonic

329



0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Time [s]

N
 

(a)

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

Time [s]

N
 

(b)

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

Time [s]

N

(c)

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

Time [s]

N

(d)

Figure 3. Time domain samples of excitation using (a) sine, (b) white noise, (c) FOF and

(d) Kanai-Tajimi.

force also present a sinusoidal harmonic with same frequency in the time domain, such

response was expected once it is a linear system. Note that the response in frequency domain

presents a curve resembling the FRF. This is due to a windowing effect in the time domain

excitation. Moreover, when the beam is excited by a random force the response will be also

random, with PSD given by Eq. 25 behaviour.The knowledge about how the structure will

behave under specific excitation is crucial for example for the vibration control, structure

reliability, or fatigue analyses.

Note that the time domain displacement response is mainly due to the first mode in all

cases under random excitation. This is because the contribution of the others modes on the

response do not have great influence, as it can be observed from the frequency domain reponse

where the higher order resonance peaks a much smaller in magnitude. The beam response

in the frequency domain excited with a white Noise, FOF, and Kanai-Tajimi presented a

closer behaviour and amplitudes in both measured nodes. However, in time domain a visible
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Figure 4. Power Spectral Density of tip excitation force for white noise (blue), First Order

Filter (red) and Kanai-Tajimi (green).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−400

−300

−200

−100

0

D
is

p
la

c
e
m

e
n

t

[d
B

 1
 r

e
 m

] 

 

 

v
1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−400

−300

−200

−100

Frequency [Hz]

D
is

p
la

c
e
m

e
n

t

[d
B

 1
 r

e
 m

] 

 

 

v
2

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
x 10

−5

Time [s]

D
is

p
la

c
e
m

e
n

t 
[m

]

 

 

2

Figure 5. Frequency (left) and time (rigth) domain reponse of the composite beam at

nodes 1 and 2, excited by harmonic force.

difference is observed among the simulated cases. The responses derived using First Order

Filter (FOF) and Kanai-Tajimi excitation showed maximum displacement around 0.002 m,

while that the maximum displacement obtained with the white noise excitation was around

0.0005 m. It demonstrated how the change in the input force can affect the outcomes.

Next step of this work consists in add random properties in the beam and analyse how

the randomness in the structure combined with the random excitation can impact in the

dynamic response.
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Figure 6. Frequency (left) and time (rigth) domain reponse of the composite beam at

nodes 1 and 2, excited by white noise.
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Figure 7. Frequency (left) and time (rigth) domain reponse of the composite beam at

nodes 1 and 2, excited by FOF PSD.
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Figure 8. Frequency (left) and time (rigth) domain reponse of the composite beam at

nodes 1 and 2, excited by Kanai-Tajimi PSD.

6. Conclusions

The dynamic response of a composite beam subjected to three different random excitation

was addressed in this paper. The composite beam was excited with a deterministic harmonic
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force and random excitation given by white noise, FOF and Kanai-Tajimi PSD model. A

dynamic response of the beam excited with a harmonic force has a harmonic behaviour in

the time domain, as expected. When the random PSD model were approached an random

dynamic behaviour was expected. Evethough the FRFs obtained from the beam excited

with the random PSD model had close amplitudes, the time domain reponse presented a

visible difference during as well as different maximum displacement amplitude. It shows

that corretly representing the random excitation model is very important. This is a crucial

information in vibration control, structural reliability or fatigue analyses.
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Optimal auxiliary functions method for investigating a permanent 

magnet synchronous generator 

 
 

Vasile Marinca, Nicolae Herisanu 

Abstract:In the present paper we investigate the transitory working regime of a 
permanent magnet synchronous generator that works in actual wind power station. 
For the nonlinear differential equations which describe this type of machines we apply 
the Optimal Auxiliary Functions Method (OAFM) and an explicit analytical solution 
is obtained.The governing equations are expressed in the non-dimensional form and 
are solved by means of OAFM. Two stages of the generator’s dynamic behaviors are 
known: the beginning of the transitory regime and the ending of this regime. The first 
stage of the regime shows the electromagnetic fast transitory regime and the second 
one generally emphasize the mechanical slow transitory regime, caused by inertia. In 
each of these stages of the transitory regime, the solutions are built using different 
functions, for example trigonometric functions in combination with exponential 
functions for the first stage and polynomial functions in combination with exponential 
functions in the case of the second stage. On the other hand, these functions depend 
on several optimal-convergence-control parameters which ensure a fast convergence 
of the approximate solution to the exact ones. Numerical examples analyzed in this 
paper lead to the conclusion that the results obtained through the proposed procedure 
are very accurate and the method is very efficient in practice. 

1. Introduction 

The permanent magnet synchronous generators (PMSG) are rotating electrical machines having a 

classic three-phase stator like that of an induction motor, and the rotor has surface-mounted 

permanent magnets. They are widely used to convert the mechanical wind energy into electrical 

energy, which is a hot topic nowadays [1-6]. That is why various aspects of design and functioning of 

permanent magnet synchronous machines received an increased interest from scientists. Small signal 

stability of permanent magnet synchronous generator (PMSG)-based wind turbines connected to the 

power grid is properly studied in [7] in order to facilitate damping strategy design.Song et al. [8] 

applied the Taguchi method to optimal design of permanent magnet synchronous motors to optimize 

the thrust and thrust ripple, and using finite-element analysis, the relative importance of each design 

parameter was estimated in detail.Based on a linearized model, the relation between the PMSG 

electromagnetic torque and boost converter current is extracted, and then system's control-loops are 

developed by Rahimi in [9]. 
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In this paper, the behavior of the PMSGis predicted using the classical d-q equivalent circuit 

models. Starting from the equations of the smooth-air-gap synchronous machine, the D-Q axis 

equations of PMSG in the rotor reference frame, lead to a system of three nonlinear differential 

equations with unknowns instantaneous values of stator current components and electrical angular 

speed. These equations are expressed in the non-dimensional form and the system is analyzed by 

means of a novel method, namely the Optimal Auxiliary Functions Method. Analytical approximate 

solutions which are obtained are of considerable importance for practical analysis of electrical power 

system dynamic behavior with problems caused by possible perturbations generated by some short 

circuits, sudden change of loads, disconnection of load and other switching transients in power station 

or stability problem of such systems. 

The proposed approach has been applied on a low-power generator and this work should be 

continued with the case of high-power electrical generators, connected directly into a large electrical 

power system.  

2. Governing equations of PMSG 

Using the classical D-Q equivalent circuit models, the equation of the smooth-air-gap synchronous 

machine in the rotor reference frame are of the form: 

        
   

  
     

        
   

  
     

                      

 (1) 

where the instantaneous values of D and Q axis stator voltage components are uD and uQ; the stator 

components are iD, iQ; RG and LG are electrical resistance and synchronous inductance of the 

generator phase windings; ψD and ψQ are instantaneous values of D and Q axis stator flux 

components; ψPM is the permanent magnet flux and ωE is the electrical angular such that ΩM=ωE/P1, 

where P1 is the number of pole pairs of the generator and ΩM is the mechanical angular speed of the 

turbine-generator system. If RL is the electrical resistance of the external load connected to the output 

of the generator, the PMSG output voltages are: 

        
        

 (2) 

The motion equation of the generator is described by [1]: 

  

  

   

  
    

 

 
        (3) 

where JM is total axial moment of inertia and TM is the mechanical torque of the wind turbine: 
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        (  )             

   

   
 (4) 

 Within Eq.(4) ρ is the air density, r is the turbine radius, v is the wind speed, λr is the tip-speed 

ratio and Ct is the torque coefficient provided by the turbine manufacturer: 

  (  )                         
    (5) 

 For the values ρ=1.225 Kg/m3, P1=16, r=2.5 m, the torque becomes: 

               
                 

           

√ 
  
    (6) 

 Concerning the wind speed, different from other works, we consider the analytical model of the 

speed as [6]: 

 ( )         
 

  
      

  

  
  (7) 

wherevm is the mean wind speed of the base wind velocity that is a constant. The base wind velocity 

vm is considered only in the case in which the generator is active and A and B are two different 

amplitudes and TG is the gust period. 

Considering a practical case of a real wind turbine PMSG, the characteristics of the steady-state 

regime are: RG=0.9 Ω, LG=0.03 H, ψPM=√  Wb, P1=16 pole pairs, JM=4.75 Kgm2. The nominal speed 

of rotation id nN=70 rpm, which lead to ΩN=7.330352856 rad/s or ωN=117.2856457rad/s, where N 

denotes the nominal values (or rated values). Corresponding to these values, from Eq.(6) one retrieves 

TMN=684.192163461 Nm and for the steady-state regime one can get iQN=-20.158204693. It follows 

from Eqs. (1) and (2) that iDN=-11.118492391 A, RLN=5.479285888 Ω, uDN=60.9213984503 V, 

uQN=110.45256648 V, √ IN=√        
 =23.02116616 A, √ uN=√        

 =126.139550551 V. 

In the nominal point of working, the wind turbine develops the mechanical power         

        and the electric generator develops the electrical power                 W. 

It is often convenient to express the generator’s parameters, variables and the governing equation 

in dimensionless quantities. For this aim these terms are divided by base quantities. Usually, the 

following set of base quantities is widely used: the base voltage UB (peak stator phase nominal 

voltage UB=√ UN), the base current IB (peak stator phase nominal current IB=√ IN), the base power 

SB (nominal apparent power SB=3UNIN), the base angular speed ωB (nominal electrical angular speed 

ωB=ωN. The additional quantities are the base torque TB=P1SB/ωB, the base flux linkage ψB=UB/ωB, 

the base impedance ZB=UB/IB; the base time tB=1ω/B. 

By means of the following transformations 
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 (8) 

the governing Eqs.(1) can be written in dimensionless form as 

   

  
     

     

  
                    

   

  
     

     

  
    

   

  
  

 
  

  
                           

 (9) 

The initial conditions for Eqs.(9) are obtained considering the steady-state regime characterized 

by a constant angular speed at constant speed of the wind vm=10 m/s and external electrical load 

rl=0.4528. One gets the initial conditions: 

  ( )                 ( )                  ( )              (10) 

The governing Eqs.(9) can be retrieved in the form: 

   

  
                         

   

  
                                 

  

  
                           

                
           

√ 
                      

(11) 

where v is given by Eq.(7), considering A=10, B=4, vm=10 m/s and TG=20.5: 

 ( )          
 

 
      

  

 
  (12) 

where λ=2407. 

The dynamical system (11) with the initial conditions (10) and with the wind speed (12) will be 

investigated in what follows using a new solution approach, namely the Optimal Auxiliary Functions 

Method. 

3. Basic ideas of the Optimal Auxiliary Functions Method 

The most general form of a nonlinear differential equation is  

 [ ( )]   [ ( )]              (13) 

in which L is a linear operator, F(τ) is an unknown function, N is a nonlinear operator and D is the 

domain of interest. The corresponding initial/boundary conditions are known as: 

 ( ( ) 
  ( )

  
)    (14) 
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For Eqs.(13) and (14) we demand an approximate solution  ̃( )which contains only two 

components [10] 

 ̃( )    ( )    (    )                 (15) 

where Ci are unknown parameters at this moment.  

Substituting Eq.(15) into (13) we obtain  

 [  ( )]   [  (    )]   [  ( )    (    )]    (16) 

The initial approximation F0(τ) can be determined from the linear equation  

 [  ( )]         (  ( ) 
   ( )

  
)    (17) 

and the first approximation F1(τ,Ci) from the remaining equation 

 [  (    )]   [  ( )    (    )]         (  ( ) 
   ( )

  
)   , (18) 

but in general Eq.(18) is a nonlinear differential equation which is often very difficult to solve. Now, 

the nonlinear term from Eq.(18) is expanded in the form: 

 [  ( )    (    )]   [  ( )]  ∑
  
 (    )

  
 ( )[  ( )]    (19) 

where  ( )     

   
. In order to avoid the difficulties that appear in solving the nonlinear differential 

equation (18) and to accelerate the convergenceof the first approximation and implicitly of the 

approximate solution  ̃(    ), instead of the last term arising in Eq. (18) we propose another 

expression, such that Eq.(18) can be written in a new form  

 [  (    )]   (  ( )   )] [ (  ( ))]   (  ( )   )         (   
   

  
)   , (20) 

where A and B are two arbitrary auxiliary functions depending on the initial approximation  ( ) and 

several unknown parameters Cj and Ck, j=1,2,…,p, k=p+1, p+2,…,n; i=j+k.  [ (  ( ))] means a 

part of the operator  (  ( )). The auxiliary functions A and B called optimal auxiliary functions are 

not unique and are of the same form as   ( ) or of the form of  (  ( ))or combinations of   ( ) and 

N(  ( ))  The unknown parameters Cj and Ck (i=j+k) can be optimally identified by means of 

different methods, such as for example by minimizing the square residual error by considering the 

functional 

 (     )  ∫   (       )  ( )
 (21) 
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where  (       )   [ ̃(    )]   [ ̃(    )], i=j+k, j=1,2,…,p, k=p+1,p+2,…,n. The conditions of 

minimization of the residual are  

  

   
 

  

   
   

  

   
   (22) 

By this novel approach the approximate solution (15) is well determined. It is to remark that the 

optimal values of the parameters Ci called convergence-control parameters may be obtained by means 

of other procedures, such as the Ritz method, Galerkin method, collocation method, the Kantorovich 

method and so on [11]. 

Our novel approach proves to be a powerful tool for solving nonlinear problems not depending 

on small or large parameters. It should be emphasized that our method contains the optimalauxiliary 

functions A and B which provides us with a simple way to adjust and control the convergence of the 

approximate solution after only one iteration. 

4. Approximate solution of Eqs. (11) and (10) using OAFM 

In order to apply our procedure to obtain an approximate solution of Eqs.(11) and (10), we 

consider the linear operators for the system (11) in the following form: 

  [  ( )]  
   

  
               

  [  ( )]  
   

  
              

  [ ( )]  
  

  

 (23) 

and the nonlinear operators 

  [  ( )   ( )  ( )]      

  [  ( )   ( )  ( )]                          

  [  ( )   ( )  ( )]                             
  

               
           

√ 
    

 (24) 

where the wind velocity is given by Eq.(12). 

The initial approximations id0, iq0, ω0 are determined from Eqs.(17), which become 

    ( )

  
                ( )                ( )             (25) 

    ( )

  
               ( )                  ( )               (26) 

   ( )

  
                                                          ( )              (27) 

The solutions of Eqs. (25)-(27) are 
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   ( )                (              ) (28) 

   ( )                  (             ) (29) 

  ( )              (30) 

The nonlinear operators (24)for the initial approximations (28)-(30) are: 

  [   ( )    ( )   ( )]                  (              ) (31) 

  [   ( )    ( )   ( )]                            (             ) (32) 

  [   ( )    ( )   ( )]               (              )  

            (        
 

 
      

  

 
 )  

            (        
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√        
 

 
      

  

 
 

 (33) 

Taking into account the expressions (31)-(33) and (20), in the following we consider 

  (    )    (    )    (    )     
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  (34) 

The linear differential equations for the first approximations are 
    ( )
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and the solutions are 

   ( )             [   (             )   ]       
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(39) 

  ( )         
 

 
        

  

 
        

  

 
        

  

 
  (40) 

The approximate solutions of Eqs.(11) and (10) are 

  ( )     ( )     ( ) (41) 

  ( )     ( )     ( ) (42) 

 ( )    ( )    ( ) (43) 

The optimal values of the convergence-control parameters Ci are obtained by means of a 

collocation approach as: 

                                                   
                                                   
                                                     
                                                      
                                                      
                                                     

 (44) 

Finally, the approximate solution of Eq.(11) and (10) can be written as: 

  ( )                              
 

    
                 

  

    
  

                
  

    
                 

  

    
                 

  

    
 

 (45) 
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 (46) 

 ( )                             
 

    
                 

  

    
  

                
  

    
                 

  

    
 

 (47) 

Figs.1-3 show the obtained approximate solutions of Eqs.(11) and (10), which, for validation 

purposes, are compared with numerical solutions obtained using a fourth-order Runge-Kutta method. 
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Figure 1.   Comparison between the analytical and numerical results for id. 

 

Figure 2.   Comparison between the analytical and numerical results for iq. 

 

Figure 3.   Comparison between the analytical and numerical results for ω. 

5. Conclusions 

A new technique is employed in this paper to obtain an analytic approximate solution for the 

dynamical model of a wind power system. The proposed dynamical model which describes the 

influence of a wind gust to a low-power PMSGallows analyzing both mechanical and electrical 

phenomena and determining the characteristics of the dynamic regime produced by wind turbine. The 

wind speed can be considered in the system of equations which describes the dynamic model to 

predict the system response to specific changes in speed. For this purpose it is necessary to know the 

wind profile as a function of time. The proposed procedure allows obtaining an analytical solution 

which is very advantageous and useful for automatic control systems and protection systems used in 

this kind of aero-elastic installations.  

In the present paper we obtained an effective approximate solution to the governing equations. 

The proposed method is very accurate comparing our analytical results with numerical results, which 
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proves the validity of our approach. In the present construction of this simple iterative procedure are 

involved some distinct concepts such as the linear operator, the auxiliary functions A and B and 

several convergence-control parameters Ci, which ensure a fast convergence of the approximate 

solutions to the exact ones after only one iteration. The values of the convergence-control parameters 

are optimally determined using rigorous procedures. It is to remark that this new proposed approach is 

valid even if the nonlinear differential equation does not contain any small or large parameters. 
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Nonlocal elasticity theory for solving dynamic problems via 

peridynamics 

 
 

Adam Martowicz, Wieslaw J. Staszewski, Massimo Ruzzene, Tadeusz Uhl 

Abstract: The paper deals with the developed peridynamic numerical tools used for 
solving various types of dynamic problems. The peridynamics makes use of nonlocal 
formulation for computational mechanics and, therefore, offers unique properties in 
terms of more realistic modeling different types of physical phenomena. The authors 
briefly highlight the fundamentals of nonlocal elasticity theory to show capabilities of 
the elaborated numerical approach. The theoretical part of the work is complemented 
with the results obtained for various case studies taking into account elastic wave 
propagation and analysis of crack propagation. Practical aspects regarding efficiency, 
required computer resources and accuracy of the proposed numerical tools are 
addressed. Finally, an analogy between peridynamics and Finite Difference 
formulations is derived to show possibility of building equivalent model descriptions 
when solving dynamic problems.  

1. Introduction 

Nonlocal modeling in the field of computational mechanics is known for over fifty years, introduced  

in the early papers given by Kröner, Kunin, Eringen, Edelen, and others [1-3]. It is used as an 

alternative approach, providing very specific advantages, compared to the classical local formulations 

for statics and dynamics [4]. Following the mathematical description of physics present at nano and 

microscale – where granularity of matter plays an important role with its all related consequences – 

both local and long-range interactions between pieces of matter are taken into account. As a result, 

integral based equations of motion are introduced. Consequently, the total resultant reactions (derived 

from potential based formulations) are found by aggregating contributing interactions between locally 

and nonlocally linked particles. The resultant reaction forces are determined based on the properties 

of the connecting bonds established between modelled solid. The contributing reactions are summed 

up over some region to determine the total force. The radius of the region of local and nonlocal 

interactions can be found with a sensitivity analysis. The obtained data allows to decide on the 

number of considered long-range contributors, found to be the influential ones in calculations. 

In fact, spatial partial derivatives – present in classical locally formulated equations of motion –

aimed to be solved at geometric discontinuities, grain boundaries, interfaces exhibiting mechanical 

impedance mismatches, or interconnection layers, may lead to numerical inconveniences. 

345



 

 

Discontinuities (i.e. step changes, discretizations, outliers) involved in the functions describing 

geometry, material properties, and boundary requirements may lead to ambiguity in calculation of 

derivatives. Nonlocality and integral based formulations aid to avoid this problem. Hence, due to the 

above mentioned property, nonlocality is well recognized in damage modeling [5]. However, it 

should be noted that a questionable issue arises, related to the computational costs of applied nonlocal 

approach. Even though, more convenient analytical and numerical tools are found, there is a necessity 

of introduction a significant number of additional interactions, which are required to determine 

kinematic characteristics for each degree of freedom. It results in more populated global matrices of 

the entire system, which are present in its equation of motion. Nowadays, however, this issue may be 

successfully addressed with multithreaded algorithms, also employing GPU calculations. 

Recently, the peridynamics is one of the most popular nonlocal approach [6]. There are known 

its various applications addressing problems in many different physical domains [7-9]. Peridynamics 

makes use of nonlocal, integral based formulation for computational mechanics and, therefore, also 

offers unique properties in terms of more realistic modeling. The specificity of peridynamics, which is 

worth to be mentioned, is its capability of direct use of macroscale material properties (i.e. 

engineering properties, e.g. elastic moduli), irrespectively from what geometric scale is actually 

referred to. It also means that multiscale studies may be easily performed employing peridynamics 

[10]. Addressing the risk of possible higher computational effort, necessary to perform peridynamics, 

the reader may also find the results of convergence analyses carried out to determine the most 

efficient relationships between the particles distances and the radius of the region covering all 

nonlocal interactions [11]. Taking into account the above mentioned properties of peridynamics, the 

authors of the present paper provide the results of exemplary case studies devoted to the properties of 

a cracked aluminum plate model. The advantages of peridynamics, offering more physical modelling 

with respect to geometric discontinuities, are shown with numerical examples. 

The paper covers the following: introductory Section 1 provides an overview on nonlocal 

modeling and, specifically, introduces peridynamics as potential tool for solving dynamics. Next, 

analytical fundamentals of peridynamics and characteristics of the elaborated numerical tools are 

addressed in Section 2 and 3. Section 4 describes a numerical model of a cracked aluminum plated 

and the obtained results. An analogy between peridynamics and Finite Difference (FD) Method is 

discussed in Section 5. Final Section 6 summarizes the paper and presents the authors’ conclusions. 

2. Peridynamics – analytical fundamentals 

Integral based equation of motion for a peridynamic model of a solid body takes the following form 

��� ��, �� = 
 ������, �� − ���, ��, �� − �������
+ ���, �� (1) 

346



 

 

where: ρ  - mass density, � – displacement vector of an actual central particle (localized at the 

position x , as shown in Fig. 1; the term “particle” refers to a single piece of the modelled solid 

body), H  - horizon, i.e. the region of local and nonlocal interactions, defined with respect to the 

central particle. The position of neighboring particle is defined as x�. f  is the pairwise function 

characterizing the properties of the links between central and neighboring particles. The external 

particle excitation is given as force volumetric densityb  vector. x̂dV  is a portion of volume attached 

to the neighboring particle.  

 

Figure 1.   Nonlocality in peridynamics, definition of the area of horizon for nonlocal interactions 

between particles. 

The function f  introduces the material properties and is specified in terms of the expressions: 

( ) ( ) ηxuxu =− tt ,,ˆ  (2) 

ξxx =−ˆ  (3) 

which stand for relative displacement η  and relative particle position ξ . For a two-dimensional 

(2-D) case, f  is defined as 

( ) ( ) ( )


 ≤

=
otherwise ,0

if δξξξηe
ξηf

sc,
,  (4) 

where the micromodulus function c for isotropic and homogeneous material equals 

( )T
E

c
νπδ −

=
1

6
3

 (5) 

δ , s  and e  denote the horizon radius, strain and the unit vector defining the direction of the 

reaction forces between particles, respectively. The material elastic properties are: E  - Young’s 

modulus, ν  - Poisson’s ratio. The thickness of the model is defined as T. As found in Eq. (4), f  is 
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nonzero only for the neighboring particles, which are localized within the horizon H. The 

peridynamics, by its nature constitutes nonlocal interactions, however, when decreasing the horizon 

radius δ  one can easily find a convergence to the local formulations for dynamics. In the following, a 

numerical formulation for a peridynamic 2-D model is briefly shown. 

3. Peridynamics – numerical approach 

Based on Eq. (1) and considering a 2-D case, a numerical formulation of the equation of motion may 

be derived for the i-the particle in the form 
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where ui(j)(t) and vi(j)(t) are the in-plane particle displacements. The indexes i and j denote the 

actual central and neighboring particles (i.e. covered by the horizon Hi), respectively. The remaining 

indexed parameters have the meaning explained in Section 2, taking into account their horizontal and 

vertical components in the present numerical case. The auxiliary function jiF ,  takes the form 

( ) ( )2222
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)()()()(
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−
+

=
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jiA ,   defines the area the j-th (neighboring) particle covered by the horizon Hi. The general 

flowchart used to solve dynamic problems with peridynamics is shown in Fig. 2. 

 

Figure 2.   Flowchart for the numerical studies using a peridynamic model. 
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During the first stage of calculations, model parameterization is performed to set geometric and 

material properties. The boundary conditions (excitations and fixed displacement areas) are 

introduced to determine the governing equations for each particle of the model.  Moreover, initial 

conditions regarding particle displacements and velocities are assumed. The simulation parameters 

provide data on the time step, total simulation time, distances between particles, the radius of the 

horizon and maximum displacement error (applied when an explicit formulation of the solver is 

chosen). Next, within the initial calculations, based on the ultimate stress, critical elongations for the 

bonds between particles are found. Micromodulus function and volumes of the neighboring particles 

within the horizon are determined. Notches are introduced by removal chosen bonds between 

particles. During iterative part of the numerical procedure, updated values of the particle 

displacements and velocities are determined. Based on these values, additional bonds are searched 

where critical elongations are exceeded. Moreover, already broken bonds between particles are 

temporarily sustained to let the model undergo external compressing excitation for its compressed 

regions. Final postprocessing and data presentation provide the results in a readable form. 

Making use of the capabilities of the elaborated numerical tools for peridynamics, the results 

obtained for selected case studies, taking into account elastic wave propagation and analysis of crack 

propagation, are shown in the following. 

4. Case studies for peridynamics 

In the following, exemplary results for the application of the above introduced peridynamic numerical 

code are briefly shown. Based on the elaborated 2-D model, two cases are considered, namely: (i) 

longitudinal elastic wave propagation observed across the body of an aluminum plate due to the 

clapping phenomenon (study on wave propagation in the transversal direction with respect to the 

initial notch orientation), and (ii) the phenomenon of acoustic emission originated from growing 

crack. 

4.1. Numerical model 

In the present work a 2-D peridynamic model is considered, as shown in Fig. 3. The model of an 

aluminum plate with the overall dimensions: 4mm x 4.125mm x 1mm (length x width x thickness) 

constitutes the subject of the study. The following material properties are assumed: Young’s modulus 

E=70GPa, Poisson’s ratio ν=0.3, mass density ρ=2100kg/m3, and ultimate stress σU=40MPa. The 

distance between particles x∆  equals 0.125mm, whereas the horizon radius δ  is 0.5mm. The total 

simulation time is 20µs, and the time step t∆  equals 1ns. For both numerical cases a single notch is 

introduced as a 0.625mm-long centrally localized horizontal geometric discontinuity, where all 

crossing modelled physical links between particles - present within the horizon - are broken. 
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Figure 3.   Peridynamic 2-D model of a rectangular aluminum plate used to study wave propagation 

resulting from clapping and to track the crack growth based on acoustic emission. 

Boundary conditions are defined with two spatially distributed sinusoidal forces. Their frequency 

equals 200kHz. Due to different goals of the two executed simulations, various amplitudes of the 

external forces are considered [12]. In case of the clapping phenomenon, the resultant force amplitude 

equals 13.5N, which is achieved by a linear growth after the time period of 0.2µs. A limited value of 

the force amplitude prevents from further crack growth. Oppositely, the higher force amplitude is set, 

i.e. the resultant amplitude of 33.75N (also achieved after 0.2µs), for the study on acoustic emission 

to assure gradual evolution of the initial notch. Hence, in the second case, generation of additional 

waves is observed due to breaking the links between particles in the peridynamic model. 

As regard to the boundary conditions, it should be noted, that a spatial distribution for the 

external force, over hypothetical clamping regions, must be taken into account to prevent from 

nonphysical (concentrated) force application and sudden unexpected model break [8]. The other 

solution to address the issue is locally increase the stiffness properties for the links between particles. 

However, spread of the force over some area seems more physical, and was chosen by the authors of 

the present work to set the boundary conditions. 

4.2. Elastic wave propagation 

In the literature, there are known studies on elastic waves (and stress waves) propagation using 

peridynamics, utilized for both macroscale models (e.g. metallic and composite structures) [9,12,13], 

and micro/nanoscale models (e.g. graphene) [14]. Irrespectively from the lengthscale used, a 

peridynamic model provides both a straightforward way of introduction the material properties 

(including reference to the commonly applied engineering characteristics, e.g. elastic moduli) and 

reliable assessment and interpretation of the physical phenomena present in the modelled materials 

and structures. 
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In the present study, the phenomenon of wave generation and propagation due to clapping 

mechanism is considered. As already mentioned, the amplitude of the external sinusoidal forces is 

limited to prevent from further crack growth. While clapping, cyclic behavior of the modelled plate is 

observed – when the opposite faces of the crack hit each other, a longitudinal wave is generated. It 

propagates through the model. As reported in [12], making use of a similar numerical model, 5-MHz 

transverse vibrations are identified at the crack’s edges. Presently, the displacements for the particles 

lying perpendicularly the crack’s orientation are under investigation, at the localizations shown in 

Fig. 4. The registered temporal plots for the vertical particle displacements are presented in Fig. 5. 

 

Figure 4.   Investigated particles in a peridynamic 2-D model of an aluminum plate (covered by a black 

rectangular) used to track longitudinal elastic wave propagation originated from the 

phenomena of clapping. The initial notch is marked in red. 

As identified in Fig. 5, the propagating vertical disturbance (assessed with respect to the particle 

positions) refers to the velocity of longitudinal elastic wave (bulk wave in aluminum) – cL=6695m/s. 

The expected theoretical time for the wave to travel between the neighboring particles can be found as 

∆x/cL=18,67ns, whereas the average propagation time between all fifteen investigated particles equals 

19.9ns. Hence, the application of a peridynamic model effectively aids to study elastic wave 

propagation in a model with a notch. 
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(a)  

(b)  

Figure 5.   Vertical in-plane displacements of the investigated particles while propagation of the 

longitudinal wave, generated at the crack’s upper edge: (a) plots registered for the longer 

time period when a series of vibration cycles are seen after the crack’s edges hit each other, 

(b) normalized plots shown for the limited time domain to indicate propagating wave. 

Gradual increase of the particles vertical coordinates are marked with subsequent multiples 

of their distance – ∆x. 

4.3. Crack propagation identification based on acoustic emission 

The second case study for peridynamics deals with the phenomenon of acoustic emission, which is 

present due to growing crack. Acoustic emission is observed in a model since its particles start 

disconnecting due to exceedance of the assumed ultimate stress. The links (bonds) between particles 

break, which, in turn, leads to its local vibrations. Finally, the generated disturbance travels through 

the model from the area where the moving crack’s tip is localized. Fig. 6 shows the localization of a 

“virtual sensor” used to register the generated wave – at the center of the selected particle lying at the 

initial position of the crack’s tip. Generally, three phases may be observed in the studied case, as 

shown in Fig 7. 
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Figure 6.   Localization of the measurement point (“virtual sensor”) used to identify the wave 

generated due to acoustic emission. 

 

Figure 7.   Phases identified in simulation – illustrated with the particle vertical displacements: 

(a) initial model stretching until ultimate stresses is exceeded, (b) wave generation due to 

acoustic emission (accompanied by additional wave originating from the clapping 

mechanism), (c) disconnected parts of the model move away. 
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First, a gradual vertical displacement of the particle is shown (Fig. 7 (a)), as the model undergoes 

deformation due to external forces. The crack does not evolve at this stage. After the ultimate stress is 

exceeded at the crack’s tip, the phenomenon of acoustic emission is detected (Fig. 7 (b)). Critical 

relative elongations are exceeded in the connecting links, which leads to the crack growth. The 

connections between particles start to break and the path of growing crack may be tracked. Model 

degradation (i.e. its stiffness reduction) proceeds, followed by particle oscillations originating from 

their fast cyclic motion in vicinity of the moving crack’s tip. The highest amplitudes of the generated 

wave measured in the model refer to the particles lying directly on the crack’s edges, principally in 

the area of its tips. Since the model undergoes stretching and compression due to a sinusoidal 

excitation, clapping mechanism is also observed – the crack’s faces touch while model cyclic 

compression. Clapping is identified based on additional wave generation (Section 4.2). Finally, when 

all connecting links between the two parts of the plate are broken, the simulation enters its last stage. 

The two pieces of the plate move away, which is characterized by the last part of the plot - marked in 

Fig. 7 (c). Hence, integral based model dynamics description conveniently handles the physical 

phenomena of acoustic emission, which is present at given geometric discontinuity (initial crack). 

5. Analogy between peridynamics and nonlocal FD Method 

This section shows an exemplary analogy between numerical codes for peridynamics and nonlocal 

formulation of FD Method. In case of a one-dimensional (1-D) model, Eq. (1) takes the form 
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The micromodulus function c  can be found as )/(2 2AEc δ=  [11]. The parameters A and x∆

denote the cross-sectional area of the modelled rod and the distance between particles. On the other 

hand, a general form of the equation of motion based on a FD scheme (for spatial partial derivative) 

for 1-D case can be transformed to the following form [15] 
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where jk  is the j-the coefficient of the nonlocal scheme. Hence, jk  may be found as 
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The analogy between peridynamics and nonlocal FD Method is derived to show possibility of 

building equivalent model descriptions when solving dynamic problems. Having introduced the 
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newly calculated coefficients of the FD schemes – which are in fact originally built based on 

derivative based formulations) – one may conveniently use the exiting solvers (either implicit or 

explicit) to apply the theory of peridynamics and check its capability in practice. 

6. Summary and concluding remarks 

The paper is devoted to practical aspects of applications of the nonlocal theory to solution of  

dynamic problems. The capabilities of nonlocal formulations of governing equations are briefly 

discussed, showing both advantages and drawbacks. The exemplary theory of peridynamics is 

presented, illustrated with two numerical case studies related to elastic wave propagation and crack 

tracking with the phenomenon of acoustic emission. Finally, an analogy between formulation of 

peridynamics and nonlocal FD Method for a 1-D case is introduced. 

The applications of nonlocal theories are very fruitful. The advantages of peridynamics are of 

special concern. On one hand, lack of spatial partial derivatives allows to easily handle model 

discontinuities (related to geometry, functions describing the material properties, and boundary), 

which let the researcher analyze models of cracked structures, as well as helps to avoid numerical 

problems while differentiating. As shown in the presented numerical cases, peridynamics enables 

solving dynamic problems, especially those related to wave propagation in structures with introduced 

notches. More physical description also promises more reliable analyses of the crack growth 

direction, not governed by the structure of the model itself, as observed in locally formulated mesh 

based approaches. On the other hand, peridynamics considers the macroscale elastic moduli ready to 

be introduced irrespectively from the lengthscale used. Moreover long-range interactions allow van 

der Waals forces to be taken into account when dealing with nano and microscale computations.  
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Nonlocal numerical methods for solving second-order partial 

differential equations 

 
 

Adam Martowicz, Wieslaw J. Staszewski, Massimo Ruzzene, Tadeusz Uhl 

Abstract: The work presents efficient numerical schemes dedicated for solving 
dynamic problems governed by second-order partial differential equations. The 
proposed approach makes use of a nonlocal formulation of the Finite Difference 
method. Higher order components incorporated into the discretization schemes are 
found, using the Fourier series based decomposition, to assure desired reduction of 
numerical dispersion. Hence, the elaborated approach is primarily proposed to carry 
out both vibration and wave propagation based analyses. Stability conditions and 
mitigation rate of numerical dispersion for the proposed discretization schemes are 
verified. The authors discuss the influence of the order of components used in 
nonlocal formulations on performance of the proposed methods. Additionally, as 
confirmed with exemplary numerical results, the proposed nonlocal numerical 
schemes allow for more sparse spatial model discretization, keeping similar properties 
regarding numerical dispersion, compared to the most commonly used finite 
difference formulations. Effectively, less populated domain of spatially distributed 
model’s degrees of freedom may be taken into account. This ability may be critical in 
terms of available computer resources (both processing speed and memory) when 
dealing with either complicated geometry, topology or long-term temporal analyses. 

1. Introduction 

Contrarily to the classical approaches, which are applied in the field of computational mechanics (or 

computational physics in general), the nonlocal methods introduce integral based components to 

substitute or develop the existing partial derivative based contributors of the equations of motion 

(governing equations) [1,2]. A general attribute of nonlocality in statics and dynamics stands for 

either (i) aggregation of some contributing quantities – which are used in governing equations – in the 

region of both local and nonlocal interactions between pieces of modelled body or (ii) introduction 

some nonlocally formulated operators into the existing partial derivatives. By doing so, the classical 

problem descriptions extend their capabilities dramatically. It should be however noted, that the 

nonlocal equations certainly converge to the local ones – by decreasing the radius of the region where 

all nonlocal interactions are considered, or simply by removal any lengthscale parameter originally 

taken into account. In such a case, a simplification (one may say degeneration or loss) of the initial 

functionalities is carried out. 
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The motivation for application of nonlocality in governing equations stems from physical 

observations. It turns out that there are some physical phenomena that cannot be accurately described 

employing classical locally formulated mathematical equations. Application of adequate lengthscales 

into the governing equations is also an issue to address the physics at various geometric scales [3,4]. 

The two known examples of the above mentioned type of somewhat problematic phenomena, in the 

field of mechanics, are wave dispersion are shear bands for stretching [4-6]. Hence, nonlocality helps 

to solve the problem of the inconsistency identified between physical observations and the exiting 

attempts at their descriptions. 

Nonlocality, due to its extraordinary capabilities, has been applied to solve problems for various 

physical domains [7]. Nonlocal approaches are well recognized in the following analytical and 

numerical modeling fields: damage evolution [8], including a demand for its spontaneous growth not 

governed by a structure of the model mesh [9], vibro-acoustic wave interactions [10], reduction of  

numerical dispersion [11], boundary conditions [12], regularization of boundary value problems [13], 

piezoelectricity [14], thermoelasticity [15-17] shape memory alloys [18], and graphene [19,20]. 

The present paper is devoted to efficient nonlocal numerical schemes dedicated for solving 

specific dynamic problems – governed by second-order partial differential equations (PDE). The 

proposed approach makes use of a nonlocal formulation of the Finite Difference (FD) method. The 

idea of employing nonlocality to increase the quality of numerical models is not a new one. The 

nonlocal approaches may be used to avoid high mesh density keeping acceptable quality of the results 

[21,22]. Based on the previous authors’ works carried for solving wave equation, the recently 

proposed numerical schemes, exhibiting reduced numerical dispersion, are now adapted to thermal 

diffusion equation (thermal conductivity equation). 

The paper is organized as follows. Section 1 serves as an introduction to the nonlocal theory in 

the field of computational physics (computational mechanics in particular). Section 2 provides 

examples of  mathematical formulations incorporating nonlocality, complemented with more detailed 

description on practical aspects of its applications. Next, the scope of potential applications of the 

present work is shown in Section 3 to provide motivation for studies on the nonlocal schemes. Section 

4 presents the elaborated schemes, followed by examples of their applications and discussion on the 

results in Section 5. Final Section 6 summarizes the wok and draws the conclusions. 

2. Nonlocality in computational mechanics 

The specificity of the mathematical descriptions of nonlocal approaches originates from the 

nature of matter, which is basically gradual. This fundamental fact leads to the key question: is it 

possible to accurately model the physical behavior of a solid matter using spatial PDEs? The answer 

is: yes, it is, however, to some extent. Local theories operate based on PDEs, which is convenient at 
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macroscale, where, in general, we deal with continuum of matter. Hence, it is an acceptable 

approximation of the material and structure properties due their averaging. Similarly, one may note, 

that quantum effects are negligible as well, at the mentioned lengthscale. Engineering properties 

(macroscale properties, e.g. elastic moduli) may be freely used to build a material model. The 

resultant properties are found using homogenization techniques (averaging of the properties over a 

specific region) to be able to use continuous physical domain [5]. This approach is valid for 

sufficiently long waves propagating in a homogenized model with respect to the lengthscale at which 

inherent anisotropy of material manifests its presents. 

Generally, necessity of introduction the nonlocality into governing equations emerges when: (i) 

computations directly concern the study of matter at nano and microscale, or (ii) a macroscale 

behavior of matter is strongly affected by the phenomena present at nano and microscale. In fact, if a 

macroscale model (e.g. with size of tens of centimeters) is built to track the growth path of a fatigue 

crack, the macroscale effects identified in the model, i.e. its break along some surface(s), originate 

from nano and microscale phenomena. Indeed, we may have some successful attempts at averaging 

the material properties, however, the macroscale effects may results from very chaotic and spatially 

distributed phenomena at nano and microscale. Physically, crack growth means subsequent and 

relatively fast breaks of the enormous number of links between atoms or grains. Potential based local 

and nonlocal reactions between fundamental pieces of matter influence the model behavior at larger 

geometric scales. Hence, the above-mentioned phenomena should be mathematical handled to 

properly infer on the model behavior at macroscale. Finally, the use of nonlocality in governing 

equations enables relatively easy determination of the dispersion properties of the applied material. 

This is important, as it preserves desired relationships between the length of propagating waves and 

their velocities, following the physical characteristics of the modelled medium. 

Apart from pure physical reasons for using nonlocality, there are also numerical aspects. First of 

all, nonlocal numerical schemes, used to substitute partial derivatives in governing equations, allow to 

search and then apply very specific values of their coefficients to reduce numerical dispersion when 

solving a problem. The key issue is to derive schemes, which would lead to more accurate solutions 

without requirement of further increase of the number of degrees of freedom (DOF) used to cover the 

entire modelled domain. This aspect is within the scope of the authors’ present work. New FD based 

schemes are proposed to efficiently solve PDEs based on a limited number of DOFs. Second, use of 

nonlocal region of interactions between pieces of the modelled solid also inherently leads to more 

physical behavior of a model as it seems to be more independent from its structure. The reactions are 

spread over some region, and, actually, there is no a single specific distance in the model, i.e. the 

distance between neighboring DOFs, which would imprint a peculiar stamp in the form of PDEs, as it 

happens in case of local formulations. It is so since nonlocality assures that both integer and real 
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numbered multiples (e.g. at diagonals) of the mentioned distance appear in the governing equation. 

Moreover higher diversity regarding directions of nonlocal interactions is observed, which favors 

more “spontaneous” behavior of the model, as in the case of a fatigue crack growth. 

In the context of computational aspects of nonlocality, the following issues should be also briefly 

marked. On one hand, accuracy and efficiency of the used scheme rely on the relationships between 

distances between DOFs and the radius of the horizon of the region, where nonlocal interactions are 

determined. However, in the literature there are already reported the results on the convergence 

analysis carried out to find the proper dependencies [23]. On the other hand, nonlocality, by its nature, 

suits for parallel processing (e.g. based on GPU), which would partially compensate the increased 

computational effort necessary to consider all the required long-range interactions. 

In the following, exemplary nonlocal formulations of equation of motion for dynamics are 

provided to give reference. For sake of clarity only spatial components are of concern. There are 

shown various nonlocal operators and integrals (the sum in case of numerical approach) to be used 

with kernel functions, which define constitutive dependencies. Classically formulated local Cauchy 

problem becomes a spatial integro-differential based relationship, e.g.: 

• integro-differential-based expression for one-dimensional (1-D) case [24] 
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• integro-differential expression for three-dimensional (3-D) case with nonlocal formulation 

of the Cauchy problem [25] 
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where: σ  - nonlocal stress tensor, )(xρ  - mass density and ),(txb  - external body force; 

• integro-differential expression for a generic volume element, for 1-D case [26] 
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where ),( ξxg  is the kernel function, which depends on the distance-decaying function, 

),,( tx ξη  is the relative displacement determined at coordinates x  and ξ . ),( txf  - field of external 

body force. )(xA , )(xEnl  - the cross-sectional area and Young’s modulus; 
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• peridynamics based on integral formulation (3-D case) [16,27] 
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where the pairwise force f  is defined in the finite domain H  (called as horizon). It depends on: 

relative displacement ),(),ˆ( tt xuxu − , the relative position xx −ˆ ; 

• nonlocal FD based expression for discretized 1-D case, for the i-th DOF [21] 
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where: m  - discretized mass attached to a single DOF, jk  - the j -th coefficient of the FD 

based scheme (it actually represents – in the presented form of discretized wave equation – the 

resultant stiffness coefficients of the two hypothetical springs linking the i-the DOF with the ji − -th 

and ji + -th DOFs),N  - number of nonlocal interactions; 

• other discrete approaches [7]: cellular automata e.g. with a secondary von Neumann 

neighborhood, molecular dynamics, the approaches based on the micropolar and Cosserat 

theories, nonlocal Finite Element Method; and analytical ones based on: higher-order spatial 

partial derivatives, domain decomposition and variational calculus. 

Amongst all the above-mentioned approaches peridynamics and nonlocal FD are worth to be 

mentioned because of their specific capabilities. Peridynamics is unique amongst analytical methods 

since it does not take into account spatial partial derivatives at all, which prevents from numerical 

errors at geometric discontinuities. On the other hand, the FD based method stands for a 

straightforward nonlocal description of the problem. Due to its clarity (detailed description is 

presented in [21]), it may be relatively easily applied to various case studies, which is confirmed in 

Section 4 and 5 of the paper. The intention of the authors is to adapt the elaborated FD scheme, 

already used in case of wave equation to be able to solve thermal problems, specifically with the 

application of thermal conductivity equation. In the following, group of exemplary specific types of 

PDEs is presented, which may be handled by the elaborated nonlocal FD scheme. 

3. Scope of application - motivation 

The present work deals with solving a specific class of PDEs, using numerical approaches based on 

nonlocal formulations of FD method. The case of second-order spatial PDFs is of special concern, as 

it refers to the mathematical descriptions of many various physical phenomena. Amongst others, the 

following equations take the desired form of PDFs (excluding physical constants for clarity) [28]: 
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• Laplace’s equation – used to define source-free fields of scalar quantities (potentials), e.g. in 

case of gravitational (electrostatic) field in the space devoid of mass (charge) 

( )zyxuu
z

u

y

u

x

u
u ,,,00

2

2

2

2

2

2

==
∂
∂+

∂
∂+

∂
∂

⇒=∆  (6) 

• Poisson equation – applied to potential fields with considered sources 
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• Helmholtz equation – used e.g. in acoustics to determine field of pressure  
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• diffusion equation – applied to solve thermal conductivity related problems  
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• Schrödinger equation – used to describe quantum states of a physical system 
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• wave equation – solved to analyze wave propagation 
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As already mentioned, the physical phenomena, which are described using Eq. (9) and (11) are of 

the authors’ special concern. However, further applications of the theory presented in [21] are already 

scheduled as future work to show capabilities of the nonlocal FD based numerical scheme for solving 

static and dynamic problems. Hereinafter, the theory of the elaborated FD scheme is concisely 

introduced, followed by its adaptation to address the thermal conductivity equation (diffusion).   

4. Nonlocal FD schemes with reduced numerical dispersion 

The theory of numerical discretization, proposed in [21], was derived for wave equation. In case of 1-

D, the wave equation takes the form 
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where ρ/Ec =  is the velocity of longitudinal wave propagation through modelled rod, 

calculated with Young’s modulus E  and mass density ρ . Introducing the plane wave solution 

( ) ( ) ( ) unitimaginary j,0,, j −= − txexutxu ωκ  (13) 

into Eq. (12), the relation between wavenumber κ and angular velocity ω  is found 

κω c=  (14) 

Next, based on the theory of Fourier series, the following stiffness coefficients jk  (i.e. 

coefficients of the FD based numerical scheme) were found for Eq. (5) [21] 
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where a  is the distance between subsequent DOFs in the modelled rod, and N  is the number of 

local and nonlocal interaction terms defined within the rod by each side with respect to an actual 

central DOF localized at the coordinate iaxi = ( N  - order of nonlocality). Increase of N  leads to 

lower numerical dispersion in the final solution, maintaining spatial distribution of DOFs [21]. 

Based on the above presented theory, a similar FD based scheme for 1-D case is proposed for the 

following general form of the thermal conductivity equation 
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where the coefficient  ( )pck ρα /=  is specified in terms of: ( )TAaQk ∆= /&  - thermal 

conductivity coefficient, ( )aAm/=ρ  - mass density, and ( )TmQcp ∆= /  - specific heat capacity. A 

discretized model for Eq. (16) consist of discretized masses m  - uniformly distributed along the x  

axis, i.e. at each DOF of the model at coordinates iaxi = , and the linking rods of the specified k  

and geometry (a  - length, i.e. the distance between DOFs, A -cross-sectional area). The linking rods 

transfer heat whereas the masses are heated up or cooled down depending on the direction of heat 

energy flow between DOFs. Q  and tQQ ∂∂= /&  respectively denote heat energy and its temporal rate 

(power). After parameter rearrangement, Eq. (16) may be rewritten to the respective semi-discretized 

local form for the i-th DOF 
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which may be extended to the general nonlocal expression  
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Eq. (18) fits the structure of Eq. (5). Next, a general solution of Eq. (16) may be found as [28] 
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Hence, Eq. (19), at discrete localizations for both an actual central DOF (iaxi = ) and the 

neighboring DOFs ( ( )ajix ji ±=± ) equal: 
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Based on the similarities between Eq. (5) and Eq. (18), and definition of the coefficients jk  

given by Eq. (15), which are adapted to the case of diffusion equation, a convergence analysis for 

analytical and numerical solutions is carried out in the following. The calculations are performed for 

an exemplary explicit nonlocal FD scheme when 2=N  (with index q  for discretized time domain) 
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First, a theoretical spatial partial derivative for the i-th DOF is calculated, which takes the form 
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which, in turn, converges  for 0→a  to 

( ) ( ) 2/2
0

2

22

0 24

2
lim +→

−=−
ni

a t

T

t

tai
tT  (24) 

Then, the respective derivative for the numerical case may be found from the expression 
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After: (i) substitution the quantities ( )tT ji ±  in Eq. (25) using Eq. (21) and (ii) application of the 

Taylor series theory to the derived exponential expressions, the derivative  
( )
2

2

x

tTi

∂
∂

 in Eq. (25) 
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reaches the limit calculated in Eq. (23). This confirms the convergence of the proposed spatial 

nonlocal FD scheme in diffusion equation. For the time domain a standard forward Euler method is 

used, as shown in Eq. (22). 

Finally, von Neumann stability analysis is carried out to derive stability condition for the 

exemplary scheme (22), which considers 2=N . The condition is found to be 
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Condition (26) may by transformed to the final form 

4/1/ 2 ≤∆ atα  (27) 

Hence, the scheme (22) is stable if the time step t∆  does not exceed ( )α4/2a . 

5. Applications – numerical cases for diffusion equation 

A straightforward 1-D model is taken into account to show capabilities of the proposed FD schemes 

for the diffusion equation – including the example defined by Eq. (23). Thermal conductivity 

mechanism in a 30cm-long aluminum rod is under study. The material properties are: k =

200W/(mK) , ρ =2100kg/m2, pc =900J/(kgK).  Arbitrarily chosen temperature initial condition is 

presented in Fig. 1(a). Fig. 1(b) shows temperature distributions captured in the model after t =1.4s. 

(a)     (b)  

Figure 1.   Numerical simulations for thermal diffusion in a 1-D model of an aluminum rod: (a) initial 

temperature distribution, (b) temperature distribution for various order of nonlocality N  

including the referential plot. 

The total errors (i.e. absolute errors summed for all DOFs) decrease as the order of nonlocality 

N  increases. These errors equal: 2.22degC (1=N ), 1.56degC ( 2=N ) and 0.77degC ( 4=N ). 
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Various meshes are also used for transient analyses. As confirmed by the obtained results, as an 

example, a four-time denser mesh (i.e. with four times smaller a  equaled to 0.0025m), which is 

applied with a local approach when 1=N , may compete with a nonlocal scheme built for 4=N  

(considering the model exhibiting a crude mesh - with the distance between DOFs a =0.01m), i.e. it 

may provide more accurate results, i.e. of smaller total error - 0.0869degC. Similarly, the local case of 

a =0.005m with the total error 1.1617degC corresponds to the nonlocal case characterizing a =0.01m 

and 2=N  (with total error - 1.56degC). This model behavior justifies the usage of rather crude mesh 

considering nonlocal interactions. One may take an advantage of less memory occupation and faster 

calculations due to considerable smaller number of DOFs in the model. Hence, less populated 

domains of spatially distributed model’s DOFs may be also taken into account. 

6. Summary and concluding remarks 

The work presents efficient FD based nonlocal schemes dedicated for solving dynamic problems 

governed by second-order PDEs. Specifically, diffusion equation is of concern. The theory of the 

elaborated approach is illustrated with exemplary results showing its capabilities. 

The following conclusions should be highlighted regarding applicability of the present work. 

First of all, as confirmed with the results, less dense meshes may be applied in numerical models - 

accompanied by the proposed nonlocal problem statements - without any noticeable loss of quality. 

This issue may be critical for the models with complicated geometry or topology, in case when 

computer resources are limited. Second, within the same spatial discretization used, more accurate 

results may be achieved by increasing the order of nonlocality. Mitigation rate for numerical 

dispersion increases while introduction more and more long-range interaction terms into the FD 

scheme.  

The elaborated schemes present a general approach to the techniques of model discretization. In 

the authors’ opinion, they are capable of solving other types of problems for various physical domains 

described by PDEs. In fact, based on the presented theory, it seems possible to increase the scope of 

possible applications for the investigated theory, which is considered by the authors as future work. 
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On solutions of biharmonic problems

Hovik Matevossian, Michail Nikabadze, Armine Ulukhanian

Abstract: For solving biharmonic problems with application to radar imaging,
we need to solve boundary value problems for the Poisson equation using the
scattering model. In addition, no information about boundary values is avail-
able. In order to select suitable solutions, we solve the Poisson equation under
the side condition that some criterion function, usually a Sobolev norm, should
be minimized. Under appropriate smoothness assumptions these problems may
be reformulated as boundary value problems for the biharmonic equation.

1. Introduction

Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain with connected boundary ∂Ω, and

Ω ∪ ∂Ω = Ω = is the closure of Ω. We consider the following boundary value problems for

the biharmonic equation in Lipschitz domains:

∆2u(x) = f(x), x ∈ Ω (1)

with the Navier boundary conditions

u = g, Mu ≡ σ∆u+ (1− σ)
∂2u

∂ν2
= h1, on ∂Ω, (2)

or the Neumann boundary conditions

Mu ≡ σ∆u+ (1− σ)
∂2u

∂ν2
= h1,

Nu ≡ ∂∆u

∂ν
+ (1− σ) div∂Ω(∂2u · ν)∂Ω = h2, on ∂Ω, (3)

where ν is the outward unit normal to ∂Ω, and 1
n−1

< σ < 1, σ is a constant known as

the Poisson ratio. A unique solution u (modulo linear functions) is obtained in the class of

solutions with non-tangential maximal function of the second-order derivatives in Lp(∂Ω).

The corresponding Poisson problem is well-posed unless σ = 1.
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Note that standard elliptic regularity results are available in [3]. This monograph

covers higher order linear and nonlinear elliptic boundary value problems, mainly with the

biharmonic or polyharmonic operator as leading principal part. Underlying models and, in

particular, the role of different boundary conditions are explained in detail. As for linear

problems, after a brief summary of the existence theory and Lp and Schauder estimates, the

focus is on positivity. The required kernel estimates are also presented in detail.

Boundary value problems for a biharmonic (polyharmonic) equation in unbounded do-

mains are studied in [7]– [12], in which the condition of the boundedness of the following

weighted Dirichlet integral of solution is finite, namely

∫
Ω

|x|a|∂u|2 dx <∞, a ∈ R,

where a ∈ R is a fixed number and |∂u|2 denotes the Frobenius norm of the Hessian matrix

of u. The author in [7]– [12] investigates the dimension of the space of the solutions to

the boundary value problems for a biharmonic (polyharmonic) equation, providing explicit

formulas which depends on n and a.

Elliptic problems with parameters in the boundary conditions are called Steklov prob-

lems from their first appearance in [18]. In the case of the biharmonic operator, these

conditions were first considered in [1], [6] and [16], who studied the isoperimetric properties

of the first eigenvalue.

In [2] the boundary value problems for the biharmonic equation and the Stokes system

are studied in a half space, and, using the Schwartz reflection principle in weighted Lq -space

the uniqueness of solutions of the Stokes system or the biharmonic equation is proved.

Notation: C∞0 (Ω) is the space of infinitely differentiable functions in Ω with compact

support in Ω; Hm(Ω) is the Sobolev space obtained by the completion of C∞(Ω) with

respect to the norm

‖u(x);Hm(Ω)‖ =

∫
Ω

∑
|α|≤m

|∂αu(x)|2dx

1/2

, m = 1, 2,

where ∂α ≡ ∂|α|

∂x
α1
1 ...∂x

αn
n

, α = (α1, . . . , αn) is a multi-index, αi ≥ 0 are integers, and

|α| = α1 + · · ·+ αn;
◦
H
m

(Ω) is the space obtained by the completion of C∞0 (Ω) with respect to the norm

||u(x);Hm(Ω)||;
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Definition 1 A solution of the homogenous biharmonic equation (1) in Ω is a function

u ∈ H2(Ω) such that for every function ϕ ∈ C∞0 (Ω), the following integral identity holds:∫
Ω

∆u∆ϕdx =

∫
Ω

f ϕ dx.

In Section 2 we will derive the mathematical model used for describing the radar process.

In our parametrization the unknown is the height function H. As will be shown in Section 2

the height function is determined in two steps. In the first step L(H), with L a certain second-

order differential operator, is determined. After retrieving H the equation L(H) = f must

be solved. To a good approximation the operator L can be replaced by the Laplacian. So

the second step simply consists of solving the Poisson equation over some smooth bounded

domain, usually a rectangular region in the plane. The problem here is that no natural

boundary conditions are available.

In Section 3 we discuss different possibilities of defining a unique height function. Es-

sentially our approach consists in minimizing some norm of the solution provided that it also

satisfies the Poisson equation. In particular we consider the L2- and H1-norms. We also

show how these two optimization problems may be reformulated as boundary value problems

for the biharmonic equation.

As applications, in [14], the eigenvalue problems of the symmetric tensor-block matrix

of any even rank and sizes 2 × 2 is studied. Some definitions and theorems are formu-

lated concerning the tensor-block matrix. Formulas expressing the classical invariants of the

tensor-block matrix of any even rank and sizes 2×2 through the first invariants of the powers

of this tensor-block matrix are given. As a special case, we consider the tensor-block matrix

of the elastic modulus tensors. The canonical representation of the tensor-block matrix is

given. Using this representation, we get the canonical forms of the elastic strain energy and

the constitutive relations. Besides, a classification of the micropolar linear elastic anisotropic

bodies that do not have a center of symmetry is given. In [15], some questions about the

parametrization of three-dimensional thin body with one small size under an arbitrary base

surface and the changing of transverse coordinate from 1 to 1 are considered. The vector

parametric equation of the thin body domain is given. In particular, we have defined the

various families of bases and geometric characteristics generated by them.

2. A scattering model

Here we will briefly discuss the mathematical inverse problem to be resolved in order to

recover the ground topography height function from radar data. First cylindrical coordinates

(r, ϕ, z) are introduced according to Fig. 1, where it is understood that the aircraft is flying

at a constant speed along the z-axis. Further r denotes the distance from a point on the
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Figure 1. The ground surface measured at a fixed aircraft position.

Figure 2. The measuring geometry as seen from above.

ground surface to the z-axis and ϕ is the angle between radius vector and a horizontal plane

through the z-axis. Then the ground surface may be described by a function H(r, z) through

the equation

H(r, z)

r
− ϕ = 0. (4)

When r is large, −H(r, z) is approximately a Cartesian height function. Fig. 2 shows

a top view of the same scene. We have also indicated an aspect vector from the aircraft to

some point on the ground, forming an angle θ with a vertical plane through the aircraft.

Normalized to unit length, the aspect vector is denoted by n̂.
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Accordingly

n̂ = cos θ r̂(ϕ) + sin θ ẑ. (5)

Here r̂(ϕ) denotes the cylindrical unit basis vector corresponding to the r-coordinate for

the ground point as shown in the Fig. 2. For a point on the ground surface with coordinates

(r, ϕ, z) we obtain, from Eq. (4), the following expression for the ground surface normal m̄,

m̄ = grad

(
H(r, z)

r
− ϕ

)
=
∂(H/r)

∂r
r̂ +

1

r

∂H

∂z
ẑ − 1

r
ϕ̂. (6)

Let m̂ denote the normalized normal. Then

m̂ ◦ n̂ =

(
r cos θ

∂(H/r)

∂r
+ sin θ

∂H

∂z

)
/

√
1 +

(
∂(H/r)

∂r

)2

+

(
∂H

∂z

)2

. (7)

Note that (r, ϕ, z) in Eq. (7) are related to the ground surface point and not to the

position of the aircraft.

Figure 3. The coordinate system used to describe an infinitesimal surface element, dS.

Let (z0, 0) be a position of the aircraft and R the distance to some point on the surface.

According to Fig. 3 the coordinates (r, z) are then equal to (z0 + R sin θ,R cos θ). Next, to

obtain a scattering model we will assume that the reflectivity from a ground surface element

(see Fig. 4) is

≈ m̂ ◦ n̂
R

dRdθ. (8)
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Figure 4. The infinitesimal surface element, dS, as it is seen from the aircraft.

From Fig. 4, where a vertical plane through (z0, 0) (the aircraft) and the ground point

(z0 + R sin θ,R cos θ) is displayed, we conclude that the solid angle dΩ under which the

surface element dS is seen from the antenna is approximately

dR cosαRddθ

R2
= −m̂ ◦ n̂

R
dRdθ.

In expression (8) we are consequently assuming that the local reflectivity is proportional to

the solid angle occupied by the infinitesimal surface element dS. The total reflected signal

G(R, z0)

from all points at a distance R from the antenna may now be obtained by integration

over the circle C(R, z0) = {(r, z) : (z − z0)2 + r2 = R2} in Fig. 3.

G(R, z0)dR = c

∫ π

−π

m̂ ◦ n̂(z0 +R cos θ,R sin θ)

R
dθdR

i.e.

RG(R, z0) = c

∫ π

−π
m̂ ◦ n̂(z0 +R cos θ,R sin θ)dθ. (9)

Assuming that m̂ ◦ n̂ is small Eq. (7) may be replaced by

m̂ ◦ n̂ = r cos θ
∂(H/r)

∂r
+ sin θ

∂H

∂z
.

By inserting this into Eq. (9) we get, after multiplying by R,

R2G(R, z0) = c

∫ π

−π

(
rR cos θ

∂(H/r)

∂r
+R sin θ

∂H

∂z

)
dθ.
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Using the parametrization

z = z0 +Rsinθ, r = Rcosθ,

this may be rewritten as a curve integral over C(R, z0), with dz = R cos θdθ and dr =

−R sin θdθ,

R2G(R, z0) = c

∫
C(R,z0)

(
r
∂(H/r)

∂r
dz − ∂H

∂z
dr
)
. (10)

By applying Green’s formula we get

R2G(R, z0) = c

∫∫
D(R,z0)

L(H)(r, z)dzdr, (11)

where D is the disc, D(R, z0) = {(r, z) : (z − z0)2 + r2 ≤ R2} and

L(H) =
∂

∂r

(
r
∂

∂r
(H/r)

)
+

∂2

∂z2
(H). (12)

The problem of finding the height function H from radar data G(r, z) may now be

divided into two parts.

(a) First solve the integral equation (11) for L(H)(r, z) = f(r, z).

(b) Next solve the partial differential equation

L(H) = f (13)

forH. We note that if r is large and if m̂◦n̂ is small it is reasonable to make the approximation

L(H) ≈ ∂2H

∂r2
+
∂2H

∂z2
= ∆H

so that Eq. (13) becomes Poisson’s equation. To consider the first problem (a), both members

in Eq. (11) are differentiated with respect to R. Then we get

1

R

d

dR
(R2G(R, z0)) = c

∫ π

−π
L(H)(z0 +R cos ν,R sin ν)dν,

where the right-hand side is proportional to the average of L(H) over the circle C(R, z0). In

[2] an explicit solution is given for this problem of recovering the function L(H)(r, z) when

the average of L(H) is known for all circles C(R, z0) with center on the z-axis and with

arbitrary radius R. The solution formula is

L(H)(F,F )(σ, ω) ∼ |ω|
[ 1

R

d

dR
{R2G(r, z)}

](F,H0)
(σ,
√
ω2 + σ2). (14)

Here the notation (F, F ) means that we have taken the Fourier transform with respect to

both the variables and (F,H0) means that we have taken Fourier transform with respect
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to the first variable and the Hankel-zero transform with respect to the second. After some

calculations Eq. (14) may be rewritten

L(H)(F,F )(σ, ω) ∼ |ω|
√
ω2 + σ2[RG(r, z)](F,H1)(σ,

√
ω2 + σ2). (15)

Formula (15) may now be used in order to recover the function L(H) in spatial coordi-

nates. Of course, approximating L(H) by ∆H we could rewrite Eq. (15) as

H(F,F )(σ, ω) ∼ |ω| 1√
ω2 + σ2

[RG(r, z)](F,H1)(σ,
√
ω2 + σ2), (16)

where H1 denotes that we have taken the Hankel-one transform with respect to the second

variable. Then we could obtain H directly by a two timensional Fourier transform. However,

our solution might be expected to have errors caused by, e.g. noisy radar data and errors

caused by the particular numerical implementation of the inversion formula (14) (or Eq. (15))

and therefore we would rather prefer to divide the solution procedure into the two steps

described above and to use the second step, the solution of Poisson’s equation, so that we

perform some kind of regularization of the final solution. Note also that by using Eq.(16) as

our solution formula we have tacitly assumed periodic boundary conditions for the Poisson

equation.

3. Solution concepts for the Poisson equation

In the domain Ω we consider the following boundary value problems for the Poisson equation

∆u = f(x), x ∈ Ω (17)

with the boundary conditions

u = g on ∂Ω, (18)

and

u = g, ∇u · ν = h on ∂Ω (19)

Finally for Ω a rectangular region in, e.g., the plane

Ω = {(x, y) : a < x < b, c < y < d}, (20)

there may be the following boundary conditions

u(a, y) = u(b, y), u(x, c) = u(x, d), (21)
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and u(a, y) = u(b, y), u(x, c) = u(x, d),

ux(a, y) = ux(b, y), uy(x, c) = uy(x, d)
(22)

Lemma 1 Let u and w be solutions of Eq. (17) satisfying the Dirichlet boundary conditions

(18) with g = g1 abd g = g2, respectively. Assume f ∈ C(Ω), g1, g2 ∈ C(∂Ω) and that ∂Ω is

Lipschitz. Then

||u− w||∞,Ω ≤ ||g1 − g2||∞,∂Ω.

Hence the Dirichlet problem is well posed in the sence that small pertutbations in the

boundary values result in small perturbations in the solution.

We now consider a different way to select a solution to Eq. (17). Here we use a criterion

function and optimize this criterion over the set of solutions to the Poisson equation. As

discussed in Section 2 the physical interpretation of u(x, y) is a surface function. A possibility

is to pick out the smoothest surface (in some sense) that fulfills Eq. (17). We propose to use

Sobolev space norms as criterion functions. Denote by Vf,i the following set:

Vf,i = {u ∈ Hi(Ω) : ∆u = f, f ∈ L2(Ω)}, i = 0, 1, 2, (23)

where H0(Ω) = L2(Ω).

The equality ∆u = f is to be interpreted in the sense of distributions. i.e.,∫
Ω

u∆ϕdx =

∫
Ω

fϕ dx, ∀ϕ ∈ C∞0 (Ω).

Lemma 2 Vf,i is a closed, convex and nonempty set of Hi(Ω).

Let α be a multiindex and β1 > 0 a given parameter. We consider the following opti-

mization problems:

minu∈Vf,0 ||u||
2
2, (24)

and

minu∈Vf,1 ||u||
2
2 + β1

∑
|α|=1

||∂αu||22. (25)

Theorem 1 Problems (24) and (25) have unique solutions u0 and u1 respectively.

We conclude this section by a theorem relating the solution of problems (24) and (25).

First we recall the following definition.
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Definition 2 Ω ⊂ Rn is called star-shapet if there exists x0 ∈ Ω such that for all x ∈ Ω the

set {t ∈ R : x0 + t(x− x0) ∈ Ω} is an interval.

Remark 1 All convex sets are star-shaped. Rectangles Ω appearing in our applications are

thus star-shaped.

Theorem 2 Assume that Ω ⊂ Rn is open, bounded and star-shaped. If u1,β1 ∈ H1(Ω)

denotes the solution of problem (25) with the parameter β1 > 0 and if u0 ∈ L2(Ω) denotes

the solution of problem (24), then

u1,β1 → u0 in L2(Ω) as β1 → 0 + .
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Computer model of ground under vehicle’s wheels 

 

Tomasz Mirosław 

Abstract: In this paper author presents new approach to modeling ground behavior 

under pressure of a vehicle’s wheel. The ground under the wheel is deformed by 

compression and displacement in vertical and horizontal direction. Some layer direct 

under tire is abraded, torn and transported by the wheel. The pressure of the tire 

causes deformation which grows with increasing of rolling resistance. The model of 

ground behavior, especially for multi-axle off road vehicle, is very important for 

traction calculation. This model is nonlinear. The running process of ground 

transformation depends on forces, acceleration and time and frequencies repeating 

stresses. In the presented model the ground is divided into cubes/cells which are 

deformed and transform their density and features. Deformed cubic effects its 

neighbors and cause their deformation and forces inside them. The pressed cube in 

first stage is displaced, if it’s movement is blocked cube is deformed and if it is still 

pressed it is transformed to another form of its substance changing its physical 

properties and features. The presented model can also be applied to crushing stones 

and calculating swimming resistance in the water. 

1. Introduction 

The biggest invention in transport – the wheel is known for more than 5000 years. But we still 

are looking for ideal model which can describe all cases of its behaviour on the road surface. These 

models are necessary for transport means designing. They concern the railways, road and off-road 

transportation or vehicles and mobile machineries. We all know how important wheel is for efficiency 

and safety of transport. We spend billions of Euro for tires, hard (asphalt or concrete) roads to make 

the human and goods transport faster and safer. 

But the great part of human activity is off-road. It refers to the construction machinery working 

on the pristine ground or agriculture machinery passing fields. For terrain vehicles generally two 

kinds of propelling systems can be mentioned as the main types: wheeled and track. 

Both have some advantages and disadvantages but for them both, the cooperation with ground is 

the most important thing. For both drives we need to know how to describe processes which are going 

between tire and ground. 

Currently for propelling vehicles we use classical models. Most of these models reflect the 

empirical experiments and observations effects not the process.  

Many authors of models for force calculation use slip “s”  parameter defined as: 

𝑠 = 1 −
𝑉

𝑉𝑡
  (1) 
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where: V – real velocity of a vehicle, 

           Vt – theoretical velocity (circumferential speed of wheel) 

 

Slip does not have any physical representation – it is not possible to measure it and is defined as  

a result of a mathematical operation, and it is defined in different ways by various authors depending 

on wheel action if it is propelled (rotated) by vehicle engine, or it is a braked wheel pushed by the 

vehicle.  

Generally the force between tire and road is calculated with (eq.2.) [1, 2, 3, 4, 6,7, 10, 12,13].  

𝐹(𝑠) = 𝑁µ(𝑠) (2) 

where: F – propelling force, 

 N – load (weight of a vehicle), 

 µ(s) – friction coefficient depending on slip 

 

In literature we can find various relations µ(𝑠) as well as the definitions of slip. 

 

Figure 1.   Diagram of the wheel’s slip as a function of the propelling force coefficient [18]. 
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Figure 2.   Gross traction T/r, circumferential force T/r-FRi and net traction Fp in dependence on the 

slip σ. [17] 

On of commonly used model was developed by Schreiber, Kutzbach [7] who based on other 

authors like Grecenko, Schuring and others. They noticed the difficulties with the slip definition and 

introduced different models for pulled and driven wheel like presented in the paper [16]. Different 

movement possibilities can be seen in diagram depicted in figure 2. 

Such models are very difficult to use in a computer simulation. Referring to the Steinkamof’s 

measurement data, Schreiber and Kutzbach proposed the standardization of tire characteristics [4]. 

The standardized curve was proposed in the form presented in figure 3. [5]. 

 

 

Figure 3.   κ-curve with four characterizing values ρe, α0, κmax and σpull. 

s 
s 
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To find out the right curve some coefficients need to be calculated.  

The most popular examples of propelling force relation to slip is the “Pacejka” magic formula 

commonly used for vehicle behaviour [11] 

It is written in form: 

𝐹(𝑠) = 𝑑 • 𝑠𝑖𝑛{𝑐 •𝑎𝑟𝑐𝑡𝑎𝑛[𝑏 • (1 − 𝑒) • 𝑘 + 𝑒 • 𝑎𝑟𝑐𝑡𝑎𝑛(𝑏 • 𝑘)]}· (3) 

 

Where:  F(s) is the propelling force that depends on s (slip),  

 b, c, d and e that represent fitting parameters. 

Each tire can be characterized by ten to twenty coefficients that are mostly determined in an 

experimental way. This formula does not have any logical explanation. It is an experimentally 

obtained engineering tool, but very easy to use especially in computer simulations and we can find it 

in computer games, simulators etc. But the force or slip is found not by physical phenomena analyses 

but by computer solver which suits the output value to equation. The main discomfort situation comes 

from the fact that we can get the same slip for different vehicle speed. 

2. The model 

In paper “The Vehicle Tire Model based on energy flow” [16] it was proved, that the eq. 2 can be 

derived based on energy (power) flow and propelling force depend on the difference between wheel 

circumferential speed and vehicle speed. Shortly if we take the power which is needed to propel the 

vehicle as the: 

𝑃 = 𝐹 • 𝑉 (4) 

Where: F – propelling force, (produced in the tire-ground contact area) speed of vehicle,. 

The power which is going to the road as the effect of Viscous friction force depends on the 

mutual speed of the two rubbing against each other surfaces, in case of the wheel moving on a 

pavement, where V is the velocity of a vehicle and Vt is the velocity of the tire-ground contact area, it 

equals: 

𝑃 = 𝑇 • (𝑉 − 𝑉𝑡)                                                   (5) 

After comparing both equations following is obtained: 

𝐹 • 𝑉 = 𝑇 • (𝑉 − 𝑉𝑡) (6) 

Hence: 

𝐹 = 𝑇 •
𝑉−𝑉𝑡

𝑉
 ( ) 

Taking into account that for the zero slip value the static friction occurs with its maximum value 

(Fmax) proportional to the weight:  

𝐹 = 𝐹𝑚𝑎𝑥 = 𝑁 • µ (8) 

where:   N – vehicle load, 

 µ - traction coefficient (determines grip between the tire and the ground). 
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Coherent notation of above mentioned relationships needs to be done: 

 

𝐹 = 𝑁 •
µ(𝑉−𝑉𝑡)

𝑉
= 𝑁 • µ(𝑠) (9) 
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Figure 4.   Model of a wheel-ground cooperation for a vehicle. 
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 So the energy flow model can be used to vehicle propelling force evaluation. Normally we can 

expect that some additional layers between tire and solid ground are present and take part in this 

energy flow. So the multilayer (cascade) model of a wheel-ground cooperation was developed [11]. It 

is based on energy flow and forces acting between individual layers. 

Model depicted in figure 4. consists of four similar layers: a wheel, thread blocks, a movable 

intermediate layer and an immovable (solid)  ground. The vehicle is modelled by a mass and an 

acceleration integrating system that outputs the velocity. All the layers consist of “friction” block 

which inputs are: the force (from moment) propelling given layer and the mutual velocity of two 

cooperating layers. This block’s outputs are: the resultant force that propels an element of a given 

layer, the amplifying system that represents inertia of a given element and the integrating elements 

that are connected in series.  

 

Between a wheel and a thread block occurs a conversion of moments into forces by dividing 

moments by dynamic radius Rd. In the model multiplication by a reciprocal of a dynamic radius 

(1/Rd) was used. 

Depending on a layer type the driving force is decreased by the motion resistance of the inner 

layer. Friction block is depicted in figure 5. Input signals are: the driving force and the velocity and 

output signals are: the friction force and the propelling force. Friction force acts between the adjacent 

layers and propelling force causes the acceleration of an element of the layer. Friction force value 

depends on the velocity.  

Friction block has a maximum value limit. That corresponds to the force when wearing off of an 

element appears – once the grip loss (friction loss) appears. Presented friction model describes well 

the rolling resistance that appears in the part of the model describing the vehicle. 

In the model depicted in figure 4. Mutually moving elements can act on each other with elastic 

forces likewise between a tire and thread blocks. Stopped thread blocks twist and act on the tire with 

the force dependent on the position difference between the block end and the block origin (base, that 

is joined with a tire).  

Presented model shows basic types of interactions i.e. friction and elastic force of mutual 

deflection. This model can be extended with more layers. 

Simulations tested behaviour of the system. Between the thread blocks and the pavement appears 

the moving layer and the limitation of the maximum friction value between layers influences the 

motion.  
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Figure 5.   Friction model. 

Testing the model showed a very good consistence of appearing phenomena during simulation 

with the observations of reality [19] for some types of thin layers like water or sand. This model does 

not work properly when we take account thicker and deformable layers of sand or mud.   

3. Ground model problem 

When we are talking about an off-road vehicle we are thinking about wading of sand, mud and 

rocky roads. The vehicle sinking in the wet sand etc. But the ground effects on vehicle. We all 

experienced that the ground reaction depends on the movement speed. We can pass a muddy ground 

if we start with high speed and we can stay in it if this speed is too low. When we move on the sand it 

is beeing deformed, replaced and changes the structure and its properties. So the rear wheel moving in 

the trace of tha front wheel is in fact riding on the different surface than the front one. This effect 

have great influence on vehicle’s behaviour.  

 

–  

Figure 6.   An example of wheel trace on the sand 
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The modeling of ground which can move, change the shape and structure, is a very attractive 

problem. 

The assumption for the model is that it should reflect process of deformation and soil 

compacting. 

Figure 7 presents taken model of ground behavior. Under increasing pressure the ground is 

deformed. For small pressure which doesn’t overcome the solid bearing capacity, the ground comes 

back to previous shape after the load releases.  If the pressure is bigger than critical load, the process 

of condensation is started, and the density of ground increases. So after the load releases ground 

comes back to other shape. The condensation of ground needs time and runs with inertia. The critical 

bearing of ground and the constant time of condensation inertia depends on density which is changing 

under load. The example of compaction process is presented on figure 7. In figure 7a load F is 

increasing from 0 to Fkp1 . If the F doesn’t reach Fkp1 and it is realized , the ρk density comes back to 

the initial value ρ0 on curve 1 if  F overcomes the Fkp1 the density comes back to value ρ1 on curve 2. 

And so on. The process of compaction is running in time as it is presented in Figure 7b. Of course in 

normal ground there critical values of force and time are not so quantized. It is pointed out only for 

concept presentation. 

 

 

Figure 7.   The ground characteristic a) density in relation to load b) density in time for constant load. 

Ground under load is: 

 moved in two dimensions 

o orthogonally in deep as effect of pressure and effects on layers bellow 

o vertically being pushed by rotating tire and effects on ground ahead and back of 

rotating  

 deformed in 3 dimension: it is oblate under wheel and pushed on sides effecting on adjacent 

ground, causing its deformation, like uplift etc. 
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 compacting increases the density. 

 

The ground is modeled as the net of cells with 3D elasticity and damping features. A concept of 

the ground model in 2D version is presented in figure 8a. It is a system of springs and dampers of 

varying parameters. When the cell is compressed the internal pressure Pp is balanced by force of 

springs and dampers in all dimensions. 
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Figure 8.   a) The 2D cellular  model of ground. B) 3D cellular model of ground 

If the ground is loaded the movement and deformation process starts. In figure 9 some cases of 

deformation are presented. Figure 9a presents the model when the wheel is put on the ground and the 

cell under it is compressed and the neighboring one is uplifted. I case on figure 9b wheel is pushed 

and effects on the cell ahead. When wheel starts to rotate under friction force, the cell pushes the cell 

ahead with lower force. If wheel is propelled with motor (moves slower than its circumferential 

speed) it pushes ground under itself to the back and compresses the cell ahead. 
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Figure 9.   The model of wheel cellular ground cooperation 

The model of 2D ground cell is presented in figure 10. The input is the speed of movement of the 

adjacent cell or the wheel. If the end of cell in moving with different speed the cell is being deformed 

in this dimension. It causes the resistance force proportional to speed of shape to change and the 

volume of the cell too. The internal pressure increases and gives the forces propelling the wall of cell 

in all directions and reaction force. This pressure changes the shape of the cell, for instance when X 

dimension is decreasing the Y dimension would increase. The coefficients of volume elasticity Kv 

and directional dampers kvx, kvy depend on density which is changing under internal pressure pin. 
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Figure 1. Model of 2D ground cell 

 

∫ dt 
pin 

+ 

ρ0 

T(ρ) 

 

τ(ρ) 

 

τ(ρ) 

 

ρ(pin) 

 

Figure 10. The model of ground compaction process ρ(t) 

The pin is given to the dead zone block which limits depending on cell density. If pressure pin 

overcomes the limit which represents the limit of elasticity, the process of compaction starts as the 

inertial changing of density and the value of coefficients.  The function coefficients value can be 

stored in matrix or written as the function. Normally with the rising pressure the density increases, but 

if it overcomes the limit value the ground can be broken (crashed) for instance when sample of 

ground is pressed without side supporting-reacting bodies. 
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When we resign from structure transformation and keep the elasticity in whole range we get such 

environment of movement like air or water. The model of water acting on vehicle is presented on 

figure 12. The water buoyant and dynamic resistance forces act on the vehicle.  
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Figure 11. The model of water reaction based on cellular concept 

 

Figure 12. The example of cellular net model made in Matlab/Simulink 
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Figure 13. Examples of simulation results. The answer of ground for compactor hit. The 

direction of hit reaction is force direction and causes increase of internal pressure and 

density increase. 

4. Conclusions 

The presented modelling concept reflects quite good ground behaviour under wheel of moving 

vehicle. It shows the deformation, replacing and compaction of the ground. Simulation results are 

qualitatively consistent with the observations. 

 This is a modular model, so it can be adjusted to various types of materials. 

 This is a dynamic model therefore it cannot be used to determine the forces values or 

the slip values in a specific time moment without continuous analysis. 

 This model can be used for environment resistance and bearing force calculation like 

ground, mud, water. 

 This nonlinear method (relations between elasticity, damping and conversion limit 

forces) can be used for simulations of the rock crashing or other materials feature 

simulation. 

 Together with layer model method can be used for vehicle behaviour simulations. 

 This model can be easily readjusted to the dimensions what would allow modelling 

a tire-ground cooperation during making a turn. 

 While changing model parameters of the individual layers behaviour of the system can 

by modified. 
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Existence conditions for fractional order PI/PD controllers  

 

 

Cristina I. Muresan, Isabela R. Birs, Clara M. Ionescu, Robin De Keyser 

Abstract: Fractional order Proportional Integral (FO-PI) and Proportional Derivative 

(FO-PD) controllers are increasingly used in controlling various types of processes, 

with several papers demonstrating their advantage over the traditional PI/PD 

controllers. Quite frequently the design of these FO-PI/FO-PD controllers is based on 

a set of performance specifications that refer to the open loop gain crossover 

frequency, phase margin and the iso-damping property. These three performance 

specifications lead to a system of three nonlinear equations that need to be solved in 

order to determine the three tuning parameters of the controllers. However, it might 

occur that for a certain process and with some specific gain crossover frequency and 

phase margin values, the computed parameters of the FO-PI/FO-PD controllers do not 

fall into a range of values with correct physical meaning. In this paper, a study 

regarding this limitation, as well as the existence conditions for the FO-PI/FO-PD 

parameters are presented. The paper shows that given a specific process and open 

loop modulus and phase specifications, the gain crossover frequency (or in general, a 

certain test frequency used in the design) must be selected such that the process phase 

fulfills an important condition. Once this is met, the proposed approach ensures that 

the tuning parameters of the fractional order controller will have a physical meaning. 

Illustrative examples are included. 

1. Introduction  

Fractional calculus represents the generalization of the integration and differentiation to an arbitrary 

order. Its application to control theory has been postponed due to its inherent complexity [1]. 

However, recent advances in computation made possible its use in control engineering, with an 

increasing popularity in modeling and controller design [2-4].  

 The fractional order PIμDλ controller, first described by Podlubny [5] is a generalization of the 

classical integer order PID controller. Several papers and researchers have shown that the fractional 

order controllers are generally able to meet more performance specifications and to behave more 

robustly than the traditional PID controller [6-7]. This is due to the supplementary tuning parameters, 

the fractional order of integration, μ, and of differentiation, λ. Special cases of this fractional order 

PIμDλ controller include the fractional order PIμ controller and the fractional order PDλ controller. 

 Several approaches to tuning fractional order PIμ (FO-PI) or PDλ (FO-PD) controllers have been 

proposed so far [6], [8-9]. Quite frequently the design of these FO-PI/FO-PD controllers is based on a 

set of performance specifications. Since both the FO-PI and the FO-PD controller have three tuning 
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parameters, three performance specifications are usually considered in their design. Also, since 

frequency domain is more appealing to control engineers and the description of fractional order 

elements is more straightforward than in the time domain, these three performance specifications 

usually refer to the open loop gain crossover frequency, phase margin and the iso-damping property. 

To generalize this approach, the performance specifications refer to a certain modulus and phase of 

the loop transfer function at a specific frequency defined as the test frequency. To tune the FO-PI and 

FO-PD controllers based on these performance specifications, the resulting set of nonlinear equations 

needs to be solved. Several techniques to find the solution exist, ranging from simple optimization 

routines to more complex genetic algorithms or graphical methods [2], [6-7], [10-11].  

 Problems in finding a solution exist, since solving the system of nonlinear equations needs to be 

done by meeting design constraints that refer to a certain range for the fractional order of 

integration/differentiation, as well as for the proportional gain and the integral or derivative time 

constant. These problems, however, can be avoided with a proper choice of the performance 

specifications, namely of the test frequency used in the design. To the best of our knowledge, such a 

study regarding the adequate choice for the test frequency has not been reported so far. In this paper, a 

study regarding the existence conditions for FO-PI/FO-PD parameters is presented. The paper shows 

that given a certain open loop modulus and phase specification, the test frequency must be selected 

such that the process phase fulfills an important condition. Choosing the performance specifications 

such that this condition is met ensures that the tuning parameters of the fractional order controller will 

have a physical meaning. Also, the study shows that given a test frequency and the corresponding 

phase of the open loop transfer function, a minimum value for the fractional order of integration or 

differentiation exists. Illustrative examples are included for validation purposes. 

The paper is structured as follows. Section 2 and 3 present the existence conditions for FO-PI 

and FO-PD controllers, respectively. The mathematical approach to derive the condition for a proper 

selection of the test frequency such that the parameters of these controllers have physical meaning is 

detailed. Section 4 presents numerical examples to validate the mathematical approach in both cases, 

for the FO-PI and the FO-PD controller, respectively. The last section presents the concluding 

remarks, as well as some insights regarding possibilities for future research on this topic. 

 Assume in what follows that the process transfer function is denoted as P(s), the controller 

transfer function is denoted by C(s) and the loop transfer function is L(s). The design is based on 

imposing a certain set of performance specifications on the loop transfer function. Frequently, these 

specifications refer to phase margin, gain crossover frequency and iso-damping [6], [12-13]. The 

result is a specific value for the modulus, 𝑀𝑃𝐶 , and phase, 𝜑𝑃𝐶, of the loop transfer function, at a 

certain frequency, 𝜔̅: 

𝐿(𝑗𝜔̅) = 𝑃(𝑗𝜔̅)𝐶(𝑗𝜔̅) = 𝑀𝑃𝐶𝑒𝑗𝜑𝑃𝐶 (1) 
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For example, if the phase margin, PM, is specified, then 𝑀𝑃𝐶=1, 𝜑𝑃𝐶=-180o+PM and 𝜔̅ is a user 

specified gain crossover frequency. In (1), 𝑃(𝑗𝜔̅) = 𝑀𝑃𝑒𝑗𝜑𝑃  is considered to be fully known and 

could be easily determined via a sine test with the frequency 𝜔̅ [13].  

 In what follows, conditions regarding the choice for the frequency 𝜔̅ are derived for fractional 

order PI and PD controllers, such that their parameters have physical meaning.  

2. Design constraints for parameter ranges of fractional order PI controllers 

The transfer function of a fractional order PI controller is defined as: 

𝐶(𝑠) = 𝐾𝑝 (1 +
1

𝑇𝑖𝑠𝛼
), (2) 

with Kp>0 and Ti>0 the proportional gain and the integral time constant and 0 < 𝛼 < 2 - the 

fractional order. Using (2), the frequency response for the loop transfer function at the test frequency 

𝜔̅ is defined as: 

𝐿(𝑗𝜔̅) = 𝑃(𝑗𝜔̅) ∙ 𝐾𝑝 (1 +
1

𝑇𝑖(𝑗𝜔̅)𝛼
) (3) 

Expanding (3) and separating the unknown and known terms lead to: 

𝐾𝑝 (1 +
cos

𝛼𝜋

2
−𝑗 sin

𝛼𝜋

2

𝑇𝑖𝜔̅𝛼 ) =
𝐿(𝑗𝜔̅)

𝑃(𝑗𝜔̅)
=

𝑀𝑃𝐶

𝑀𝑃
𝑒𝑗(𝜑𝑃𝐶−𝜑𝑃) = 𝑎 + 𝑗𝑏 (4) 

Relation (4) can also be written as: 

𝐾𝑝 (1 +
cos

𝛼𝜋

2

𝑇𝑖𝜔̅𝛼
) (1 − 𝑗

sin
𝛼𝜋

2

𝑇𝑖𝜔̅𝛼+cos
𝛼𝜋

2

) = 𝑎 (1 + 𝑗
𝑏

𝑎
) (5) 

which leads to: 

𝐾𝑝 (𝑇𝑖𝜔̅𝛼 + cos
𝛼𝜋

2
) = 𝑎𝑇𝑖𝜔̅𝛼 and sin

𝛼𝜋

2
= −

𝑏

𝑎
(𝑇𝑖𝜔̅𝛼 + cos

𝛼𝜋

2
) (6) 

Then, using (6) the proportional gain and the integral time constant are determined as: 

𝑇𝑖 = −
1

𝜔̅𝛼 (
𝑎

𝑏
sin

𝛼𝜋

2
+ cos

𝛼𝜋

2
) and 𝐾𝑝 = −

𝑏𝑇𝑖𝜔̅𝛼

sin
𝛼𝜋

2

 (7) 

A couple of conditions arise from (7). For 0 < 𝛼 < 2, then sin
𝛼𝜋

2
> 0; but  Kp>0 implies that 

−
𝑏𝑇𝑖𝜔̅𝛼

sin
𝛼𝜋

2

> 0, which leads to b<0. According to (4), the real and imaginary parts a and b, respectively 

can be computed as: 

𝑎 =
𝑀𝑃𝐶

𝑀𝑃
cos(𝜑𝑃𝐶 − 𝜑𝑃) and 𝑏 =

𝑀𝑃𝐶

𝑀𝑃
sin(𝜑𝑃𝐶 − 𝜑𝑃) (8) 
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Since b<0, it follows that 
𝑀𝑃𝐶

𝑀𝑃
sin(𝜑𝑃𝐶 − 𝜑𝑃) < 0, leading to sin(𝜑𝑃𝐶 − 𝜑𝑃) < 0, which 

ultimately results in −180𝑜 < 𝜑𝑃𝐶 − 𝜑𝑃 < 0𝑜 or: 

𝜑𝑃𝐶 < 𝜑𝑃 < 𝜑𝑃𝐶 + 180𝑜 (9) 

Also, the condition for the integral time constant is Ti>0 or according to (7): 

−
1

𝜔̅𝛼
(

𝑎

𝑏
sin

𝛼𝜋

2
+ cos

𝛼𝜋

2
) > 0   (10) 

leading to: 

𝑎 sin
𝛼𝜋

2
+ 𝑏 cos

𝛼𝜋

2
> 0   (11) 

where the fact that b<0 has been used. Replacing a and b with the result in (8) leads to: 

cos(𝜑𝑃𝐶 − 𝜑𝑃) sin
𝛼𝜋

2
+ sin(𝜑𝑃𝐶 − 𝜑𝑃) cos

𝛼𝜋

2
> 0   (12) 

and to its more compact form: 

sin (𝜑𝑃𝐶 − 𝜑𝑃 +
𝛼𝜋

2
) > 0   (13) 

In order for relation (13) to hold, the following must be valid 0𝑜 < 𝜑𝑃𝐶 − 𝜑𝑃 +
𝛼𝜋

2
< 180𝑜 or: 

𝜑𝑃𝐶 + 90𝑜𝛼 − 180𝑜 < 𝜑𝑃 < 𝜑𝑃𝐶 + 90𝑜𝛼 (14) 

Finally, combining (9) and (14) yields the following conditions: 

𝜑𝑃𝐶 < 𝜑𝑃 < 𝜑𝑃𝐶 + 90𝑜𝛼 and 𝛼 >
𝜑𝑃−𝜑𝑃𝐶

90𝑜  (15) 

As a consequence, in order to determine a valid fractional order PI controller with Kp>0 , Ti>0 

and 0 < 𝛼 < 2, if 𝜑𝑃𝐶 is specified, the test frequency 𝜔̅ must be chosen such that the process phase 

fulfills the condition 𝜑𝑃 > 𝜑𝑃𝐶. Also, the minimum possible value for the fractional order can be 

computed via the second condition in (15).  

3. Design constraints for parameter ranges of fractional order PD controllers 

The transfer function of a fractional order PD controller is defined as: 

𝐶(𝑠) = 𝐾𝑝(1 + 𝑇𝑑𝑠𝛼), (16) 

with Kp>0 and the derivative time constant, Td>0. Using (16), the frequency response for the loop 

transfer function at the test frequency 𝜔̅ is defined as: 

𝐿(𝑗𝜔̅) = 𝑃(𝑗𝜔̅) ∙ 𝐾𝑝(1 + 𝑇𝑑(𝑗𝜔̅)𝛼) (17) 

Expanding (17) and separating the unknown and known terms lead to: 
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𝐾𝑝 (1 + 𝑇𝑑𝜔̅𝛼 (cos
𝛼𝜋

2
+ 𝑗 sin

𝛼𝜋

2
)) =

𝐿(𝑗𝜔̅)

𝑃(𝑗𝜔̅)
=

𝑀𝑃𝐶

𝑀𝑃
𝑒𝑗(𝜑𝑃𝐶−𝜑𝑃) = 𝑎 + 𝑗𝑏 (18) 

Relation (18) can also be written as: 

𝐾𝑝 (1 + 𝑇𝑑𝜔̅𝛼 cos
𝛼𝜋

2
) (1 + 𝑗

𝑇𝑑𝜔̅𝛼 sin
𝛼𝜋

2

1+𝑇𝑑𝜔̅𝛼 cos
𝛼𝜋

2

) = 𝑎 (1 + 𝑗
𝑏

𝑎
) (19) 

which leads to: 

𝐾𝑝 (1 + 𝑇𝑑𝜔̅𝛼 cos
𝛼𝜋

2
) = 𝑎 and 𝑇𝑑𝜔̅𝛼sin

𝛼𝜋

2
=

𝑏

𝑎
(1 + 𝑇𝑑𝜔̅𝛼 cos

𝛼𝜋

2
) (20) 

Then, using (20) the proportional gain and the derivative time constant are determined as: 

𝑇𝑑 =
1

𝜔̅𝛼(
𝑎

𝑏
sin

𝛼𝜋

2
−cos

𝛼𝜋

2
)
 and 𝐾𝑝 =

𝑏

𝑇𝑑𝜔̅𝛼sin
𝛼𝜋

2

 (21) 

For 0 < 𝛼 < 2, then sin
𝛼𝜋

2
> 0; but  Kp>0 and using (21), it follows that 

𝑏

𝑇𝑑𝜔̅𝛼sin
𝛼𝜋

2

> 0, which 

leads to b>0.  

Since b>0 and using (8), it follows that 
𝑀𝑃𝐶

𝑀𝑃
sin(𝜑𝑃𝐶 − 𝜑𝑃) > 0, leading to sin(𝜑𝑃𝐶 − 𝜑𝑃) > 0, 

which ultimately results in 0𝑜 < 𝜑𝑃𝐶 − 𝜑𝑃 < 180𝑜 or: 

𝜑𝑃𝐶 − 180𝑜 < 𝜑𝑃 < 𝜑𝑃𝐶 (22) 

Also, the condition for the derivative time constant is Td>0 or according to (21): 

1

𝜔̅𝛼(
𝑎

𝑏
sin

𝛼𝜋

2
−cos

𝛼𝜋

2
)

> 0   (23) 

leading to: 

𝑎 sin
𝛼𝜋

2
− 𝑏 cos

𝛼𝜋

2
> 0   (24) 

where the fact that b>0 has been used. Replacing a and b with the result in (8) leads to: 

cos(𝜑𝑃𝐶 − 𝜑𝑃) sin
𝛼𝜋

2
− sin(𝜑𝑃𝐶 − 𝜑𝑃) cos

𝛼𝜋

2
> 0   (25) 

and to its more compact form: 

sin (
𝛼𝜋

2
− 𝜑𝑃𝐶 + 𝜑𝑃) > 0   (26) 

In order for relation (26) to hold, the following must be valid 0𝑜 <
𝛼𝜋

2
− 𝜑𝑃𝐶 + 𝜑𝑃 < 180𝑜 or: 

𝜑𝑃𝐶 − 90𝑜𝛼 < 𝜑𝑃 < 𝜑𝑃𝐶 − 90𝑜𝛼 + 180𝑜  (27) 

Finally, combining (22) and (27) yields the following conditions: 
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𝜑𝑃𝐶 − 90𝑜𝛼 < 𝜑𝑃 < 𝜑𝑃𝐶 and 𝛼 >
𝜑𝑃𝐶−𝜑𝑃

90𝑜
 (28) 

As a consequence, in order to determine a valid fractional order PD controller with Kp>0 , Td>0 and 

0 < 𝛼 < 2, if 𝜑𝑃𝐶 is specified, the test frequency 𝜔̅ must be chosen such that the process phase 

fulfills the condition  𝜑𝑃 < 𝜑𝑃𝐶. Also, the minimum possible value for the fractional order can be 

computed via the second condition in (28).  

4. Numerical examples 

Two numerical examples are considered: the first for the design of a FO-PI controller and the second 

one for the design of a FO-PD controller. We assume in what follows that the fractional order of 

integration or differentiation has been determined using some other tuning technique.  

 Consider the first order transfer function given as: 

𝑃(𝑠) =
10

0.5𝑠+1
 (29) 

A fractional order PI controller needs to be designed, with the transfer function as indicated in 

(2), such that the phase margin of the loop frequency response (FR) is PM=60o. Then, the loop FR 

phase is determined as: 

𝜑𝑃𝐶 = −180𝑜 + 𝑃𝑀 = −120𝑜 (30) 

Assume in this case that the fractional order of integration has been determined using some 

tuning technique to be α=0.3. Then, according to the first condition in (15), the following must hold: 

  

−120𝑜 < 𝜑𝑃 < −120𝑜 + 90𝑜𝛼 or −120𝑜 < 𝜑𝑃 < −93𝑜 (31) 

 

It is clear from here that no test frequency 𝜔̅ can be selected such that the condition in (31) holds. 

Assume that the fractional order of integration has now been determined to be α=0.7. Using the first 

condition in (31), the following must hold for the FO-PI parameters to have physical meaning: 

 

−120𝑜 < 𝜑𝑃 < −120𝑜 + 90𝑜𝛼 or −120𝑜 < 𝜑𝑃 < −57𝑜 (32) 

 

In this case a test frequency 𝜔̅ can be selected such that the process phase 𝜑𝑃 ∈ (−120𝑜, −57𝑜).  

Using the Bode diagram of the process in (29), as indicated in Fig. 1, this test frequency is selected to 

be 𝜔̅ = 10 𝑟𝑎𝑑/𝑠, the gain crossover frequency for the loop FR. Hence, 𝑀𝑃𝐶 = 1. According to Fig. 

1, the modulus and phase of the process FR at the test frequency are 𝑀𝑃 = 5.84𝑑𝐵 = 1.96 and 𝜑𝑃 =

−78.7𝑜, value that meets the condition in (32).  The parameters a and b are determined using (8): 
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𝑎 = 0.3833 and 𝑏 = −0.3367 (33) 

Notice that b<0, as determined in Section 2 above. The parameters of the FO-PI controller can 

now be computed based on (7): 

 

𝑇𝑖 = 0.1118 and 𝐾𝑝 = 0.2117 (34) 

 

Notice that since condition (32) has been met, the parameters of the FO-PI controller have 

physical meaning, with Ti>0 and Kp>0. Notice that the second condition in (15) also holds: 

 

𝛼 >
120𝑜−78.7𝑜

90𝑜 ⟹ 𝛼 > 0.459 (35) 

 

Figure 1.   Bode diagram for the first numerical example 

 Consider the process transfer function given as: 

𝑃(𝑠) =
10

𝑠(0.5𝑠+1)
 (36) 

A fractional order PD controller needs to be designed, with the transfer function as indicated in (16), 

such that the phase margin of the loop FR is PM=45o
. Then, the loop FR phase is determined as: 

 

𝜑𝑃𝐶 = −180𝑜 + 𝑃𝑀 = −135𝑜 (37) 

 

Assume in this case that the fractional order of differentiation has been determined using some 

tuning technique to be α=0.3. Then, according to the first condition in (28), the following must hold:  

 

−135𝑜 − 90𝑜𝛼 < 𝜑𝑃 < −135𝑜 or −162𝑜  < 𝜑𝑃 < −135𝑜 (38) 
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In this case a test frequency, 𝜔̅, can be selected such that the process phase 𝜑𝑃 ∈

(−162𝑜, −135𝑜). Using the Bode diagram of the process in (36), as indicated in Fig. 2, this test 

frequency is selected to be 𝜔̅ = 4 𝑟𝑎𝑑/𝑠, the gain crossover frequency for the loop FR. Hence, 

𝑀𝑃𝐶 = 1. According to Fig. 2, the modulus and phase of the process FR at the test frequency are 

𝑀𝑃 = 0.976𝑑𝐵 = 1.119 and 𝜑𝑃 = −153𝑜, value that meets the condition in (38).  The parameters a 

and b are determined using (8): 

 

𝑎 = 0.85 and 𝑏 = 0.2762 (39) 

 

Notice that b>0, as determined in Section 3 above. The parameters of the FO-PD controller can 

now be computed based on (21): 

 

𝑇𝑑 =  1.3033 and 𝐾𝑝 = 0.308 (40) 

 

Notice that since condition (38) has been met, the parameters of the FO-PD controller have 

physical meaning, with Td>0 and Kp>0. Notice also that the second condition in (28) also holds: 

 

𝛼 >
𝜑𝑃𝐶−𝜑𝑃

90𝑜 ⟹ 𝛼 > 0.2 (41) 

 

Figure 2.   Bode diagram for the second numerical example 

5. Conclusions 

The design of fractional order PI/PD controllers can be a difficult task due to the nonlinear 

equations or system of equations that need to be solved. Occasionally, a solution for this system of 

equations might yield complex or negative values for the controller parameters, which poses problems 

in terms of control engineering. The existence of a solution with physical meaning is closely linked to 
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the process to be controlled as well as to the imposed performance specifications. So far, an attempt 

to analyze and give some guidelines regarding the choice of these performance specifications has not 

been considered. In this paper a mathematical approach to ensure that the parameters of the fractional 

order controller have physical meaning is presented. The approach considers the frequency domain 

with performance specifications that refer to a certain modulus and phase of the loop FR at a specific 

frequency, referred to as the test frequency. It is shown that given a certain process and a certain 

fractional order of differentiation or integration, the test frequency must be selected such that a 

condition regarding the process phase is achieved. Two numerical examples are presented which 

consider the phase margin and the gain crossover frequency as performance specifications. The 

numerical examples validate the results. The mathematical approach only requires knowledge of the 

process phase and modulus at the test frequency, and not a full mathematical model.  

In this paper, the fractional order of integration/differentiation is assumed to be known apriori. 

Further research, however, includes a procedure to determine this fractional order. 
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Identification of the model of stick balancing using the cepstral
analysis

Dalma J. Nagy, László Bencsik, Tamás Insperger

Abstract: Stick balancing on the fingertip is one of the simplest human bal-
ancing tasks, still it represents the key features of more complex balancing
tasks, namely, an unstable equilibrium should be stabilized in the presence of
a reaction time delay. In order to understand the mechanism of human bal-
ancing, first we have to identify the control concept employed by the human
brain during stick balancing. There are several possible concepts in the lit-
erature to model this neural control mechanism. Here, we assume a delayed
proportional-derivative-acceleration (PDA) feedback. This concept assumes
that, besides the inclination and the angular velocity, humans are able to
estimate the angular acceleration of the stick from the pressure distribution
perceived by mechanoreceptors at the fingertip. Because of the acceleration
feedback, the mathematical model is a neutral delayed differential equation
(NDDE). For systems governed by NDDEs, cepstral analysis can be used to
identify the time delay, and to gain information about the neutral behaviour
of the model. In a proposed experimental study, sticks with different weights
have to be balanced. In case of sticks with larger masses the pressure at the
fingertip during balancing is larger and it is supposed that the acceleration
gains are also of higher value. In this work we verify this phenomenon using
cepstral analysis of signals obtained by time-domain simulations.

1. Introduction

How humans balance themselves physically can be viewed as a complex feedback control

system. The neurons transmit the information to and from the brain that controls muscle

groups in a synchronized process that maintains balance and prevents falling. Although

the exact mechanism of this complex control system is not known, there are some elements,

which can easily be identified. One of the most important elements of the control mechanism

is the reaction delay, which is the result of the finite-time information transmission and

processing of the neurons. The simplest model for human balance control is the proportional-

derivative (PD) controller [6, 9, 16], which accounts for the perception of the position and

the velocity of the controlled object. Since mechanoreceptors are able to measure forces

and pressure distributions, it is a straightforward idea that this information is used by the

nervous system for motor control mechanisms. Since force is related to acceleration, control

models which involves the feedback of the acceleration have been analyzed extensively in the
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literature [7, 15]. In this study, we assume a proportional-derivative-acceleration feedback

(PDA) controller to model stick balancing on the fingertip. Due to the reaction delay and

the acceleration feedback, the mathematical model is a neutral delayed differential equation

(NDDE). In case of a signal generated by a NDDE, the time delay can be estimated using

cepstral analysis [4, 8]. The goal of this study is to show how the control gain for the

acceleration feedback is related to the result of the cepstral analysis. Several nonlinear

numerical simulations are presented with different acceleration gains and the corresponding

cepstrum is analyzed with respect to the feedback delay.

The outline of this paper is the following. In Section 2, the dynamic model of stick

balancing together with the assumed control concept and the corresponding equation of

motion is introduced. In Section 3, the cepstral analysis is described briefly with some

examples and a possible application to the stick balancing model identification process is

demonstrated. Section 4 presents the detailed numerical study.

2. Dynamic model of stick balancing

The principles of general human balancing tasks is aimed to understand through stick bal-

ancing on the fingertip shown in Fig. 1. In this study, stick balancing in the anterior-posterior

plane [10] is investigated. In order to simplify the problem, the vertical motion is neglected.

Thus we have a two-degree-of-freedom mechanical model, which is illustrated on the right

hand side of Fig. 1.

Figure 1. Stick balancing and the inverted pendulum as mechanical model.

In the mechanical model, the tilt angle of the stick is denoted with ϕ, and x represents

the horizontal displacement of the massless cart, which represents the motion of the palm.
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The equation of motion was derived using Lagrange's equation of the second kind as: m 1
2
ml cosϕ

1
2
ml cosϕ 1

3
ml2

ẍ
ϕ̈

 +

− 1
2
mlϕ̇2 sinϕ

− 1
2
mgl sinϕ

 =

F
0

 , (1)

where m is the mass of the stick, l is the length of the stick, C refers to the center of gravity

and the stick is assumed to be a homogeneous body. On the right hand side of the equation

F represents the control force.

Since x is a cyclic coordinate [3], it can be eliminated from the equation. Thus the

equation of the essential motion transforms to:

ϕ̈ = − Fl cosϕ

2( 1
3
ml2 − 1

4
ml2 cos2 ϕ)

−
( 1
4
ml2ϕ̇2 cosϕ− 1

2
mgl) sinϕ

( 1
3
ml2 − 1

4
ml2 cos2 ϕ)

. (2)

2.1. Modelling the control mechanism

As it was mentioned in the Introduction, in this study a PDA type controller is assumed to

model the control mechanism of the brain during stick balancing. Thus, the control force F

has the following form:

FPDA(ϕ, ϕ̇, ϕ̈) = Kpϕ(t− τ) +Kdϕ̇(t− τ) +Kaϕ̈(t− τ) =

= KpϕD +Kdϕ̇D +Kaϕ̈D,
(3)

where Kp, Kd and Ka stand for the proportional, derivative and acceleration gains, respec-

tively. Substituting FPDA into Eq. (2) results a NDDE [5].

A delay differential equation (DDE) is a differential equation, in which the rate of change

of state depends on present and past states of the system, too. If the DDE involves a time-

delay in the derivative term of the highest order, then it is a neutral delay differential equation

(NDDE). There exists several techniques to solve and to analyze DDEs [1], [2], [14]. An

important property of NDDEs is the accumulation of the discontinuities which are introduced

into the solution through the initial data. This property is utilized in the model identification

process. The initial data in case of an NDDE is called the history function for the interval

t < 0 [11].

2.2. Determination of the stability charts

For the further analysis of the described system stability analysis should be carried out in or-

der to find the parameters of the stable operation. Stability charts are diagrams constructed

in the plane of some system parameters, which present the stable and unstable parameter

regions. Here, the stability charts are constructed using the D-subdivision method [7, 13].

In case of NDDEs, the so called strong stability is a necessary condition for stability.
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The physical parameters in this study were set as follows. The length of the stick

was l = 1 [m], the delay parameter was τ = 0.2 [s], and the gravitational acceleration was

g = 9.81 [m/s2]. For the stability investigation the equation of the essential motion (2) was

linearized and the dimensionless time was introduced as t∗ = t /τ . Thus, the dimensionless

control gains are:

kp =
6τ2Kp

ml
, kd =

6τKd

ml
, ka =

6Ka

ml
. (4)

Fig. 2 shows the stability charts and the stable domains (shaded areas) with varying values

of the dimensionless acceleration gain ka. The strong stability condition is that |ka| < 1.

If |ka| > 1, then the NDDE (2) has infinitely many characteristic roots with positive real

parts, therefore the solution is unstable (see [13]). For the forthcoming numerical study the

control parameters are selected as follows: the dimensionless proportional gain is kp = 2.4

and the dimensionless derivative gain is kd = 2.5.
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Figure 2. Stability charts for delayed PDA control. Stable regions are indicated by gray

shading.
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3. The cepstrum and its application in signal processing

The cepstrum was first defined as the power spectrum of the logarithm of the power spectrum

[12]. Later, a new type of cepstrum was defined as the inverse Fourier Transform of the

complex logarithm of the complex spectrum. Thus the formula for computing the cepstrum

is:

f̂ =
1

2π

∫ π

−π
log[φ(ω)]e(iωn)dω. (5)

where φ(ω) is the Fourier Transform of the function f, and n is the independent variable of

f. Therefore, the cepstrum is the spectrum of the spectrum, and transforms the spectrum

back in the time domain. The independent variable of the cepstrum is quefrency, which is

of time unit [s].

The original application of the cepstrum was the detection of echoes in seismic signals,

and one of the other earliest applications was speech analysis. Cepstral analysis is also

used in machinery fault identification: to detect gear eccentricity, general wear of gears and

identifying local faults. [4]

If there is time-delay in a system described by a NDDE, then the cepstrum of the solution

changes because of the accumulation of discontinuities. As a consequence of the time-delay

a peak appears in every equal interval of the domain of the cepstrum. This interval is equal

to the delay of the system [8]. This property of the cepstrum is used in this study in the

case of stick balancing.

4. Numerical study

Instead of an built-in solver routine like ddeNsd in MatLab, for the nonlinear numerical

simulations a self-developed solver was used. In order to consider the time delay the routine

is based on the concept of semi-discretization, which was introduced for time-delay systems

in [14]. However, instead of the exponential mapping for the integration a 4th order Runge-

Kutta method was applied. The values of the proportional and derivative control gains were

selected as it was discussed in Section 2.2, and the acceleration gain ka was varied between

0.5 and 0.99. First, the NDDE was solved, and we checked, whether with the chosen control

gains the solution is indeed stable. During the nonlinear simulations, the initial data were

those specified in Section 2.2 (length, delay parameter, gravitational acceleration).

Since the mathematical model of the analysed problem (2) is an NDDE, we expect peaks

to appear in the cepstrum in every 0.2 [s] of the quefrency domain. The proportional and

derivative gains were hold constant, and the change in the cepstrum was examined if the

acceleration gain was changed. Naturally, the position of the peaks should not alter, because

the delay parameter τ is not changed.
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Figure 3. Results of the cepstral analysis.

The results of the cepstral analysis are shown in Fig. 3. The value of the dimensionless ka

acceleration gain is displayed in each diagram. It can be seen, that the peaks of the cepstrum

410



appear at every 0.2 [s] interval of the quefrency domain, as was expected. Furthermore,

the peaks are getting larger (in absolute value) when the value of the acceleration gain is

increased. In the last diagram, when ka = 0.99, the solution contains several harmonics

because it is a solution close to the stability boundary. This is why the cepstrum has peaks

other than the peaks indicating the defined delay of the system.

5. Conclusions

In this study the problem of stick balancing was modelled as a planar cart-pole system. It is

likely, that humans can measure forces and thus acceleration during stick balancing. There-

fore, it is supposed that during the human stick balancing in addition to the proportional

and derivative feedback the acceleration feedback is also used. This type of controller is

known as a PDA type controller and the resulting mathematical model is a neutral delay

differential equation.

In the numerical study cesptral analysis was applied to examine the effect of the changing

of the acceleration gain. It was demonstrated, that from the cepstrum the delay parameter τ

can be detected. Furthermore, as the value of the acceleration gain was increased the peaks

of the cepstrum were larger in absolute value. This indicates that by increasing the mass of

the stick, the role of the acceleration gain also increases in the neutral feedback.

In the future we intend to perform measurements with subjects balancing sticks of

different masses in order to verify the results of the current study. In order to trigger the

examined person to apply different acceleration gains the tests will be carried out with sticks

with different masses.
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On decomposition of the initial boundary value problems in
mechanics

Mikhail U. Nikabadze

Abstract: The canonical formulation of the initial boundary value problems
of the classical (micropolar) theory of elasticity for any anisotropic material
is given. In particular, the canonical formulations of initial boundary value
problems are considered in the case of isotropic and transversely isotropic ma-
terials. Expressions for tensors-operators of classical (micropolar) equations in
displacements (in displacements and rotations) are found. For these tensors-
operators the tensors-operators of cofactors are found, on the basis of which the
equations are split. It should be noted here that the equations are always split,
and the boundary conditions only for bodies with a piecewise plane boundary.
From three dimensional canonical equations the corresponding canonical equa-
tions for the theory of prismatic bodies are obtained. For prismatic bodies the
canonical equations were obtained also in moments with respect to any system
of orthogonal polynomials. For each moment of the unknown vector function
the equation of elliptic type of high order is obtained, the characteristic roots of
which are easily found. Using the Vekua method, we can obtain their analytical
solution.

1. Equations of motion relative to the displacement and rotation vectors

The constitutive relations (CR) for a linearly elastic inhomogeneous anisotropic material

without a center of symmetry for small displacements and rotations have the form

P˜ = A˜̃ 2
⊗γγγ˜+ B˜̃ 2

⊗κκκ˜, µµµ˜ = C˜̃ 2
⊗γγγ˜+ D˜̃ 2

⊗κκκ˜ (γγγ˜ = ∇u−C
'
·ϕϕϕ, κκκ˜ = ∇ϕϕϕ), (1)

where P˜ µµµ˜ — stress and couple-stress tensors, γγγ˜ κκκ˜ — tensors of deformation and bending-

torsion, u ϕϕϕ — displacement and rotation vectors, A˜̃ , C˜̃ = B˜̃T D˜̃ — material tensors of

the fourth rank, C
'

— discriminant tensor of third rank,
2
⊗ — the inner 2-product [1, 2, 3,

4, 5, 6, 7, 8, 9, 10], the superscript T in the upper right corner of the quantities denotes

transposition.

Introducing the tensor columns of the deformation and bending-torsion tensors and stress

and couple-stress tensors, as well as the tensor-block matrix (TBM) of the elastic tensors

X˜ =

 γγγ

κ̃κκ˜
 (

X˜T =
(
γγγ˜, κκκ˜

))
, Y˜ =

 P

µ̃µµ˜
 (

Y˜T =
(

P˜ , µµµ˜
))
, (2)
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M˜̃ =

 A˜̃ B˜̃
C˜̃ D˜̃

 (
M˜̃ T = M˜̃ ), (3)

the specific strain energy and the CR can be written in the form

2Φ(γγγ˜,κκκ˜) = γγγ˜ 2
⊗A˜̃ 2
⊗γγγ˜+ 2γγγ˜ 2

⊗B˜̃ 2
⊗κκκ˜ +κκκ˜ 2

⊗D˜̃ 2
⊗κκκ˜ = X˜T 2

⊗M˜̃ 2
⊗X˜, Y˜ = M˜̃ 2

⊗X˜. (4)

If the material has a center of symmetry in the sense of elastic properties, then B˜̃ = 0˜̃,

where 0˜̃ — zero tensor of the fourth rank and the TBM of the elastic modulus tensors (3)

will take the form of a tensor-block-diagonal matrix.

Substituting (1) in the equations of motion for small displacements and rotations

∇ ·P˜ + ρF = ρ∂2
t u, ∇ ·µµµ˜ + C

'

2
⊗P˜ + ρm = J˜∂2

tϕϕϕ,

and introducing the TBM operator of the equations of motion and the vector columns of the

displacement and rotation vectors and vectors of volume forces and moments

M˜ =

 A˜ B˜
C˜ D˜

 , U =

 u

ϕϕϕ

 , X =

 ρF

ρm

 , (5)

we obtain the equations of motion in displacements and rotations in the form

M˜ · U + X = 0, (6)

where the differential tensors-operators A˜ , B˜ , C˜ and D˜ have expressions

A˜ = A˜ ′ −E˜ρ∂2
t , A˜ ′ = rjrl(A

ijkl∇i +∇iAijkl)∇k, D˜ = D˜ ′ − J˜∂2
t ,

B˜ = rjrl[(B
ijkl∇i +∇iBijkl − Cl · ··mnA

mnkj)∇k − Cl · ··mn∇iAmnij ],

C˜ = rjrl(B
klij∇i +∇iBklij + Cj · ··mnA

mnkl)∇k, D˜ ′=rjrl{[Dijkl∇i

+∇iDijkl+(gjsg
l
t−glsgjt )Cs · ··mnB

mnkt]∇k−Cl · ·· pq (ApqmnC · · jmn ·+∇iBpqij)}.

(7)

Here and below E˜ is the unit tensor of the second rank, t is the time, and ∂t is the partial

derivative operator with respect to time.

2. On static boundary conditions. Tensor-operator of stress and couple-stress

Given (1), the static boundary conditions can be written as follows:

n ·P˜ = T˜ (1) ·u+T˜ (2) ·ϕϕϕ=P, n ·µµµ˜ = T˜ (3) ·u+T˜ (4) ·ϕϕϕ =µµµ, (8)

which is still equivalent to equalities

n · Y˜ =

 T˜ (1) T˜ (2)

T˜ (3) T˜ (4)

 ·
 u

ϕϕϕ

 . (9)
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Here P and µµµ are the stress and couple-stress vectors given on the body surface and the

following differential tensors-operators are introduced:

T˜ (1) = rjrlniA
ijkl∇k, T˜ (2) = rjrlniB

ijkl∇k − n ·A˜̃ 2
⊗C
'
,

T˜ (3) = rjrlniC
ijkl∇k, T˜ (4) = rjrlniD

ijkl∇k − n ·C˜̃ 2
⊗C
'
.

(10)

Introducing the TBM operator stress and couple-stress and the vector column of stress and

couple-stress vectors

T˜ =

 T˜ (1) T˜ (2)

T˜ (3) T˜ (4)

 , Q =

 P

µµµ

 , (11)

the static boundary conditions (8), taking into account the notation given by the second

relation (5), can be written in the form

T˜ · U∣∣S = Q. (12)

We note that the kinematic boundary conditions are represented in the form

U
∣∣
S

= Z

Z =

 f

ψψψ

 , (13)

mixed boundary conditions can be written as follows:

T˜ · U∣∣S1
= Q; U

∣∣
S2

= Z, (14)

and the initial conditions have the form

U|t=t0 = U0 V|t=t0 = V0, (15)

U0 =

 u0

ϕϕϕ0

 , V0 =
dU
dt

∣∣∣
t=t0

=

 v0

ωωω0

 , v0 =
du

dt

∣∣∣
t=t0

, ωωω0 =
dϕϕϕ

dt

∣∣∣
t=t0

. (16)

Here f and ψψψ are the displacement and rotation vectors given on the body surface, u0

and ϕϕϕ0 are the displacement and rotation vectors given at the initial instant of time (for

t = t0), v0 and ωωω0 are the velocity and angular velocity vectors given at the initial instant

of time, S is the body surface, S1 ∪ S2 = S, S1 ∩ S2 = S.
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3. Formulation of initial-boundary value problems

Definition 1. If the displacement and rotation vectors (kinematic boundary conditions) are

given on the body boundary S, then such conditions are called boundary conditions of the

first kind, and the problem of the micropolar solids mechanics (SM), using these conditions,

and also the initial conditions is called the first initial-boundary value problem.

In the case the first initial-boundary value problem includes: the equations of motion

(6), the kinematic boundary conditions (13) and the initial conditions (15).

Definition 2. If static boundary conditions (stress and couple-stress vectors) are given

on the body boundary S, then such boundary conditions are called boundary conditions

of the second kind, and the problem of micropolar SM using them and initial conditions is

called the second initial-boundary value problem.

In the case under consideration, the second initial-boundary value problem includes: the

equations of motion (6), the static boundary conditions (12) and the initial conditions (15).

Definition 3. If kinematic boundary conditions are given on one part of the body

boundary S1, and on the remaining part of it S2 are given the static boundary conditions,

where S1 ∪ S2 = S, S1 ∩ S2 = ∅, then such boundary conditions are called mixed boundary

conditions, and the problem of micropolar SM, using them and initial conditions is called

the mixed initial-boundary value problem.

In this case, the mixed (third) initial-boundary value problem includes: the equations

of motion (6), the kinematic boundary conditions (13) on one part of the body boundary

and the static boundary conditions (12) on the rest of the body boundary and the initial

conditions (15).

Note that, excluding the characteristics of the micropolar theory from the above defini-

tions, we obtain the corresponding definitions for classical SM.

It should be noted that the kinematic boundary conditions and the initial conditions do

not need to be split, since they are set in a split form. Hence, for the splitting of the first

initial-boundary value problem, it is sufficient to split only the equations of motion, since, as

already mentioned in the previous proposition, the kinematic boundary conditions and the

initial conditions are split. In this connection, the splitting of the static boundary conditions

is of great interest. If the equations of motion (6) and the static boundary conditions (12) can

be split under some conditions, then under the same conditions all the initial-boundary value

problems formulated above can be split. Hence, it is necessary to establish the conditions

under which the equations of motion (6) and the static boundary conditions (12) are split.
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4. Decomposition of the equation of motion for the isotropic micropolar medium

In this case, as many authors (see, for example, [11, 12]) consider B˜̃ = 0 and differential

tensors-operators A˜ , B˜ , C˜ and D˜ (see (7)) have the form

A˜ =E˜Q2+d∇∇, B˜ =C˜ =−2αC
'
· ∇, D˜ =E˜Q4+m∇∇,

Q2 =b∆−ρ∂2
t , Q4 =g∆−l−J∂2

t , Q1 = Q2 + d∆, Q3 = Q4 +m∆, J˜ = JE˜ ,
d = λ+ µ− α, l = 4α, b = µ+ α, g = δ + β, m = γ + δ − β,

(17)

where Q1, Q2, Q3 Q4 are wave operators, and the elasticity tensors have expressions

A˜̃ =a1C˜̃ (1)+a2C˜̃ (2)+a3C˜̃ (3), D˜̃ =d1C˜̃ (1)+d2C˜̃ (2)+d3C˜̃ (3). (18)

Here C˜̃ (1), C˜̃ (2) C˜̃ (3) are basic isotropic tensors of the fourth rank, and for material constants

we use the notation a1 = λ, a2 = µ, a3 = α, b1 = γ, b2 = δ b3 = β. Denoting by

M˜ ∗ =

 Â˜ B̂˜ (1)

B̂˜ (2) Ĉ˜
 (19)

the TBM operator of the cofactors for the TBM operator M˜ of the equation (6), after

cumbersome calculations we obtain [5, 6, 7, 13]

Â˜ = Q3PR˜ (Â˜ T = Â˜ ), B̂˜ = B̂˜ (1) = B̂˜ (2) = Q1Q3PB˜ (B̂˜T = −B̂˜ ),

Ĉ˜ = Q1PT˜ (Ĉ˜T = Ĉ˜ ); R˜ = E˜Q1Q4−(dQ4−4α2)∇∇, B˜ = −2αC
'
·∇,

T˜ = E˜Q2Q3−(mQ2−4α2)∇∇, P = Q2Q4 + 4α2∆.

(20)

It is easy to see that by virtue of (20) the TBM operator of the cofactors (19) can be

represented as follows:

M˜ ∗ =

 PQ3 0

0 PQ1

N˜(1) = N˜(2)

 PQ3 0

0 PQ1

 , (21)

where TBM operators are introduced

N˜(1) =

 R˜ Q1B˜
Q3B˜ T˜

 , N˜(2) =

 R˜ Q3B˜
Q1B˜ T˜

 . (22)

It is easy to prove the relations

M˜ · N˜(1)T = N˜(2)T ·M˜ =

 E˜Q1P O˜
O˜ E˜Q3P

 , |M˜ | = det(M˜ ) = Q1Q3P
2. (23)
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Then if we shall seek the solution of the equation (6) in the form (similar to Galerkin)

U = N˜(1)T · V

U =

 u

ϕϕϕ

 , V =

 v

ψψψ

 , (24)

then, by virtue of the appropriate relation (23), we obtain the following split equations:

Q1(Q2Q4 + 4α2∆)v + ρF = 0, Q3(Q2Q4 + 4α2∆)ψψψ + ρm = 0. (25)

Applying the operator N˜(2)T to the left of (6), by the first relation (23) we will have

Q1[(Q2Q4 + 4α2∆)u+2α(C
'
·∇)·(ρm)]+[E˜Q1Q4−(dQ4−4α2)∇∇]·(ρF)=0,

Q3[(Q2Q4+4α2∆)ϕϕϕ+ 2α(C
'
·∇)·(ρF)]+[E˜Q2Q3−(mQ2−4α2)∇∇]·(ρm)=0.

(26)

For α = 0 (the case of a reduced medium), the classical equation follows from the first

equation (26), and the second equation has a similar form.

5. Decomposition of static boundary conditions

In the case of an isotropic micropolar material without a center of symmetry, by virtue of

(18) and B˜̃ =b1C˜̃ (1)+b2C˜̃ (2)+b3C˜̃ (3), from (10) we have

T˜ (1) =a2E˜n ·∇+a1n∇+a3(n∇)T , T˜ (2) =b2E˜n ·∇+b1n∇+b3(n∇)T−(a2−a3)n ·C
'
,

T˜ (3) =b2E˜n ·∇+b1n∇+b3(n∇)T , T˜ (4) =d2E˜n ·∇+d1n∇+d3(n∇)T−(b2−b3)n ·C
'
.

(27)

We note that some authors (see, for ex., [11, 12]) consider B˜̃ as an asymmetric tensor, so in

the case of an isotropic medium it is zero, as above. However, some authors prove that B˜̃ is

a symmetric tensor and in the case of an isotropic medium, it is not equal to zero, and how

any isotropic fourth-rank tensor is generally determined by three parameters (see, for ex.,

[14]), as is customary in this case. Further, it is easy to see

T˜ (2) =T˜ (3)−(a2−a3)n ·C
'
, T˜ (4) =T˜ ′(4)−(b2−b3)n ·C

'
, T˜ ′(4) =d2E˜n · ∇+d1n∇+d3(n∇)T .

Assuming that the body has a piecewise-plane boundary and denoting by T˜ (1)
∗ and

|T˜ (1)|, T˜ (3)
∗ and |T˜ (3)|, T˜ ′(4)∗ and |T˜ ′(4)| the differential tensors-operators of the cofactors and

determinants for the tensor operators T˜ (1), T˜ (3) and T˜ ′(4) respectively, after cumbersome

calculations, where a12 = a1 + a2, a23 = a2 + a3,∆n = ∇∇+ (nn−E˜)∆), we obtain

T˜ (1)
∗ =[a12a23E˜n·∇−a3a12n∇− a1a23(n∇)T ]n·∇+ a1a3∆n,

T˜ (3)
∗ = [(b1 + b2)(b2 + b3)E˜n·∇ − b3(b1 + b2)n∇− b1(b2 + b3)(n∇)T ]n·∇+ b1b3∆n,

T˜ ′(4)∗ = [(d1 + d2)(d2 + d3)E˜n·∇ − d3(d1 + d2)n− d1(d2 + d3)(n∇)T ]n·∇+ d1d3∆n,

|T˜ (1)|=a2[a12a23nn
2
⊗∇∇−a1a3∆]n·∇, |T˜ (3)|=b2[(b1+b2)(b2+b3)nn

2
⊗∇∇−b1b3∆]n·∇,

|T˜ ′(4)| = d2[(d1 + d2)(d2 + d3)nn
2
⊗∇∇− d1d3∆]n·∇.
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Note that we want to obtain boundary conditions separately for u and ϕϕϕ. In order

to shorten the letter, we consider the case when b2 = b3, a2 = a3. Then T˜ (2) = T˜ (3),

T˜ (4) = T˜ ′(4) and the boundary conditions (12) can be written in the form

T˜ (1) ·u+T˜ (3) ·ϕϕϕ = P, T˜ (3) ·u+T˜ ′(4) ·ϕϕϕ = µµµ. (28)

In this case, it is easy to obtain the boundary conditions separately for u and ϕϕϕ(
|T˜ ′(4)|T˜ (3)

∗
T ·T˜ (1) − |T˜ (3)|T˜ ′(4)∗ T ·T˜ (3)

)
· u = |T˜ ′(4)|T˜ (3)

∗
T ·P− |T˜ (3)|T˜ ′(4)∗ T ·µµµ,(

|T˜ (3)|T˜ (1)
∗

T ·T˜ (3) − |T˜ (1)|T˜ (3)
∗

T ·T˜ ′(4)
)
·ϕϕϕ = |T˜ (3)|T˜ (1)

∗
T ·P− |T˜ (1)|T˜ (3)

∗
T ·µµµ.

6. Decomposition of the canonical equations for the transversely isotropic body

Under the canonical equations we are understood equations that are obtained by the canon-

ical representations of the material tensors. In a similar sense, the term canonical mechanics

can also be used. Thus, in this case the elastic modulus tensor A˜̃ is represented in the

canonical form [8, 9, 10], that is A˜̃ =
6∑
k=1

λkw˜ kw˜ k, where λk and w˜ k, k = 1, . . . , 6, are the

eigenvalues and eigentensors for A˜̃ . Then the vector equation with respect to the displace-

ment vector can be written in the form

L˜ ·u + ρF = 0, L˜ =
6∑
k=1

λkw˜ k ·∇w˜ k ·∇. (29)

Further we introduce the definition.

Definition. The symbol {α1, α2, . . . , αk}, where k is the number of different eigenvalues

of the tensor, and αi is the multiplicity of the eigenvalue λi (i = 1, 2, . . . , k), is called the

anisotropy symbol (structure symbol) of the tensor.

We note that on the basis of this definition, the classification of classical and microcon-

tinuum anisotropic materials is given in [8, 9, 10]. By virtue of this classification, classical

(micropolar) isotropic materials are special cases of materials in which the anisotropy sym-

bol consists of not more than two (three) elements. A similar situation occurs for other

anisotropies [8, 9, 10]. In particular, classical transversely isotropic materials are special

cases of anisotropic materials whose anisotropy symbols consist of four elements, and or-

thotropic materials are special cases of anisotropic media whose structure symbols consist

of no more than 6 elements. The anisotropy symbol of an orthotropic micropolar material

with a symmetry center consists of not more than 9 elements [8, 9, 10].

We now consider the canonical representation of the transversely isotropic elastic mod-

ulus tensor with the anisotropy symbol {1,1,2,2} [8, 9, 10]:

A˜̃ = µ1w˜ 1w˜ 1 + µ2w˜ 2w˜ 2 + µ3(w˜ 3w˜ 3 + w˜ 4w˜ 4) + µ5(w˜ 5w˜ 5 + w˜ 6w˜ 6). (30)
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(According to the classification of materials adopted in [8, 9, 10], transversely isotropic

materials can be of the following types: {1,1,2,2}, {1,2,1,2}, {1,2,2,1}, {2,1,1,2}, {2,1,2,1},
{2,2,1,1}). For the material {1,1,2,2} the eigenvalues are determined by the formulas [8, 9, 10]

µ1 =1/2(A11+A12+A33−
√

(A11+A12−A33)2+8A2
13), µ3 =µ4 =A11−A12,

µ2 = 1/2(A11 +A12 +A33 +
√

(A11 +A12 −A33)2 + 8A2
13), µ5 = µ6 = A55,

(31)

and the eigentensors are represented in the form

w˜ 1 =−
√

2

2
sinα(e˜1+e˜2)+cosαe˜3 =−

√
2

2
sinαI˜+cosαe˜3, e˜α=eαeα, α=1, 2, 3,

w˜ 2 =

√
2

2
cosα(e˜1+e˜2) + sinαe˜3 =

√
2

2
cosαI˜+sinαe˜3, e˜4 =(1/

√
2)(e3e2 + e2e3),

w˜ 3 =

√
2

2
(e˜1 − e˜2), w˜ 4 = e˜4, w˜ 5 = e˜5, w˜ 6 = e˜6, tg2α=

2
√

2A13

A11 +A12 −A33
,

(32)

e˜5 = (1/
√

2)(e1e3 + e3e1), e˜6 = (1/
√

2)(e2e1 + e1e2), ei · ej = δij , i, j = 1, 2, 3,

e˜m 2
⊗ e˜n = δmn, m, n = 1, 6, I˜= e1e1 + e2e2 = e˜1 + e˜2.

The canonical representations of the tensor-operator of the equations and its determinant

and the tensor of cofactors, as well as the stress tensor-operator, its determinant and the

components of the tensor-operator of cofactors by virtue of (30) – (32) have the form

L˜ = (a1I˜+ a3e3e3)∆ + a2∇0∇0 + a5[e3∇0 + (e3∇0)T ]∂3 + (a3I˜+ a4e3e3)∂2
3 ;

|L˜| = A∆3 +B∆2∂2
3 + C∆∂4

3 +D∂6
3 = k(∆ + k1∂

2
3)(∆ + k2∂

2
3)(∆ + k3∂

2
3), k = A,

k1 + k2 + k3 = B/A, k1k2 + k1k3 + k2k3 = C/A, k1k2k3 = D/A;

L˜∗ = a(a3I˜+ a1e3e3)∆2 − a2a3∆∇0∇0 − a1a5[e3∇0 + (e3∇0)T ]∂3

+
{[

[(a2 + a3)a4 + c(a3 + a5)]I˜+ a2(a+ a1)e3e3

]
∆ + (a25 − a2a4)∇0∇0

}
∂2
3

−a3a5[e3∇0 + (e3∇0)T ]∂3
3 − a3(a4I˜− a3e3e3)∂4

3 ,T˜ =(a1I˜+a3e3e3)n00−bn0∇0+

a1(n0∇0)T +n3[−ce3∇0+a3(e3∇0)T ] + [n3(a3I˜+ a4e3e3)− cn0e3 + a3e3n
0]∂3,

|T˜ | = a1a3{[b− (b+ c)n2
3]∆ + 2a2n

0n0
2

⊗∇0∇0}n00 + {b(a1a4 − a23) + a1c
2

−[(c− b)a23 + a(c2 + ba4)]n2
3}n3∆∂3 + 2a1[(a3 + c)a5 + a2a4]n3n

0n0
2

⊗∇0∇0∂3

+a3{−a1c+ [a1c+ (a+ a1)a4 − c2]n2
3}n00∂2

3 − a23[c− (c+ a4)n2
3]n3∂

3
3 ,

T∗11 =a3(a1n1∂1+an2∂2)n00− c33+[(a1a4+a23)n1∂1+(aa4−c2)n2∂2]n3∂3+(a4n
2
3−cn2

2)a3∂
2
3 ,

T∗12 =a3(bn1∂2−a1n2∂1)n00+[(c2+ba4)n1∂2+(a23−aa4)n2∂1]n3∂3+ca3(n2
3∂1∂2+n1n2∂

2
3),

T∗13 =−(ba3n3∂2+a1cn2∂3)C˜ 2

⊗n0∇0 − a1(a3n3∂1+cn1∂3)n00 − a23n2
3∂1∂3 − ca3n1n3∂

2
3 ,

T∗21 =a3(bn2∂1−a1n1∂2)n00+[(c2+ba4)n2∂1+(a23−a1a4)n1∂2]n3∂3+ca3(n2
3∂1∂2+n1n2∂

2
3),

T∗22 =a3(a1n2∂2+an1∂1)n00− c31 +[(a1a4+a23)n2∂2+(aa4−c2)n1∂1]n3∂3+(a4n
2
3−cn2

1)a3∂
2
3 ,

T∗23 =(ba3n3∂1+a1cn1∂3)C˜ 2

⊗n0∇0 − a1(a3n3∂2+cn2∂3)n00 − a23n2
3∂2∂3 − ca3n2n3∂

2
3 ,
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T∗31 =(ca1n3∂2+ba3n2∂3)C˜ 2

⊗n0∇0 − a1(cn3∂1+a3n1∂3)n00 − ca3n2
3∂1∂3 − a23n1n3∂

2
3 ,

T∗32 =−(ca1n3∂1+ba3n1∂3)C˜ 2

⊗n0∇0 − a1(cn3∂2+a3n2∂3)n00 − ca3n2
3∂2∂3 − a23n2n3∂

2
3 ,

T∗33 =ba1(1−n2
3)∆+a1(a−b)n0n0

2

⊗∇0∇0+(aa3+a1c)n3n
00∂3+a23n

2
3∂

2
3 , T˜∗ = T∗ijeiej ,

where the following notations are introduced:

A=aa1a3, B=a(a23+a1a4)+ca1(a3+a5), C=a3[aa4+c(a3+a5)]; a = a1 + a2, c = a3 − a5

D = a23a4, a1 = (1/2)µ3, a2 = (1/2)(µ1 sin2α+µ2 cos2α), a3 = (1/2)µ5, c33 =ca3n
2
3∂

2
2 ,

a4 = µ1 cos2α+µ2 sin2α, a5 = (1/2)[
√

2(µ2 − µ1) sinα cosα+ µ5], ∆ = ∂2
1 + ∂2

2 , n00 = n0 ·∇0,

n0 =nIeI , ∇0 =eI∂I , n0n0
2

⊗∇0∇0 =nInJ∂I∂J , C˜ = CIJeIeJ , b = a1 − a2, c31 =ca3n
2
3∂

2
1 .

If we apply the operator L˜∗ from the left with a single multiplication to the equation (the

first relation (29)), and the operator T˜T∗ to the boundary conditions T˜ · u = P, then we

obtain the split equations and boundary conditions

|L˜|u+L˜T∗ ·(ρF)=0, |T˜ |u = T˜T∗ ·P, (33)

and if we look for the solution u in the form u=L˜∗·v, then we have the split equations and

boundary conditions

|L˜|v+ρF=0, |T˜ |(L˜∗ · v) = T˜T∗ ·P. (34)

When obtaining (33) and (34), we took into account the relation F˜ ·F˜T∗ = F˜T∗ ·F˜ = E˜ |F˜ |, ∀F˜ .
Further, applying, for example, to the split equations from (34), the kth moment oper-

ator [4, 6, 7], the equations for prismatic bodies in moments with respect to any system of

orthogonal polynomials can be represented in the form

A∆3(k)v +B∆2(k)v ′′ + C∆
(k)
v IV +D

(k)
v V I + ρ

(k)

F = 0, k = 0,∞;
(35)

where in the application of the system of Legendre polynomials, the expressions for
(k)
v ′′,

(k)
v IV and

(k)
v V I are defined using the following relationship:

(n)

v
(2m)

=(2n+1)
∞∑
k=1

C2m−1
k+2m−2

2m−1∏
s=1

(2n+2k+2s−1)
(n+2k+2m−2)

v , n∈N0, m∈N. (36)

Note that analogous (35) equations can also be easily obtained from the equations (33).

7. The quasistatic canonical problem of the micropolar theory of elasticity in

displacements and rotations

To reduce the letter, we consider an isotropic material with a center of symmetry. The

mechanical properties of such a linear material are characterized by two fourth-rank tensors,
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each of which in turn is determined by three essential components. These materials are

special cases of materials whose anisotropy symbols consist of three elements and the number

of which, according to the classification adopted above, is 28 [8, 9, 10], among which the

materials {1, 5, 3} and {5, 1, 3} are. The first of them has a positive Poisson’s ratio, and the

second one has negative Poisson’s ratio. Under the canonical problem we mean the problem,

in the formulation of which the material tensors are written in the canonical form. We

confine ourselves to the isotropic material {1, 5, 3}. In this case, the material tensors have

the expressions

A˜̃ =
1

3
(λ1 − λ2)C˜̃ (1) +

1

2
(λ2 + λ7)C˜̃ (2) +

1

2
(λ2 − λ7)C˜̃ (3),

D˜̃ =
1

3
(µ1 − µ2)C˜̃ (1) +

1

2
(µ2 + µ7)C˜̃ (2) +

1

2
(µ2 − µ7)C˜̃ (3).

(37)

Then, by virtue of (37), it is not difficult to obtain equations analogous to (26), from which

in the case of a quasistatic we have

∆2(a1∆ + a2)u + S∗ = 0, ∆(∆2 + b2∆ + b3)ϕϕϕ+H∗=0, (38)

S∗ = λ7Q
∗
1(C
'
·∇)·(ρm) + [E˜Q∗1Q∗4−(dQ∗4−λ2

7)∇∇]·(ρF), Q∗1 = (b+ d)∆,

H∗ = λ7Q
∗
3(C
'
·∇)·(ρF) + [E˜Q∗2Q∗3−(mQ∗2−λ2

7)∇∇]·(ρm), Q∗4 = g∆− l,

Q∗2 = b∆, Q∗3 = (g +m)∆− l, d =
1

6
(2λ1 + λ2)− 1

2
λ7, l = 2λ7,

b =
1

2
(λ2 + λ7), m =

1

6
(2µ1 + µ2)− 1

2
µ7, g =

1

2
(µ2 + µ7),

a1 =
1

12
(λ1 + 2λ2)(λ2 + λ7)(µ2 + µ7), a2 = −1

3
λ2λ7(λ1 + 2λ2), b3 = 2λ2λ

2
7

b1 =
1

12
(µ1+2µ2)(µ2+µ7)(λ2+λ7), b2 =−λ7[

1

3
λ2(µ1+2µ2)+

1

2
(µ2+µ7)(λ2+λ7)],

(39)

7.1. The quasistatic canonical problem of the micropolar theory of prismatic

bodies in displacements and rotations and in their moments

Let’s consider a prismatic body of constant thickness 2h. As the base plane, we take the

middle plane. In this case the Laplacian has the form

∆̂F = (∆̄ + h−2∂2
3)F, ∆̄ = gPQ∇P∇Q, (40)

and by (40) the equations (38) for the theory of prismatic bodies of constant thickness in

displacements and rotations can be written in the form

[∆̄3 +A∆̄2 + h−2(3∆̄ + 2A)∆̄∂2
3 + h−4(3∆̄ +A)∂4

3 + h−6∂6
3 ]û + Ŝ∗∗ = 0,

[∆̄3+(B∆̄+A)∆̄+h−2[(3∆̄+2B)∆̄+C]∂2
3+h−4(3∆̄+B)∂4

3 +h−6∂6
3 ]ϕ̂ϕϕ+Ĥ∗∗=0;

(41)

Ŝ∗∗ =
Ŝ∗

a1
, Ĥ∗∗ =

Ĥ∗

b1
, A=− 4λ2λ7

(λ2+λ7)(µ2+µ7)
, B =

b2
6b1

, C =
2b3
b1
.
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Applying the kth moment operator of some system of orthogonal polynomials (Legendre,

Tchebyshev) to the equations (41), we find the equations for the micropolar theory of pris-

matic bodies of constant thickness in the moments of the displacement and rotation vectors

[∆̄3+(B∆̄+A)∆̄]
(k)

ϕϕϕ+h−2[(3∆̄+2B)∆̄+C]
(k)

ϕϕϕ ′′+h−4(3∆̄+B)
(k)

ϕϕϕ IV+h−6(k)

ϕϕϕ V I+
(k)

H∗∗=0,

[∆̄3+A∆̄2]
(k)

u +h−2(3∆̄+2A)∆̄
(k)

u ′′+h−4(3∆̄+A)
(k)

u IV +h−6(k)

u V I+
(k)

S ∗∗=0, k∈N0.

(42)

Having the equations (42), by the formula (36) it is easy to obtain systems of equations of

any approximation in moments with respect to the system of Legendre polynomials. We

note that the equations of the fifth (in the classical case) and the 8th (in the micropolar

case) approximations in moments were obtained in the papers [5, 6, 7, 13] for isotropic

material in the traditional form, as well as the similarly to (38), (41) and (42) equations in

the traditional form are given in [5, 6, 7, 13]. Equations in moments for thin bodies with

two small dimensions and thin multilayered structures are also given there.

Adding the corresponding canonical boundary conditions to the equations (42), we ob-

tain a canonical statement of quasistatic boundary value problems for prismatic bodies. In

order to shorten the letter, we shall not dwell on this in this paper, but refer to the interested

reader in the papers [5, 6, 7], in which the formulations of boundary-value problems in the

traditional form are given in detail, and they easily extend to canonical statements.

Note that for the theory of thin bodies, the split equations at equilibrium, depending

on the order of approximation, are equations of elliptical type of high order [5, 6, 7, 13] and

using the I.N. Vekua method [18], for them it is possible to get analytical solutions.
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Modelling of vibration and large deflections of lattice-boom 
structures of cranes by means of rigid finite element method 

 

Paweł Nowak, Andrzej Nowak, Marek Metelski 

Abstract: The rigid finite element method (RFEM) is an original Polish method of 

slender system modelling. Structures with stable or changeable configuration are 

modelled by means of this method. The RFEM is most often used to discretise flexible 

units of mechanisms and machines, ropes and risers, and dynamics of machine tools, as 

well as plates and shells. The method can be also successfully used to analyse large 

lattice-boom structures for deformations. The aim of this paper is to present a 3D model 

of lattice-boom structure, in which the RFEM is used to discretise beam elements. The 

possibility of large deflections of the boom (within the range of several meters) was 

considered. The results of our own calculations (deflections, stresses, reaction forces), 

according to models of various degrees of complexity, were compared to results 

obtained using professional FEM package Abaqus/CAE software. 

1. Introduction  

This paper was written in cooperation between the Chair of Computer Modelling and PROTEA 

company, which is involved in the design and manufacture of offshore equipment – e.g. crane 

structures. One of the most important stages in the design of cranes mounted on drilling platforms and 

ships is computer verification of the construction assumption correctness. It is done by multiple 

calculations using commercial packages, or based on one’s own modelling programs that have already 

been validated [1-3]. Custom programs [4] are generally better adapted to the needs of designers and 

the requirements of surveillance companies such as Norwegian DNV [5] or American API. 

One of the most essential components of a crane are its booms. The paper presents the application 

of a rigid finite element method for lattice-work boom modelling. Linear and non-linear approach was 

validated by comparing the Chair’s own results with those obtained using the Abaqus package. 

The work presents the following models of the crane boom: 

A. Beam type – all elements are beams of a longitudinal, transverse, flexural and torsional 

flexibility, rigidly connected in nodes. 

B. Mixed  type – where both beam-form elements connected in a rigid way and bar elements 

joined in an articulated way in nodes occur. 
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Analysing the construction of current latticework booms and design work on new structures, it is 

assumed that the latticework matrix consists of four supporting beams connected by bars (Fig. 1). 

 

Figure 1.   Supporting (main) beams and connecting elements. 

In the work, the nodes are marked with w (w=1,...,n), while the connecting elements with the letter 

p (p=1,...,m). We assumed that the coordinates of all nodes are known prior to the deformation of the 

truss, i.e. r vectors in the global coordinate system: 

0 0 0 0
T

i i i ix y z   r  dla i=1..n. (1) 

and their orientation in the space is defined by the angles of Euler ZYX [6-8]. We also assumed that for 

each bar the numbers of nodes that it connects, or is connected to, are known, namely: 

[ ] - right node of bar ,

[ ] - left node of bar  . 

wR p p

wL p p





 (2) 

Geometric and material sizes characterizing bars (bar length before deformation
0

pl , density, 

Young's modulus, cross-sectional area, moment of inertia, etc.) are known, too. 

 

Figure 2.   Node translation displacement and Euler ZYX angles. 
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The generalized coordinates of the nodes are the components of the following vectors: 

 
T

,  i i iq r Φ  (3) 

where: 

 
T

translation coordinates vector in the ba- se system ,i i i ix y zr  (4)
 

   
T

Euler ZYX angles Fig. 2. .- i i i i  Φ  (5) 

 Equations of the truss balance were derived from the Lagrange’s equations ( II kind ), which in 

the statics task are presented as follows:: 

Q  ,
q q

gs
k

k k

VV 
 

 
 (6)

 

where: 

Vs— resilient deformation energy of the system, 

Vg— energy of the gravity forces, 

Qk— generalized forces from external forces (loadings and node reactions), 

qk— k-th generalized coordinate. 

In the analysed cases, the generalized coordinates were the relocations of the nodes. 

2. SES models 

The work presents models based on the rigid finite element method. The mixed model B is a 

combination of models, in which the main support beams are modelled as beams, and the connecting 

elements as bars. Computer programs based on them have been optimized to make computation time 

shorter than in the case of commercial packages. 

2.1. Bar element model 

In the work, we assumed that in the bar model the elements transfer only the axial forces and that the 

generalized coordinates are the translation relocations of the nodes.  The potential energy of bar elastic 

deformation is determined by the equation: 

  21

2
 ,

p

s p pV c   (7) 
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where: 
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E – material modulus of elasticity, 

Fp – cross-sectional area of bar p, assuming its constant value. 

Taking into account the form of vectors 
iq (3) and (7) we obtained: 
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We assumed that the mass of the bar p is reduced to nodes  wL p and  wR p  in two equal parts. 

This leads to the following correlation: 

   
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2.2. Beam element model 

The transformation of coordinates from the node local system {i}' to the base system {} was made 

according to the equation below: 

,i i i i
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i
r – vector of point coordinates in the node {i}' local system.  

 

Figure 3.    Bar p connecting nodes wL[p] and wR[p] and the spring-damping element (sde p).  

We assumed that for the connecting bar wL[p] and wR[p] (Fig.3) the coordinates of the nodes are 

determined by the vectors  
0

wL p
r  and  

0

wR p
r  and angles 0.i i i      Hence, the coordinates 

defined in the local system of the bar p can be expressed in the base system according to the following 

equation: 
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 ,p p pwL p wL p
   r r R A r  (12) 
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p
r  – point coordinates in the {p}' system. 

In the beam model, it is assumed that the elements connecting individual nodes are divided in a 

manner specific for the rigid finite element method (Fig. 3). Stiffness coefficients sde p are determined 

from the formulas: 

  longitudinal stiffness coefficient: 
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 shear stiffness coefficients: 
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 for Bernoulli beam model,
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 for Timoschenko beam model.
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 bending stiffness coefficients: 
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 torsional stiffness coefficient: 
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where: 

,y z

p pI I – moment of inertia of the cross-section area of the bar p in relation to the axes y and z, 

E, G – Young and Kirchhoff modulus of elasticity. 

3. Determination of the Fp' forces 

 

Figure 4.   Forces and moments due to the deformation sde p 

The elastic forces transmitted by sde p are shown in Fig. 4. Their value can be expressed by: 
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where:  
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C – stiffness matrix sde p, 

vector of the relative translation relocations at sde .p p Δ
 

In order to obtain the magnitudes of relative translational deformations in sde p, it was necessary 

to determine: 
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Forces 
p
F  and  

p
F  can be expressed in the base system by the formula: 
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 The generalized forces induced by the translational deformations sde p, included in the 

equations of the equilibrium of nodes i and j, have been derived from the following relation: 
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, for k=1,...,6. 

4. Determination of Mp' moments 

Mp' moments from Fig. 4 can be calculated from the following formula: 
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C – rotational stiffness matrix sde p, 
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ΔΦ – rotation angles of the right part of the p element in relation to its left part (Fig. 4). 

Determined moments have been introduced into the equilibrium equations of nodes i and j as 

generalized forces. According to the formulas given in [9] the generalized forces at nodes i and j can 

be expressed by the formulas below:  
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B B B B B B

, (19) 

for k = 4, 5, 6. 

5. Lattice-boom – geometry, loading 

In computer calculations, we assumed that the crane base is rigid and only the boom is deformed. In 

the work it was assumed that the crane arm consists of four supporting beams connected with one 

another by bars, and that the beams and bars have box cross sections (Fig. 5). Dimensions of these 

cross-sections are given in Table 1. Furthermore, we assumed that both support beams and bars are 

made of the same material (steel: E = 210 GPa,  = 0.3,  = 7850 kg/m3). It is worth emphasizing that 

the material parameters of the 8 elements imitating the end of the E outrigger  are equal to the parameters 

of the supporting beams. This implies, practically, the stiffening of this part of the structure. 

 

Table 1. Parameters of the cross-sections for the crane arm beams and bars. 

Dimension: 

Supporting 

beams 

[m] 

Bars 

 [m] 

W 0,350 0,160 

H 0,350 0,160 

t 0,010 0,005 
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Figure 5.   General geometry of the crane arm. 

6. Calculation results  

Calculations were made for one of the characteristic operating positions of the boom (α1  = 0, i.e. the 

maximum tilt), under load in the control node E with concentric forces Fx = -0.1 MN, Fy = -2,5 MN, 

Fz = 0,1 MN  (Fig. 5). The values of the R reaction in the joints A and B, as well as supports C and D, 

the displacement uk of the control node E and the values and location of maximum compressive/tensile 

stresses 11 (stresses due to longitudinal forces in components) were recorded. The results of our own 

calculations were compared with the results of calculations obtained using the Abaqus package, where 

to model all the elements of the boom arm, two-node beam elements type B31 were used. In the model 

the nonlinear effects of large deformations and displacements were taken into account.  

Table 2 presents the reaction values in boom supports for Abaqus, A (beam) and B (mixed) models, 

respectively. These data were used to calculate the relative differences in response values (R) in the 

supports, with the Abaqus model reaction values being reference values. Differences are presented in 

Table 3. In addition, in the „A vs. B” column values from models A and B were compared. 

 

Table 2. R reactions in joints A, B and supports C, D of the crane arm. 

 
Model 

Abaqus A B 

Reaction R [MN] 

RA 2,351 2,371 2,388 

RB 2,349 2,316 2,284 

RC 2,510 2,637 2,630 

RD 2,790 2,671 2,678 
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Table 3. Relative differences in the reaction values R in crane arm articulations and supports. 

 
Model 

A vs. B A vs. Abaqus B vs. Abaqus 

 [%] 

RA -0,7 -0,9 -1,6 

RB 1,4 1,4 2,7 

RC 0,2 4,9 4,6 

RD -0,3 4,2 4,0 

 

Table 4 illustrates the values of the displacement components uEk  of the control point E of the boom 

arm for the Abaqus, A (beam) and B (mixed) models, respectively.  

 

Table 4. Displacements uk  of the control point E of the crane arm.. 

 
Model 

Abaqus A B 

Displacement  uk [m] 

uEx -0.1988 -0.1987 -0.1993 

uEy -3.9315 -3.9060 -3.9096 

uEz 0.1646 0.1557 0.1557 

 

Table 5 shows the relative (uEk) differences in the values of these components; similarly as for 

R, the displacement component values from the Abaqus model were the reference values (columns 

A and B); the "A vs. B" column lists the differences between A and B models. 

 

Table 5. Relative differences of the component value R of the control point E of the crane arm. 

 
Model 

A vs. B A vs. Abaqus B vs. Abaqus 

Reaction u [%] 

uEx -0,3 0,0 -0,2 

uEy -0,1 0,6 0,6 

uEz 0,0 5,4 5,4 

 

Table 6 gives the values  for the maximum longitudinal stresses in the boom arm, the numbers 

of the elements, in which they occur, and their corresponding relative differences  in the maximum 

stress values. 
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Table 6.  values and their corresponding value differences . 

 
Model 

Abaqus A B 

Element number 155 

 [MPa] 907,4 898,1 897,7 

 [%] - 1,03 1,07 

 

The value differences do not exceed 1.1% of respective values of the maximum stresses obtained 

in the Abaqus model.    

7. Conclusions 

Carried out calculations and the comparative analysis of results demonstrate that both models yielded 

similar results, while errors were within acceptable limits for this type of analyses due to the fact that 

differences reflected in results did not exceed a few percent. We also obtained similar results as regards 

to reactions, important for engineers, in joints of the outrigger with the frame as well as the relocations 

and longitudinal stresses in beams and bars. 

For both models the SES method was implemented in its geometrically non-linear version, i.e. 

trigonometric functions of angles describing the rotation of elements were not linearized. Moreover, 

this method has an unquestionable advantage based on the introduction of concentrated masses and 

loads at any point of beam elements (except nodes). This can play a pivotal role in imitating such a 

complex system as the crane. 
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Application of Hilbert transform in detection flat places on tram 
wheels 

 

Tomasz Nowakowski, Paweł Komorski, Grzegorz M. Szymański, Franciszek Tomaszewski 

Abstract: The development of urban rail transport in Poland in recent years has been 

associated to the access of city dwellers to the modern rolling stock. These rolling stock 

has to meet the increasingly stringent requirements of it’s owners regarding the reliable 

execution of the transport process, as well as residents' demands for vibroacoustic 

comfort observed both in the passenger space and track surroundings. All of these 

activities are related to the reduction of adverse vibrations which may: reduce the 

durability of the individual components and structural junctions of the tram and 

generate excessive noise. In this case it is important to maintain the quality of the 

cooperation of vehicles and track, which revolves around the wheel-rail contact area. 

One of the main causes for increased vehicle-dependent dynamic impacts at the wheel-

rail contact area are irregularities on the rolling surface of the wheels, including flat 

places. The paper presents the problems of the phenomena which are generated during 

passing of a tram with flat places on the wheels. Experimental research on the 

phenomena carried out under real operating conditions is also presented. The purpose 

of the study was to verify the applicability of Hilbert transform method in the frequency 

domain on signals from rails for the purpose of identifying flat places in the vehicle. 

Finally, a universal algorithm for identifying these irregularities for light rail vehicles 

has been developed. 

1. Introduction 

The developement of urban railway transport in Poland is associated with numerous railway 

vehicle investments. An example of a polish city consequently realizing its orders for new railway 

vehicles is Poznań. Since the beginning of the year 2016 Poznań has ordered 80 new trams, which are 

consequently introduced into tram traffic. Requirements set by users of those new trams – owners, city 

dwellers and passengers alike – most of all demand a reliable realization of the transportation process, 

as well as vibroacoustic comfort. It has to do with reduction of undesirable vibrations that can reduce 

the durability of tram elements, as well as track elements. In this case, maintaining a high quality of 

cooperation between the vehicle and the track is crucial. One of the main factors of increased dynamic 
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impact dependent on the vehicle in the point of contact between the wheel and the track are irregularities 

on the rolling surface of wheels, and among them – flat places (also: flat spots). 

A flat spots is a defect on the rolling surface in the form of a flat surface, due to laminating or 

flattening of its material. Causes of flat spot occurance are well known and described in numerous 

papers, eg. [1]. Flat spots are caused by absolute or temporary lock of the wheel axis as a result of 

incorrect break operativeness, or decreased traction in the wheel-rail area (moisture, contamination). In 

such cases, locked wheels are propelled along the rail, grinding the rolling surface material. The ground 

material is often relocated on the rolling surface behind the flat spot, creating spalling. This causes a 

sudden loss of primary features of the wheel during operation. The observed results are - loss of 

noiselessness during movement (high levels of noise), as well as increased dynamic impact on the rail. 

The impact is significant and different to those resulting from roughness in constant contact with 

running surfaces of the wheel and rail. A basic model of the phenomenon has been depicted on fig.X 

 

Figure 1. Wheel with flat spot basic model: 

V -  wheel linear velocity,   – wheel rotational velocity, i - wheel rotational velocity with flat spot, 

Q – weight of non-sprung elements per one wheel, F – total weight of sprung elements per one wheel, 

r – diameter of wheel, P – d'Alembert's reaction force, d – defect depth, l – defect length. 

 

Results of such defects are considered on three surfaces: technical, economical and social. The 

technical aspect relates to the influence of the defects on stability of the wheelset and the influence of 

the generated vibrations on the construction’s durability. The economical aspect considers all the costs 

associated with reprofiling the rolling surfaces as well as their shorter utility time. The social aspect 

considers complaints by the passengers and dwellers of buildings in close proximity to the tracks on 

increased vibrations and noise. Thus, considering these aspects, it is necessary to correctly recognize 

the technical state of the rolling surfaces by introducing flat spots detectors in a tram depot. 
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The first track system for detection of flat spots was introduced in a tram depot in Cracow. It is a 

WF system, and its basic function is to monitor the increase of vibrations from transducers located on 

two rails at the distance of 3 m. With velocities of 10÷20 km/h flat spots on the wheels are automatically 

detected [2]. The second used system is Revega, based on monitoring the pressure of wheels on rails at 

a distance of 3,6 m, with velocities no greater than 15km/h. Unfortunately, not all municipal 

transportation company in Poland are equipped with systems of detection of flat spots. In Poznań, only 

one of three tram depots is equipped with such a system.  

There are many systems for detection of flat spots available. Among them, for example [3], where 

flat spot diagnostic tool via wavelet transform of signals from the rail registered by four transducers 

was developed. A similar, new approach, although with use of machine learning was introduced in [4]. 

Further on, article [5] introduced a method for detection of flat spots based on ultrasound and a 

transducer on the rail. It generates propagating waves in the rail, which, in contact with the wheel-rail 

point, produces an echo, which is then assessed. 

The method of detecting flat spots described in this paper is unique and simplified, as shown 

further. 

 

2. Method of research 

2.1. Basic assumptions 

Defects on rolling surfaces of wheels in the form of flat spots generate cyclical impulses in the 

wheel – rail area of contact. Thus, measurement points were located on the rail. These vibrations are 

characterized by low displacement amplitudes and high acceleration amplitudes [6]. And so 

acceleration was assumed as a basic physical quantity. 

The suggested method for detection of flat spots is partially analogous to diagnostics of rolling 

elements in machines, eg. bearings, with the use of Hilbert’s transform (envelope analysis). In both 

cases: defect of a bearing element, or defect in form of a flat spot is directly correlated to rotational 

frequencies. Envelope analysis allows for extraction of a signal envelope containing a low frequency 

modulation, which corresponds to cyclical impulses, indicating a flat spot on a wheel. The suggested 

method considers analysis of envelope in the time domain as well as the frequency domain. 

Impulses events on rails coming from a flat spot are also characterized by low energy, when 

compared to the total energy in the vibration signal. The higher harmonics of repeating impulses will 

thus be amplified during resonance of the vibration-emitting structure, i.e. the rail. It is another 

argument for use of envelope analysis, which uses resonance vibrations carrying information about 

impulses (defects in the form of flat spots). Thus, analysis of signals from tram passes followed the 

analysis of rail structure dynamics. 

439



In order to minimize financial expense, measurement points were located only on one rail (above 

the sleepers). The number of measurement points (Pm) was determined by considering the maximum 

circumference of the wheel (cw,max) and distances between sleepers (ls), as in the formula (1). 

 Pm= int (
𝑐𝑤,𝑚𝑎𝑥

𝑙𝑠
) | Pm ∈ ℕ  (1) 

Thusly determined measurement points designate the controlled length of the rail (Crea) upon which 

contact with a flat spot is certain. The suggested method of flat spot detection assumes a divalent 

grading of technical state, considering the limit values of vibration acceleration as criteria for grading, 

statewise with a collection of states W: 

   𝑊 = {𝑤1, 𝑤2}  (2) 

where: w1 – bad condition of tram, w2 – good condition of tram. 

 

2.2. Objects, localization and conditions of research 

Research was conducted on a track of a tram depot S2 of MPK Poznań. The track upon which 

measurements were realized was constructed from a rail 60R2 on Moll sleepers, which are located at a 

distance of 750 mm (ls). The greatest expected circumference of a wheel in MPK Poznań rail stock, 

assuming a nominal radius of 654 mm (r) is approx. 2054 mm (cw,max).  Applying those values to the 

formula, we receive the number 4, denoting a necessity for 4 measurement points on the rail. The real 

controlled distance was 2250 mm (Creal).  Location of the measurement points has been shown on fig. 

2.  

 

 

 

 

 

Figure 2. A view of the measurement points location with a basic designations of dimensions 

and measurement realization: ω – rotational velocity of the wheel, V – linear velocity of the wheel 
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Acquisition and archiving measurement's data was carried out using a multi-channel data 

acquisition module LAN-XI type 3050 (Brüel & Kjær).  For registering of vibration signals 

piezoelectric transducer Brüel & Kjær type 4504 (PM1÷PM3) and type 4524 (PM4) was used.   

Research was conducted on Moderus Beta MF 22 AC BD trams, which has been shown on fig. 3 

with its chosen technical parameters. 

 

 

Max. velocity: 70 km/h 

Wieght: 40,65 t 

Length: 28 250 mm 

Width: 2 354 mm 

Height: 3 350 mm 

Figure 3. Moderus Beta MF 22 AC BD – the object of research [7] 

  

Research was conducted on trams with rail stock numbering #920 and #916, realizing transportation 

processes for approx. a year. Tram #916 was free of rolling surface defects, whereas tram #920 was 

observed to have defects in the form of flats spots and spalling on the last, 8th wheelset (fig. 4). 

 

Figure 4. heel defect on wheel tread of tram #920 in the form of flat spots and spalling’ 

D – wheel defect on wheel tread, FS – flat spot, S – spalling. 

 

Surface of the entire defect on the wheel tread of both wheels converted to coordinated of length and 

width of an approximated ellipse was equal to, correspondingly, 66 mm and 32 mm.  

 

 

 

 

F
S

 
S

 

D
 

Left wheel Right wheel 
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3. Analysis of research results 

 The rail material and state of strain cause a significant speed of wave spread, around 5000 m/s. 

Thus, a cross–correlation analysis of the signals registered during transit was conducted. The mutual 

correlation was determined based on the assumptions of the formula:  

   𝐾𝑎1,𝑎2() =
1

𝑇
∫𝑎1(𝑡) 𝑎2(𝑡 + )𝑑𝑡 (3) 

where: a1,a2 – analysed signals of vibration acceleration, t – time,  – time delay. 

 

Whereas in analysis the correlation was determined numerically, according to the formula [8]: 

 Ka1,a2(K∆)=
1

NΔT
∑ 𝑎1(𝑛𝛥𝑡)𝑎2(𝑛𝛥𝑡 + 𝑘𝛥𝑡)𝛥𝑡
𝑁−1
𝑛=0 = Ka1,a2(k)=

1

N
∑ 𝑎1(𝑛)𝑎2(𝑛 + 𝑘)
𝑁−1
𝑛=0   (4) 

 

Results of mutual corelation analysis between signals PM1 and PM2, PM3 and PM4 has been depicted 

on fig. 5. 
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Figure 5. Charts of cross-correlation between vibration signals measured in all points  

of measurement 

 From the charts above one may extrapolate, that the registered vibration signals had a degree of 

timeliness for all measurement points. The apex of cross–correlation function, falling close to the zero 

of time parameter (variation from 656 µs to 1 ms) is the evidence of this. 

 In the next step, according to the  research assumptions, analysis of rail structure dynamics was 

conducted. A tool for modal analysis, that is an impact test, was used. Force exaction were realized in 

the surface of rail’s head, on the surface of measurement points. The response to the exaction was 

measured as acceleration of vibrations in the nearby measurement points. For each point a numerous 

exactions were conducted, which ultimately allowed for eliciting a frequency response function (FRF). 

For example, the fig. 6 presents the results of the frequency response function for the measuring point 

PM1. 

PM1-PM2 PM1-PM3 PM1-PM4 
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Figure 6. Amplitude-frequency characteristics (bottom part of the chart) and phase-frequency (upper 

part of the chart) from impact test carried out on the track; X(jω) is complex spectrum of an object 

response F(jω) is complex spectrum of a force stimulating the object vibration; H(jω) is complex 

function of a frequency response, MH – modal hammer, PM1 – first point of measurement. 

  

The rail resonance in the PM1 point, which allows for observation of the impulse signals in tram 

passing, was at the frequency of 1,063 kHz. All vibration signals on the output of the transducers were 

filtered by band–pass filter with the center frequency equivalent to the frequency of the rail resonance. 

Filtered signals were subjected to demodulation in order to achieve signals’s envelope. Those signals 

could have contained low-frequency modulations correspondent to the cyclically appearing impulsive 

events resulting from the eventual flat spot on the wheel. 

 

Analysis in time domain 

 Hilbert Transform (HT) of the signal a(t) can be analitically defined based on the equation: 

   𝐻𝑇 = â(t) = 
1

𝜋
∫

𝑎()

𝑡−
𝑑

∞
−∞   (5) 

In this paper, Hilbert Transform was applied to the signals numericaly, as in the equation (6).  

   𝒂⃡ (𝒌) = ∑ 𝒉𝒌−𝒏𝒂(𝒏)
𝑵−𝟏
𝒏=𝟎   (6) 

where: 

ℎ𝑛 =

{
 

 
2

𝑁
𝑠𝑖𝑛2(0,5𝜋𝑛)𝑐𝑡𝑔 (

𝜋𝑛

𝑁
)  



𝑁𝜖𝑓(𝑛)
 𝑓(𝑛) = 2𝑛 

2

𝑁
[1 − cos(𝜋𝑛) 𝑐𝑡𝑔 (

𝜋𝑛

𝑁
) /𝑐𝑜𝑠 (

𝜋𝑛

𝑁
)] 



𝑁𝜖𝑓(𝑛)
 𝑓(𝑛) = 2𝑛 + 1

 

 

An exemplary time signals’ envelopes for the passing of the #916 and #920 trams were presented on 

fig. 7 and 8. Envelope of the signal presented on fig. 7 for the #920 tram, was concerning the 

measurment’s point PM1, extreme in case of the values of the acceleration of vibration. 

𝐻(𝑗𝜔) =
𝑋(𝑗𝜔)

𝐹(𝑗𝜔)
 

MH 

PM1 
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Figure 7. The time signal envelope for the tram #920 with the flat spot on the wheel 
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Figure 8. The time signal envelope for the tram #916 without the flat spot on the wheel 

 

 As seen on fig. 7 time signal envelope from the #920 tram is characterized by the appearance of 

the explicit, periodic peak of the amplitude higher than 30 m/s2. Whereas, time signal envelope from 

#916 tram shows no such feature. The conclusion from this analysis imply that monitoring of the 

amplitude of the acceleration of vibration in the time signal envelope may be a successive method of 

detection of flat spots. In this case, acceleration of vibration must be treated as the diagnostic parameter 

a(t)=S, which, after achieving the set limit value Sg would show the occurrence of the flat spots on the 

wheel. In this case it is necessary to define the set limit value Sg of the observed diagnostic parameter 

S, individually for all operated tram types. On the fig 7. and 8. presented an exemplary set limit value 

„a priory” for the value of 40 m/s2. This value should be appointed by the users of this method based 

on a large number of the observation of the signal a(t) parameter and structure D parameter (lack or the 

value of the flat spot). A base of relations, created in this way, between the technical state of the rolling 

surface of the wheel and the accompanying rail vibration will be the base for calculation of the set limit 

value, based on the statistic method or heuristic method.  
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Analysis in frequency domain 

 The analysis started from the calculation of the characteristic frequency for the discussed defect of 

the rolling surface of the wheel, based on the following formula: 

 

   𝑓𝑓𝑝 =
𝑉∙3,6−1

𝑐𝑤
  (7) 

where: cw – circumference of the wheel, V – linear velocity of the tram. 

 

Consideration of the circumference of a wheel requires the measurements of its actual diameter before 

the analysis can be done. To bypass this, it was decided to simplify the methods, introducing an 

algorithm to search for the rotation frequency, in the possible rotation frequency section (fwheel) for the 

particular velocity. Those sections defined from the formula 7, considering the possible tram velocity 

up from 20 km/h to 15 km/h (step 1km/h), and the extreme value of the diameter of the wheel. The 

results were presented in table 1. 

Table 1. The sections of the possible rotation frequencies of the wheel  

for the particular tram velocities 

*the section for the passing of the #920 tram, ** the section for the passing of the #916 

Tram velocity \ Wheel diameter max: 654 mm min: 600 mm   fwheel [Hz] 

20 km/h 2,71 Hz 2,95 Hz   <2,71, 2,95>* 

19 km/h 2,57 Hz 2,80 Hz   <2,57, 2,80> 

18 km/h 2,43 Hz 2,65 Hz   <2,43, 2,65>** 

17 km/h 2,30 Hz 2,51 Hz   <2,30, 2,51> 

16 km/h 2,16 Hz 2,36 Hz   <2,16, 2,36> 

15 km/h 2,03 Hz 2,21 Hz   <2,03, 2,21> 

 

 The algorithm is set on finding a peak in the particular section of the frequencies fwheel. Its 

location on the axis abscissa will testify the diameter of the wheel. As it results from the  presented 

table 1, for the tram #920, the rotational velocity will be included in the section from 2,71 Hz up to 2,95 

Hz. Whereas, for tram #916 the frequency will be set in the section from 2,43 Hz up to 2,65 Hz. 

In case of the FFT spectrum from the signal envelope, the visible difference between the passes is 

observed in the values of the frequency amplitude fp, corresponding to the rotation frequency of the 

wheels, presented on fig 9.  
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Figure 9. Spectrum from envelope vibration signals for tram #920 i #916 

  Finally, an universal algorithm for identifying the irregularities for the light rail vehicles was 

developed, presented on fig.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The universal algorithm for detection of the flat spots on the tram wheels 

 

 

The signal of the start of the measurements can be made freely by the user, for example from the 

signal of the inductive sensor, which can detect the wheel set. When the velocity criterium will have 
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envelope analysis. Every signal undergoes the analysis, depending on the chosen variant of the 

algorithm’s functionality in the time domain (variant A) or in the frequency domain (variant B). 

Independently from the variant, the extreme values individually established by the user of the system 

are checked on the base of numerous observations of the wheel’s defect, as the flat spots and the 

accompanying vibration’s signals. If, in whichever point of the measurement, the limit values will be 

exceeded, the technical state of the tram will be in a bad condition – w1. It is equivalent to referral the 

tram for the service, otherwise the technical state of the tram will be in a good condition – w2. 

4. Summary 

The study and the method of detecting the flat spots in this paper, can be introduced on the tram 

depot. Experimentally indicated the connection between the presence of the flat spots on the rolling 

wheel and generated vibrations of the rail. The indicated methods of the detection, same as in the time 

and frequency domain, show effectiveness, verified in conditions of the real operations occurring in the 

tram depot. The proposed method may be used on a larger scale of tram velocity. The inspection of 

both vehicles in the technical condition, confirmed the diagnosis considering both assumed methods. 

The possibility of stating the individual limit value of vibrations, will enable adjustment of the method 

to different conditions of the tram company. 

The application of the proposed method will successively contribute to reducing the number of 

trams with flat spots on wheels, routing mainly in a urban area. The consequences of this will be 

observed in reduction of the external costs of the transport borne by the society 
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Mathematical models of two parametric pendulums with 

modulated length 

 
 

Paweł Olejnik, Jan Awrejcewicz, Michal Fečkan 

Abstract: Dynamics of a parametric pendulum excited by a wave-modulated discrete 
function of its length is investigated both analytically and with the use of computer 
simulations. An existence results of almost periodic sequences of ordinary differential 
equations with linear boundary value conditions are observed. Behavior of an 
exemplary oscillator subjected to both an almost-periodic step elongation and forcing, 
analogously tends to almost-periodic motions. Finally, conditions for that 
synchronization as well as numerical trajectories on phase planes and Poincaré sections 
are presented. 

1. Introduction 

In this study two nonlinear dynamical system of one and three degrees of freedom with a wave-

modulated length and a variable-length spring pendulum [3,4,7] and a vibrating suspension [1] are 

mathematically derived. 

Parametric excitation of a rigid planar pendulum caused by a square-wave modulation of its length 

is investigated  in [2] both analytically and with the use of computer simulations. The threshold and 

other characteristics of parametric resonance are found. The role of non-linear properties of the 

pendulum in restricting the resonant swinging is emphasized. The boundaries of parametric instability 

are determined as functions of the modulation depth and the quality factor. Stationary oscillations at 

these boundaries and at the threshold conditions are investigated. The feedback providing active 

optimal control of pumping and damping is analyzed. Phase locking between the drive and the 

pendulum at large amplitudes and the phenomenon of parametric autoresonance are discussed. 

The existence of the resonance phenomena both external and internal occurs in vibrating structures 

as an increased amplitude of vibrations. In general, from the engineering point of view this type of 

grazing behavior is usually unwanted also in solid bodies. Appearance of resonance generate greater 

complexity of a mechanical system behavior. In this paper, the study is performed to create the 

simulation and investigation for better understating of resonance phenomena of a periodically forced 

slider-spring pendulum mechanical system of three degrees of freedom. 

Pendulum can be excited parametrically by a given vertical motion of its suspension point. In the 

frame of reference associated with the pivot, such forcing of the pendulum is equivalent to periodic 
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modulation of the gravitational field [2]. This apparently simple physical system exhibits a surprisingly 

vast variety of possible regular and chaotic motions. Many contributions are devoted to investigation 

of the pendulum with vertically oscillating pivot: see, for instance [8]. A widely known curiosity in the 

behavior of an ordinary rigid planar pendulum whose pivot is forced to oscillate along the vertical line 

is the dynamic stabilization of its inverted position, occurring for the precise intervals of the driving 

amplitude and frequency. 

 The pendulum may be suspended to the flexible element. In this system the autoparametric 

excitation may occur as a result of inertial coupling. Analogous behavior happens when the mass is 

attached to the pendulum type elastic oscillator, and then, it is possible to observe autoparametric 

nonlinear coupling between the angle of the pendulum and elongation of the spring. All of such cases 

depend on the set of parameters for the investigating system. Examples are as follows: dumping, mass 

ratio of components, and specification of external excitation. As a result of system specification, the 

resonance phenomena transferring the energy between system components or their mutual excitation 

can appear differently. 

2. Problem description 

We analyze the three-degrees-of-freedom dynamical system presented in Fig. 1. 

 Our system consists of an elastic pendulum with the initial length l0, the stiffness k and the damping 

c. The pendulum is attached to the moving slider with the point-focused mass M. The slider moves 

horizontally along the x-axis. The mass m hangs down from the end of the spring. The body of mass M 

(slider) is subjected to the harmonic vertical excitation force F(t) = F0cosωt. The planar mechanical 

system presented above has three degrees of freedom. The generalized coordinates are assumed for the 

angle θ between the pendulum spring and the vertical axis z (inclination angle), the incremental 

elongation of the spring Δs and the horizontal displacement x of the body of mass M. 

  

Figure 1.   Dimensions of loaded (stretched or compressed) and unloaded (free) linear spring (a), 

a variable-length forced spring pendulum system of three degrees of freedom (b). 
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 Any of the existing phenomena cannot be presented, examined and transferred to mathematical or 

engineering problem in the infinitely direct way [9]. According to this fact some assumptions allowing 

for a reduction of the complexity of the analyzed problem will be made. To weaken the system’s 

complexity, but still maintaining its basic properties we have assumed: 

 - friction of the slider does not exists in the dynamical system; 

- energy dissipated by the frictional contact of the base and the slider vibrating on it can be 

compensated from an external source of energy, for instance, determined by a control system; 

- radial elongation of the spring pendulum exists; 

- the spring is considered as massless, and its force of reaction described by Hooke’s law appears 

when it is stretched or compressed from its free length; 

- the slider has a point mass focused at the rotationally constrained end (upper) of the spring; 

- excitation is caused by an external harmonic force, e.g., it can come from a magnetic field; 

- mass of the spring pendulum is focused in a point at the second (lower) end of the spring; 

- damping of motion is associated only with elongation of the spring of the pendulum. 

We assume the almost ideal case in which the dissipation of energy by the frictional contact could 

be partially compensated by an external source. 

3. Two mathematical models of pendulums with variable length 

For the mathematical description of the dynamical system with a time-varying parameter, such as the 

variable length of the pendulum, the Hill or Mathieu equations are often used [10]. Nevertheless, in 

similar studies referring to the analyzed case, the Euler-Lagrange equation can be used. 

3.1. A variable-length pendulum springily attached to the forced very weakly damped 

slider 

 The kinetic energy of the analyzed three-degrees-of-freedom system is calculated according to 

the sum of kinetic energies of both system bodies (see Fig. 1): 

 
   

   
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2 2 2 2

1 1( , , , , , ) sin cos sin cos
2 2
1 1 2 sin cos .
2 2
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   

        
        

       

    
(1) 

The potential energy of the analyzed mechanical system is a sum of a) the energy of the linear 

spring, that is accumulated after the incremental elongation Δs and the static elongation Δlst (static 

stretching or compression by a hanging pendulum body of mass m) measured from the equilibrium free 

length 𝑙଴ of the spring; b) the gravitational potential energy of the body of mass m on the vertical 

distance (Δs + l)cosθ between centers of the slider and the pendulum body, i.e.,  
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For each component of the vector of general coordinates yk, at independence of the assumed 

general coordinates, the Lagrangian L = U ‒ V satisfies the following Euler-Lagrange equation as 

follows:  

0
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dt y y y
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 

 (5) 

where Qk is understood to be the reminder of the k-th generalized force when viscous damping of 

motion of the pendulum body in direction s is accounted for with the Rayleigh dissipation function: 

  2 2
01( , , ) .

2 2
d s l csR s x c

dt


      

    (6) 

After applying the equations (1), (4) and (6) to the Euler-Lagrange equation (5), for each 

generalized coordinate yk, we get the three coupled differential equations of motion for each degree of 

freedom. 

 For the generalized coordinate θ (pendulum angle): 

2 cos sin 0.s s x g          (7) 

 For the generalized coordinate s (pendulum elongation): 

   2
0sin cos 0.m s x s g cs k s l            (8) 

 For the generalized coordinate x (slider displacement): 

     2
0cos 2 sin cos .M m x m s s m s s F t                (9) 

Equations (7)-(9) can be algebraically decoupled with respect to the second derivative, we have: 
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(10) 

where 

  1 1
0 0sin cosM cs k s l F M t      

 
(11) 

expresses acceleration of the slider. 

 The system (10) of three second order ordinary differential equations is highly non-linear due 

to multiplication of state variables and some trigonometric functions. It describes the continuous system 

dynamics that will be subject to an analysis of long term solutions that will occur far and near its 

resonance zones. Numerical solution of the system of equations has to be preceded by its transformation 

to a system of six first order differential equations, assumption of some initial conditions for the six-

element state vector and also by the change of the variable s = Δs + Δlst + l0, so the numerical solution 

referred to the second degree of freedom (the state variable s) will represent an incremental elongation 

of the spring, i.e., Δs, about its equilibrium length l0. The system dynamics will be investigated in the 

next section. 

3.2. A damped mathematical pendulum with periodically modulated length 

Let us consider the motion of the damped mathematical pendulum [5] with changing length l = l(t) and 

external force e = e(t) given by 

( ) sin ( ).l t c e t       (12) 

 We suppose that l(t) and e(t) are almost periodic step functions in the following sense: there are 

sequences 

{ } , { } , { } ,

{ } , { } ,

n n k k k k

k k k k

t l e

T w

  

 

  

 

Z Z Z

Z Z

R C C

C R
 (13) 

such that  

, , 0, ,
2

kiw n
n k k

k k

Tt nT T e n T T
 

      
Z Z

Z  (14) 

and for any tn < t < tn+1, we have: 
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k k
e t e e l t l e

 
  

Z Z
 (15) 

where 

, .k k
k k

e l
 

    
Z Z

 (16) 

Moreover, we suppose that l(t) and r(t) are step functions with almost periodic jumps. We are 

interested in finding conditions on l(t), e(t) and c that Eq. (12) has a bounded solution on R with the 

same almost periodic properties as l(t) and e(t). To solve this problem, a sequence of ordinary 

differential equations with linear boundary value conditions has to be studied. Being motivated by the 

approach presented in [6], considering continuous almost periodic ordinary differential equations, the 

boundary value problem can be solved with the use of Banach fixed point theorem together with a 

method of majorant functions. For a simplicity, taking into account a concrete form of Eq. (12) the 

solution will be found, as well as to visualize the pendulum’s behavior, some numerical computations 

performed. 

 Let the difference equation be analyzed in the form: 

3
2 1 1 2cos 2 sin 3 , ,n n n nx ax x bx d n d n n       Z  (17) 

where a  R, |a| > 2 and b, d1, d2  R. It can be shown that if 

   2 3
1 227 4 2b d d a    (18) 

then Eq. (18) has a solution of the form: 

1 2( 2 3 )

, ,

3, .
2 2

i k p n
n kp kp

k p k p

d d
x z e z

a


 


 

 
Z Z

 (19) 

4. Numerical computations 

At this stage of our study, the dynamics of the very weakly damped pendulum is discussed. In Fig. 7, 

we see an interesting example of quasi-periodic oscillations of the slider-pendulum system in each 

degree of freedom. It is confirmed in Fig. 7b by three closed color curves on Poincaré maps. The slider 

oscillates quasi-periodically with the frequency f2 ≈ 0.9707 being synchronized with the same frequency 

of angular oscillations of the pendulum. Additionally, with regard to the weakly damped case and in 

comparison to the previous case, the elongation of the spring pendulum is much greater as well as the 

remaining state variables take higher maximal amplitudes of oscillations. 
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a)  

b)  

c)  

Figure 2.   Time histories with amplitude modulation of the length of the pendulum given by Eq. (10), 

phase planes (grey lines) and Poincaré maps (red, green and blue dots) for the case of 

weakly damped variable-length spring pendulum (see Sec. 3, c = 0.01 Ns/m). Parameters: t0 

= 9775.12, tk = 10032.36, tob = 257.24, T = 0.6431 s, nT = 400, ω = 9.77 rad/s. 
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d)    

Figure 2 (continued). 

a)   

b)  

Figure 3.   Time histories with amplitude modulation of the length of the pendulum given by Eq. (10), 

phase planes (grey lines) and Poincaré maps (red, green and blue dots) for the case of 

weakly damped variable-length spring pendulum (see Sec. 3, c = 0.01 Ns/m).  

Parameters: t0 = 988.848, tk = 1030.05, tob = 30.9015, T = 1.03005 s, nT = 40, ω = 6.1 rad/s. 
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c)   

d)   

Figure 3 (continued). 

Figures 2 and 3 represent quasi-periodic behaviour of all system bodies confirmed by closed curves 

on Poincaré maps. Inspecting the spectral power density plots in Fig. 2c and 3c, each mode of 

oscillations is associated with a slightly different frequency. It is a very characteristic dynamical 

behaviour since at least two different frequencies of oscillations are reported. 

5. Conclusions 

Two mechanical systems consisting of a variable-length pendulums were subject to a mathematical 

derivations and numerical computations. The two systems dynamics was investigated based on the 

derivation of mathematical model and the resonance plot obtained for the case of very weak damping 

of incremental elongation of the pendulum. The observations brought us interesting results, 

summarizing that the three-degrees-of-freedom mechanical system with partial dissipation of kinetic 

energy of motion oscillates mainly periodically and quasi-periodically. Nevertheless, the system 

dynamics can exhibit chaos in a close vicinity of resonance peaks of maximum amplitudes. The damped 

spring pendulum with a moving point of its attachment has two modes of oscillations, the pendulum 
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angle of rotation mode and the spring incremental elongation mode. Finally, the second model of a 

mathematical pendulum with jumping length has been defined for proving the existence of almost 

periodic solutions. A mathematical analysis supported with numerical computations of the jumping 

discontinuity system will be taken into a deeper consideration in further works. 
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Chaotic dynamics of a two-layer beam set, described by 
mathematical models of the first and second approximation 

 
Irina V. Papkova, Olga A. Saltykova, Jan Awrejcewicz, Vadim A. Krysko 

Abstract: Chaotic dynamics of a two beams set with a small clearance between them 

is investigated. Such a clearance is adopted for problems where geometric 

nonlinearity can be ignored. In the studied case each of the beams may exhibit 

vibrations with an amplitude of no more than 0.25 of the beam height. The transverse 

uniformly distributed harmonic load acts on the outer beam (beam 1). The contact 

interaction is accounted through the Kantor model. Two cases are considered: (i) 

beam 1 is described by the first approximation model, and beam 2 is governed by the 

second approximation model; (ii) beam 1 is described by a second approximation 

model, whereas beam 2 by a first approximation model. The problem is solved as a 

system with an infinite number of degrees of freedom. The finite difference method 

and Runge-Kutta type methods are used. The analysis of the obtained results is carried 

out by the methods of nonlinear dynamics and the qualitative theory of differential 

equations. The problems were solved both in geometrically linear and nonlinear 

formulations. The solution takes into account the constructive nonlinearity. To obtain 

reliable results, we calculated the values of the largest Lyapunov exponent using three 

different algorithms, and hence our results can be treated as true ones. 

1. Introduction 

The aim of the paper is to study the influence of the kinematic model on the nonlinear dynamics of 

the contact interaction of beams. It is impossible to obtain an analytical solution for the problems 

under investigation, because the differential equations that describe the dynamics of a beam structure 

are complex and nonlinear. 

It is necessary to use several numerical methods to solve nonlinear problems. Among the 

methods of reducing the system of nonlinear partial differential equations to the Cauchy problem, we 

use methods such as: the finite differences method (FDM), the Bubnov-Galerkin method in higher 

approximations, and the finite elements method (FEM) and the finite boundary elements method. To 

solve the Cauchy problem, one can use the FDM, the Adams method, the Runge-Kutta type methods, 

and so on. 

The application of numerical methods can lead to an accumulation of the error of the solution. 

The question arises about the reliability of the obtained solutions. This question is posed in his work 

by Ren'e Lozi [1]. To ensure the numerical reliability of the obtained results, we propose an approach 

459



for verifying the truth of the results. This approach is connected in the transition of the original 

problem from a finite number of degrees of freedom to an infinite one.  

A significant dependence on the initial conditions is a fundamental feature of chaos. Gulik [2] 

considers that chaos exists when either there is an essential dependence on the initial conditions or the 

function has a positive Lyapunov exponent at each point of the domain of its definition and therefore 

is not ultimately periodic. In our studies we follow the definition of chaos according to the Gulik’s 

work [2]. 

The solutions obtained depend on the chosen kinematic hypothesis in the construction of the 

mathematical model, the boundary and initial conditions, the number of integration intervals in the 

FDM, the method for solving the Cauchy problem in the form of methods of the Runge-Kutta class, 

the time step in solving dynamics problems and the method for determining the Lyapunov exponent . 

The geometric dimensions of the beams are the same. The material of the beams is isotropic and 

homogeneous. Between the beams there is a small gap, the value of which is less than 0.2h, where h 

is the height of the beam, i.e. consider small clearance between the beams. 

2. Statement of the problem and the mathematical model 

The considered structure composed of two beams occupies a 2D space within the R2 space with the 

rectangular system of coordinates given in the following way: a reference line, further called the 

middle line , is fixed in the beam 1, the axis OX is directed z=0 from the left to the right of the middle 

line, and the axis OZ is directed downwards. In the given system of coordinates, the space Ω is 

defined in the following way (see Fig. 1): Ω = {𝑥 ∈ [0, 𝑎]; −ℎ ≤ 𝑧 ≤ ℎ𝑘 + 3ℎ}, 0 ≤ 𝑡 ≤ ∞. 

 

Figure 1. The investigated beams 

The hypothesis of the second approximation [3] - the hypothesis of Tymoshenko, lies in the fact 

that the tangential displacements uz are distributed along the beam thickness according to a linear 

law. To obtain the Euler-Bernoulli equations [4], we assume that the tangential displacement uz is 

distributed along the thickness of the stack of layers according to a linear law. 

In order to model the contact interaction of the beam within the Kantor model, we introduce the 

term (−1)𝑖𝐾(𝑤1 − 𝑤2 − ℎ𝑘)Ψ, 𝑖 = 1, 2 into the equation governing the beams, i – is stands for the 
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beam number. The function is Ψ defined by the formula Ψ=
1

2
[1 + 𝑠𝑖𝑔𝑛(𝑤1 − ℎ𝑘 − 𝑤2)], i.e. if Ψ=1 

the beams are in contact 𝑤1 > 𝑤2 + ℎ𝑘, otherwise there is no contact between [5] (see Fig. 1). There 

is a gap between the beams - ℎ𝑘. К - stands for the coefficient of transverse stiffness of the contact 

zone. By “beam 1” we understand the externally beam loaded, whereas “beam 2” stands for the 

unloaded beam. 

Equations of beams motion, as well as the boundary and initial conditions, are obtained from the 

Hamilton-Ostrogradskiy principle [6-7].  

A wide class of papers on the nonlinear dynamics of Euler-Bernoulli beams [8-9], Timoshenko 

[10-11], and also on the contact interaction of mechanical structures [12-13] is presented in the 

modern scientific literature. But to the present time, there is no work on the study of beam structures 

with a gap, where each beam is described by kinematic hypotheses of different approximations. 

Equations of motion of a structure consisting of an Euler-Bernoulli beam and a Timoshenko 

beam in the displacements taking into account the energy dissipation will be written in the following 

form 

{
 
 
 
 
 
 

 
 
 
 
 
 

1

𝜆2
[𝐿2(𝑤𝑖 , 𝑤𝑖) + 𝐿1(𝑢𝑖 , 𝑤𝑖) −

1

12

𝜕4𝑤𝑖

𝜕𝑥4
] −

−(−1)𝑖𝐾(𝑤1 − 𝑤2 − ℎ𝑘)Ψ + 𝑞𝑖(𝑡) −
𝜕2𝑤𝑖

𝜕𝑡2
− 𝜀1

𝜕𝑤𝑖

𝜕𝑡
= 0;

𝜕2𝑢𝑖

𝜕𝑥2
+ 𝐿3(𝑤𝑖 , 𝑤𝑖) −

𝜕2𝑢𝑖

𝜕𝑡2
= 0;

1

3
[
𝜕2𝑤𝑖

𝜕𝑥2
+
𝜕𝛾𝑥𝑖

𝜕𝑥
] +

1

𝜆2

[𝑅1(𝑤𝑖 , 𝑢𝑖) + 𝑅3(𝑤𝑖 , 𝑢𝑖) +
3

2
𝑅2(𝑤𝑖 , 𝑤𝑖)] −

−(−1)𝑖𝐾(𝑤1 − 𝑤2 − ℎ𝑘)Ψ + 𝑞𝑖(𝑡) −
𝜕2𝑤𝑖

𝜕𝑡2
− 𝜀1

𝜕𝑤𝑖

𝜕𝑡
= 0;

𝜕2𝑢𝑖

𝜕𝑥2
+ 𝐿4(𝑤𝑖 , 𝑤𝑖) −

𝜕2𝑢𝑖

𝜕𝑡2
= 0;

𝜕2𝛾𝑥𝑖

𝜕𝑥2
− 8𝜆2 [𝛾𝑥𝑖 +

𝜕𝑤𝑖

𝜕𝑥
] −

𝜕2𝛾𝑥𝑖

𝜕𝑡2
= 0; 𝑖 = 1,2,

    (1) 

where: 𝑅1(𝑤𝑖 , 𝑢𝑖) =
𝜕2𝑤𝑖

𝜕𝑥2
𝜕𝑢𝑖

𝜕𝑥
, 𝑅2(𝑤𝑖 , 𝑤𝑖) =

𝜕2𝑤𝑖

𝜕𝑥2
(
𝜕𝑤𝑖

𝜕𝑥 
)
2
, 𝑅3(𝑤𝑖 , 𝑢𝑖) =

𝜕𝑤𝑖

𝜕𝑥

𝜕2𝑢𝑖

𝜕𝑥2
, 𝑅4(𝑤𝑖 , 𝑤𝑖) =

𝜕𝑤𝑖

𝜕𝑥

𝜕2𝑤𝑖

𝜕𝑥2
, 𝐿1(𝑢𝑖 , 𝑤𝑖) =

𝜕2𝑢𝑖

𝜕𝑥2
𝜕𝑤𝑖

𝜕𝑥
+
𝜕𝑢𝑖

𝜕𝑥

𝜕2𝑤𝑖

𝜕𝑥
, 𝐿2(𝑤𝑖 , 𝑤𝑖) =

3

2

𝜕2𝑤𝑖

𝜕𝑥2
(
𝜕𝑤𝑖

𝜕𝑥 
)
2
, 𝐿3(𝑤𝑖 , 𝑤𝑖) =

𝜕𝑤𝑖

𝜕𝑥

𝜕2𝑤𝑖

𝜕𝑥2
 - are the 

nonlinear operators, 𝛾𝑥𝑖 – is the transverse shear function, 𝑤𝑖 , 𝑢𝑖– are the deflection and displacement 

functions of the beams, respectively, 𝑖 = 1,2 - are sequence number of beams. 

We must add boundary and initial conditions to the system of differential equations (1). 

Boundary conditions for case when both ends of the Timoshenko beam are rigidly clamped: 

𝑤𝑖(0, 𝑡) = 𝑤𝑖(1, 𝑡) = 𝑢𝑖(0, 𝑡) = 𝑢𝑖(1, 𝑡) = 𝛾𝑥𝑖(0, 𝑡) = 𝛾𝑥𝑖(1, 𝑡) = 0, 𝑖 = 1, 2.  (2) 

Initial conditions for Timoshenko beam: 

𝑤𝑖(𝑥)|𝑡=0 = 0, 𝑢𝑖(𝑥)|𝑡=0 = 0, 𝑢𝑖(𝑥)|𝑡=0 = 0,
𝜕𝑤𝑖(𝑥)

𝜕𝑡 |𝑡=0
= 0,    (3) 
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𝜕𝑢𝑖(𝑥)

𝜕𝑡 |𝑡=0
= 0,

𝜕𝛾𝑥𝑖(𝑥)

𝜕𝑡 |𝑡=0
= 0, 𝑖 = 1,2. 

Boundary conditions for case when both ends of the Euler-Bernoulli beam are rigidly clamped: 

𝑤𝑖(0, 𝑡) = 𝑤𝑖(1, 𝑡) = 𝑢𝑖(0, 𝑡) = 𝑢𝑖(1, 𝑡) =
𝜕𝑤𝑖(0,𝑡)

𝜕𝑥
=
𝜕𝑤𝑖(1,𝑡)

𝜕𝑥
= 0, 𝑖 = 1, 2.   (4) 

Initial conditions for beam 2: 

𝑤𝑖(𝑥)|𝑡=0 = 0, 𝑢𝑖(𝑥)|𝑡=0 = 0,
𝜕𝑤𝑖(𝑥)

𝜕𝑡 |𝑡=0
= 0,

𝜕𝑢𝑖(𝑥)

𝜕𝑡 |𝑡=0
= 0, 𝑖 = 1,2.    (5) 

If we do not take into account the geometric nonlinearity, we must put non-linear operators equal 

to zero. 

The system of governing PDEs (1) supplemented by boundary (2), (4) and initial conditions (3), 

(5) is reduced to the counterpart dimensionless form using the following variables (6). 

𝑤 =
𝑤

2ℎ
, 𝑎 =

𝑢𝑎

(2ℎ)2
, 𝑥 =

𝑥

𝑎
, 𝜆 =

𝑎

2ℎ
, 𝑞 = 𝑞

𝑎4

(2ℎ)4𝐸
,      (6) 

 𝑡 =
𝑡

𝜏
, 𝜏 =

𝑎

𝑐
, 𝑐 = √

𝐸𝑔

𝛾
, 𝜀1 = 𝜀1

𝑎

𝑐
, 𝛾𝑥 =

𝛾𝑥𝑎

2ℎ
 

where: E – is the Young’s modulus; 𝑔 – is the gravity of Earth; 𝛾 –is the specific gravity of the beam 

material, 2h - is the height, 𝑎 - is the length of beams, respectively. 

The clearance between the beams is small. That is, contact between layers occurs even with 

small deflections of beam 1, 𝑤𝑖 ≤ 0.25ℎ and these oscillations can be described by linear theory of 

vibrations, as is usually assumed in theory. The resulting system of nonlinear partial differential 

equations (1) - (5) reduces to a system of ordinary differential equations by the FDM with 

approximation 𝑂(𝑐2), where c is a step in the spatial coordinate. The Cauchy problem is solved in 

time using the Runge-Kutta of the 4th (RK4) and the 2nd (2RK) orders [14], the Runge-Kutta-

Fehlberg of the 4th order (rkf45) [15, 16], the Cash-Karp of the 4th order (RKCK) [17], the Runge-

Kutta-Prince-Dormand of the 8th order (rk8pd) [18] as well as the implicit Runge-Kutta methods of 

the 2nd (rk2imp) and the 4th (rk4imp) orders. 

On the basis of the described algorithms, the program package has been developed, which allows 

one to solve the given problem with respect to the control parameters {𝑞0, 𝜔𝑝}. The main attention has 

been paid to control and avoid the occurrence of penetration of the structural elements. 

The beam 1 is subjected to the uniformly distributed transverse harmonic excitation of the 

following form: 

𝑞 = 𝑞0 sin(𝜔𝑝𝑡),        (7) 

where 𝑞0 stands for the amplitude and 𝜔𝑝 for the frequency of excitation.  
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The paper compares nonlinear dynamics and contact interaction of two types of a beam structure: 

(i) - beam 1 obeys the Euler-Bernoulli hypothesis, beam 2 - Tymoshenko's hypothesis; (ii) - beam 1 is 

described by Tymoshenko's hypothesis, and beam 2 by the Euler-Bernoulli hypothesis. 

3. Numerical results 

The beam 1 is subjected to the transverse harmonic excitation (7). Where 𝑞0 = 5000,  𝜔𝑝 = 5.1.The 

beam clearance equals ℎ𝑘 = 0.1. 

We give the graphs of signals 𝑤𝑖(0.5, 𝑡) for both tasks in Figure 2. 

In case (i) – Figure 2 (a – beam 1, b – beam 2), in case (ii) – Figure 2 (b – beam 1, c – beam 2) 

for n=40; 80; 120; 240; 360; 400, 𝑡 ∈ [500; 506]. The results were obtained using the 8th order 

Runge-Kutta method in the modification of Prince-Dormand – Rk8pd. 

Beam 1 – Euler – Bernoulli model Beam 1 – Timoshenko model 

a)

 

b)

 
Beam 1 – Euler – Bernoulli model Beam 1 – Timoshenko model 

c)

 

d)

 
Figure 2. The signals 𝑤𝑖(0.5, 𝑡) for n=40; 80; 120; 240; 360; 400, 𝑡 ∈ [500; 506]. In case (i) - a, 

b, in case (ii) - b, c. 

 

The kinematic hypothesis taken into account significantly affects on the nonlinear dynamics and 

contact interaction of the two-layer beam structure. In case (i) (Fig. 2a, b), the convergence of the 

results for the signal for beam 1 is achieved already at n = 80 (Fig. 2a), for beam 2 there is no 
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complete convergence, however, the amplitude of oscillations is very small and the waveform 

coincides (Fig. 2 (b). For problem (ii), the amplitude of the vibrations of the beam 1  (Fig. 2c) differs 

significantly for different n, and convergence is observed starting from n = 360. For beam 2 (Fig. 2d), 

the convergence is achieved in the form of vibrations, there are small differences in amplitude. Note 

that the analysis of oscillations is made with other conditions being equal, but there are differences in 

the magnitude of the amplitude of the oscillations of the beams, depending on the problem. 

Let us analyze the frequency characteristics of beam vibrations using the analysis of the Fourier 

power spectrum. In Fig. 3 we give the Fourier power spectra for both problems. 

 

Beam 1 – Euler – Bernoulli model Beam 1 – Timoshenko model 

a)

 

b)

 
Beam 1 – Euler – Bernoulli model Beam 1 – Timoshenko model 

c)

 

d)

 
Figure 3. The Fourier power spectrum. For case (i) – a, b; for case (ii) – с, d. 

 

All frequencies reflected on the investigated Fourier power spectra are linearly dependent on the 

frequency 𝜔𝑝. If the hypothesis of the normal rotation for beam 1 is taken into account (problem (ii), 

figure 3 c, d), the structure oscillations occur at five main frequencies: 𝜔𝑝, 
𝜔𝑝

5
,
2

5
∙ 𝜔𝑝 ,

3

5
∙ 𝜔𝑝,

4

5
∙ 𝜔𝑝. 

There are five main frequencies on the power spectrum. If we take into account the hypothesis of 

the second approximation for beam 2 (problem (i), figure 3 a, b), then we observe a significant 

difference in the frequency components of the beam oscillations. The beam oscillations 1 are three-

frequency (Figure 3 a), and the beam oscillations 2 (Figure 3 b) are multifrequency, but on the power 

spectrum the main frequencies are beam 1 - 𝜔𝑝,
2

5
∙ 𝜔𝑝,

3

5
∙ 𝜔𝑝. 

For each problem, a comparison of the solution of the Cauchy problem is performed depending 

on the Runge-Kutta type method. It is established that the eighth order Runge-Kutta method in the 
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Prince Dormand modification is optimal for both problems. Dynamic characteristics such as phase 

portraits, the Poincaré map, wavelet spectra for each problem for n=40; 80; 120; 240; 360; 400 and 

for each Runge-Kutta method are compared. 

It was revealed that all dynamic parameters agree with each other and testify to the chaotic 

vibrations of the structure in both cases. Ensuring the truth of the obtained results is achieved by 

comparing the values of the largest Lyapunov exponent, calculated with the help of three different 

algorithms - Wolf [19], Kantz [20] and Rosenstein [21]. 

All the values of the largest Lyapunov exponent for each problem and for each beam are positive 

and we can state that the vibrations of the structure are chaotic, regardless of the kinematic 

hypotheses. 

4. Concluding remarks 

The paper proves that the vibrations of the investigated two-layer beam structure are truly chaotic, 

based on ensuring the convergence of the results, depending on the number of beam partitions with 

respect to the spatial coordinate, in time, on using the method for solving the Cauchy problem. 

It was found that taking into account different kinematic hypotheses, when modeling the contact 

interaction of beams, leads to significant differences in the oscillatory process. 
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dynamical features in a MEMS device electrically actuated 
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Abstract: We consider a clamped-clamped microbeam electrically actuated. 

Experimental tests are performed. The microbeam is perfectly straight. The first three 

experimental natural frequencies are detected and several backward and forward 

frequency sweeps are acquired. Nonresonant and the resonant branches coexist. They 

undergo bending toward higher frequencies values, which is a feature not particularly 

common in MEMS. Experimental behavior charts are obtained where the curves of 

experimental appearance and/or disappearance of the attractors are reported. After 

extracting the unknown parameters, a single mode Galerkin reduced-order model is 

derived. To enhance the computational efficiency, the contribution of the electric 

force term is computed in advance and stored in a table. Extensive numerical 

simulations are performed, both from a local and global perspective. The model is 

observed to catch all the main nonlinear features of the device response and provide a 

satisfactory agreement with the experimental data. The overall scenario is explored 

when both the frequency and the electrodynamic voltage are varied.  

1. Introduction 

Nonlinear phenomena arising in the microelectromechanical systems (MEMS) are receiving 

increasing attention from the scientific community. Multistability, jump, chaotic motions, snap-

through, pull-in and many other complex nonlinear phenomena represent very attractive features for 

the development of increasingly powerful MEMS systems and new devices deliberately operating in 

the nonlinear regime are emerging in a variety of different applications [1].   

Alsaleem et al. [2] experimentally investigate nonlinear dynamic phenomena in a MEMS 

capacitive accelerometer. Many experimentally measured frequency-response curves are reported, 

showing the primary resonance, the activation of various superharmonic and subharmonic resonances, 

the softening-spring behavior with bending towards lower frequency values, the pull-in instability, 

etc. Focusing on a particular MEMS oscillator, Rhoads et al. [3] show that the dynamics may display 

not only hardening or softening characteristics, but also mixed ones, wherein the principal branches 

bend toward or away from one another near resonance. The frequency-dynamic voltage behavior 

chart underlines the complexity of the dynamics, showing Arnold tongues and saddle-node 

bifurcations and confirming a strong correlation with the experimental data. Mestrom et al. [4] 
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experimentally and theoretically detect both softening and hardening behaviors in a clamped-clamped 

microbeam-based MEMS resonator. Younis and Alsaleem [5] present an exploratory research on the 

possibility to make use of the escape and the jump phenomena to realize new concepts for mass 

sensing and detection and design novel devices of improved characteristics. Krylov et al. [6] 

investigate shallow-arched microbeams electrically actuated. They are fabricated from silicon on 

insulator (SOI) wafer using deep reactive ion etching and in-plane responses are characterized by 

means of optical and scanning electron microscopy. Many experimental data and theoretical 

simulations are developed, highlighting that the microstructure may exhibit numerous non-linear 

phenomena, as sequential snap-through buckling and pull-in instability. Krylov and Dick [7] further 

theoretically examine these phenomena, detecting the boundaries of the bistability region and 

shedding light on the role of generic nonlinearities as well as on the influence of the device 

parameters. Amazing results are reported in Medina et al. [8], where experimental bifurcation maps 

built in terms of the critical snap-through, release and pull-in deflections of the microbeams are 

developed, showing the location of the critical points and confirming experimentally the complex 

nonlinear behavior theoretically predicted. Ouakad and Younis [9] and Younis et al. [10] simulate the 

dynamic behavior of MEMS arched resonators actuated electrically, emphasizing the potential to use 

them as band-pass filters and low-powered switches. Ruzziconi et al. [11, 12] theoretically examine a 

microbeam-based MEMS device with bistable static configuration. They investigate the possibility to 

operate the device with several competing attractors with different characteristics, leading to a 

considerable versatility of behavior, which may have many feasible applications. Ramini et al. [13, 

14] experimentally examine the rich complex dynamics arising in an in-plane silicon micromachined 

arch. Optical techniques are used. When the excitation is close to the first resonance frequency, a 

softening spring behavior is observed. Conversely, when the excitation is close to the third (second 

symmetric) resonance frequency, a hardening spring behavior arises. Moreover, at the primary 

resonance with high voltage excitations, dynamic snap-through motion occurs, which exhibits 

hardening behavior. Hajjaj et al. [15] explore the possibility of experimentally tuning the resonance 

frequencies and their ratios via electrothermal modulation. An electrothermal voltage is applied 

between the anchors of an arched microbeam generating a current that controls the axial stress caused 

by thermal expansion. The sensitivity of the frequency values to the variation of the electrothermal 

load is explored. Ramini et al. [16] further develop this experimental investigation, showing that 

several modal interactions among the vibration modes can be activated. Between the first and third 

bending modes of vibrations, 2:1 internal resonance, 3:1 internal resonance and mode veering (near 

crossing) have been observed. This is promising for designing MEMS with higher sensitive and less 

noisy responses. Ruzziconi et al. [17-19] experimentally and theoretically analyze a MEMS device 

consisting of a clamped-clamped polysilicon microbeam subjected to electrostatic and electrodynamic 
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actuation. The device has non-negligible imperfections, which are a typical consequence of the 

microfabrication process. Several nonlinear dynamical phenomena are observed and dynamical 

integrity investigations are performed to detect the parameter ranges where each dynamical behavior 

can be actually observed in practice. 

In the present work we consider a slender microbeam-based MEMS device electrically actuated, 

Figure 1. The resonant branch and the non-resonant one are observed to experimentally experience a 

wide range of bending toward higher frequency values before undergoing dynamic pull-in. This 

sequence of events is not very common in MEMS. We analyze the multistability in detail, both from 

an experimental and from a theoretical point of view. 

The paper is organized as follows. The experimental investigation is performed (section 2), the 

problem formulation is introduced (section 3), experimental data are compared with theoretical 

predictions (section 4), global simulations are developed (section 5), main conclusions are 

summarized (section 6). 

 

 

Figure 1.   Optical image of the silicon nitride beam. 

 

2. The MEMS device 

The MEMS device under consideration is illustrated in Figure 1. It consists of a rectangular 

microbeam constituted by a layer of Silicon Nitride (Si3N4) of thickness h = 1.5 μm, a layer of 

Chrome (Cr) of 50 nm, and a layer of Gold (Au) of 200 nm. A schematic is illustrated in Fig. 2. The 

device is fabricated by surface micromachining process [20]. The microbeam has a straight profile, 

with length L = 400 μm and width w = 50 μm. The separation gap is d = 2.5 μm. The device is 

actuated electrically, where VDC is the electrostatic voltage excitation and VACcos(Ωt) is the 

electrodynamic one, with voltage VAC and frequency Ω. When electrically excited, the microbeam 

oscillates in the out-of-plane direction, i.e. out of the plane of the substrate. The length of the lower 

electrode is half of the length of the microbeam [21]. 
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 (a) (b)  

Figure 2.   (a) A schematic of the microbeam-based MEMS device. (b) Main dimensions of the 

microbeam. 

The experimentally measured first three natural frequencies and the corresponding RMS 

amplitude of the experimental mode shapes are reported in Fig. 3. They occur at Ω1 = 145.2 kHz (first 

symmetric), Ω2 = 314.8 kHz (first antisymmetric), Ω3 = 526.6 kHz (second symmetric).  

 

 

Figure 3.   Experimentally measured frequency response and the corresponding RMS amplitude of the 

experimental mode shapes. The first three natural frequencies occur at Ω1 = 145.2 kHz (first 

symmetric), Ω2 = 314.8 kHz (first antisymmetric), Ω3 = 526.6 kHz (second symmetric). 

In the vicinity of the first symmetric resonance, many experimental frequency sweeps are 

performed, where the same experimental conditions are adopted. Some of the resulting frequency 

response curves are reported in the forthcoming Fig. 4, where the blue circles and the red triangles 

denote forward and backward sweep, respectively. They are acquired by increasing (forward) and/or 

decreasing (backward) the frequency slowly, while the electrodynamic voltage is kept constant. Both 

the non-resonant branch (at right) and the resonant one (at left) can be observed, which exhibit 

bending toward higher frequencies. Increasing the electric voltage excitation, the range of existence 

of the non-resonant and the resonant branch initially increases, then decreases and finally vanishes, 

resulting in a range where no one of the attractors exist.  

Color Material Thickness
Silicon Nitride (Si3N4) 1.5 µm
Chrome (Cr) 50 nm
Gold (Au) 200 nm
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Figure 4.   Mechanical model. 

3. Problem formulation 

The introduced mechanical model consists of a fixed–fixed microbeam with length L and constant 

rectangular cross-section of width b and thickness h. A constant axial load P is supposed, which 

represents residual stresses. After introducing non-dimensional variables and condensing the axial 

displacement w(z, t) by a classical procedure [22], so that the elongation of the central line of the 

microbeam does not depend on z but only on t, the governing equation is 

ݒ̈ + ݒ̇	ߦ + ᇱᇱᇱᇱݒ + ቀ݊ − ݇ܽ∫ భ
మ
ଶଵ(ᇱݒ)

଴ ቁݖ݀ ′′ݒ	 = ߛ− (௏ವ಴ା௏ಲ಴ ୡ୭ୱ(ஐ௧))మ

(ଵି௩)మ
 (1) [(ଶݖ)ܷ−(ଵݖ)ܷ]

and the boundary conditions are 

,0)ݒ (ݐ = ,1)ݒ,0 (ݐ = ,0)′ݒ,0 (ݐ = ,1)′ݒ,0 (ݐ = 0	 (2) 

where ܷ(ݖଵ) and ܷ(ݖଶ) are the unit step functions that define the lower electrode length and position. 

The non-dimensional variables (denoted with hats, which are dropped in (1)–(2) for convenience) are   

ݖ̃ = ෤ݒ  ,ܮ/ݖ = ݐ̃   ,݀/ݒ =  (3) ܶ/ݐ

and the non-dimensional parameters are 

݇ܽ = ݊   ,(ܬܧ)/ଶ݀(ܣܧ) = ߛ   ,(ܬܧ)/஻ݓ	ܮ	(ܣܧ) = ଵ
ଶ
  ,(ܬܧଷ݀)/ଷܮ௖ܣ௥ߝ଴ߝ

ߦ = ܶ  ,(ܶ	ܬܧ)/ସܮ	ܿ = ඥ(݉	ܮସ)/(ܬܧ),   Ω෩ = Ω	ܶ (4) 

where EA is the axial stiffness, EJ the bending stiffness, A and J the area and the moment of inertia of 

the cross section, E the effective Young’s modulus, ρ the material density, d the gap width, Ac = bL 

the area of the microbeam, ε0 the dielectric constant in the free space, εr the relative permittivity of the 

gap space medium with respect to the free space, c the viscous damping coefficient.  

The conductive layer of Chromium/Gold applied on top of the microbeam is the upper electrode, 

whereas the silicon nitride (Si3N4) is a dielectric material, whose dielectric constant is ߝ௥	ୗ୧ଷ୒ସ = 7. 

Accordingly, we consider the equivalent capacitor gap, which is the air gap plus the contribution from 

the silicon nitride microbeam, which yields: 

݀௘௤ = ݀ + ୗ୧ଷ୒ସ	௥ߝ/ୗ୧ଷ୒ସݐ =  (5) ݉ߤ	2.714

The other parameters are extracted in order to have a good matching with the experimental 

natural frequencies. In particular, neglecting the static deflection due to the electrostatic voltage load, 

L/2

d

v
z, wPv(z,t)A

VDC

VAC

L/2
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we obtain the theoretical frequencies Ω1 = 145.2 kHz (first symmetric), Ω2 = 315.132 kHz (first 

antisymmetric), Ω3 = 526.637 kHz (second symmetric), which are very close to the experimental 

ones. The associated first symmetric mode is 

߶ଵ	(ݖ) = (ݖ3.714)ݏ݋0.4288ܿ− + (ݖ12.621)ℎݏ݋0.4288ܿ + −(ݖ3.714)݊݅ݏ1.4572

 (6) (ݖ12.621)ℎ݊݅ݏ0.4288

and the associated first antisymmetric mode is 

߶ଶ(ݖ) = −(ݖ7.2332)ݏ݋0.6753ܿ (ݖ14.0648)ℎݏ݋0.6753ܿ (ݖ7.2332)݊݅ݏ1.3131−+ +

 (7) (ݖ14.0648)ℎ݊݅ݏ0.6753

We derive a single-mode Petrov-Galerkin [23] reduced-order model. Regarding the 

approximation function, we recall the simple case of a fixed-fixed microbeam with distributed load on 

half of its length. The static deflection is 

(ݖ)ଵ_ଵݒ = భ
మరݖ

ସ − భయ
భవమݖ

ଷ + భభ
యఴరݖ

ଶ															0 ≤ ݖ ≤ 1/2  

(ݖ)ଵ_ଶݒ = భ
లరݖ

ଷ − భ
వలݖ

ଶ − భ
ళలఴݖ + భ

ళలఴ     			1/2 ≤ ݖ ≤ 1 (8) 

We approximate it via a combination of the first symmetric and the first antisymmetric mode, 

which yields 

(ݖ)߮ = ߶ଵ(ݖ) +  (9)  (ݖ)ଶ߶ߚ

where ߚ = −0.13623. We consider ߮(ݖ) as approximation function in the Petrov-Galerkin method, 

which allows having a better description for higher voltages, still having a single d.o.f. model. 

As weight function, we consider ߶ଵ	(ݖ), to keep the (first) natural frequency. The derived 

reduced-order model becomes: 

ݔ̈ + +ݔ0.05̇ +ݔ	2197.23 ଷݔ	1967.33 = 0.08 ∙ ( ஽ܸ஼ + ஺ܸ஼ cos(Ωݐ))ଶ∫ థభ(௭)
(ଵିఝ(௭)௫(௧))మ ݖ݀

ଵ/ଶ
଴   (10) 

Since the integral in the electric force term cannot be solved analytically, we approximate it via 

the Padé approximation, which yields 

ݔ̈ + +ݔ0.05̇ +ݔ	2197.23 ଷݔ	1967.33 = ( ஽ܸ஼ + ஺ܸ஼ cos(Ωݐ))ଶ ଴.଴ଵ଺
(଴.଺ଽଵହ଼଻ି௫)మ  (11) 

which is the equation used in the forthcoming simulations. 

 

  

472



 

 

4. Experimental data vs theoretical predictions 

We analyze a neighborhood of the device natural frequency, Figure 5. The experimental frequency 

response diagrams are overlapped with the theoretical predictions, in order to appreciate similarities 

and differences. Good matching is achieved with the experimental data. The model is able to detect 

the value where the natural frequency occurs, to catch the hardening-spring behavior with bending 

toward higher frequencies arising in a neighborhood of the primary resonance, to properly simulate 

the separation width between the non-resonant and the resonant branch. Thus, all the main dynamical 

features are adequately represented. This occurs not only at low electrodynamic excitations, VAC = 4.0 

V (Fig. 5a), VAC = 6.0 V (Fig. 5b), but also at higher values, VAC = 10.0 V (Fig. 5c), VAC = 14.4 V (Fig. 

5d). Note that the theoretical predictions show disappearance of both the non-resonant branch and of 

the resonant one via saddle-node bifurcation. 

(a)   (b)  

(c)   (d)  

Figure 5.   Frequency response diagrams at (a) VAC = 4.0 V, (b) VAC = 6.0 V, (c) VAC = 10.0 V, (d) VAC = 

14.4 V. Theoretical simulations obtained via the Petrov-Galerkin method are in black solid 

line; experimental data obtained by forward and backward sweeps are in the blue circles and 

the red triangles, respectively. 

For a comprehensive overview of the main dynamical events, we develop the theoretical 

behavior chart in Fig. 6, which illustrates the overall scenario when both the electrodynamic voltage 

and the frequency are varied. The chart describes where a bifurcation occurs and generates an 

attractor, bounding where each attractor theoretically exists. We can see the range of existence of 

each branch, the range of coexistence, the escape (dynamic pull-in). The chart confirms that the 

experimental disappearance of each branch is very close to the theoretical one. 
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Figure 6.   Frequency-dynamic voltage behavior chart. Theoretical appearance and/or disappearance of 

the attractors is in black solid line; experimental data obtained by forward and backward 

sweeps are in the red circles and the black diamonds, respectively. 

Despite the satisfactory agreement, discrepancies arise in the length of each branch. The 

experimental curves of disappearance are shifted from the theoretical ones and occur in the region 

where each attractor is theoretically expected to exist. This mismatching is likely related to the 

presence of disturbances, which are inevitably encountered under realistic conditions. In fact, 

disturbances are unavoidable in practice but have not been included in the model. To take 

disturbances into account, in addition to the local investigations we need to consider the global 

dynamics and perform a dynamical integrity analysis [24]. 

5. Practical disappearance of the attractors 

An attractor-basins analysis is developed when varying the electrodynamic voltage and frequency. 

Examples of attractor-basins phase portraits are reported in Fig. 7. The basin of attraction of the non-

resonant branch and of the resonant one are orange and green, respectively; the escape is white, which 

corresponds to the system experiencing dynamic pull-in; the attractors are denoted with a cross. 

At VAC = 4 V (Fig. 7a-7c), both the non-resonant and the resonant attractor exist and compete in 

robustness. Approaching the resonance, the basin of the non-resonant attractor becomes wider and 

wider, at the expense of the resonant one, which gradually shrinks in size, up to vanishing. At this 

level of voltage, the two basins remain close to each other and form a large and compact safe region. 

The escape is located outside this safe zone.  

At VAC = 8 V (Fig. 7d-7f), the escape penetrates inside the central core of the potential well, 

separating the basins of the two attractors. The two basins settle far from each other, which prevents 

any safe jump between them.  
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Figure 7.   Attractor-basins phase portraits at (from bottom left to top right): 

VAC = 4 V and (a) Ω = 147 Hz, (b) Ω = 148.5 Hz, (c) Ω = 153 Hz; 

VAC = 15 V and (d) Ω = 144 Hz, (e) Ω = 150 Hz, (f) Ω = 154 Hz. 

We analyze where each attractor may practically (and not theoretically) vanish. As safe basin we 

consider the own basin of attraction of each attractor, i.e. safe condition are represented by having, at 

the steady-state dynamics, the motion under consideration, whereas unsafe condition are represented 

by having other motions (bounded oscillations or escape). As dynamical integrity measure we 

consider the Local Integrity Measure (LIM), i.e. the radius of the largest circle entirely belonging to 

the safe basin and centered at the attractor.  

We draw the integrity profiles, which describe the loss of dynamical integrity (LIM) when the 

frequency is varying. We can observe that the experimental disappearance of each attractor occurs 

exactly when the compact area of its basin of attraction becomes too much reduced. In fact, the 

smaller integrity enhances the sensitivity of the system to disturbances and makes the attractor 

vulnerable.  
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Figure 8.   LIM Integrity profile at VAC = 10 V. 

 

6. Summary and conclusions 

In this study a microbeam-based MEMS device electrically actuated has been experimentally and 

theoretically investigated. The unknown parameters have been identified and a single mode-reduced 

order model has been developed via the Petrov-Galerkin technique. Systematic experimental and 

theoretical investigations have been performed to explore the nonlinear response. The model has been 

shown to provide valuable information on the MEMS dynamics and catch all the main nonlinear 

features of the device response. To take into account the presence of disturbances, the loss of 

dynamical integrity has been examined. 
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Riccati transformation and oscillation of superlinear second order
functional differential equations

Abhay Kumar Sethi, Arun Kumar Tripathy

Abstract:

In this work, we establish sufficient conditions for oscillation and asymptotic behavior of

solutions of unforced second order nonlinear neutral differential equations with variable delay

and variable coefficients for different ranges of neutral coefficient by using Riccati transfor-

mation technique. The paper includes the results for various ranges of neutral coefficient

depending on two special cases. Also, we have examples to illustrate main results.

1. Introduction

indent Consider a class of nonlinear neutral delay differential equations of the form:

(r(t)((x(t) + p(t)x(τ(t)))′)γ)′ + q(t)xγ(σ(t)) + v(t)xγ(η(t)) = 0, (1)

where γ ≥ 1, r, q, v, τ, σ, η ∈ C(R+,R+), p ∈ C(R+,R), τ(t) ≤ t, σ(t) ≤ t, η(t) ≤ t with

limt→∞ τ(t) = ∞ = lim
t→∞

σ(t) = ∞ = limt→∞ η(t). The purpose of this work is to discuss

the oscillatory behaviour of solutions of (1) under the assumptions

(H0)
∫∞
0

(
1
r(t)

) 1
γ
dt = +∞,

and

(H00)
∫∞
0

(
1
r(t)

) 1
γ
dt < +∞,

for various range of p(t) with |p(t)| <∞ and γ is a quotient of odd positive integers.

Consider the following special cases of (1):

((x(t) + px(t− τ))′)′ + q(t)f(x(t− σ)) = 0, (2)

(r(t)((x(t) + p(t)x(τ(t)))′)γ)′ + q(t)f(x(σ(t))) = 0. (3)

In [21], the author has discussed the necessary and sufficient conditions for oscillation of all

solutions of (2) under the assumptions:

(A1) − 1 < p ≤ 0; 0 <
∫∞
c

dy
f(y)

,
∫ −c
−∞

dy
f(y)

<∞; 0 <
∫ c
0

dy
f(y)

,
∫ 0

−c
dy
f(y)

<∞, c > 0.

However, nothing is known about the oscillatory behaviour of (2) when either p ∈ (−∞,−1]∪
[0,∞) or p ∈ C(R+,R) in [21]. But, the said problem has been discussed in details in the

works [19] and [20]. In an another work, Li et al. [12] have studied the oscillatory behaviour

of solutions of (3) by means of Riccati transformation using the assumptions:

(A2) − 1 < p0 ≤ p(t) ≤ 0; f ∈ C(R,R), uf(u) > 0 and f(u)
uγ
≥ k for all u 6= 0.

We notice that none of the above works is complete as long as the range of p(t) is concerned.
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And the above motivations motivate us to study (1) for various ranges of p(t). Unlike

(A1) and (A2) an attempt is made here to establish sufficient conditions for oscillation of

(1) via Riccati transformation. In this direction we refer the reader to some of the works

([1]-[7],[13]-[18]) and the references cited there in.

As a general reference on Oscillation Theory for neutral differential equations, we refer

to Gyori and Ladas [10] and Erbe, Kong and Zhang [9]. The study of oscillatory behaviour of

solutions of second order neutral differential equations are of both theoretical and practical

interest. In particular, such equations are used in many fields such as vibrating masses

attached to an elastic bar, variational problems and to mention a few (see for e.g [11]).

As nonneutral differential equations are arising in various problems of physics, biology and

economics, and these equations are special cases of neutral differential equations, a special

attention has been given to the study of second order neutral differential equations. In spite

of the above fact, we find numerous applications of neutral equations in electric networks,

where they are frequently used for the study of distributed networks containing lossless

transmission lines which arise in high speed computers [11].

By a solution of (1), we mean a continuously differentiable function x(t) which is defined

for t ≥ T ∗ = min{τ(t0), σ(t0), η(t0)} such that x(t) satisfies (1) for all t ≥ t0. In the

sequel, it will always be assumed that the solutions of (1) exist on some half line [t1,∞), t1 ≥
t0. A solution of (1) is said to be oscillatory, if it has arbitrarily large zeros; otherwise, it is

called non-oscillatory. Equation (1) is called oscillatory, if all its solutions are oscillatory.

2. Oscillation Criteria with (H0)

This section deals with the sufficient conditions for oscillation of all solutions of

(1) under the hypothesis (H0). Throughout our discussion, we use the notation

z(t) = x(t) + p(t)x(τ(t)). (4)

LEMMA 2.1 [8] Assume that (H0) holds and r(t) ∈ C′[(T0,∞),R] such that r′(t) > 0.

Let x(t) be an eventually positive solution of (1) such that (r(t)(x′(t))γ)′ ≤ 0, for t ≥ t0.

Then x′(t) > 0 and x′′(t) < 0 for t ≥ t1 > t0, where γ ≥ 1 is a quotient of odd positive

integers .

LEMMA 2.2 [3] Assume that A ≥ 0, B ≥ 0 and λ ≥ 1. Then

(A+B)λ ≤ 2λ−1(Aλ +Bλ). (5)

THEOREM 2.3 Let 0 ≤ p(t) ≤ a <∞. For any large t, suppose that

(H1) τ(σ(t)) = σ(τ(t)), τ(η(t)) = η(τ(t)), η(t) ≥ σ(t), σ(t) ≤ τ(t).

Assume that (H0) holds and r′(t) > 0, σ′(t) ≥ C > 0 for large t. Furthermore, assume that

there exists a positive differentiable function ρ(t) such that

(H2)
∫∞
T

[
ρ(s){Q(s) + V (s)} − (1+aγ)((ρ′(s))+)2(r(σ(s))γ

2(4−2γ)Cγρ(s)(σ(s))γ−1

]
ds =∞, T > 0,

where Q(t) = min{q(t), q(τ(t))}, V (t) = min{v(t), v(τ(t))} and (ρ′(t))+ = max{ρ′(t), 0}.
Then every solution of (1) oscillates.
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Proof Suppose on the contrary that x(t) is a nonoscillatory solution of (1). Without

loss of generality, we may assume that x(t) > 0 for t ≥ t0. Hence, there exists t1 > t0 such

that x(t) > 0, x(τ(t)) > 0, x(σ(t)) > 0 and x(η(t)) > 0 for t ≥ t1. Using (4), (1) becomes

(r(t)(z′(t))γ)′ = −q(t)xγ(σ(t))− v(t)xγ(η(t)) ≤ 0, 6≡ 0 for t ≥ t1. (6)

So r(t)(z′(t))γ is nonincreasing on [t1,∞), that is, either z′(t) > 0 or z′(t) < 0. By Lemma

2.1, it follows that z′(t) > 0 for t ≥ t2. From (1), it is easy to see that

(r(t)(z′(t))γ)′+aγ(r(τ(t))(z′(τ(t))γ)′ + q(t)xγ(σ(t)) + aγq(τ(t))xγ(σ(τ(t))+

v(t)xγ(η(t)) + aγv(τ(t))xγ(η(τ(t)) = 0, for t ≥ t1. (7)

By using Lemma 2.2, (7) yields that

(r(t)(z′(t))γ)′ + aγ(r(τ(t))(z′(τ(t))γ)′ + 21−γQ(t)zγ(σ(t)) + 21−γV (t)zγ(η(t)) ≤ 0, (8)

that is,

(r(t)(z′(t))γ)′

zγ(σ(t))
+
aγ(r(τ(t))(z′(τ(t)))γ)′

zγ(σ(t))
+ 21−γ [Q(t) + V (t)] ≤ 0.(∵ η(t) ≥ σ(t)) (9)

Let ρ(t) be the positive differentiable function and consider the general Riccati substitution

w(t) = ρ(t)r(t)

(
z′(t)

z(σ(t))

)γ
(10)

u(t) = ρ(t)r(τ(t))

(
z′(τ(t))

z(σ(t))

)γ
. (11)

Due to Lemma 2.1, w(t) > 0 and u(t) > 0 on [t1,∞). Indeed,

w′(t) = ρ′(t)

(
r(t)

(
z′(t)

z(σ(t))

)γ)
+ ρ(t)

(
r(t)

(
z′(t)

z(σ(t))

)γ)′
(12)

and

u′(t) = ρ′(t)

(
r(τ(t))

(
z′(τ(t))

z(σ(t))

)γ)
+ ρ(t)

(
r(τ(t))

(
z′(τ(t))

z(σ(t))

)γ)′
. (13)

Using (10) and (11)in (12) and (13), we get

w′(t) + aγu′(t) = ρ′(t)

[
w(t)

ρ(t)
+ aγ

u(t)

ρ(t)

]
+ ρ(t)

[(
r(t)

(
z′(t)

z(σ(t))

)γ)′
+ aγ

(
r(τ(t))

(
z′(τ(t))

z(σ(t))

)γ)′]
,

that is,

w′(t) + aγu′(t) =
ρ′(t)

ρ(t)
[w(t) + aγu(t)]

+ ρ(t)

[(
r(t)

(
z′(t)

z(σ(t))

)γ)′
+ aγ

(
r(τ(t))

(
z′(τ(t))

z(σ(t))

)γ)′]
. (14)
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Using the fact that(
r(t)

(
z′(t)

z(σ(t))

)γ)′
=

(r(t)(z′(t))γ)′

zγ(σ(t))
− r(t)(z′(t))γ(zγ(σ(t)))′

(zγ(σ(t)))2

and (
r(τ(t))

(
z′(τ(t))

z(σ(t))

)γ)′
=

(r(τ(t))(z′(τ(t))γ)′

zγ(σ(t))
− r(τ(t))(z′(τ(t))γ(zγ(σ(t))′

(zγ(σ(t)))2
,

where we have used the fact that τ(t) ≤ t, z(t) nondecreasing on [t2,∞) in (14) and then

applying (9), we obtain

w′(t) + aγu′(t) ≤ ρ′(t)

ρ(t)
[w(t) + aγu(t)]− ρ(t)21−γ{Q(t) + V (t)}

− ρ(t)

[
r(t)(z′(t))γ(zγ(σ(t)))′

(zγ(σ(t)))2
+ aγ

r(τ(t))(z′(τ(t))γ(zγ(σ(t))′

(zγ(σ(t))2

]
. (15)

Due to Lemma 2.1, we can find a t3 ≥ 2t2 such that

z(t) = z(t2) +

∫ t

t2

z′(s)ds ≥
∫ t

t2

z′(s)ds ≥ (t− t2)z′(t) ≥ t

2
z′(t)

and hence

(zγ(σ(t)))′ ≥ Cγz′(σ(t))(z(σ(t)))γ−1 ≥ Cγ
(
σ(t)

2

)γ−1

(z′(σ(t)))γ (16)

for t ≥ t3. Due to (6), (z′(σ(t)))γ ≥ (r(t)(z′(t))γ)
(r(σ(t))γ

and σ(t) ≤ τ(t) implies that

(z′(σ(t)))γ ≥ (r(τ(t))(z′(τ(t)))γ)

(r(σ(t))γ
.

Therefore, (16) becomes

(zγ(σ(t)))′ ≥ Cγ
(
σ(t)

2

)γ−1
(r(τ(t))(z′(τ(t)))γ)

(r(σ(t))γ

for t ≥ t3. Consequently, (15) reduces to

w′(t) + aγu′(t) ≤ −ρ(t)21−γ{Q(t) + V (t)}

+
(ρ′(t))+
ρ(t)

w(t)−
Cγ
(
σ(t)
2

)γ−1

w2(t)

ρ(t)(r(σ(t))γ
+ aγ

(ρ′(t))+
ρ(t)

u(t)−
Cγaγ

(
σ(t)
2

)γ−1

u2(t)

ρ(t)(r(σ(t))γ

= −ρ(t)21−γ{Q(t) + V (t)}+
(ρ′(t))+
ρ(t)

w(t)−
Cγ
(
σ(t)
2

)γ−1

w2(t)

(ρ′(t))+(r(σ(t))γ


+aγ

(ρ′(t))+
ρ(t)

u(t)−
Cγ
(
σ(t)
2

)γ−1

u2(t)

(ρ′(t))+(r(σ(t))γ

 . (17)
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Upon using the relation x−mx2 ≤ 1
4m

, (17) yields

w′(t) + aγu′(t) ≤ −21−γρ(t){Q(t) + V (t)}+
((ρ′(t))+)2(r(σ(t))γ

4Cγρ(t)
(
σ(t)
2

)γ−1 +
((ρ′(t))+)2aγ(r(σ(t))γ

4Cγρ(t)
(
σ(t)
2

)γ−1

≤ −21−γρ(t){Q(t) + V (t)}+ (1 + aγ)
((ρ′(t))+)2(r(σ(t))γ

4Cγρ(t)
(
σ(t)
2

)γ−1 .

Integrating the preceding inequality from t3 to t, we get

−w(t3)− aγu(t3) < w(t) + aγu(t)− w(t3)− aγu(t3)

≤ −
∫ t

t3

21−γρ(s){Q(s) + V (s)} − (1 + aγ)((ρ′(s))+)2(r(σ(s))γ

4Cγρ(s)
(
σ(s)
2

)γ−1

 ds,
that is,∫ t

t3

[
ρ(s){Q(s) + V (s)} − (1 + aγ)((ρ′(s))+)2(r(σ(s))γ

24−2γγCρ(s)(σ(s))γ−1

]
ds <∞,

a contradiction to (H2).

THEOREM 2.4 Let 0 ≤ p(t) ≤ a < 1, t ∈ [t0,∞). Assume that (H0) holds, and

r′(t) > 0, η(t) ≥ σ(t), σ′(t) ≥ C for any large t. Furthermore, assume that there exists a

positive differentiable function ρ(t) such that

(H3)
∫∞
T

[
ρ(s){q(s) + v(s)} − ((ρ′(s))+)2(r(σ(s))γ

(1−a)4Cγρ(s)
(
σ(s)
2

)γ−1

]
ds =∞, T > 0.

Then every solution of (1) oscillates.

Proof Proceeding as in proof of Theorem 2.3, we get (6) and by Lemma 2.1, z(t) is

nondecreasing on t ∈ [t2,∞). Hence, there exists t3 > t2 such that

z(t)− p(t)z(τ(t)) = x(t) + p(t)x(τ(t))− p(t)x(τ(t))

− p(t)p(τ(t))p(τ(τ(t)))

= x(t)− p(t)p(τ(t))p(τ(τ(t)))

≤ x(t)

implies that x(t) ≥ (1− a)z(t) on t ∈ [t3,∞). Consequently, (1) reduces to

(r(t)(z′(t))γ)′ + (1− a)q(t)zγ(σ(t)) + (1− a)v(t)zγ(η(t)) ≤ 0

for t ∈ [t3,∞). The rest of the proof follows from the proof of Theorem 2.3 except (11) and

hence the details are omitted. Thus, the proof of the theorem is complete.
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THEOREM 2.5 Let −1 < a ≤ p(t) ≤ 0, t ∈ [t0,∞). Assume that (H0), r′(t) >

0, η(t) ≥ σ(t) and σ′(t) ≥ C hold. Furthermore, assume that there exists a positive differen-

tiable function ρ(t) such that

(H4)
∫∞
T

[
ρ(s){q(s) + v(s)} − ((ρ′(s))+)2(r(σ(s))γ

ρ(s)4Cγ
(
σ(s)
2

)γ−1

]
ds =∞, T > 0.

If

(H5)
∫∞
T1

[
1
r(θ)

∫ θ
t0

[q(s) + v(s)]ds
] 1
γ
dθ =∞, T1 > 0

holds, then every solution of (1) either oscillates or converges to zero as t→∞.

Proof Proceeding as in the proof of Theorem 2.3 we get (6) for t ∈ [t2,∞). Thus z(t) and

z′(t) are monotonic functions on [t2,∞). Hence, we have following four possible cases:

(i) z(t) > 0, z′(t) > 0, (ii) z(t) < 0, z′(t) > 0,

(iii) z(t) > 0, z′(t) < 0, (iv) z(t) < 0, z′(t) < 0.

Case(i) In this case, z(t) ≤ x(t) and (1) reduces to

(r(t)(z′(t))γ)′ + q(t)zγ(σ(t)) + v(t)zγ(η(t)) ≤ 0 (18)

for t ≥ t3 > t2. The proof of this case is an immediate consequence of the proof of Theorem

2.3 except (11).

Case(ii) For this case, we claim that x(t) is bounded. Otherwise, there exists a sequence

{αn} such that αn →∞ as n→∞ and x(αn) = max{x(t) : t3 ≤ t ≤ αn}. Therefore,

z(αn) = x(αn) + p(αn)x(τ(αn))

≥ x(αn) + ax(τ(αn)) ≥ x(αn) + ax(αn)

= (1 + a)x(αn)→ +∞ as n→∞ (∵ 1 + a > 0)

gives a contradiction to the fact that lim
t→∞

z(t) exists. Ultimately,

0 ≥ lim
t→∞

z(t) = lim sup
t→∞

z(t)

≥ lim sup
t→∞

(x(t) + ax(τ(t)))

≥ lim sup
t→∞

x(t) + lim inf
t→∞

(ax(τ(t)))

= lim sup
t→∞

x(t) + a lim sup
t→∞

x(τ(t))

= (1 + a) lim sup
t→∞

x(t)

implies that lim sup
t→∞

x(t) = 0, that is, lim
t→∞

x(t) = 0.

Case(iii) Let lim
t→∞

z(t) = β, β ∈ [0,∞). We assert that β = 0. If not, there exist t3 > t2

and l > 0 such that z(σ(t)) ≥ z(t) > l and z(η(t)) ≥ z(t) > l for t ≥ t3. Since z(t) ≤ x(t),

then (18) yields that

(r(t)(z′(t))γ)′ ≤ −lγ [q(t) + v(t)]
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for t ≥ t3. Integrating the above inequality from t3 to t, we get

z′(t) < −l
[

1

r(t)

∫ t

t3

[q(s) + v(s)]ds

] 1
γ

,

that is,

z(t) < z(t3)− l
∫ t

t3

[
1

r(θ)

∫ θ

t3

[q(s) + v(s)]ds

] 1
γ

dθ < 0

for large t due to (H5). Hence l = 0. Using the same type of reasoning as in Case(ii), we

can show that x(t) is bounded and lim
t→∞

x(t) = 0.

Case(iv) If we assume that x(t) is unbounded, then by Case(ii) we have z(t) > 0 for large

t which is absurd. So, x(t) is bounded. Consequently, z(t) is bounded and lim
t→∞

z(t) exists.

Because z(t) < 0 and nonincreasing, we can find β > 0 and a t3 > t2 such that z(t) < β for

t ≥ t3. Proceeding as in Case(iii), it is easy to see that lim
t→∞

z(t) = −∞ due to (H5). This

contradiction argues against Case(iv). This completes the proof of the theorem.

REMARK 2.6 In Theorem 2.5, it is learnt that x(t) is bounded when z(t) < 0. Also,

x(t) is bounded when z(t) > 0 in Case(iii). Hence for unbounded x(t), Cases(ii), (iii) and

(iv) are not existing ultimately. Therefore, we have proved the following result:

THEOREM 2.7 Let −1 < a ≤ p(t) ≤ 0 for t ∈ [t0,∞). Assume that (H0) and (H4)

hold. Furthermore, assume that r′(t) > 0, η(t) ≥ σ(t) and σ′(t) ≥ C hold. Then every

unbounded solution of (1) oscillates.

THEOREM 2.8 Let −∞ < a ≤ p(t) ≤ d < −1, τ(σ(t)) = σ(τ(t)) and τ(η(t)) =

η(τ(t)) be hold for all t ∈ [t0,∞). Assume that all conditions of Theorem 2.5 hold. If

(H6)
∫∞
t0

[q(τ(s)) + v(τ(s))] ds =∞,
then every bounded solution of (1) either oscillates or converges to zero as t→∞.

Proof Let x(t) be a bounded nonoscillatory solution of (1). Proceeding as in the proof of

Theorem 2.5, we have four possible cases for t ∈ [t2,∞). Among these cases, Cases(i), (iii)

and (iv) are similar. For Case(ii), we claim that β = 0. Otherwise, there exist l < 0 and

t3 > t2 such that z(σ(t)) ≤ z(t) < l, z(η(t)) ≤ z(t) < l for t ≥ t3. From (4), it follows that

z(t) > ax(τ(t)) and hence x(τ(σ(t)) > 1
a
z(σ(t)), that is, x(σ(τ(t)) >

(
l
a

)
for t ≥ t3. Also,

x(η(τ(t)) >
(
l
a

)
for t ≥ t3. Since (1) can be written as

(r(τ(t))(z′(τ(t))γ)′ + q(τ(t))xγ(σ(τ(t)) + v(τ(t))xγ(η(τ(t)) = 0,

then for t ≥ t3, it follows that

(r(τ(t))(z′(τ(t))γ)′ +

(
l

a

)γ
q(τ(t)) +

(
l

a

)γ
v(τ(t)) ≤ 0.
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Consequently,(
l

a

)γ [∫ t

t3

q(τ(s)) +

∫ t

t3

v(τ(s))

]
ds ≤ −

[
(r(τ(t))(z′(τ(t))γ)′

]t
t3

< −r(τ(t))(z′(τ(t)))γ <∞ as t→∞

contradicts (H6). So, our claim holds and

0 = lim
t→∞

z(t) = lim inf
t→∞

z(t)

≤ lim inf
t→∞

(x(t) + dx(τ(t)))

≤ lim sup
t→∞

x(t) + lim inf
t→∞

(dx(τ(t)))

= lim sup
t→∞

x(t) + d lim sup
t→∞

x(τ(t))

= (1 + d) lim sup
t→∞

x(t) (∵ (1 + d) < 0)

implies that lim sup
t→∞

x(t) = 0, that is, lim
t→∞

x(t) = 0. Hence the proof of the theorem is

complete.

3. Oscillation Criteria with (H00)

In this section, we establish sufficient conditions for oscillation of all solutions of (1)

under the hypothesis (H00).

LEMMA 3.1 [18] Assume that (H00) holds. Let u(t) be an eventually positive contin-

uous function on [t0,∞), t0 ≥ 0 such that r(t)u′(t) is continuous and differentiable function

with (r(t)u′(t))γ)′ ≤ 0, 6≡ 0 for large t ∈ [t0,∞), where r(t) is continuous function defined

on [t0,∞). Then the following statements hold:

(i)If u′(t) > 0, then there exists a constant C > 0 such that u(t) > CR(t) for large t,

(ii)Ifu′(t) < 0, then u(t) ≥ −(r(t)(u′(t))γ)
1
γR(t), where R(t) =

∫∞
t

(
1
r(s)

) 1
γ
ds.

THEOREM 3.2 Let 0 ≤ p(t) ≤ a <∞ and (H00) hold. Assume that all conditions of

Theorem 2.3 hold. If

(H7)
∫∞
T

[Rγ(σ(t))Q(t) +Rγ(η(t))V (t)] dt =∞, T > 0,

then every solution of (1) oscillates.

Proof Proceeding as in the proof of Theorem 2.3, we obtain (6) and (8) for t ≥ t2. In

what follows, we consider two possible cases z′(t) > 0 or z′(t) < 0 for t ≥ t3 > t2. The case

z′(t) > 0 for t ≥ t3 follows from Theorem 2.3. Consider z′(t) < 0 for t ≥ t3. Then there exist

C1 < 0 and a t4 > t3 such that (r(t)(z′(t))γ) ≤ (−C1)γ for t ≥ t4 due to Lemma 3.1(ii). As

a result, z(t) ≥ C1R(t) for t ≥ t4. Therefore, (8) implies that

Q(t)

2γ−1
Cγ1R

γ(σ(t)) +
V (t)

2γ−1
Cγ1R

γ(η(t)) ≤ −(r(t)(z′(t))γ)′ − (aγr(τ(t))(z′(τ(t)))γ)′ (19)
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for t ≥ t4. Integrating (19) from t4 to t, we get∫ t

t4

Q(s)

2γ−1
Cγ1R

γ(σ(s))ds+

∫ t

t4

V (s)

2γ−1
Cγ1R

γ(η(s))ds <∞,

a contradiction to (H7). Hence, the theorem is proved.

THEOREM 3.3 Let −1 < a ≤ p(t) ≤ 0, t ∈ [t0,∞) and (H00) hold. Assume that all

conditions of Theorem 2.5 hold. If

(H8)
∫∞
T

[Rγ(σ(t))q(t) +Rγ(η(t))v(t)] dt =∞, T > 0,

then every solution of (1) either oscillates or converges to zero as t→∞.

Proof The proof of the theorem can be followed from the proofs of Theorem 2.5 and The-

orem 3.2. Hence, the details are omitted. This completes the proof of the theorem.

THEOREM 3.4 Let −∞ < a ≤ p(t) ≤ d < −1, τ(σ(t)) = σ(τ(t)) and τ(η(t)) =

η(τ(t)) be hold for all t ∈ [t0,∞). Assume that all conditions of Theorem 3.3 hold. If (H6)

hold, then every bounded solution of (1) either oscillates or converges to zero as t→∞

Proof The proof of the theorem follows from the proofs of Theorem 3.3 and Theorem 2.8

and hence the details are omitted. Thus the theorem is proved.

THEOREM 3.5 Let −1 < a ≤ p(t) ≤ 0 for t ∈ [t0,∞). Assume that (H00) and (H4)

hold. Furthermore, assume that r′(t) > 0, η(t) ≥ σ(t) and σ′(t) ≥ C hold. Then every

unbounded solution of (1) oscillates.

Proof The proof of the theorem follows from Remark 2.6. Hence, the details are omitted.

4. Discussion and Examples

EXAMPLE 4.1 Consider

((tγ((x(t) + x(t− 3π)))′)γ)′ + etxγ(t− 2π) + etxγ(t− π) = 0 (20)

on [3π,∞), where r(t) = tγ , p(t) = 1 and γ ≥ 1. If we choose ρ(t) = 1, then it is easy to

verify all conditions of Theorem 2.3. Hence, (20) is oscillatory. In particular, x(t) = sint

is such a solution of (20).

In this work, our objective was to establish the sufficient conditions for oscillation of

all solutions of (1). But, our method fails to provide the conclusion in the range −∞ < a ≤
p(t) ≤ d < −1. However, we could manage in Theorems 2.8 and 3.4 with bounded solutions.
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EXAMPLE 4.2 Consider

(eγt((x(t) + x(t− 4π)))′)γ)′ + eγtxγ(t− 2π) + eγtxγ(t− π) = 0 (21)

on [4π,∞), where r(t) = eγt, p(t) = −1 and γ ≥ 1. Choose ρ(t) = 1. Clearly, (H4), (H6)

and (H8) are hold true. From (H5), we have

∫ ∞
4π

[
1

r(t)

∫ t

t0

[q(s) + v(s)]ds

] 1
γ

dt =

∫ ∞
4π

[
1

eγt

∫ t

t0

[2eγs]ds

] 1
γ

dt

=

(
2

γ

) 1
γ
∫ ∞
4π

[
1− eγt0

eγt

] 1
γ

dt.

Since 0 ≤
[
1− eγt0

eγt

]
≤ 1 for any large t, then we can find a t∗ ∈ [4π,∞) such that[

1− eγt0

eγt

]
≥ 1

2
for t ≥ t∗. Consequently,

∫ ∞
4π

[
1

r(t)

∫ t

t0

[q(s) + v(s)]ds

] 1
γ

dt =

(
2

γ

) 1
γ
∫ ∞
4π

[
1− eγt0

eγt

] 1
γ

dt

≥
(

2

γ

) 1
γ
∫ ∞
t∗

[
1

2

] 1
γ

dt =∞.

All conditions of Theorem 3.4 are satisfied for (21), but we can not apply the theorem due

to p(t) ≡ −1. We note that, x(t) = sint is an oscillatory solution of (21).

In the literature, we don’t find the discussion concerning the oscillation of neutral

equations when −∞ < p(t) ≤ −1. So, it is interesting to study the oscillation property of

neutral equations in this range, and at the same time it would be interesting to see an all

solution oscillatory problem (may be unlike our method).
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Mathematical modeling of the action of a medium on a conical
body

Maxim V. Shamolin

Abstract: We consider a mathematical model of a plane-parallel action of a
medium on a rigid body whose surface has a part which is a circular cone. We
present a complete system of equations of motion under the quasi-stationarity
conditions. The dynamical part of equations of motion form an indepen-
dent system that possesses an independent second-order subsystem on a two-
dimensional cylinder. We obtain an infinite family of phase portraits on the
phase cylinder of quasi-velocities corresponding to the presence in the system
of only a nonconservative pair of forces.

1. Introduction

In [5, 6], we present a qualitative analysis of plane-parallel and spatial problems on the

motion of realistic rigid bodies in a resistive medium. We construct a nonlinear model of the

influence of the medium on the rigid body, in which the dependence of the arm of force on

the reduced angular velocity of the body is taken into account; in this case, the moment of

force is also a function of the angle of attack. Experiments on the motion of homogeneous

circular cylinders in water show that these circumstances must be taken into account in

modeling. In the study of plane and spatial models of interaction of a rigid body with a

medium (both in the presence or absence of an additional tracking force), we find sufficient

conditions of stability of one of the key regimes of motion, rectilinear translational motion.

We show that under certain conditions, stable or unstable auto-oscillation regimes in the

system can appear.

In [7, 8], a mathematical model of the effect of a medium on a homogeneous rigid body

whose outer surface includes a circumferential cone is considered. The complete system of

equations of motion under quasi-stationarity conditions is given. In the dynamic part forming

an independent third-order system, an independent second-order subsystem is distinguished.

A new two-parameter family of phase portraits on the phase cylinder of quasi-velocities is

obtained.
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2. Statement of the Problem

Consider a plane-parallel motion of a homogeneous rigid body of mass m with the cone-

shaped front part interacting with a flow of medium under conditions of jet circumfluence

of flow-separated circumfluence (see Fig. 1).

Figure 1. Action of a medium on a rigid body

For simplicity, we assume that the coordinate yN of the application point N of the action

force of the medium is determined by a single parameter, namely, by the angle of attack α,

i.e., the angle between the velocity vector of the point D and the symmetry axis Dx:

yN = R(α). (1)

We represent the forces of frontal and side resistance (see Fig. 1) as quadratic functions

of the speed of the point D:

Sx = −s(α)v2ex, Sy = −b(α)v2ey, |vD| = v. (2)

Thus, we triple of functions R(α), s(α), and b(α) determines the action of a medium

on a rigid body under the quasi-stationarity conditions (see [1–3]). In this case, the conical

shape of the surface of the body and the hypothesis on the quasi-static action of the medium

allow one to determine the complete scheme of forces that contains all characteristics of the

system. In the sequel, the analysis of systems constructed is performed by well-known meth-

ods of qualitative theory and new methods developed especially for systems with variable

dissipation (see [7, 8]).
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3. Dynamical Part of Equations of Motion

Taking into account the conditions (1) and (2), we can rewrite the dynamical part of equa-

tions of motion in the following form:

v̇ cos α− α̇v sin α + Ωv sin α + σΩ2 = −s(α)

m
v2, (3)

v̇ sin α + α̇v cos α− Ωv cos α + σΩ̇ = − b(α)

m
v2, (4)

IΩ̇ = −F (α)s(α)v2 + σb(α)v2 − hΩv, (5)

where I is the central moment of inertia of the body, m is the mass of a body, σ = CD, C is

the center of mass, F (α) = R(α)s(α), and the coefficient h > 0 characterizes an additional

moment depending on the angular velocity (see [6]). Note that the the dependence of forces

and moments on the angular velocity in such problems is not a priori obvious.

The first two equations are obtained from the theorem on the motion of the center of

mass and the third from the theorem on the change of the kinetic moments in the König

axes. Similar results without side forces were used earlier in [5].

Since the kinetic energy of the body and generalized forces and moments are independent

of the location of the body on the plane, the position coordinates in the system are cyclic.

This allow one to consider the system of dynamical equations (3)–(5) as an independent

system. The system of kinematic equations

ϕ̇ = Ω, ẋ0 = v cos(α− ϕ), ẏ0 = v sin(α− ϕ),

where the variables ϕ, x0, and y0 define the location of the body on the plane, together

with the system (3)–(5) for a complete system for the study of the motion in the force field

constructed above.

To obtain the form of the functions R(α), s(α), andb(α), one need experimental infor-

mation about properties of jet circumfluence (see also [8]).

Classes of considered dynamical functions are quite wide: they consist of sufficiently

smooths, 2π-periodic functions (R(α) and b(α) are odd and s(α) is even) satisfying the

following conditions:

R(α), b(α) > 0 for α ∈ (0, π), R′(0), b′(0) > 0, R′(π), b′(π) < 0 (class of functions

{R}, {b}); s(α) > 0 for α ∈ (0, π/2), s(α) < 0 for α ∈ (π/2, π), s(0) > 0, s′(π/2) < 0 (class

of functions {s}).
The functions R, b, and s change sign if one replace α by α + π.

In particular, the analytical functions

R(α) = A sin α, b(α) = b1 sin α, (6)
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s(α) = B cos α; A, B, b1 > 0, (7)

are typical representatives of classes described; two of them (namely, R and s) correspond

to the functions of action of medium obtained by Chaplygin (see [2]) in the study of a

plane-parallel circumfluence of an infinite flat plate by a homogeneous flow.

We explain the necessity of the wide classes of the functions {R}, {b}, and {s}. Geometric

characteristics of cone-shape bodies may be quite different, which allows to classify three

dynamical functions into several classes. As was noted above, these functional classes are

constrained by sufficiently weak conditions and therefor these classes are sufficiently wide:

they contain admissible functions for all bodies and all motions.

Therefore, for the study the circumfluence of a conical body by a medium, we use classes

of dynamical systems determined by triples of dynamical functions, which considerably com-

plicates the global nonlinear analysis.

In some cases, without loss of generality (see [2,3,6]), we will consider the representations

(6) and (7) for the functions R(α), s(α), and b(α) that determine the action of a medium.

4. Reduction of order

Equations (3)and (4) can be transformed to the form

v̇ + σΩ2 cos α + σΩ̇ sin α = −s(α)

m
v2 cos α− b(α)

m
v2 sin α, (8)

α̇v − Ωv + σΩ̇ cos α− σΩ2 sin α = − b(α)

m
v2 cos α +

s(α)

m
v2 sin α. (9)

Introducing the new differentiation by the formula

< · >= d/dt = vd/dq = v <′>,

where q is the path travelled by the point D, we have Ω = ωv, Ω̇ = v(ω′v + ωv′). Then the

dynamical part of the equations of motion takes the following form:

v′ = vΨ1(α, ω), (10)

α′ = ω +
σ

I
ψ(α, ω) cos α + σω2 sin α +

s(α)

m
sin α− b(α)

m
cos α, (11)

ω′ = −1

I
ψ(α, ω)− ωΨ1(α, ω), (12)

where

ψ(α, ω) = F (α)− σb(α) + hω,

Ψ1(α, ω) =
σ

I
ψ(α, ω) sin α− σω2 cos α− s(α)

m
cos α− b(α)

m
sin α.
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We introduce the dimensionless parameters and the differentiation of the form

q = Qσ, ω̄ = ωσ, β1 =
σ2AB

I
, β2 =

σ3b1

I
, β3 =

σh

I
, β4 =

Bσ

m
, β5 =

b1σ

m
.

In the sequel, we omit the bar in the notation of the dimensionless variable ω̄ and denote

the derivative with respect to the dimensionless variable Q by ′. In the cases (6) and (7), we

can rewrite the system (11), (12) as follows:

α′ = ω + β1 sin α cos2 α− β2 sin α cos α + β3ω cos α+

+ω2 sin α + β4 sin α cos α− β5 sin α cos α, (13)

ω′ = −β1 sin α cos α + β2 sin α− β3ω + ω3 cos α− β1ω sin2 α cos α+

+β2ω
2 sin α− β3ω

2 sin α + β4ω cos2 α + β5ω sin2 α. (14)

The dimensionless parameters βk, k = 1, . . . , 5, have the following sense:

β1 is the parameter of the moment of the frontal resistance force;

β2 is the parameter of the moment of the lateral force;

β3 is the parameter of the additional damping moment;

β4 is the parameter of the frontal resistance force;

β5 is the parameter of the moment of the lateral force.

Thus, we have a five-parameter family of systems (13), (14) on the two-dimensional

phase cylinder

{(α, ω) ∈ R2 : α mod 2π}.

5. Regime of Rectilinear Translational Deceleration and Its Stability

Among all possible motions of a body, there exists a key regime — a rectilinear translational

deceleration: the body moves translationally with zero attack angle and speeds of all points

of the body decrease (see also [6]). The key regime corresponds to the trivial solution of the

system (13), (14).

Under the stability of the key regime, we understand the stability of angular oscillations

of a body about its longitudinal axis with respect to perturbations of the attack angle and

the angular velocity. From the point of view of the theory of stability, this type of stability

is treated as the stability with respect to a part of variables.

To examine this stability, we linearize system (13), (14) at the origin:

α′ = ω + β1α− β2α + β3ω + β4α− β5α, (15)

ω′ = −β1α + β2α− β3ω + β4ω. (16)
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The matrix of this system has the form

A =


 β1 − β2 + β4 − β5 1 + β3

−β1 + β2 −β3 + β4


 , (17)

which leads to the characteristic equation

λ2 − trA · λ + detA = 0, (18)

where

trA = β1 − β2 − β3 + 2β4 − β5. (19)

Clearly, the conditions

trA < 0, detA > 0

provide the asymptotic stability of the trivial solution of the system (13), (14).

Relation (19) implies that the presence of a frontal resistance force (and its moment) in

the system makes the rectilinear translational deceleration more nonstable. In other words,

increasing the coefficients β1 and β4 leads to increasing trA. Conversely, the presence in the

system of a lateral resistance force (and its moment) and an additional damping moment

makes the rectilinear translational deceleration more stable. In other words, increasing the

coefficients β2, β3, and β5 leads to decreasing trA.

6. Two-parameter Family of Phase Portrait

Consider the case where the system contains two force couples: a couple of frontal resistance

forces and a couple of lateral forces (these couples can be added). Namely, we assume that

the following conditions hold:

β3 = β4 = β5 = 0. (20)

In this case, the system (13), (14) becomes

α′ = ω + ω2 sin α + β1 sin α cos2 α− β2 sin α cos α, (21)

ω′ = −β1 sin α cos α + β2 sin α + ω3 cos α− β1ω sin2 α cos α+

+β2ω
2 sin α. (22)

Then the system (21), (22) possesses a two-parameter family of phase portraits (see

Figs. 2–7, change Ω ↔ ω). This family differs from families obtained earlier (see [5]).
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Figure 2.

Figure 3.

7. On the Possibility of the Stability of the Key Regime

Under the condition (20), the characteristic equation (18) has the form

λ2 + (β2 − β1)λ + β1 − β2 = 0; (23)

this shows that in the domain of the parameters specified above the stability cannot be

achieved. For example, for

β1 < β2 (24)

the trivial solution of the system is nonstable due to the saddle point. Therefore, by an ap-

propriate choice of the corresponding initial conditions, one can obtain a conditionally stable

solution. Indeed, one can take initial conditions near stable separatrices in a neighborhood

of the origin and calculate the eigenvectors in the linear approximation.

Another type of nonstability of the trivial solution of the system occurs under the con-

dition

β1 > β2. (25)
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Figure 4.

Figure 5.

In this case, the origin is a repelling singular point, and no choice of initial conditions

leads to a stable solution.

Families of portraits obtained earlier (see [4,5,8]) deal with the case where the asymptotic

stability of the origin can be achieved. The family of portraits obtained in the present paper

deals with the case of the conditional stability, which can be achieved by an appropriate

choice of initial conditions. In Figs. 2–6, we present the cases corresponding to the inequality

(24) (a saddle at the origin), whereas in Fig. 7 the case corresponding to the inequality (25)

(a repealing point at the origin) is illustrated.

8. Conclusions

We consider a mathematical model of a plane-parallel action of a medium on a rigid body

whose surface has a part which is a circular cone. We present a complete system of equations

of motion under the quasi-stationarity conditions. The dynamical part of equations of motion

form an independent system that possesses an independent second-order subsystem on a two-

dimensional cylinder. We obtain an infinite family of phase portraits on the phase cylinder
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Figure 6.

Figure 7.

of quasi-velocities corresponding to the presence in the system only of a nonconservative pair

of forces.
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Deterministic chaos in some pendulum systems with delay

Aleksandr Shvets, Alexander Makaseyev

Abstract: Dynamic system ”pendulum - source of limited excitation” with
taking into account the various factors of delay is considered. Mathematical
model of the system is a system of ordinary differential equations with delay.
Three approaches are suggested that allow to reduce the mathematical model
of the system to systems of differential equations, into which various delay
factors enter as some parameters. Genesis of deterministic chaos is studied
in detail. Maps of dynamic regimes, phase-portraits of attractors of systems,
phase-parametric characteristics and Lyapunov’s characteristic exponents are
constructed and analyzed. The scenarios of transition from steady-state regular
regimes to chaotic ones are identified. It is shown, that in some cases the delay
is the main reason of origination of chaos in the system ”pendulum - source of
limited excitation”.

1. Introduction

In mathematical modeling of oscillatory processes a mathematical model of a relatively sim-

ple dynamical system is often used to study the dynamics of much more complex systems.

Typical example of this approach is the extensive use of pendulum models to study the dy-

namics of systems of an entirely different nature. Pendulum mathematical models are widely

used to describe the dynamics of various technical constructions, machines and mechanisms,

in the study of cardiovascular system, financial markets, etc. Such widespread use of pen-

dulum models makes it relevant to study directly the dynamics of pendulum systems.

Modern development of energy efficient and energy-preserving technologies requires the

highest minimization of excitation source power of oscillatory systems. This leads to the fact

that the energy of excitation source is comparable to the energy consumed by the oscillating

system. Such systems as “source of excitation - oscillating subsystem” are called non-ideal

by Zommerfeld-Kononenko [1]. In mathematical modeling of such systems, the limitation of

excitation source power must be always taken into account.

Another important factor that significantly affects the change of steady-state regimes of

dynamical systems, is the presence of different in their physical substance, factors of delay.

The delay factors are always present in rather extended systems due to the limitations of

signal transmission speed: stretching, waves of compression, bending, current strength, etc.

In some cases, taking into account factors of delay leads only to minor quantitative changes
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in dynamical characteristics of pendulum systems. In other cases, taking into account these

factors allow to identify qualitative changes in dynamical characteristics [7–9].

The study of the influence of delay factors on the dynamical stability of equilibrium

positions of pendulum systems was initiated by Yu. A. Mitropolsky and his scientific school

in the 80s of the last century [10]. But only ideal pendulum models were initially consid-

ered. In this paper non-ideal pendulum systems of the type ”pendulum–electric motor” are

considered. Mathematical models of such systems were obtained by A. Yu. Shvets and T.

S. Krasnopolskaya. In such systems the existence of chaotic attractors was discovered and

proved that the main cause of chaos is limited excitation [5, 6]. The aim of this work is to

study the influence of various factors of delay on dynamical behaviour of these system.

2. Mathematical model of the system

In [5] the equations of motion of the system “pendulum - electric motor” in the absence of

any delay factors were obtained. They are



































dy1

dτ
= Cy1 − y2y3 −

1

8
(y2

1y2 + y
3
2);

dy2

dτ
= Cy2 + y1y3 +

1

8
(y3

1 + y1y
2
2) + 1;

dy3

dτ
= Dy2 + Ey3 + F ;

(1)

where phase variables y1y2 describe the deviation of the pendulum from the vertical and

phase variable y3 is proportional to the rotation speed of the motor shaft. The system

parameters are defined by

C = −δ1ε
−2/3

ω
−1
0 , D = −

2ml2

I
, F = 2ε−2/3(

N0

ω0
+ E) (2)

where m - the pendulum mass, l - the reduced pendulum length, ω0 - natural frequency of

the pendulum, a - the length of the electric motor crank, ε = a
l
, δ1 - damping coefficient of

the medium resistance force, I - the electric motor moment of inertia, E, N0 - constants of

the electric motor static characteristics.

Let us consider the following system of equations:







































dy1(τ )

dτ
= Cy1(τ − δ)− y2(τ )y3(τ − γ)−

1

8
(y2

1(τ )y2(τ ) + y
3
2(τ ));

dy2(τ )

dτ
= Cy2(τ − δ) + y1(τ )y3(τ − γ) +

1

8
(y3

1(τ ) + y1(τ )y
2
2(τ )) + 1;

dy3(τ )

dτ
= Dy2(τ − γ) + Ey3(τ ) + F .

(3)
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This system is a system of equations with constant delay. Positive constant parameter γ

was introduced to account the delay effects of electric motor impulse on the pendulum. We

assume that the delay of the electric motor response to the impact of the pendulum inertia

force is also equal to γ. Taking into account the delay γ conditioned by the fact that the wave

velocity perturbations on the elements of the construction has a finite value that depends on

the properties of external fields, for instance, the temperature field. In turn, the constant

positive parameter δ characterizes the delay of the medium reaction on the dynamical state

of the pendulum. This delay is due to the limited sound velocity in that medium.

Let us consider two approaches that allow to reduce the time-delay system (3) to the

systems of equations without delay. The first approach is as follows. Assuming a small delay,

we can write

yi(τ − γ) = yi(τ )−
y1(τ )

dτ
γ + ..., i = 2, 3

yi(τ − δ) = yi(τ )−
y1(τ )

dτ
δ + ..., i = 1, 2

Then, if Cδ 6= −1, we get the following system of equations:







































ẏ1 =
1

1 + Cδ

(

Cy1 − y2 [y3 − γ (Dy2 +Ey3 + F )]−
1

8
(y2

1y2 + y
3
2)

)

;

ẏ2 =
1

1 + Cδ

(

Cy2 + y1y3 − y1γ(Dy2 + Ey3 + F ) +
1

8
(y3

1 + y1y
2
2) + 1

)

;

ẏ3 = (1−Cγ)Dy2 −
Dγ

8
(y3

1 + y1y
2
2 + 8y1y3 + 8) + Ey3 + F.

(4)

The obtained system of equations is already a system of ordinary differential equations.

Delays are included in this system as additional parameters.

In order to approximate the system (3) another, more precise, method can be used [3].

If γ > 0, δ > 0 let us divide the segments [−γ; 0] and [−δ; 0] into m equal parts. We

introduce the following notation

y1(τ − iδ
m
) = y1i(τ ), y2(τ − iγ

m
) = y2i(τ ), y2(τ − iδ

m
) = ỹ2i(τ ),

y3(τ − iγ
m
) = y3i(τ ), i = 0, m.

Then, using difference approximation of derivative [3], [4] we obtain
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





















































































































dy10(τ)
dτ

= Cy1m(τ )− y20(τ )y3m(τ )− 1
8
(y2

10(τ )y20(τ ) + y3
20(τ ));

dy20(τ)
dτ

= Cỹ2m(τ ) + y10(τ )y3m(τ ) + 1
8
(y3

10(τ ) + y10(τ )y
2
20(τ )) + 1;

dy30(τ)
dτ

= Dy2m(τ ) + Ey30(τ ) + F ;

dy1i(τ)
dτ

= m
δ
(y1 i−1(τ )− y1i(τ )), i = 1, m;

dy2i(τ)
dτ

= m
γ
(y2 i−1(τ )− y2i(τ )), i = 1, m;

dỹ2i(τ)
dτ

= m
δ
(ỹ2 i−1(τ )− ỹ2i(τ )), i = 1, m;

dy3i(τ)
dτ

= m
γ
(y3 i−1(τ )− y3i(τ )), i = 1, m.

(5)

It is a system of ordinary differential equations of (4m+ 3)-th order. In the absence of

one of the delays (γ or δ), using the same reasoning, the system (3) can be reduced to the

systems of (2m+3)-th order. As in the system (4), the delays are included in these systems

as additional parameters.

Choosing a sufficiently large m in the system (5), the system (3) will be very well

approximated by the system (5) [3]. We note that the solutions y1, y2, y3 of the system (3)

are described by the functions y10, y20, y30 of the system (5).

Therefore, we obtained three-dimensional (4) and fifteen-dimensional (5) models each

describing the system of equations with delay (3). These models are the systems of non-

linear differential equations, so in general the study of steady-state regimes can be carried

out only by using numerical methods and algorithms. The methodology of such studies is

described in detail in [5].

3. Maps of dynamical regimes

For general analysis of nonlinear dynamical behaviour the maps of dynamical regimes are

constructed. Such maps provide a crucial information about the type of steady-state regime

of the system depending on its parameters. The construction of dynamical regimes maps

is based on analysis and processing of spectrum of Lyapunov characteristic exponents [2,5].

Where necessary, for more accurate determination of steady-state regime of the system,

we study other characteristics of attractors: phase portraits, Poincare sections and maps,

Fourier spectrums and distributions of the invariant measure.

Let us consider the behavior of the systems (4) and (5) when the parameters are C =
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a b

c d

Figure 1. Maps of dynamical regimes

−0.1, D = −0.53, E = −0.59, F = −0.4. The map of dynamical regimes in fig. 1, a was built

for three-dimensional model (4) and the map in fig. 1, b was built for fifteen-dimensional

model (5). These figures illustrate the effect of the delay of interaction between pendulum

and electric motor γ and the delay of the medium δ on changing the type of steady-state

regime of the systems. The dark-grey areas of the maps correspond to equilibrium positions

of the system. The light-grey areas of the maps correspond to limit cycles of the system.

And finally, the black areas of the maps correspond to chaotic attractors.

At small values of the delays both systems have stable equilibrium positions (dark-grey

areas in the figures). With an increase of the delay values the region of stable equilibrium

positions is replaced by the region of periodic regimes and then by the region of chaotic

regimes. With further increase of the delays the alternation of these three types of dynamical

regimes takes place.

Let us study the dynamics of the system (4) and (5) at other values of the parameters.

The maps of dynamical regimes of three-dimensional system (4) and fifteen-dimensional

system (5) at C = −0.1, D = −0.5, E = −0.59, F = −0.31 are built respectively in
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fig. 1c,d. As seen from the constructed maps, at small values of the delays γ and δ both

systems systems have chaotic attractors (black areas in the maps). With an increase of the

delay values the region of chaotic regimes is replaced by a large area of periodic steady-state

regimes. In the map of dynamical regimes (fig. 1d) of the fifteen-dimensional system (5)

in the area of limit cycles there is a sufficiently large region of chaotic regimes. In three-

dimensional system (fig. 1d) such region does not exist.

a b

c d

Figure 2. Maps of dynamical regimes

The maps of dynamical regimes of respectively the system (4) and the system (5) at

C = −0.1, D = −0.6, E = −0.7, F = −0.4 are built in fig. 2a, b. At small values of the

delays the steady-state regime of both systems is limit cycle (light-grey areas in the figures).

With an increase of the delay values the maps in fig. 2a,b are certainly different. In fig. 2a

there are narrow area in which the limit cycle is replaced by an equilibrium position, as well

as by a chaotic attractor. Whereas in 2b these narrow area is almost missing. Further in

both figures there are a rather wide area of periodic regimes, which with further increase of

the delay is replaced by chaos area. Moreover, in this rather wide area of chaos fairly narrow

strips of periodic regimes are built in.

506



In fig. 2c,d the maps of dynamical regimes of respectively the system (4) and the system

(5) at C = −0.1, D = −0.53, E = −0.6, F = 0.19 are constructed. At small values of the

delays both systems have chaotic attractors (black areas in the figures). With an increase

of the delay values the region of chaos is replaced by the region of periodic regimes. Then

again chaos arises in the system. Further this area is replaced by the area of limit cycles.

As seen from the constructed maps of dynamical regimes, the dynamics of three-dimensional

system (4) and fifteen-dimensional system (5) is the same only at small values of the de-

lay γ and δ. With an increase of the delays the dynamical behaviour of these systems is

significantly different.

The obtained maps of dynamical regimes allow us to conduct a quick qualitative iden-

tification of the type of steady-state regime of the systems (4) and (5). On the basis of

constructed maps, more detailed studies of emerging dynamical regimes can be carried out.

Particularly we can study the transition from regular to chaotic regimes [6–9].

4. Regular and chaotic dynamics

Let us study the types of regular and chaotic attractors that exist in the systems (4) and

(5). We implement a horizontal section of the maps of dynamical regimes in fig.2c,d along

the delay γ at δ = 0.15. In other words, let us consider the behavior of the systems (4) and

(5) when parameters are C = −0.1, D = −0.53, E = −0.6, F = 0.19 and the delays δ = 0.15

and 0 ≤ γ ≤ 0.3.

In fig. 3a,b the dependence of maximum non-zero Lyapunov’s characteristic exponent

from γ and phase-parametric characteristic of three-dimensional system (4) are shown re-

spectively. These figures illustrate the influence of the delay of interaction between pendulum

and electric motor γ on chaotization of the system (4).

Let us construct the same characteristics at the same values of the parameters for fifteen-

dimensional system (5). In fig. 3c,d respectively the dependence of maximum non-zero

Lyapunov’s characteristic exponent from γ and phase-parametric characteristic are shown.

In fig.3a, 3c we can clearly see the presence of intervals γ in which maximum Lyapunov

exponent of the systems is positive. In these intervals the systems have chaotic attractors.

The area of existence of chaos is clearly seen in phase-parametric characteristics of the

systems. The areas of chaos in the bifurcation trees are densely filled with points. A careful

examination of the obtained images allow not only to identify the origin of chaos in the

systems, but also to describe the scenario of transition to chaos. So with a decrease of γ

there are the transitions to chaos by Feigenbaum scenario (infinite cascade of period-doubling

bifurcations of a limit cycle). Bifurcation points for the delay γ are clearly visible in each

figures. These points are the points of approaches of the Lyapunov’s exponent graph to the

507



zero line (fig.3a, 3c) and the points of splitting the branches of the bifurcation tree (fig.3b,

3d). In turn, the transition to chaos with an increase of the delay happens under the scenario

of Pomeau-Manneville, in a single bifurcation, through intermittency.

A careful analysis of these figures allows to see qualitative similarity of the respective

characteristics of the systems (4) and (5). However, with increasing the delay the differences

in the dynamics of these systems become very significant.

For instance when the delay of interaction between pendulum and electric motor γ = 0.05

and the delay of the medium δ = 0.15 the steady-state regime of three-dimensional system

(4) is periodic and the attractor is limit cycle. Phase portrait of this attractor is shown in

fig.4a. Whereas at this values of the parameters and the delays fifteen-dimensional system

(5) has steady-state chaotic dynamical regime. Phase portrait of the chaotic attractor of the

a b

c d

Figure 3. The dependencies of maximal non-zero Lyapunov’s characteristic exponent from

γ (a,c), phase-parametric characteristics (b ,d)

508



a b

c d

Figure 4. Phase portraits of attractors of the system (4) (a, c) and the system (5) (b, d).

system (5) is built in fig.4b.

It is also possible a different situation. For instance at the delays γ = 0.11, δ = 0.15 the

system (4) has chaotic steady-state regime of oscillations. Phase portrait of the attractor

is shown in fig.4c. Whereas at this values of the delay fifteen-dimensional system (4) has

regular periodic dynamical regime and its attractor is limit cycle (fig.4d).

This suggests that three-dimensional system of equations (4) should be used to study the

system (3) only at very small values of the delay. With increasing values of the delay to study

regular and chaotic oscillations of “pendulum–electric motor” system, fifteen-dimensional

system of equations (5) should be used.

5. Conclusion

Taking into account various factors of delay in non-ideal pendulum systems is crucial. The

presence of delay in such systems can affect the qualitative change in the dynamical be-

haviour. It is shown, that in some cases the delay is the main reason of origination as well
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as vanishing of chaotic attractors.

It is shown that for small values of the delay it is sufficient to use three-dimensional

mathematical model, whereas for relatively high values of the delay the fifteen-dimensional

mathematical model should be used.
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The first exit time stochastic theory applied to estimate the
life-time of a complicated machine. The case of cars

Christos H Skiadas, Charilaos Skiadas

Abstract: We develop a first exit time methodology to model the life time pro-
cess of a complicated machine. We assume that the functionality level of a
complicated mechanical system follows a stochastic process during time and
the end of the functionality of the system comes when the functionality func-
tion reaches a zero level. After solving several technical details including the
Fokker-Planck equation for the appropriate boundary conditions we estimate
the transition probability density function and then the first exit time proba-
bility density of the functionality of the system reaching a barrier during time.
The formula we arrive is essential for complicated mechanical forms as for sev-
eral machines. A simpler case has the form called as Inverse Gaussian and was
first proposed independently by Schrödinger and Smoluchowsky in the same
journal issue (1915) to express the probability density of a simple first exit time
process hitting a linear barrier. Applications to the functionality life time of
cars are done.

1. Introduction

Several years ago the first exit time or hitting time methodology was used to model the

death probability density function for a decaying stochastic process leading to the end of

functionality for a machine or of zero health state for an organism. The simpler case was

modeled more than 100 years ago independently by Schrödinger [4] and Smoluchowsky [10]

in the same journal issue (1915) to express the probability density of a simple first exit time

stochastic process hitting a linear barrier. The provided model is the so-called as Inverse

Gaussian. Later on the same model was suggested by Siegert [5]. This model was applied

to model the death probability density function for the Mediterranean flies (see Weitz and

Fraser [12]) whereas Janssen and Skiadas (1995) [1] had provided an expanded first exit

time density function to express the human death distribution. More publications are due to

Skiadas and Skiadas [6–8] whereas a related book is in the final publication stages by Skiadas

and Skiadas [9]. As the mechanical (machines) and electronic (computers) devices developed

in nowadays are more and more complicated the methodology used so far for humans and

insects could be quite important to apply. In the following we develop the related theory

and an application is presented regarding the cars life cycle.

511



We develop a first exit time methodology to model the life time process of a complicated

machine. We assume that the life time S = S(t) of a complicated mechanical system follows

a stochastic process of the form:

dS(t) = h(t)dt+ σ(t)dW (t), (1)

where h(t) is the drift parameter, σ(t) the variance or the diffusion coefficient and W (t)

the standard Wiener process. The Wiener process is a standard procedure to reproduce

a stochastic process of Brownian motion type that is a random process to account for the

random changes of a system functionality or our health state. The last equation is im-

mediately integrable provided that we have selected the appropriate initial conditions as

S(t = 0) = S(0).

S(t) = S(0) +

∫ t

0

h(s)ds+

∫ t

0

σ(s)dW (s). (2)

This equation form gives a large number of stochastic paths for the health state S(t)

of an individual. It should be noted that these paths of a random process with drift are

artificial realizations that can not calculated in the real life for a specific device. Instead

the mean value of a sufficient large number of stochastic paths can be estimated if we have

enough information for the death probability density function. The latter can be found from

the number of machines (cars in the specific case explored here) taken out of service at a

specific time period.

We set

H(t) =

∫ t

0

h(s)ds, (3)

where H(t) stands for the state of functionality of a set of similar mechanical devices or

for the health state of a population.

That is important is to find the transition probability density of the stochastic process

by solving the associated Fokker-Planck equation for the initial process:

∂p(S, t)

∂t
= −h(t)

∂[p(S, t)]

∂S
+

1

2
[σ(t)]2

∂2[p(S, t)]

∂S2
, (4)

This partial differential equation for S and t is solved for the following appropriate

boundary conditions

p(S(t), t0;S0, t0) = δ(S(t)− S0), (5)
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∂p[S(t), t0;S0, t]

∂S(t)
→ 0

as

S(t)→ ±∞

(6)

For the solution we use the method of characteristic functions. The characteristic func-

tion φ(S, t) is introduced by the following equation

φ(S, t) =

∫ +∞

−∞
p(S, t;S0, t0) exp(isS)ds, (7)

Integrating by parts and using the Fokker-Plank equation we arrive at

∂φ

∂t
= ish(t)φ− 1

2
[σ(t)]2s2φ, (8)

which with the initial conditions proposed

φ(s, t0) = exp(isS0), (9)

is solved providing the following expression for φ

φ(s, t0) = exp

[
is

[
S0 +

∫ t

t0

h(t′)dt′
]
− 1

2
s2
∫ t

t0

[
σ(t′)

]2
dt′
]
, (10)

This is the characteristic function of a Gaussian with mean[
S0 +

∫ t

t0

h(t′)dt′
]
, (11)

and variance

[
σ(t′)

]2
dt′, (12)

After solving several technical details including the Fokker-Planck equation for the ap-

propriate boundary conditions we estimate the transition probability density function

p(t) =
1

[2π
∫ t

0
[σ(s)]2ds]1/2

exp

[
− [H(t)]2

2
∫ t

0
[σ(s)]2ds

]
, (13)

As it is reasonable to assume that the variance could be relatively stable during time,

the related transition probability density function for constant σ is of the form:

p(t) =
1

σ
√

2πt
exp

[
− [H(t)]2

2σ2t

]
. (14)
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Then the first exit time probability density function g(t) for the process reaching a

barrier (where is the zero functionality level) is given by an approximation proposed by

Jennen and Lerche [3] and applied by Skiadas and Skiadas [6–9] of the form

g(t) =
|H − tH ′|

t
p(t) =

|H − tH ′|
σ
√

2πt3
exp

[
− [H(t)]2

2σ2t

]
. (15)

By using the estimated (for constant σ) Eq. (14) we arrive at the following form for the

first exit time probability density function

g(t) =
|H − tH ′|
σ
√

2πt3
exp

[
− [H(t)]2

2σ2t

]
. (16)

The last formula is coming from a first approximation of the first exit time densities

with good results in relatively simpler cases.

For more complicated cases a second approximation was proposed [2]:

g(t) =
1

σ
√

2π

[
|H − tH ′|√

t3
+

√
t3H ′′

2|H − tH ′|2

]
exp

[
− [H(t)]2

2σ2t

]
. (17)

This is also an approximation and higher order terms are omitted.

For applications in demography an extra parameter k is proposed leading to the following

approximation formula providing good fitting to the death data sets of a population (see

Skiadas and Skiadas [9])

g(t) =
2

σ
√

2π

[
|H − tH ′|√

t3
+

k
√
t3H ′′

2|H − tH ′|

]
exp

[
− [H(t)]2

2σ2t

]
. (18)

Furthermore we can arrive in a very interesting formula by selecting the following form

for H(t):

H(t) = l − (bt)c, (19)

where l, b, c are parameters. We can easily observe that the system functionality function

H(t) as is presented in the last formula is expressing a decay process of time leading to the

inevitable fact that it will be a time T = l1/c

b
such that H(t = T ) = 0.

The resulting form is:

g(t) =
|l + (c− 1)(bt)c|

σ
√

2πt3
exp

[
− [l − (bt)c]2

2σ2t

]
. (20)

It should be noted that by setting c = 1 in the last formula the well known Inverse

Gaussian results

g(t) =
|l|

σ
√

2πt3
exp

[
− [l − (bt)]2

2σ2t

]
. (21)
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This form was proposed independently by Schrödinger [4] and Smoluchowsky [10] in the

same journal issue to express the probability density of simple first exit time process hitting

a linear barrier. For complicated mechanical forms as for several machines the parameter c

is higher than unity and a convenient form will come from Eq. (18) and Eq. (19).

g(t) =
2

σ
√

2π

[
|l + (c− 1)(bt)c|√

t3
− k
√
t3c(c− 1)bct(c−2)

2|l + (c− 1)(bt)c|

]
exp

[
− [l − (bt)c]2

2σ2t

]
. (22)

Applications to the life time of cars are done

2. Application

For the application we have selected the table for passenger cars taken out of service the

year 2007 in Heraklion, Crete, Greece.

We use the following form for the operational state:

H(t) = 1− (bt)c, (23)

We assume that the operational state H(t) of a car is at the maximum level 1 at time zero

and then, the operational state gradually declines until a zero level at age T = 1/b. Note

that the age T is the average of all the stochastic paths hitting the barrier expressed by the

axis X. The resulting form for the first exit time probability density function is:

g(t) =
|1 + (c− 1)(bt)c|

σ
√

2πt3
exp

[
− [1− (bt)c]2

2σ2t

]
. (24)

For the fitting we use a nonlinear regression analysis program, based on a Levenberg-

Marquardt algorithm, providing the following values for the parameters: b = 0.04913, σ =

0.06928, c = 1 with R2 = 0.847. The age at zero operational state is at 20.36 years. The

operational state for cars follows a linear declining trend as c = 1. Fig. 1 illustrates to death

probability density for cars. The data are presented by the dashed line and the fit curve by

the continuous line. The maximum death rate is found at 17 years whereas two important

age levels are of particular importance that is the age at the left inflection point (11 years)

and the age at the right inflection point (21 years) presented by the maximum and minimum

points in Fig. 2. Fig. 3 illustrates the linear trend line for the operational state for cars. In

the latter case the age at zero operational state is similar to the age at the right inflection

point that is 21 years indicating a level at which the car should be taken out of service.

Instead the first inflection point (see Fig. 1) corresponding to the maximum in Fig. 2 at

11 years of the car operational age is a good life limit for an average car in the road. A

relatively new study in United States by Jack Walsworth [11] found the 11.3 years for the

average vehicle in the US roads. Instead for the case of cars in Heraklion, Crete studied the

average life was estimated at 18.32 years of operational age.
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Figure 1. Death probability density.

Figure 2. First difference of the first probability density.

3. Conclusions

We have developed a first exit time methodology to model the life time process of a compli-

cated machine. We assume that the functionality level of a complicated mechanical system

follows a stochastic process during time and the end of the functionality of the system comes

when the functionality function reaches a zero level. We have provided the appropriate

functionality functions and the related first exit time probability density functions. The

application on cars was very interesting providing adequate information for the development
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Figure 3. Operational state of cars.

of the operational state of cars over time, the average operational age duration of cars and

other statistics related to the maximum and minimum of the rate of change of the operational

ability of cars. The very important future of this application on cars functionality level is

to establish a concrete method for the evaluation of the cars best circulation age and decide

the age at which cars should be taken out of circulation. Applications to other complicated

machines and automata are most welcomed.
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A new asymptotic-tolerance model of dynamics of thin 
uniperiodic cylindrical shells 

 
 

Barbara Tomczyk, Anna Litawska 

Abstract: Thin linearly elastic Kirchhoff-Love-type circular cylindrical shells with a 
periodically micro-heterogeneous structure in circumferential direction (uniperiodic 
shells) are analysed. At the same time, the shells have constant structure in axial 
direction. The aim of this note is to formulate and discuss a new averaged asymptotic-
tolerance model for the analysis of dynamic problems for the shells under 
consideration. This model is derived by applying the combined modelling which 
includes two techniques: the asymptotic modelling procedure and a certain extended 
version of the known tolerance non-asymptotic modelling technique based on a new 
notion of weakly slowly-varying function proposed in [Tomczyk B., Woźniak C., 
Tolerance models in elastodynamics of certain reinforced thin-walled structures. In: 
Kołakowski Z. & Kowal-Michalska K. (eds.), Statics, Dynamics and Stability of 
Structures, vol. 2, Lodz University of Technology Press, Lodz, 123-153, 2012]. 
Contrary to the exact shell equations with highly oscillating, non-continuous and 
periodic coefficients, governing equations of the averaged combined model have 
constant coefficients depending also on a cell size. Hence, this model allows us to 
investigate the effect of the microstructure size on dynamic behaviour of the shells. 
An important advantage of the model is that it makes it possible to separate the 
macroscopic description of some special problems from the microscopic description 
of these problems. 

1. Introduction 

Thin linearly elastic Kirchhoff-Love-type circular cylindrical shells with a periodically micro-

inhomogeneous structure in circumferential direction (uniperiodic shells) are analysed, cf. Fig. 1. 

Shells of this kind are termed uniperiodic. At the same time, the shells under consideration have 

constant structure in axial direction. Periodic inhomogeneity means here periodically variable shell 

thickness and/or periodically variable inertial and elastic properties of the shell material. 

Dynamic problems of such shells are described by partial differential equations with highly 

oscillating, periodic and non-continuous coefficients, thus these equations are too complicated to be 

applied to the investigations of engineering problems. To obtain averaged equations with constant 

coefficients, various approximate modelling procedures for shells of this kind have been proposed. 

Periodic cylindrical shells (plates) are usually described using homogenized models derived by means 

of asymptotic methods. From the extensive list on this subject we can mention monograph by 
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Lewiński and Telega [6], where asymptotic modelling of plates, laminates and shells is discussed, 

book by Andrianov et al. [1], in which a detailed and systematic treatment of asymptotic methods on 

the theory of plates and shells is presented, monograph by Awrejcewicz et al. [2], which deals with 

asymptotic approaches to the modelling of statics, dynamics and stability of plates with mixed 

boundary conditions and in which some modern asymptotic procedures are introduced. Unfortunately, 

in the models of this kind the effect of a cell size (called the length-scale effect) on the overall shell 

behaviour is neglected. This effect can be taken into account using the tolerance averaging technique 

presented and discussed by Woźniak in many monographs, e.g. [12]. This technique based on the 

concept of tolerance relations between points and real numbers related to the accuracy of the 

performed measurements and calculations. The tolerance relations are determined by the tolerance 

parameters. The second basic concept of this method is a function slowly-varying within a cell. It is a 

function which, together with its derivatives occurring in the problem under consideration, can be 

treated in the framework of tolerance as constant within every cell. Contrary to starting equations of 

theories of microheterogeneous structures (partial differential equations with functional, highly 

oscillating, non-continuous coefficients), governing equations of the tolerance models have 

coefficients which are constant or slowly-varying and depend on the period length of inhomogeneity. 

Hence, these equations make it possible to analyse the length-scale effect. 

 

Figure 1.   An example of a shell with an uniperiodic microstructure. 

Some applications of ermomechanical 

prob

 this method to the modelling of mechanical and th

lems for various periodic structures are shown in many works. The extended list of publications 

on this topic can be found in [9, 12]. We mention here monograph by Tomczyk [9], where the length-

scale effect in dynamics and stability of periodic cylindrical shells is investigated. In the last years the 

tolerance modelling was adopted for mechanical and thermomechanical problems of functionally 
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graded structures, e.g. for heat conduction in longitudinally graded structures by Ostrowski and 

Michalak [7], for vibrations of functionally graded thin plates by Kaźmierczak and Jędrysiak [5], for 

dynamics of transversally graded thin cylindrical shells by Tomczyk and Szczerba [11]. 

A certain extended version of the tolerance modelling technique has been proposed by Tomczyk 

and 

ned 

asym

2. Formulation of the problem, starting equations 

 a e shell midsurface M in circumferential 

21

Woźniak in [8]. This version is based on a new notion of weakly slowly-varying functions which 

is a certain extension of the well known concept of slowly-varying functions, cf. [12]. A new 

tolerance model of dynamic problems for thin uniperiodic cylindrical shells derived by means of the 

concept of weakly slowly-varying functions has been proposed by Tomczyk and Litawska in [10]. 

The aim of this contribution is to formulate and discuss a new averaged general combi

ptotic-tolerance model for the analysis of selected dynamic problems for the uniperiodic shells 

under consideration. The model will be derived by applying the combined modelling which includes 

two techniques: the consistent asymptotic modelling procedure given by Woźniak [12] and the 

extended tolerance non-asymptotic modelling technique proposed by Tomczyk and Woźniak [8]. 

Governing equations of the combined model have constant coefficients depending also on a cell size. 

An important advantage of this model is that it makes it possible to study micro-dynamics of periodic 

shells independently of their macro-dynamics. The differences between the general combined model 

proposed here and the corresponding known standard combined model presented by Tomczyk in [9] 

and derived by means of the more restrictive notion of slowly-varying functions will be discussed. 

We ssume that 1x  and 2x  are coordinates parametrizing th

and axial directions, resp tively. We denote ),0( 1
1 Lxx ≡Ω∈≡  and ),0( 2

2 Lx ≡Ξ∈≡ξ , where 

, LL  are length dimensions of M, cf. Fig. 

ec

1. Let 321 xxxO  stand hogonal 

nate system in the physical space 3R  and d

for a Cartesian ort

coordi enote ),,( 321 xxx≡ . A cylindrical shell 

midsurface M is given by 

x

( ) ( ){ }Ξ×Ω∈=∈≡ 21213 ,,,: xxxxRM xx re r , whe )(⋅r  is the smooth 

function such that 021 ∂⋅∂∂ x/r =∂x/r , 111 =∂∂⋅∂∂ xx /r/r , 12 =∂x/ . eans that on M 

we have introduced ,

2 ∂⋅∂∂ x r/r

,

It m

 the orthonormal parametrization. Sub- and superscripts βα … run over 1,2 and 

are related to 21, xx , summation convention holds. Partial differentiation rela  αx  is represented 

by α∂ . Moreo  is denoted δαδα

ted to

ver, it ∂∂≡∂ ...... . Let αβa  stand for the midsurface f metric tensor. 

Under orthonormal parametriza he un ensor. The time coordinate is denoted by 

],[ 10 ttt ≡Ι∈ . Let )(xd  and 

irst 

tion αβa  is t it t

r  stand for the shell thickness and the midsurface curvature radius, 

 respectively.
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The basic cell Δ  and an arbitrary cell )(xΔ  with the centre at point Δ∈Ωx  are defined by 

means of: ),0(]2//[ 1L≡Ω∈λ,2λ−≡Δ , ,( ) Δ+≡Δ xx  ΔΩ∈x , }){ ΔΔ Ω⊂(:ΔΩ∈≡Ω x

λ , e ce

x , where 

λ  is a cell leng di i atisfies 

nditions: ,1/ max >>λ d  1/ <<λ r  1/L1 <<λ . 

Setting / we as

th dimension in 1xx ≡ - rection. The m crostructure length parameter λ  s

co  and

]2/,2[1 λ−∈≡ zz sume that th ll Δ  has a symmetry axis for 0 . It is 

also

),, t

=z

 assumed th l the geometrical, elastic and inertial properties of th ll are 

described by even functions of argument z. 

Denote by ),,( txuu ξ= αα , (xww

at inside the cel e she

ξ= ξ ∈Ω×Ξ× Ι, ),,( tx , the shell displacements in 

directions tangent  M ly. of the shells are described by 

shell stiffness tensors )(xDαβγδ , )(xBαβγδ . Let )(x

and normal to  , respective  Elastic properties 

μ  stand for a shell mass density per midsurface 

unit area. The external for ll be n ted. 

It is assumed that the behaviour of the sh

ces wi eglec

ell under consideration is described by the action 

functional determined by Lagrange function L being a highly oscillating function with respect to x 

and having the well-known form, cf. [4] 

.)

1
(

2
2

1111
2

11

wuua

wwBwwD
r

uwD
r

uuDL

&&& μ−μ−

+∂∂+++∂+∂∂−=

βα
αβ

γδαβ
αβγδ

αβ
αβ

γδαβ
αβγδ

 (1) 

Applying the principle of stationary action we arrive at the system of Euler-Lagrange equations, 

whic

,0)()(

=μ++∂∂+∂

=μ−∂+∂∂
−

γδ
αβγδ

αβαβ
αβ−

β
αβ

βγδβ

wwDrwBuDr

uawDruD

&&

&&
 (2) 

It can be observed that equations (2) coincide with the well-known governing equations of 

Kirc

21

h can be written in explicit form as 

111 αβ−αβγδ

.0)( 11112111

hhoff-Love theory of thin elastic shells, cf. [4]. For periodic shells, coefficients 

)(),(),( xxBxD μαβγδαβγδ  of equations (2) are highly oscillating, non-continuous and periodic 

functions in x . Applying the combined asymptotic-tolerance modelling technique to lagrangian (1), 

we will deriv the averaged model equations with constant coefficients depending also on a cell size. 

The combined modelling under consideration includes two techniques: the consistent asymptotic 

modelling procedure given by Woźniak et al. [12] and an extended version of the known tolerance 

non-asymptotic modelling technique based on a new notion of weakly slowly-varying function 

proposed by Tomczyk and Woźniak [8]. To make the analysis more clear, in the next section we shall 

e 
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outline the basic concepts and assumptions of the modelling procedure under consideration, following 

[8, 12]. 

3. Modelling concepts and assumptions 

rance modelling procedure under consideration are 

Tolerance between points. Let λ  be a positive real number. Points 

The fundamental concepts of the extended tole

those of two tolerance relations between points and real numbers determined by tolerance 

parameters, weakly slowly-varying functions, tolerance-periodic functions, fluctuation shape 

functions and the averaging operation. It has to be emphasized that in the classical approach we deal 

with not weakly slowly-varying but with more restrictive slowly-varying functions. Below, the 

mentioned above concepts and assumptions will be specified with respect to one-dimensional region 

),0( 1L=Ω . 

x y,  belonging to ),0( 1L=Ω  

are said to be in tolerance determined by λ , if and only if the distance between points yx, t 

exceed λ , 

Tol an

 does no

ce between real numb . Leer ers t δ
~

 be a positive real numbers ,  are said 

to be

number. Real νμ

 in tolerance determined by δ
~

, if and only if δ≤ν−μ
~

. 

λ
The above relations are denoted by

δ
~

. Positive parameters : ≈ yx , ν≈μ δλ
~

,  are call tolerance 

para

)  be a function defined in 

ed 

meters. 

Let (xF ],0[ 1L=Ω , which is continuous, bounded and differentiable 

in Ω  tog  with their derivatives up h order. Nonnegative integer R is assumed to be 

spe ied in every problem under consideration. Note, that function F can also depend on 

ether  to the R-t

cif

],0[ 2L=Ξ∈ξ  and time coordinate t as parameters. Let ),..,,,( 10 Rδδδλ≡δ  be the set of tolerance 

e first of them is related to the distances  parameters. Th between points in Ω , the second one is 

related to the distances between values of function )(⋅F  and the k-th one to e distances between 

values of the k-th derivative of )(⋅F , Rk ,..,1

th

= . A function )(⋅F  is called weakly slowly-varying of 

the R-th kind with respect to cell and to e parameters Δ  leranc δ , F

0
2 kk =∂≈∂≈⇒≈Ω∈∀

λ
 (3) 

where )(1 xFk∂  stands for the k-th derivative of )(

),( ΔΩ∈ δ
RWSV , if and only if 

δ

,],...,2,1),()(and)()())[(),(( 11 RkyFxFyFxFyxyx
kδ

⋅F in Ω . Roughly speaking, weakly slowly-varying 

function )(⋅F  can be treated as constant on an arbitrary cell. 

 

523



 

Le all that the known slowly-varying function )(xF , ),(),( ΔΩ⊂ΔΩ∈ δδ
RR WSVSVF , 

satisfies n ly condition (3) but also the extra restriction 

t us rec

ot on

.],...,2,1,0)()[( 1 RkxFx
k

k =≈∂λΩ∈∀
δ

 (4) 

An integrable and bounded function f )(x  defined in ],0[ L=Ω , which can also depend on 1

Ξ∈ξ  and time coordinate t as parameters, is called tolerance-periodic with respect to cell Δ  and 

toler ∈xance parameters ),( 0δλ≡δ , if for ever ΔΩ  there exy ist Δ -periodic function )(
~
⋅f  such that 

fDom∩)  and xf Δ( fDomxf
~

)(
~

∩Δ  are indiscernible in tolerance determined by )( 0δλ≡δ . 

Function f

,

~
 is a Δ -periodic approximation of f  in )(xΔ . For function )(⋅f  being tolerance 

up to the R-th order, we shall write ∈f , 

),..,,,( 10 Rδδλ≡δ

Let )(xf  be a function defined in 

periodic together with its derivatives ),( ΔΩδTP R

δ . 

],0[ 1L=Ω , which is integrable and bounde l 

th

d in every cel

)(xΔ , ΔΩ∈x . By e averaging of )(⋅f we shall )(x>mean function f<  def  ined by

.,,)(
1 2/

2/
Δ

λ+

λ−

Ω∈Δ∈
λ

≡< ∫ xzdzzf
x

x

 )()(> xxf (5) 

If f

ting function defined in 

)(⋅  is a periodic function then >< f  is constant. 

Let )(xh  be a λ -periodic, highly oscilla ],0[ 1L=Ω , which is 

,1−R  and has a continuous or piecewise 

cont

continuous together with derivativ ,...,1,1 =∂ khkes 

inuou unded de vative hR
1∂ . Function )(s bo ri ⋅h will be called the fluctuation shape function, 

),()( ΔΩ∈⋅ RFSh , if it satisfies conditions ,,...,2,1,)( RkO kR =λ −  0>=μ: ,)( 1 hOh kR ∈∂λ∈ < h , where 

)(xμ  is a shell mass density. 

e modelling is based on ti led the 

ing approximation

The toleranc  two assumptions. The first assum

tolerance averag e second one is termed the micro-macro decomposition. 

p on is cal

. Th

Let )(⋅f  be an integrable periodic (or tolerance-periodic) function defined in ],0[ 1L=Ω  and let 

),()( 1 ΔΩ∈⋅ δWSVF , ),()( 2 ΔΩ∈⋅ δWSVG . The tolerance averaging approximation has the form 

.,2,1,0,)

,,1,0),()()(
0
1

0

GGR

FFROxFfxf R

≡∂==<

≡∂=δ+∂>=<><
 

()()( 1

111

OxGfxGf

F
RR

R

δ+∂>>∂<

∂
(6) 

1
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In the course of modelling, terms )(δO  will be neglected. Let us

ing functions can be regarded as invariant under averaging. 

 observe that the weakly slowly-

vary

1 2

relations 

1 δ+>∂=<> OxGgfx
 (7) 

wh

 the 

displacem rangian under consideration can be decomposed into 

ed (macroscopic) displacements being weakly slowly-varying functions in Ω∈x  and 

high

We recall that the “classical” slowly-varying functions ),()( ΔΩ∈⋅ δSVF , ),()( ΔΩ∈⋅ δSVG  

satisfy not only approximations (6) but also the extra approximate 

,)()()()()(

()(),()()()()(
2
1

2
1

111

δ+>∂=<>∂<

∂<δ+>∂=<>∂<

OxGxgfxgGf

xgGfOxFxhfxhFf ),()())(

ere ),()( 1 ΔΩ∈⋅ FSh , ),()( 2 ΔΩ∈⋅ FSg . 

The second fundamental assumption, called the micro-macro decomposition, states that

ents fields occurring in the lag

unknown averag

ly oscillating fluctuations represented by the known highly oscillating λ -periodic fluctuation 

shape  functions multiplied by unknown fluctuation amplitudes  (microscopic variables) weakly 

slowly-varying in x. 

On passing from tolerance averaging to the consistent asymptotic averaging, we retain only the 

concept of fluctuation shape function. The notion of weakly slowly-varying function is not introduced. 

The fundamental assumption imposed on the starting lagrangian in the framework of the asymptotic 

approach is called the consistent asymptotic decomposition. It states that the displacement fields 

occurring in the lagrangian have to be replaced by families of fields depending on small parameter 

,...2,1,/1 ==ε mm and defined in an arbitrary cell. These families of displacements are decomposed 

into averaged part independent of ε  and highly-oscillating part depending on ε . 

symptotic-tolerance model equations 

The combined modelling techniqu  consideration is realized in two steps. Th

4. Combined a

e under e first step is based 

h e is realized by means of the extended 

version of the tolerance non-asymptotic technique, cf. [8]. 

angian L defined by (1). To this end we 

position of displacements ),,( tzuu ξ= αα , 

on t e consistent asymptotic procedure, cf. [12]. The second on

4.1. Consistent asymptotic model equations 

We start with the consistent asymptotic averaging of lagr

have to introduce the consistent asymptotic decom

),,( tzww ξ= , )(xz Δ∈ , ΔΩ∈x , I),( ×Ξ∈ξ t , in I)( ×Ξ×Δ x  

)(()

,),,()(),,(),,/(),,( 0

zzt

tzzhtzutzutzu

ξ≡

ξε+ξ=ξε≡ξ αεααεα

W

U

,),,(),,),,/(,,( 20 tzgtwtzwzw ξε+ξ=εξ εε

 (8) 
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where )2/,2/(),(,...,2,1,/1 ελελ−≡ΔΔ∈==ε εε xzmm  (scaled cell), εεΔ ≡ + Δxx)( , Ω∈x . 

Unknown functions αα Uu ,0  in (8) are assumed to be continuous and bounded in Ω  together with 

in 

Ω  

Δ

their fir e assumed to bst derivatives. Unknown functions Ww ,0  in (8) ar e continuous and bounded 

together with their de es up to the second order. Unknowns 00 ,wuα and WU ,  are called 

macrodisplacements and fluctuation amplit respectively. They are independent of ε . 

By ),()/()( 1 ΔΩ∈ε≡ε FSzhzh  and ),()/()( 2 ΔΩ∈ε≡ε FSzgzg  in e denot λ -periodic 

highly oscillating fluctuation shape functions depending on 

rivativ α

udes, 

 (8) ar ed 

ε . The fluctuation shape fun ctions are 

assum  problem

2 2 22

ent 

z Δ∈

ed to be  have to satisfy conditions: 

)(λ∈Oh , )(1 λ∈∂λ Oh , )(λ∈Og , ),(1 λ∈∂λ Og  )(11 λ∈∂λ g , 0>=μ>=<μ< gh . 

We introduce decomposition (8) into (1) and take into account that under limit passage 0→ε , 

ected and ev  cont

known in every  under consideration. They

O

terms depending on ε  can be negl ery inuous and bounded function of argum

)(xε  tends to function of argument Ω∈x . Moreover, if 0→ε  then by means of a prop f 

the mean value, cf. [3], the obtained result tends weakly to the following averaged form 0L  of 

rangian (1) 

erty o

starting lag

)(2[
2

1

,,,,,,,(
~

),,,,,,( 0000000000
0

uD

wwwuUuzLwwwuUuL &&&&

∂><−=

>=∂∂=<∂∂

β
αβγδ

αβαααβαβαααβ WW

.])(

)(2

)()(2

2000

22
11

11110
11

1100

20111120
1

11100111

2
1

110
1

100

wuua

WgBWwgBwwB

wDrUwhDwuDr

UUhDUuhDu

&&& >μ<−>μ<−

+>∂<+∂>∂<+∂∂><+

+><+>∂<+∂><+

+>∂<+∂>∂<+∂

βα
αβ

αβ
αβ

γδαβ
αβγδ

−
α

α
αβ

αβ−

αγ
γα

γαβ
αβγ

γδα

 (9) 

where L
~

 in )(xΔ  and where averages >< ⋅L is a periodic approximation of  on the right-hand side 

of (9) are constant and calculated by means of (5). Then, applying the principle of stationary action 

we obtain the governing equations of  mo eriodic shells under 

rtial s fo

gB∂

where >∂=< 1 )( hDG , >∂=< 11 )( gBE , we arrive finally at the asymptotic model 

equations expressed only in macrodisplacements wu ,α  

 consistent asymptotic del for the unip

consideration. These equations consist f pa  differential equation r macrodisplacements 

00 , wuα  coupled with linear algebraic equations for fluctuation amplitudes WU ,α . After eliminating 

fluctuation amplitudes from the governing equations by means of 

,],[)( 01110111
1

101
1

1 wEWwhDruhDG γδ
γδ−η−

μϑ
ημϑ

γη
−

γ ∂><−=>∂<+∂>∂<−=  (10) 

γα 211 21111

o

11U

αγ
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,0

0

=

=>μ<−∂+∂ β
αβ

β
αβ−

γβδ
αβγδ

w

uaDru h

&

&&

wh

Bg

dependent of the microstructure cell 

size. Hence, this model is not able to describe the length-scale effect on the overall shell dynamics 

. Unknown macrodisplacements wu ,α  and 

fluct

,0

001111201110

0

<++∂+∂ −
γδ

γδ−
αβγδ

αβγδ wDruDrwB

wD

hhg

h

&
 (11) 

1110

>μ

ere >∂<>∂<−>≡< ζγδ
ηζ

−αβηαβγδαβγδ 1
1

1
1

1 )( hDGhDDDh , 

.11
11

1
11

11 >∂<>∂<−>≡< γδ−αβαβγδαβγδ gBEgBB  

Co  inefficients of equations (11) are constant but they are

and it will be referred to as the macroscopic model

uation amplitudes WU ,α  must be continuous and bounded in Ω . 

In the first step of combined modelling it is assumed that within the asymptotic model, solutions 

00 , wuα  to the problem under consideration are known. Hence, there are also known functions 

0
αα 0 α

uperimposed tolerance model equations 

p is ba erance a ng of lagrangian (1) under so

α += hUuu0  and Wgw , where WU ,  are given by m  of (10). 

-called superimposed 

decomposition. 

tion superimposed on the known solutions 

w += 0 eans

4.2. S

The second ste sed on the tol veragi

We introduce the extra micro-macro decomposi

00 ,wu α  obtained within the macroscopic model 

,),,()(),,(),,(,),,()(),,(),,( 00 txxbtxwtxwtxQxctxutxu bc ξ+ξ=ξξ+ξ=ξ ααα V  (12) 

fluctuation amplitudes VQ ,α  are the nwhere ew weakly slowly-varying unknowns, i.e. 

αQ

oscillatin

)(

),(1 ΔΩ∈ δWSV , ),(2 ΔΩ∈ δWSVV . Functions )(xc  and )(xb  are the new periodic, continuous and 

highly- g fluctuation shape functions which are assumed to be known in every problem under 

consideration. These functions have to satisfy conditions: ∈ λO , )(λ∈∂λ Oc , )(λ∈Ob , 

2 22

c 1
2

),(1 λ∈∂λ Ob  )(11 λ∈∂λ Ob , 0>=μ>=<μ< bc . 

We substitute the right-hand sides of (12) into (1). The resulting lagrangian is denoted by cbL . 

Then, we average cbL  over cell Δ  using averag

e obtain function <

ing formula (5) and applying the tolerance averaging 

approximation (6). As a result w >L  called the tolerance averaging  

lagrangian (1) in 

cb  of starting

Δ  under superimposed decomposition (12) 
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VbQQac

wuuaVVbBVbB

VVbBVVbbBVwbB

VwbBwwBVbD

VwbDwDrVQbcDVubD

QwcDwuDrQQcD

QQcD

&&&

&&&

>μ<−>μ<−

+>μ<−>μ<−∂∂><+>∂<+

+∂∂>∂<+∂>∂<+∂>∂<+

+>∂∂<+>∂∂<+><+

+><+><+>∂<+>∂<+

+>∂<+>∂<+∂∂><+

+>∂

βα
αβ

βα
αβ

γδαβ
αβγδ

δβ
δβ

γδ
γδ

γδαβ
αβγδ

αβ
αβ

γδαβ
αβγδ

−
α

α
αβ

αβ

α
α

αβ
αβ−

γδαβ
αβγδ

αγ
γαγδ

 (13) 

The underlined terms in (13) depend on microstructure length parameter 

4)

(2

(

2[
1

),,,,,,(

01
1

00 QucDuuD

VVVQQQLcb
&&

<+>∂∂<+>∂∂<−=

=∂∂∂><

γαβ
αβγ

γδαβ
αβ

βαβαααβ V

λ . 

Applying the principle of stationary action, we obtain the system of Euler-Lagrange equations for 

VQ , , which can be written in explicit form as α

,

)()()(

11111

1
111122

1
112

>∂∂<+>∂<

=>∂<−>μ<−>∂<−∂><

αβγα−

α−
β

αβ
δ

δα
δβγ

αβγδ

ucDwcDr

VbcDrQacQcDQcD &&

0101= γβ

 (14) 

.0
11112

0
111

011
11 ><−>∂<−>∂∂<−=

)())()((

])(42[)(

22
11

111121111

2
1

11
11

112
1

1111

=>μ<+>∂<+><+

∂>∂<−>∂<+∂><+>∂<

−
αβ

αβ−
αβ

αβ

βααβ
αβγδ

αβγδ
α

α−

wbDrubDrwbB

VbVbBbD

bBbbBVbBQbcDr

&&  (15) 

Equations. (14) and (15) together with the micro-macro decomposition (12) constitu

superimposed microscopic model. Coefficients of the derived model equations are constant and some 

of them depend on a cell size λ (underlined terms). The right-hand sides of (14) and (15) are known 

unde

WV

.2 we conclude that the combined 

 under 

+αβV

te the 

r assumption that 00 , wu α  were determined in the first step of modelling. The basic unknowns 

VQ ,α of the model equations must be the weakly slowly-varying functions in  periodicity direction, 

i.e. ),(1 ΔΩ∈ δα WSVQ , ),(2 ΔΩδSV . This requirement can be verified only a posteriori and it 

ines the range of the physical applicability of the model. 

4.3. in -tolerance model equations 

Summarizing results obtained in Subsections 4.1 and 4

∈

determ

 General comb ed asymptotic

asymptotic-tolerance model of selected dynamic problems for the uniperiodic shells

consideration derived here is represented by 
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a) Macroscopic model defined by equations (11) for 00 , wuα  with expressions (10) for WU ,α , 

formulated by means of the consistent asymptotic modelling and being independent of the 

microstructure length. Unknowns of this model must be continuous and bounded functions in x. 

nder 

assu

,),(,,),,()(),,()()

,),,()(),,()(),

Ι×Ξ∈ξΩ∈ξ+ξ+
αα

txtxVxbtxxg

txQxctxUxht

W
 (16) 

wh odelling, i.e. in the 

fram

Now, let us discuss an important modification of equations (14), (15). It can be shown, cf. [9], 

 microscopic model and introducing the extra 

approxim

b) Superimposed microscopic model equations (14), derived by means of an extended 

version of the tolerance (non-asymptotic) modelling and having constant coefficients depending also 

on a cell size λ  (underlined terms) as well as combined with the macroscopic model equations u

(15) 

mption that in the framework of the asymptotic model the solutions to the problem under 

consideration are known. Unknown fluctuation amplitudes of this model must be weakly slowly-

varying functio s in x. 

c) Decomposition 

,(),,(
0

0 ξ+ξ+ξ=ξ αα xutxu

n

,,(),,( ξ=ξ txwtxw

ere functions WwUu ,,, 00
αα  have to be obtained in the first step of combined m

ework of the consistent asymptotic modelling. 

that under assum tuation shape functions )(xh , )(xg  of macroscopic model coincide 

with fluctuation shape functions )(xc , )(xb  of

ption that fluc

ation 1/1 ≈λ+ r , we can obtain microscopic model equations, which are independent of 

the solutions obtained in the framework of the macroscop odic m el 

,0)()(( 1 =>μ<−>∂<< βδ QahQhDhD &&  (17) ) 2112 −∂> αβδα
δβγ

αβγδ Q 2

.0)()(

]

22
11

1111 =>μ<+>∂<+

+∂αβ

VgVgB

V

&&
 (18) 

 that it makes it possible to 

waves related to the micro-fluctuation amplitudes) independently of the shell macro-dynamics. 

Mor

y 

)(42[)( 2
1

11
11

112 >∂<−>∂<+∂>< βααβ
αβγδ

αβγδ gBbgBVgB

It means, that an important advantage of the combined model is

describe selected problems of the shell micro-dynamics (e.g. the free micro-vibrations, propagation of 

eover, micro-dynamic behaviour of the shell in the axial and circumferential directions can be 

analysed independently of its micro-dynamic behaviour in direction normal to the shell midsurface. 

It can be shown that equations (17), (18) also describe certain near-initial and near-boundary 

phenomena strictly related to the specific form of initial conditions and boundary conditions imposed 

on fluctuation amplitudes VQ ,α . That is why, equations (17), (18) are referred to as the boundar
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layer equations, where the term “boundary” is related both to time and space. Note, that the boundary 

conditions for VQ ,α  should be defined on all boundaries, i.e. for 1,0 Lx =  2,0 L=ξ  

4.4. Standard combined asymptotic-tolerance model equations 

Let us compare eneral combined model proposed here with  known  the g the corresponding standard 

combined model presented and discussed in [9], which was derived under assumption that the 

unknown fluctuation amplitudes ),,(),,,( txVtxQ ξξα  in micro-macro decomposition (12) are slowly-

the consistent asymptotic modelling and being independent of the 

micr s to the problem 

unde

varying. We recall that the slowly-varying functions being a subclass of the weakly slowly-varying 

functions are defined by means of (3) and (4). For the slowly-varying functions approximate relations 

(6), (7) hold whereas for the weakly s  functions only approximate relations (6) hold. 

Moreover, the standard combined model shown in [9] was formulated under the additional 

assumption 1/1 ≈λ+ r . 

Following [9], the standard combined asymptotic-tolerance model consists of:  

a) Macroscopic model defined by equations (11) for 00 , wuα  with expressions (10) for WU ,α , 

formulated 

lowly-varying

by means of 

ostructure length. It is assumed that in the framework of this model the solution

r consideration are known. 

b) Superimposed microscopic model equations derived by means of the tolerance (non-

asymptotic) modelling based on the notion of slowly-varying function 

,01
1

01
1111

122

>∂∂<+>∂<= γβ
αβγα−

βδδ

ucDwcDr
 (19) 

)()( 22 =>μ<−>∂ αβδ QacQc &&)( 11222 <−∂>< αδα DQcD
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])(42[)(

011
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2121
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2211

2222
22222

>∂∂<−=>μ<+

∂>∂<−>∂<+∂><

αβ
αβ wbBVb

bBbbBVbB

&&

)( 2
11

1111 +>∂< VbBV

 on a cell size. 

 ),(1 ΔΩδ , 

(xV

(xV

arison of both the general and the standard combined m  

general model equation

equations. Thus, the general model proposed here makes it possible to investigate 

 (20) 

Coefficients of (19), (20) are constant and some of them (underlined terms) depend

Unknown fluctuation amplitudes of this model must be slowly-varying functions in x. 

c) Decomposition (16) in which weakly slowly-varying functions ),,( ∈ξα WSVtxQ
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the length-scale effect in more detail. Within the framework of the general model, the unknown 

fluctuation (microscopic) amplitudes VQ ,α  are governed by equations (14), (15), which are coupled 

with each other. Within the framework of the standard model, micro-fluctuation amplitudes αQ  are 

governed by equations (19) (dynamic balance equations in directions tangent to the shell midsurface) 

which are not conjugated with equation (20) for unknown amplitude V  (dynamic balance equation in 

direction normal to the shell midsurface). The doubly underlined terms in general microscopic 

equations (14), (15), i.e. terms of an order r/λ , do not occur in the corresponding standard 

microscopic equations (19), (20). Absent of these terms in (19), (20) follows from assumption 

1/1 ≈λ+ r  introduced into the standard combined modelling. It can be observed that for the standard 

model, the boundary conditions for micro-fluct n amplitudes VQ ,α  should be defined only on 

boundaries 0=ξ , 2L=ξ , whereas in the framework of the general model the boundary conditions 

for VQ ,α  should be defined on all boundaries of the shell. 

5. Final r rk  conclusions 

Sum up our considerations, the following remarks and 

uatio

ema s and

ming conclu e formulated: 

•  Thin linearly elastic Kirchhoff-Love-type circular cylindrical shells having a periodic 

r  (uniperiodic shells) are objects of consideration, cf. Fig. 1. 

ion. 

opic 

ible 

sions can b

mic ostructure in circumferential direction

At the same time, the shells have constant geometrical and material properties in axial direct

•  The aim of this contribution was to formulate and discuss a new averaged general combined 

asymptotic-tolerance model for the analysis of selected dynamic problems for the uniperiodic 

cylindrical shells under consideration. The governing equations of this model consist of macrosc

(asymptotic) model equations (11) derived by means of the consistent asymptotic procedure, cf. [12], 

and microscopic (non-asymptotic) model equations (14), (15) formulated by applying an extended 

version of the tolerance modelling technique, cf. [8], based on a new notion of weakly slowly-varying 

functions. Macro- and microscopic models are combined together under assumptions that in the 

framework of the asymptotic model the solutions to the problem under consideration are known. 

•  Contrary to the well-known governing equations (2) of Kirchhoff-Love theory with highly 

oscillating, non-continuous and periodic coefficients, equations of the proposed combined model have 

constant coefficients depending also on a microstructure size λ. Hence, this model makes it poss

to describe the effect of a length scale on the dynamic shell behaviour. Moreover, the general 

combined model equations formulated in this contribution contain a bigger number of terms 

depending on a cell size than the standard combined model equations presented in [9], which were 

derived applying “classical” concept of the slowly-varying functions. Thus, the general model allow 

us to investigate the length-scale effect in more detail. 
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•  The main advantage of the combined model is that it makes it possible to separate the 

macroscopic description of some special dynamic problems from their microscopic description. 

•  The basic unknowns of the microscopic model equations must be weakly slowly-varying 
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functions in periodicity direction. This requirement can be verified only a posteriori and it determines 

the range of the physical applicability of the model. 
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A fractional perspective to the modelling of Lisbon’s Public
Transportation Network

Duarte Valério, J.A. Tenreiro Machado, António M. Lopes, António Dinis F. Santos

Abstract: In this paper, the public transportation network (PTN) of the city
of Lisbon is analysed from 1901 to 2015, employing different mathematical
tools. In a first stage, the fractal dimension and the fractional entropy are
used to quantify the evolution of the PTN in space and time. These measures
prove to be appropriate to quantify the growth of the PTN, as the description
is compatible with known historical events. In a second stage, the distance
between consecutive stops is analysed, revealing a power-law behaviour, as
expected from the fractal geometry of the network.

1. Introduction

Urban growth originates multiscale spatial patterns that are well described by fractal ge-

ometry [18]. Such patterns emerge on urban infrastructures, such as built-up spaces, or

transportation networks [13]. Several studies on the fractal nature of public transportation

networks (PTNs) [4] demonstrated that this concept is capable of describing their complexity

and also evolution over time. In this paper, the fractional order entropy is used to analyse

this evolution, and the results of both methods are compared. As a case study, the dynamics

of Lisbon’s PTN and its spatial structure are assessed, and the probabilistic distribution of

PTN stops is studied.

The growth of Lisbon’s PTN is closely related to the expansion of the city. The increasing

need of mobility drives the expansion of the PTN, not only in size but also in complexity.

The PTN considered here comprises four means of transportation: bus, subway, tram and

train, each with different limitations and attributes. This leads to interesting dynamics

within the PTN, as a single trip can involve more than one mode of transport. In addition,

distinct types of transports began operating at different years, and were at variate stages of

development when introduced. Therefore, there is interest in studying the evolution of the

PTN both in time and space.

The geographical scope of this study is the municipality of Lisbon, and the time frame

considered is between the years 1901 (year of the first electrified tram line) and 2015 (the last

year with available data). Municipalities other than Lisbon, with further public transport

operators, are not included.
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The information on the available routes in each year was compiled from several sources

[1, 6, 9, 15], while their coordinates were obtained in [2].

Lines are constructed by connecting each stop to the following stop by the shortest path

between them. While railway, subway and tramway networks are confined to the tracks laid,

and their changes are usually the result of extending (or shortening) the routes, bus routes

are, on the other hand, much easier to change, and the network often varies differently

from the others. Additionally, tramway tracks are cheaper to relocate than railway and

subway lines, so this network also undergoes occasional changes other than extensions and

cuts. Another difference between the types of transport is that the railway and subway lines

do not have to follow some traffic rules and urban geography in the same way trams and

buses do. Therefore, while constructing the subway and railway networks in this perspective

provides a close approximation of the actual networks, the same cannot be said about the

bus and tram networks. The lack of information on transit in the earlier days of the PTN

led to this approximation based on more recent configurations of the network, where traffic

directions were adapted based on 2015 routes.

The paper is organised as follows. Sections 2 and 3 present results obtained with the

box-count fractal dimension and fractional entropy, respectively. Section 4 investigates the

distance between stations. Finally, section 5 draws the main conclusions.

2. Box-count Fractal Dimension

While a geometric fractal object can display a pattern repeated at different scales, ranging

from infinitely large to infinitely small, a PTN can only show this behaviour at certain

scales [11]. For this kind of network, the largest conceivable scale is the size of a continent;

the smallest is the distance between two consecutive bus or tram stops. Therefore, within

a reasonable limit, a fractal behaviour can be observed and quantified. One such measure

is the fractal dimension, which measures the amount of space that a fractal fills as the scale

observed goes from the larger to the smaller one. In this sense, it is an indicator of the

network compactness.

The fractal dimension has been used together with several networks related to urban

questions (see e.g. the tutorial introduction of [11] to both fractals and their application in

urban geography). For example, the spatial pattern of built-up areas was studied in [19],

demonstrating the usefulness of fractal geometry, not only for characterizing the form, or

the landscape, but also for modelling and planning urban realities. In [24] the fractal char-

acteristics of urban surface transit and road networks were analysed for Strasbourg suggest-

ing possible methods for designing road and surface transit networks. Urban boundaries,

land use, spatial structure, and allometric relationships between urban area and population
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growth were addressed in [3], and more recently in [8], by combining allometric scaling and

fractals, as a basis for urban geography.

While there are several definitions for fractal dimension, [16], the one considered in this

paper is the box-counting fractal dimension, due to its straightforward numerical implemen-

tation. The box counting is similar to other methods, namely grid-counting [10]. However,

since the boxes cannot cover perfectly the fractal object, the box counting yields an approx-

imate value of the true fractal dimension. The error is small if we use high resolution images

and vary the box size in small steps within a wide range of values. The algorithm adopted

herein is structured as follows [21]:

• Repeat

– cover the fractal object F with a grid composed of equal squares, with size

ε > 0;

– count the number of boxes (squares), Nε(F ) ∈ N, that cover the fractal F ;

– decrease ε.

• The fractal dimension b ∈ R is the slope of the log-log plot of Nε(F ) vs. ε

b(F ) = − lim
ε→0+

logNε(F )

log ε
. (1)

In our case, we consider ε = 2k, k = 7, 6, . . . , 2. Larger values make no sense as they

correspond to a square larger than the municipality; smaller values also make no sense

because there is not enough resolution.

Equation (1) shows the relationship between the size of the grid and the fractal dimension,

such that Nε(F ) corresponds to the number of boxes that cover the fractal object F for a

given value of ε, with ε being the size of the side of each square on the grid. As the PTN only

shows a fractal behaviour within a certain scale, a stopping criteria must be introduced to

determine the boundaries of ε. By plotting the fractal dimension b versus ε for a particular

year, it is possible to find the interval where ε decreases almost linearly with the grid size,

and therefore the points obtained with grids outside this interval can be disregarded from

the calculation of b.

It can be shown that the fractal dimension b, given by (1), can be estimated as the

exponent of a power law [11]:

Nε(F ) = aεb, a, b ∈ R+. (2)
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In Equation (2), b is related to how the network fills the space, and is a measure of the PTN’s

compactness, while a is related to the length between the bifurcations of the PTN. This

parameter provides additional information regarding the complexity and interconnectivity

of the PTN. It can be conversely shown that (2) implies a fractal geometry [10].

To implement this algorithm to the PTN, the following steps are applied, with the

parameters adjusted to obtain reliable results:

1. Each map is padded with empty spaces around it in order to create a square image.

This is done by adding background pixels around the centered map until the image

has a resolution of 2k × 2k, where k ∈ N.

The value of k is chosen so that 2k is the first power of 2 larger than the largest side

of the original map.

2. For every year, the first step of the box-count algorithm is applied. In each iteration,

ε decreases in powers of base 2, starting at 27 and ending at 22. Values of ε /∈ [22, 27]

do not make sense, since the upper/lower limit to the size a square can have is the

size of the image is and the size of the marker of the lines respectively.

3. The results of the previous step are approximated by means of a power law (2) using

the least squares method.

The results from this process are presented in Figure 1, for the entire PTN, comprising

all means of transportation for the entire municipality of Lisbon.

3. Fractional Entropy

As the PTN evolves, the calculation of the entropy associated with its expansion can give a

better understanding of the distribution of the public transportation routes along the years.

Using entropy it is possible to assess how the PTN expands in time, and how uniform is the

spread of the PTN on the covered region. In the context of information theory, entropy is a

measure of information, choice and uncertainty, and its mathematical expression is presented

in Equation (3):

S = E[I(pi)] =
∑
i

−pi ln(pi), (3)

where E(·) denotes the expected value operator, and I(pi) = ln(pi) is the information content

of some event having probability pi of occurring. The expression for Shannon entropy is

analogous to the Boltzmann-Gibbs expression for entropy in statistical thermodynamics [17],

and it is also refered to as the Boltzmann-Gibbs-Shannon entropy.
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Figure 1. Evolution of the fractal dimension of the PTN of Lisbon from 1901 to 2015.

The usefulness of this measure of uncertainty led to considerable interest in generalizing

the Shannon entropy and exploring its applications in other fields, spurring various formula-

tions [20]. One expression that proved to have an higher sensitivity to dynamical phenomena

is the entropy of fractional order, Sα [14] given by:

Sα =
∑
i

{
− p−αi

Γ(α+ 1)
[ln pi + ψ(1)− ψ(1− α)]

}
pi, (4)

where α represents the fractional order, with −1 ≤ α ≤ 1, and Γ(·) and ψ(·) are the gamma

and digamma functions, respectively. The case α→ 0 yields the Shannon entropy. In what

follows, both the Shannon entropy and the fractional entropy with order α = 0.74 are given;

this value of α was taken from previous published work [21], and corresponds to the largest

sensitivity of the measure. The computation of S and Sα for the PTN through the years is

carried out using the following algorithm:

1. A map for each year is created. These maps are the same as the ones used for the

fractal dimension, explained in Section 2, but each line of the PTN is drawn as a

succession of equally spaced points, instead of actual lines.

2. A square grid is superimposed over the map. The resolution for the grid is chosen

so that the squares on the map are roughly twice the size of the representation of a

point.
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3. The probabilities are computed as pi = ni
N

, where ni is the number of points in each

square of the grid and N is the total number of points across all squares.

4. Entropy is computed using Equations (3) or (4).

In Figure 2, the periods established in Figure 1 are superimposed over S and Sα, both

rescaled to the interval [0, 1] for comparison purposes. The slightly higher sensitivity to the

changes in the PTN of the fractional entropy becomes apparent, and thus only its values

will be considered below. These results are again for the entire PTN, comprising all means

of transportation for the entire municipality of Lisbon.
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Fractional entropy, α=0.74
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Figure 2. Shannon and fractional order (for α = 0.74) entropies of the PTN, rescaled to the

interval [0, 1], from 1901 to 2015. The actual ranges are S ∈ [4.5, 4.6] and Sα ∈ [37.9, 201.6].

Comparing Figures 1 and 2 provides insight on the evolution of Lisbon PTN:

• 1st Period (1900 – 1920): The evolution of the fractal dimension almost mirrors that

of the entropy, growing faster with the inception of the PTN and eventually settling

with a near constant value as it approaches 1920.

• 2nd Period (1920 – 1944): After some closings, the PTN remains almost the same till

the end of World War II draws near.

• 3rd Period (1944 – 1959): Year 1944 sees the introduction of the bus service in Lisbon.

This results in rapid growth of the PTN, as shown by the jump in both the fractal
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dimension and the entropy. Finally, in 1959 the subway system is opened, adding

even more lines in the centre of the city.

• 4th Period (1959 – 1998): This period begins with a decrease in entropy, once again

due to the closing of several tram routes. However, the entropy quickly grows again,

as bus routes start to cover the perimeter of Lisbon and reach new locations on the

western and north-eastern sides of the municipality. The PTN stagnates by the end

of this period, as shown by the slowing of the growth rate for the fractal dimension

and the entropy.

• 5th Period (1998 – 2015): The fractal dimension and the entropy increase faster in

1998 due to the growth of the subway network. A big reorganisation of the buses

from 2007 onward can be seen. Parameter a is mostly constant, as new intersections

are not being created.

4. Inter-Station Distance

The distance between consecutive stations is also a relevant topic in PTN. Ferber and Holo-

vatch [23] studied the fractality within the PTN of Berlin to the distribution of inter-station

distances, showing that a Lévy α - stable distribution, SL(αs, β, γs, δ), was an adequate curve

fitting, due to the power-law behaviour observed. In a similar line of though, we consider

herein the 2015 Lisbon PTN.

The Lévy distribution is a subclass of the family of α–stable distributions, involving

the following parameters: αs ∈ [0, 2], the characteristic exponent that describes the tail of

the distribution; β ∈ [−1, 1], the skewness parameter, specifying if the distribution is either

right (β > 0) or left (β < 0) skewed; γs > 0, the scale parameter; and δ ∈ R, the location

parameter [7]. The characteristic function (CF) is shown in Equation (5) for this family of

distributions:

φ(t) =


exp

(
− γsαs |t|αs

[
1− iβ sgn (t) tan

(
παs
2

) ]
+ iδt

)
, for αs 6= 1

exp

(
− γs|t|

[
1 + iβ sgn (t) 2

π
log(t)

]
+ iδt

)
, for αs = 1

, (5)

where i =
√
−1 is the imaginary unit, and t ∈ R is the argument of the CF.

Using the CF, it is possible to estimate the parameters of the distribution.

• Plot the right tail of the empirical cumulative distribution function (CFD) on a double

logarithmic scale;
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• Compute the slope of the linear regression on the linear segment of the CFD plot;

• The slope will be the estimation of αs.

The downside that this method may reveal is its sensitivity to the sizes of the sample

and the set used for the regression [5]. For this reason the estimation based on the CF will

also be applied following the tail method estimation. The fit of the CF to the data was

processed using the algorithm developed in [22].

Figure 3 (where x is the distance between stations in km) shows that every considered

groups of inter-station distances display a power-law decay within a certain interval of values.

These intervals correspond to the almost linear segment in the log–log plot.

−4 −3 −2 −1 0 1 2
−8

−7

−6

−5

−4

−3

−2

−1

0

log(x)

lo
g
(1
-C

D
F
(x
))

 

 

Figure 3. The empirical CDF of inter-station distances, x, in year 2015.

Following the tail exponent method, the slope of this line yields α̂s = 2.41, suggesting

that the distribution follows a non-α-stable power-law decay. Table 1 shows the parameters

estimated with the CF estimation method. In addition to these, the parameters for the

Gaussian, Cauchy and Lévy distributions are also presented for reference.

Based on the estimated parameters presented in Table 1, it is possible to say that the

four groups of inter-station distance belong to the α-stable distribution class. Groups T1,

T2 and T4 have close values for α̂s and are all right skewed (β̂ = 1). From these three sets,

both groups T1 and T4 have the same value for γ̂s and very close values for δ̂, while the

subway estimated parameters are slightly larger. The results for the subway inter-station

distance distribution stand out from the others, as the parameters appear to be more in line
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Table 1. Estimated α-stable distribution parameters.

Parameter α̂s β̂ γ̂s δ̂

T1 Bus + Tram 1.57 1 0.08 0.35

T2 Train 1.67 1 0.14 0.80

T3 Subway 1.13 0.27 0.32 1.63

T4 All the above 1.42 1 0.08 0.39

Values for distributions which are particular cases:

Parameter α̂s β̂ γ̂s δ̂

Gaussian 2 β σ√
2

µ

Cauchy 1 0 γ δ

Lévy 1
2

1 γ δ

with a Cauchy distribution. A possible reason for this result is that the subway operates

underground and thus is not subject to the same restrictions in regards to the location of its

stops. Figure 4 shows the probability density function (pdf) for each set of data.

As indicated by the parameter values on Table 1, the pdf for the distribution of inter-

station distances for T1 (a) takes a similar shape to that for T4 of the entire PTN (d). It

is also observable the influence of this pair of means of transportation on the entire PTN;

however, the complete PTN has more points with larger values for the distance, due to the

inclusion of the train set T2 (b). Figure 4 (c) also allows to graphically observe the difference

between the subway pdf and the others: it is more akin to a Cauchy pdf, as expected based

on the parameter values from Table 1.

5. Conclusions

In this paper, both the fractional entropy and the fractal dimension were used to study the

evolution of Lisbon’s PTN with time, and were found to vary in accordance with its history.

To the best of our knowledge, the fractional entropy had not yet been used to this purpose.

Its usefulness is confirmed by similar results from the fractal dimension.

The values computed for Lisbon’s PTN were in line with what is available in the literature

for other cities. Overall, it was concluded that the fractal dimension and the entropy were

capable of describing the increase in complexity and extension of the PTN as a whole.

Finally, α-stable probability distributions were found to fit the consecutive inter-station

distance dataset. This result suggests that the distribution of the inter-station distance

follows a non-trivial power-law, a result compatible with what is found in the literature

[7,12,22]. To further continue this work, the following guidelines can be followed in the future:
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Figure 4. Fitted pdf for the inter-station distances in year 2015.

enhance the precision of the network approximation; include more means of transportation

from surrounding municipalities that travel to and from Lisbon; apply the multiscaling

allometric methods of [8] to confirm the results obtained on the evolution of the PTN with

time.
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[6] Carris. História da Carris. http://carris.transporteslisboa.pt/pt/historia/,

2016. Accessed in February.

[7] Chechkin, A. V., Metzler, R., Klafter, J., and Gonchar, V. Y. Introduction
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Analytical model of damaged circular membrane  

using a pseudo torus 

 
 

Aleksandra Waszczuk-Młyńska, Stanisław Radkowski 

Abstract: The presented analytical model shows the vibration analysis of a circular 
membrane with a damage located in its central part. The damage has a form of a hole. 
The model uses the general vibration differential equation of circular membrane; 
however, a torus has been used to describe the investigated object. The flat circular 
membrane with an opening in the centre was described by the surface of torus 
intersection with the plane created as a result of a rotation. A vital element is the fact 
that the radius r describing the torus circumference is a variable from within the range 
(0,r0). For a surface created in such a way, the Laplace operator has been computed, 
and as a result, the vibration equation for a new object. Next, the obtained second-
order partial differential equation was computed using the Bessel substitution. To 
evaluate the damage, changes in natural frequencies were used. 

1. Introduction  

Vibration phenomena occurring in nature are very interesting because vibrations can be induced in 

every object and each of them has its intrinsic vibration frequency. This phenomenon can be used in 

various domains of life; one of the more absorbing applications is energy recovery [1], where a 

piezoelectric material is placed on the vibrating object. The piezoelectric material also works due to 

the object vibrations and in such a way, energy can be obtained. An even more interesting application 

of vibrations in view of this article is damage detection. Damage detection conducted in such a 

manner can be included among methods of Non-Destructive Testing, whose great advantage consists 

in obtaining information about the technical state (fit/not fit) in a way that does not interfere with the 

structure. Due to the damage, stiffness is changed, and therefore, also the modal quantities [2]. One of 

the parameters is the intrinsic vibration frequency, so observing and monitoring this value can enable 

damage detection [3,4,5]. Many coefficients help damage detection, e.g. the Damage Location 

Assurance Criterion (DLAC) [6] makes it possible identifying a single damage. The expansion of this 

method is the Multiple Damage Location Assurance Criterion (MDLAC) [7], indicating an even 

greater number of simultaneous damages. 

 In this article, the analytical model of the element described by the second order equation will be 

presented: i.e. of a circular membrane with the damage in a form of a hole located in its central part. 

The model will illustrate changes in the intrinsic vibration frequencies relative to the damage.   
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2. Analytical model 

2.1. Vibrations of the circular membrane 

Vibrations of the circular membrane are described by the formula [8] 

  
   

   
                                                                                                                       (1) 

                                                                                                                                         (2) 

For the circular membrane, operations are performed in polar coordinates 
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                                                                                                                                 (4) 

Thus, the Laplace operator can be shown as follows 
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Equation (1) can be also rendered with the help of the formula: 
   

   
       

 

  
                                                                                                                 (6) 

where: 

   
 

  
                                                                                                                                          (7) 

N – force per circumference length unit, membrane tension 

  - density 

h – thickness 

Taking into account the Laplace operator in the polar coordinates (5) allows for obtaining equation 

(8), the solution to which are the circular membrane intrinsic vibrations  
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Under initial conditions 
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                                                                                                                           (10) 

Equation (8) is computed by the method of separated variables – the Fourier method  

                                                                                                                            (11) 
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As a result, two independent solutions are obtained: 
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Where:        
      

 

 
     

          
 
     - the Bessel function of the first kind the n-th order 

While the intrinsic vibration frequency is described by the formula: 

    
     

   
 

    

   
 

 

  
                                                                                                                (15) 

     – zeros of the Bessel function  

 

2.2. Analytical model of the damaged circular membrane  

 

 After the introduction to the differential equations of the second order shown above, the equation 

for the circular membrane with an opening in the centre (Fig.1) will be computed.   

  
Figure 1. Circular membrane with an opening in the centre 

 

 In the considerations below, equation (6) is the starting point, as it was before, the difference 

consisting in the fact that the answer              is dependent on four variables, and this is for 

these new variables that the analytical model will be built. The new membrane model with an opening 

in the centre is built based on the torus, however, the applied torus is not empty but the radius r 
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describing the circle, whose rotation creates the torus is the variable          ,     , this is why 

the term “pseudo torus” has been used in the article title. 

The torus (Fig.2) described by the formula (16), where   - is the rotation radius, and    – radius 

of the circle, which is rotated. 

           
 
      

                                                                                                    (16) 

 

 
Figure 2. Torus 

 

The tested object is a circular membrane, thus parameterisation of the torus into polar coordinates was 

conducted  

                  

                                                                                                                               (17) 
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For the further computations, the expressions:           ,           ,            will be 

used, thus, after slight transformations of equations (17): 
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The above relationships are differentiated after successive variables: x, y, z: 
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In the Laplace operator formula, there is a sum of second partial derivatives, hence from the formula 

describing partial derivatives of the complex function, the following can be obtained 
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Out of a solid pseudo torus, a fragment is used for computations, and more precisely, it is a surface 

included within the plane of radius revolution, thus the solution to the task will be the sum of 

solutions in two cases, when     i     : 

1. for     the Laplace operator is expressed as follows: 
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Hence, equation (6) taking the new Laplace operator into account has the form: 
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2. for     
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Inserting the above Laplace operator (23) into the equation of the membrane motion equation, the 

following is obtained: 
   

   
  

 

 
 

 

  
 
  

  
 

 

  
 

   

    
 

  
   

   
                                                                             (24) 

Boundary conditions for the circular membrane with an opening in its centre are as follows:  

                                                                                                                     (25) 

                                                                                                                   (26) 

Equations (22) and (24) will be computed by means of the separated variable method, as was 

performed before 
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The solution to the first two equations (27) and (28) is commonly known, this is why the attention 

will be focused on equation (29) and, for the second case, equation (30). 

In the beginning, equation (29) will be solved with the use of the substitution method. For this 

purpose, the sought integral will be left in the form of a series: 

         
    

                                                                                                                     (31) 
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This is the Bessel substitution [9]. 

m – is a temporary unknown  

Series (31) is differentiated twice, term after term: 

                     
                                                                                                  (32) 

                             
                                                                             (33) 

Additionally, constants are introduced for the sake of the calculus simplicity: 
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As a result of substitution, we obtain: 

                      
                    

           
   

               
    

        

                
                    

          
      

       

Equation is true when the sum of coefficients with the same powers is equal to zero, therefore, the 

following conditions take place: 

       

                                                                                                                     (36) 

                              

The first equation results in two possibilities: 

1.            

2.         

Case 1. 

            

                                                                                                                                          (37) 

   
              

  
  

Case 2. 
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In this case, the same solution is obtained as before, with one difference however, that k begins from 

1, and not from zero, as in case 1, which does not affect the final result, so consideration of case 1 is 

sufficient.  
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 Taking into account the above recursion – of equation (37), an attempt was made to compute the 

coefficient   , but unfortunately the final formula was impossible to compute, apart from the first 

expressions. 
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From the boundary conditions of equation (26), the relationship follows  

                                                                                                                                      (40) 

And from the condition (25) results, that series (41) is converging to zero.  

       
  

  

 
                  

    

     
 

      
     

 
   

   
 

       

     
   
        

                  (41)                                

By means of equating the series (41) to zero,     

  
 

  

  
   can be computed for     and due to this, 

  can be described by the formula: 

        
    

  
                                                                                                            (42) 

Whereas for     , c equals:     

  
 

  

  
  , and as a result: 

        
    

  
                                                                                                            (43) 

 In this case,    is an imaginary number, and for analyses conducted in diagnostics, only the real 

part is interesting, this is why an example will focus only on computing    for    . 

Further computations will be performed using the Matlab programme. 

3. Example 

In this part of the article, an example will be discussed illustrating the results of the abovementioned 

model. Based on the real data, two models of a circular membrane will be compared, one – with the 

undamaged membrane, the other – with the damage in the central part of the membrane. With an 

assumption that: 

 N=50 N/m – force per circumference length unit, membrane tension 

            - density 

 h=0,001 m – membrane thickness 

coefficient a=7,67 

                   – membrane radius 

 The table below shows the frequency relationships for the undamaged membrane and the 

damaged one, where the damage has the form of a hole in the central part of the membrane.  
 

 

 

552



 

 

Tab.1 

  
  Not damaged Damaged 

  =1mm   =2mm   =5mm 

I postać 125,8 Hz 124,9 Hz 124 Hz 121,4 Hz 

II postać 244,1 Hz 242,2 Hz 240,4 Hz 235,1 Hz 
 

4. Conclusions 

Frequencies in the undamaged membrane are higher than in the membrane with a damage in the form 

of a circular hole in the middle. The longer the radius of the circular damage, the smaller the 

frequencies. The reason behind such a state can be the change in the membrane tension, formulas (42) 

and (7). 

Slight variations in the force of the membrane tension change the frequency, thus it is not the 

best solution to be applied in the diagnostics of such systems because the membrane tension can 

change over time, even if there is no damage at all.  
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Numerical crash analysis of the cable barrier 

 
 

Krzysztof Wilde, Dawid Bruski, Stanisław Burzyński, Jacek Chróścielewski, 
Wojciech Witkowski 

Abstract: Safety barriers are used to increase road safety. Their basic task is to prevent 

the errant vehicle from getting off the road in places which are potentially dangerous 

for vehicle passengers. Barriers, which are used on European roads, must fulfill the 

requirements of EN 1317 standards by passing appropriate crash tests. Because of their 

high cost, numerical simulations are increasingly used to evaluate the properties of 

safety barriers, especially in the early stages of the barrier design or in the modifications 

of existing ones. Simulations allow for a detailed insight into the impact mechanism 

and their cost are much lower compared to real crash tests. Since the crash phenomenon 

is a dynamic process and the duration of vehicle-barrier contact is short, numerical 

simulations are performed using explicit dynamics algorithm. The most popular is  

commercial FEM system LS-DYNA. In this study the numerical simulation of cable 

barrier crash test using 900 kg vehicle (TB11 test) and 13 000 kg bus (TB51) were 

carried out. The results of TB51 test were compared with the results obtained from real 

crash test. Additionally, the influence of friction coefficient value on the results was 

analyzed. 

1. Introduction 

The number of vehicles on the road is still increasing. Particular attention should be paid to ensuring 

the safety of all road users. One of the safety measures are road barriers. They should be located in 

every place, where leaving the lane by the vehicle is potentially dangerous for passengers. Their main 

task is to prevent the errant vehicle from getting to the opposite lane of the road (this situation is 

especially dangerous and is called cross median crashes) or before getting off the road and hitting the 

obstacle such as trees or bridge abutments. They have to contain and properly redirect vehicles back on 

vehicle’s traveled way. Additionally the barrier must also reduce the negative effects on the occupants 

and minimalize vehicle’s damages. The main types of safety barriers, as far as the construction material 

is concerned, can be classified as: steel rail barriers, cable barriers and concrete barriers. 

Cable barriers are beneficial construction in terms of road safety. Unlike other barriers, they usually 

provide small decelerations for people inside the vehicle during the collision, preventing them from 

serious injuries. Cable barriers are relatively inexpensive and easy to install, maintenance and repair 

after impact. Among the other benefits it should be noted, that they do not impede snow plowing 

operations [3].  
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To make sure that barriers provide an appropriate level of protection to road users, they have to 

undergo full scale crash tests according to EN 1317 standards [6], [7] before they are approved for 

general use. Nowadays, numerical simulations are increasingly used to evaluate the properties of road 

barriers, particularly in the early stages of the barrier design or in the modifications of existing ones. 

Simulations allow for a detailed insight into the impact mechanism and to consider many factors 

(e.g. change of impact velocity or angle). The great advantage is that their cost are much lower 

compared to full scale crash tests.  

In this work the results of the numerical simulation of cable barrier TB11 test and TB51 test were 

presented. The TB51 test was compared with the results obtained from real crash test.  

2. EN 1317 Standards 

Safety barriers, which are used on European roads, must fulfill the requirements of EN 1317 standards 

[6], [7] by passing appropriate crash tests. Depending on the test, the impact velocity, impact angle, 

total mass and type of vehicle are varied. Table 1 show impact test criteria. 

Table 1. Vehicle impact test descriptions. [7] 

Test Impact speed, 

km/h 

Impact angle, 

° 

Total mass, 

kg 

Type of vehicle 

TB11 100 20 900 Car 

TB21 

TB22 

TB31 

TB32 

80 

80 

80 

110 

8 

15 

20 

20 

1 300 

1 300 

1 500 

1 500 

Car 

Car 

Car 

Car 

TB41 

TB42 

TB51 

TB61 

TB71 

TB81 

70 

70 

70 

80 

65 

65 

8 

15 

20 

20 

20 

20 

10 000 

10 000 

13 000 

16 000 

30 000 

38 000 

Rigid HGV 

Rigid HGV 

Bus 

Rigid HGV 

Rigid HGV 

Articulated HGV 

 

 Based on the results of the crash tests, three functional characteristics of safety barrier are 

determined: containment level, working with and impact severity level. Containment level determines 

the ability of the barrier to contain impacting vehicle. Four containment levels were defined, as show 

in table 2. The working with is used to describe barrier’s ability to deformation during collision and is 

defined as the maximum lateral distance between any part of the barrier on the undeformed traffic side 

and the maximum dynamic position of any part of the barrier or vehicle if vehicle body deforms around 
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barrier. Impact severity level is used to evaluate impact effects for the vehicle occupants. Two 

indicators, the acceleration severity index (ASI) and the theoretical head impact velocity (THIV) are 

needed to injury-risk assessment. It should be noted that the mentioned standards do not specify 

conditions for barrier’s geometry, dimensions or materials. 

The acceleration severity index (ASI) is one of the most important parameters which allows for 

assessment of the injuries of occupants during impact. ASI is a function of time, computed using the 

following equation 

ASI(𝑡) = √(
𝐴̅𝑥

𝑎̂𝑥
)

2

+ (
𝐴̅𝑦

𝑎̂𝑦
)

2

+ (
𝐴̅𝑧

𝑎𝑧
)

2

 (1) 

where 𝐴̅𝑥, 𝐴̅
𝑦, 𝐴̅𝑧 are the components of the acceleration recorded at the center of gravity of the vehicle 

which are filtered with a four-pole phaseless Butterworth low-pass digital filter with the cut-off 

frequency of 13 Hz, 𝑎̂𝑥 = 12 g, 𝑎̂𝑦 = 9 g, 𝑎̂𝑧 = 10 g are limit values for the acceleration components 

along the body axes x, y and z (g=9,81 m/s2). The maximum value of the ASI in collision is assumed as 

a measure of severity. In general, the greater the ASI value, the greater the risk of vehicle occupants 

injuries. The theoretical head impact velocity (THIV) value is impact speed of the theoretical head with 

theoretical surfaces inside vehicle during collision. The occupant is considered to be a freely moving 

theoretical head which has the same speed at the beginning of the impact as the vehicle. Then, the 

vehicle due to the contact with road restraint system rotates about vertical axis, but the theoretical head 

continues his move in a straight line until it strikes theoretical surface within the interior of the vehicle. 

According to the [8] standard, there is a possibility to evaluate barrier system, which has been 

modified by computer simulation. This standard defines three categories of modifications of existing 

barriers systems. In category A (slight change) modifications do not require mechanical changes (e.g. 

repainting). In category B (moderate change) modifications concern at least one barriers components 

(e.g. reduced section length between anchorages in cable barrier). For this category, the influence of 

modifications on the behavior of the barrier may be determined by numerical calculations. For category 

C (significant change) modifications excess the range of the categories A and B. To obtain certification 

of the modified product based on numerical simulation, it is necessary to perform the numerical model 

of the original barrier system, which was certified in real crash test. This model must properly undergo 

the validation process based on the results obtained from full scale crash test. Afterwards, in this model 

can be made modifications within the category B and perform numerical calculations on the basis of 

which the modified product will be certified. This approach reduces the number of expensive crash 

tests. Calculations where computers models were used should be confirmed by independent third party. 
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Table 2. Containment levels. [7] 

Containment levels Acceptance test 

Low angle containment T1 

T2 

T3 

TB21 

TB22 

TB41, TB21 

Normal containment N1 

N2 

TB31 

TB32, TB11 

Higher containment H1 

L1 

H2 

L2 

H3 

L3 

TB42, TB11 

TB42, TB32, TB11 

TB51, TB11 

TB51, TB32, TB11 

TB61, TB11 

TB61, TB32, TB11 

Very high containment H4a 

L4a 

H4b 

L4b 

TB71, TB11 

TB71, TB32, TB11 

TB81, TB11 

TB81, TB32, TB11 

Table 3. Normalised working width. [7] 

Classes of normalized working width levels Levels of normalized working width, m 

W1 

W2 

W3 

W4 

W5 

W6 

W7 

W8 

WN ≤ 0.6 

WN ≤ 0.8 

WN ≤ 1.0 

WN ≤ 1.3 

WN ≤ 1.7 

WN ≤ 2.1 

WN ≤ 2.5 

WN ≤ 3.5 

Table 4. Impact severity [7] 

Impact severity levels ASI, - THIV, km/h 

A ≤ 1.0 ≤ 33 

B ≤ 1.4 ≤ 33 

C ≤ 1.9 ≤ 33 
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3. Numerical model of cable barrier impact test 

The calculations were performed by using finite element code of LS-DYNA (MPP double precision 

R8.1.0) on supercomputer Tryton managed by CI TASK in Gdańsk (Poland). Figure 1 shows the time 

of the calculations, which is needed to perform 0.5 s simulation of the one of TB51 cable barrier crash 

test, depending on the numbers of 24-core processors. Based on this analysis it was decided that each 

simulation would be carried out by using 192 threads (eight 24-core processors).  

 

Figure 1.   The scalability of 0,5 s TB51 calculations. 

 To integrate the equations of motion LS-DYNA system uses explicit scheme of special form of 

central difference method [1] [2]. Nonlinear equation of motion discretized by FEM reads: 

𝑴𝒙̈𝑛 = 𝒓𝑛 − 𝒇𝑛 − 𝒉𝑛  (2) 

where 𝑴 is the diagonal global mass matrix, 𝒓𝑛 is the vector of external loads, 𝒇𝑛 is the vector of 

internal loads and damping and 𝒉𝑛 denotes the vector of some kind forces resulting from hourglass 

control. To update vectors 𝒙̇ and 𝒙̈ the following formulas are used: 

𝒙̈𝑛 = 𝑴−1(𝒓𝑛 − 𝒇𝑛 − 𝒉𝑛),  (3) 

𝒙̇𝑛+
1

2 = 𝒙̇𝑛−
1

2 + ∆𝑡𝑛𝒙̈𝑛 , (4) 

𝒙𝑛+1 = 𝒙𝑛 + ∆𝑡
𝑛+

1

2

𝒙̇𝑛+
1

2, (5) 

∆𝑡
𝑛+

1

2

=
1

2
(∆𝑡𝑛 + ∆𝑡𝑛+1).  (6) 

In the above formulas the superposed dot represents time derivative. 

3.1. Numerical model of cable barrier 

Numerical model of road safety barrier (Fig. 2) consists of four 3x7 steel wire ropes (19 mm diameter) 

mounted on steel posts with slit for wire ropes. Distance between each cable is kept by plastic elements. 

Between the top ropes (numbers 3 and 4 on Fig. 2) there is a steel clamp. The spacing of the posts is 

750 mm. The wire ropes are at a height of 480, 560, 640 and 720 mm above the ground. Length of the 

barrier is 69 m and it has two 6 m terminals, so the total length of the system is 81 m. The height of the  
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Figure 2.   Cable barrier model 

barrier is 777.5 mm. Numerical model of the barrier consist of 472 401 nodes and 958 843 finite 

elements. 

 To discretize the posts the shell elements of Belytschko-Tsay type are used (formulation 

ELFORM=2). Posts material is assigned as MAT_PIECEWISE_LINEAR_PLASTICITY. The 

characteristic dimensions of the elements are 8-10 mm. The plastic elements are represented by solid 

elements (characteristic dimensions ~4 mm) with material model MAT_ELASTIC. The wire rope 

model consists of 3 components (Fig. 3): beam elements, shell tube with hexagonal cross section around 

the beam elements, and CONSTRAINED_NODAL_RIGID_BODY,  compare [4] [11]. The beam 

elements (the length of a single element is 75 mm) are assigned the Belytschko-Schwer formulation 

(ELFORM 2) and are defined with MAT_MOMENT_CURVATURE_BEAM material. Based on [11] 

the force-strain, bending moment-bending curvature and torque-rate of twist curves (Fig. 4) are 

implemented. The shell around the beams is defined with MAT_NULL material and is used only to 

describe the contact of the wire rope with the remaining parts of the model. The wire ropes in the cable 

barrier are pretensioned to 20.4 kN like in real crash test. The tensioning element was located in the 

middle of the barrier, between the posts no. 45 and no. 46. The spacing between these posts is 1500 mm. 

To perform pretension the beam element with discrete cable formulation and with 

MAT_CABLE_DISCRETE_BEAM material was defined.  

 

Figure 3.   The wire rope: a) photo, b) cross sections, c) numerical model. 
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Figure 4.   Curves: a) force-strain, b) bending moment-bending curvature, c) torque-rate of twist. 

 During a collision when the vehicle impacts barrier, the posts are bent towards the ground and the 

wire ropes should easily detach from them [3]. Since the main task of the posts is to keep the wire ropes 

on the right height and then easy detach them, simplified way of modeling the ground is used, which 

was modeled by fixing all degrees of freedom at the base of the posts, 90 mm below ground level. 

3.2. Numerical models of vehicles 

Numerical model of Bus (Fig. 5b), which was used in TB51 test, consist of 125 327 nodes and 128 485 

finite elements and its weight is 12 971.8 kg. In the bus model there are three accelerometers: in front, 

in the middle (center of gravity) and in the rear of the vehicle. Bus model was developed by Norwegian 

Public Road Administration (www.vegvesen.no). The use of the model is gratefully acknowledged 

here. 

 In the numerical simulations of the TB11 test the Geo Metro (Suzuki Swift) numerical model was 

used (Fig. 5a). This model was obtained from ROBUST project repository [10] and subjected to minor 

modifications: improved wheel alignment, some numeric parameters have been modified and 

discretization has been densified in the important vehicle areas, which contact with the barrier. The 

weight of the car is 928.7 kg, consist of 20 089 nodes and 16 291 finite elements. The car is equipped 

with one accelerometer located near the center of gravity. 

The accelerometers in these vehicles is realized by using special finite element and 

ELEMENT_SEATBELT_ACCELEROMETER card. This solution allows to record accelerations and 

angular velocities in local vehicle coordinate system which are needed to calculate ASI and THIV. 

 

Figure 5.   Numerical model of a) Geo Metro (TB11 test), b) Bus (TB51 test). 
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3.3. Numerical models of impact test 

Numerical simulation of collision with the cable barrier with parameters corresponding to TB51 and 

TB11 standard tests were conducted. The TB51 test consist in total of 597 728 nodes and 1 087 328 

elements and TB11 test has 492 490 nodes and 975 134 elements. Ground surface is defined using 

RIGIDWALL_PLANAR card. The friction coefficient between the tires and the ground is set to 0.3 

[12].  

 To eliminate zero-energy modes the stiffness form of type 2 (Flanagan-Belytschko) in LS-DYNA 

is used, with value of the hourglass coefficient (QH) set to 0.03. 

 Contact was defined using the AUTOMATIC_GENERAL and 

AUTOMATIC_SINGLE_SURFACE cards. In the models one global Columb friction coefficient was 

used. This approach was used in many works, including [5] [9] [12] [13] [14] [15]. In LS-DYNA [1] 

the friction coefficient is given by the formula:  

𝜇 = 𝜇𝑑 + (𝜇𝑠 − 𝜇𝑑)𝑒−𝑐|𝑣|  (7) 

where 𝜇𝑑 is the dynamic coefficient of friction, 𝜇𝑠 is the static coefficient of friction, 𝑐 denotes a decay 

constant and 𝑣 = ∆𝑒/∆𝑡, where ∆𝑒 is the incremental movement of the slave node and ∆𝑡 is the time 

step. It is worth to notice, that when 𝑐 = 0 or 𝜇𝑠 = 𝜇𝑑, the equations (7) is reduced to the form: 

𝜇 = 𝜇𝑠. (8) 

  In publications and in available opensource models, different friction coefficients are used. A short 

summary of some values is shown in the table 5. 

Table 5. Summary of friction coefficients used in publications and models. 

Authors and publications 𝜇𝑠 𝜇𝑑 𝑐 

Ren, Z., Vesenjak, M., [9] 0.1 0.05 no data 

Vesenjak, M., Ren, Z., [13] 0.1 0.05 no data 

Teng T., Liang C., Tran T., [12] 0.15 0.09 2.66·10-4 

Nasution, R. P., Siregar, R. A., Fuad, K., Adom, A. H., [5] 0.1 0.1 no data 

File Cable.k, [4] 0.2 (0.4)* 0.1 0.001 

* 0,4 in one contact, in others static friction coefficient is 0,2 

 Two numerical simulations of TB51 test and five TB11 test were conducted. The impact location 

is the same as in the real crash test, between the posts no. 30 and no. 31. The dynamic friction coefficient 

𝜇𝑑 has been assumed as equal to 0.1 and decay constant 𝑐 as equal to 0.001. The static friction 

coefficient 𝜇𝑠 was set to 0.1 and 0.3 in TB51 test and from 0.0 to 0.4 every 0.1 in TB11 test. The final 

values and nomenclatures of the simulation tests are summarized in table 6. 
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Table 6. Friction coefficients and simulation nomenclatures. 

Test 𝜇𝑠 𝜇𝑑 𝑐 nomenclature 

TB51 0.1 0.1 0.001 tb51_01 

TB51 0.3 0.1 0.001 tb51_03 

TB11 0.0 0.0 0.0 tb11_00 

TB11 0.1 0.1 0.001 tb11_01 

TB11 0.2 0.1 0.001 tb11_02 

TB11 0.3 0.1 0.001 tb11_03 

TB11 0.4 0.1 0.001 tb11_04 

4. Results of the TB51 numerical test and comparison with real crash test 

The full scale crash test was conducted in Inowrocław (Poland) by IBOS (Resears Insitute for Protective 

Systems, www.ibos.com.pl). During this test bus of 13027.9 kg weight at an angle of 21.37° and with 

the speed of 74 km/h impact the barrier between posts no. 30 and no. 31. The vehicle was in contact 

with the barrier at length 35.25 m. Some of the results are shown in Table 7, the crash courses on Fig. 6. 

 The results from the full scale crash test were compared to the tb51_03 simulation (Tab. 7 and 

Fig. 6). In the simulation the vehicle struck the barrier into the same place as in real crash test. The front 

of the bus struck the barrier. The maximum permanent deflection was approximately 1.82 m. The front 

of the vehicle was redirected and then the second collision occurred, where the rear of the bus impacted 

the already deformed barrier. This was the decisive factor for the working width (2.18 m). The bus was 

in contact with the barrier at length 33.89 m and then correctly redirected. The bus trajectory is shown 

in Fig. 7. The small elements visible on the right side of simulation views on Fig. 6 are the plastic 

elements and steel clamps. Discrepancies in results of the real crash test and simulation can be attributed 

to: different bus model and to the differences between the real test velocity and impact angle and those 

required by standard EN1317. 

Table 7. Comparison between full scale crash test and simulation results. 

Parameter Full scale crash test Simulation tb51_03 Difference 

Normalised working width WN, m 2.4 (W7) 2.2  (W7) 0.2 

Length of contact, m 35.25 33.89  1.36 

ASI front/rear 0.2/0.2 0.3/0.2 0.1/0.0 

THIV front/rear, km/h 10/7 10/6 0/1 
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Figure 6.   Comparison full scale crash test and simulation (front view). 

 

Figure 7.   The bus trajectory in numerical simulation. 

5. Results of the TB11 and TB51 numerical test and influence of friction coefficient 

The tables 8 and 9 show the results of the TB51 and TB11 test simulations. The crash course of TB11 

test (tb11_02) is shown in Fig. 6. In the TB51 simulations, low severity indicators ASI and THIV were 

obtained. ASI measured numerically near to the center of gravity is lower than in the front and rear of 

the vehicle. Working width is determined by the second impact of the back of the bus. 

ASI and THIV obtained from TB11 simulations allows for qualifying barrier to class A. For the 

analyzed cases of TB11 test, the change of the friction coefficient does not affect the ASI, THIV and 

working width, which is determined by the first phase of the impact of the front of the car, but increasing 

friction reduces the length of the vehicle's contact with the barrier. Simulations confirmed the well-

known fact that the impact severity is determined by the test with car (ASI and THIV higher for TB11 

tests) while the value of working width is assessed from test with heavier vehicles like bus or heavy 

goods vehicle (HGV).  
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Table 8. Results from TB51 simulation. 

Test WN, front/rear impact, m ASI front/middle/rear, - THIV front/middle/rear, km/h 

tb51_01 1.92 / 2.24 (W7) 0.26 / 0.13 / 0.22 9.0 / 7.5 / 7.2 

tb51_03 1.82 / 2.18 (W7) 0.30 / 0.12 / 0.23 9.9 / 9.9 / 6.4 

Table 9. Results from TB11 simulation. 

Test ASI, - THIV, km/h WN, m Contact length, m 

tb11_00 0.64 22.5 0.80 (W2) 11.12 

tb11_01 0.73 25.0 0.68 (W2) 8.09 

tb11_02 0.73 25.3 0.69 (W2) 7.92 

tb11_03 0.72 25.7 0.68 (W2) 8.27 

tb11_04 0.73 25.1 0.67 (W2) 7.73 

 

Figure 8.   The front views of tb11_02 simulation. 

6. Conclusions 

In this study the numerical simulation of cable barrier TB11 and TB51 crash test were carried out. The 

comparison of simulation results with the full scale crash test shows that numerical simulations are 

a useful and reliable tool for evaluating road restraint systems. The simulations showed that the friction 

coefficient has an effect on the results. 
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Application of non-linear dynamics to Poland's evolution 

 

Tatyana Y. Yaroshenkо, Jan Awrejcewicz, Igor I. Shulga,  
Maxim V. Zhigalov, Vadim A. Krysko 

Abstraction. The formation and development of states on the one hand is a unique 

process, but on the other hand there are some general laws of this process. In this arti-

cle, the authors continue to develop a methodology for studying the historical time se-

ries. In this work, the formation and development of the Polish statehood since 960 

has been studied up to the present days. For the study, methods of nonlinear dynamics 

are used: wavelet analysis and the study of the change in the sign of the first Lyapun-

ov exponent. Reliability is achieved by the coincidence of the results of the applied 

methods with historical events and with each other.  

Introduction 

In this work we are using the methods of nonlinear dynamics, and we study the development of Po-

land from 960 until 2004 (see Fig. 4.)  Poland is a unique example of a state that throughout its histo-

ry has ceased existence several times, but then as a phoenix bird rose from the ashes. Currently, Po-

land occupies a prominent place in the European and world community. Therefore, the study of the 

development of this state is of undoubted interest. However, mainly in the literature there are histori-

cal humanitarian studies of Poland [1, 2]. In work [3] the authors create a mathematical model of the 

war of the Polish-Lithuanian Commonwealth with Sweden of the 17th century and compare the re-

sults with known historical data. In work [4], an analysis of the development of dialects in the south-

ern part of the Pskov region - in the area of Sebezh and Nevel, which once were part of the Com-

monwealth. In contrast to the above studies, methods of nonlinear dynamics are used in this paper. 

This allows us to obtain an objective analysis of the historical process and to model both the devel-

opment of the state as a whole and historical events at individual time intervals. This approach is first 

used to study the development of Poland. Wavelet analysis, Fourier analysis and the values of the first 

Lyapunov exponent 𝝀𝟏 calculated using neural networks using the Benettin method are employed. 

When applying the "mathematical microscope" wavelet - analysis, three kinds of wavelets HAAR, 

MHAT, MEYR are used. In order to choose the most effective of them and compare the results of the 

research, the Fourier analysis is used to obtain an idea of the historical process under study as a 

whole. The study of the sign of the first Lyapunov exponent 𝝀𝟏 makes it possible to conclude that the 

historical process is stable or chaotic. This work is a continuation and development of the method 

proposed in [5, 6]. In work [7], the methods of nonlinear dynamics are applied to mechanical systems. 

The aim of this study is to follow the development of various states and different epochs and to identi-
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fy common patterns of development. This makes it possible to model the development of modern 

states to prevent crises. The study of historical processes using methods of nonlinear dynamics makes 

it possible to study the signs of a harmonious and chaotic state development. This results are reveal-

ing conditions necessary for the harmonious development of the state. In [5], the methods of nonline-

ar dynamics study the history of the development of Ancient Rome and the European Union. The 

analysis showed that the results of studies using the methods of nonlinear dynamics are in good 

agreement with the processes of changing the internal state of the state (economy, politics, culture, 

science). 

Materials and Methods 

1. Wavelet - based analysis of historical series 

Wavelet – analysis is a universal method of nonlinear dynamics [7], which can be applied for analysis 

of time series of any kind from physical to historical issues. For example, in physics, when analyzing 

the observed data on fluxes of sunlight, the solar wind, the structure of surfaces, galaxies, etc. [8,9]. In 

this paper, a wavelet transform of a one-dimensional time series is applied, which consists in expand-

ing it by the basis of the wavelet function by means of large-scale transformations and translations. 

Each function of the basis characterizes the localization in time and frequency 𝜔, which allows us to 

study the time series simultaneously in time and frequency 𝜔. Frequency and time are independent 

variables. The wavelet transform is the scalar product of the wavelet and the signal (historical time 

series), therefore, the wavelet coefficients 𝑊(𝑡, 𝜔) contain information about the signal and the ana-

lyzing wavelet. In this paper continuous wavelet analysis of MHAT [10] MEYR [11] and orthogonal 

wavelet HAAR [12] are used. The time 𝑡 (years) is the shift parameter. It fixes the point of focus of 

the wavelet and the scale factor - frequency 𝜔. The "optical quality" of the wavelet, which is a "math-

ematical microscope", corresponds to the basis wavelet  𝜑. We employ: 

Discrete Haar wavelet (HAAR): 

𝜑(𝑡) =  {

  1  ;                 𝑖𝑓   0 ≤  𝑡 <  0,5
−1  ;              𝑖𝑓   − 0,5 ≤  𝑡 < 1
  0  ;                  𝑖𝑓  𝑡 <  0, 𝑡 ≥  1.

                                                                                       (1) 

Wavelet Mexican hat (MHAT):  

)
2

exp()1()(
2

2 t
tt 

                                                                                                                      (2) 

Meyer's Wavelet (MEYR): 

𝜑(𝜔) =  

{
 

 
1

√2𝜋
sin (𝜋

  2
 𝜗(3|𝜔|

2𝜋
 − 1)) 𝑒𝑗𝜔 2⁄ , 𝑖𝑓 2𝜋 3⁄ < |𝜔| < 4𝜋 3⁄

1

√2𝜋
cos (𝜋

  2
 𝜗(3|𝜔|

4𝜋
 − 1)) 𝑒𝑗𝜔 2⁄  , 𝑖𝑓 4𝜋 3⁄ < |𝜔| < 8𝜋 3⁄

0                 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

,                                                (3) 
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where           𝜗 (𝑥) =  {

0             𝑖𝑓  𝑥 < 0,
𝑥    𝑖𝑓  0 < 𝑥 < 1,
1             𝑖𝑓  𝑥 > 1.

 

 

The result of the wavelet transform of the time series is the values  𝑊(𝑡,𝜔) - wavelet coefficients. 

Since the wavelet transformation is the scalar product of the analyzed signal and the analyzing wave-

let, the wavelet coefficients contain information about both the signal itself and the wavelet. The 

parameter 𝑡, here time (years) fixes the wavelet focusing point, since it is the parameter of the shift, ω 

is the frequency, the scale factor. The "optical quality" of a mathematical microscope is determined 

by the choice of the basis wavelet, in this article HAAR (see Eq. 1), MHAT (see Eq. 2), MEYR (see 

Eq. 3). 

We use 2D visualization of the spectrum of the wavelet coefficients. With the evolution of the signal, 

increase in the frequencies correspond to local maxima or minima of the time series. The wavelet 

spectrum of the historical time series is a surface in the three-dimensional space 𝑊((𝑡,𝜔), 𝑡, 𝜔). 

Based on 2D visualization of the spectrum of the wavelet coefficients, one can get an idea of the 

change in the energy component of the system [5]. The energy of the state is the internal energy of the 

system. On the other hand the energy of the state is understood as the energy of the signal, i.e. we 

have 

𝐸𝑤 = ∫ |𝑊(𝑡, 𝜔)|2
𝑡2
𝑡1

𝑑𝑡 ,                      𝑡1 < 𝑡 < 𝑡2.                                                                            (4) 

The quantity 𝐸𝑤 is the total energy of the system, which consists of the internal energy of the state, 

and the external energy that is reported to the system as a result of contact with neighboring states. 

This can be trade, cultural contacts, or military actions. 

Applying this notion to historical time series, we can say that those periods when the state undertook 

new campaigns to escalate military operations in domestic or foreign policy correspond to an increase 

in the state's energy. Such periods are associated with crises of any nature.   

 

2. Algorithm for the application of an artificial learning neural network for calculating the 

spectrum of Lyapunov exponents 

A single-layer neural network is used [13]. A single-layer unidirectional neural network (see Fig. 1.) 

uses a layer of 𝑛  of hidden neurons to perform the next prediction k
x̂  on a scalar time series kx : 


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1

tanhˆ , 

where ija  are coefficients of the matrix of size )1(  dn , ib is a vector of length n . The matrix ija  

shows the number of connections at the entrance to the network, the vector ib  is used to determine 
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the contribution of each neuron at the output from the network. A vector 0ia  is an offset that facili-

tates learning on data whose mean is not zero. 

 

Figure 1. Single-layer neural network of direct propagation 

The idea of the method is to calculate, by means of an artificial learning neural network, the diver-

gence of two nearby trajectories in n  steps forward. An analog, self-organizing neural network is 

used, which is represented in the form of real numbers and forms the output space of solutions based 

on input effects. This is a network with dynamic links, directed strictly from input to output. In the 

learning process, synaptic connections 0dtdw are set up, that is, where W  are the network 

weights. To calculate the first Lyapunov exponent 𝝀𝟏, a necessary time delay is calculated based on 

the sample; the dimension of the embedding space is calculated; a pseudo-phase reconstruction of the 

trajectory by the method of time delays; a neural network is constructed to approximate the time 

series. The neural network ija  is trained to calculate the next sequence vector of the time series; in the 

trained neural network, based on the generalized Benettin method [14]. 

3. Fourier analysis of the time series 

The Fourier transform [15] is the integral transformation, defined as follows 






 dttfF ti)()( ,          

where 𝑡 is the time, 𝜔 is the frequency. If a continuous function 𝑓(𝑡)  is defined on some interval  

[0, 𝑇] then its vector will be a discrete analogue of the vector   𝑓𝑛 = 𝑓(𝑡𝑛), 𝑛 = 1,…𝑁. Most often, 

especially in the numerical definition of the Fourier transform, the sequence 𝑡𝑛is equidistant, i.e. it is 

represented as 𝑡𝑛 = (𝑛 − 1)𝛥𝑡 , 𝛥𝑡 = 𝑇/(𝑁 − 1). That is, there are two vectors: a discrete time vec-

tor and a vector of values of the function at these points. 
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Numerical results  

The article examines the time series of changes of the territory of Poland since 960 to 2004. The year 

960 stands for the beginning of the reign of the first historically reliable prince Meshko I (935 - 992). 

The Principality of Great Poland, with its center in the city of Gniezno, became the most extensive of 

the Slavic countries of that time with the strongest and most numerous army. Prince Mieszko accept-

ed the state religion as Catholicism. He pursued the strategic goals to strengthen his power, uniting 

the ideology of the state and strengthening the position of Poland in the international arena. In fact, 

this is the time of the birth of the Polish state, whose territory has been steadily expanding. The first 

Polish coin is introduced into the economy. A state apparatus is created, the head of the state is the 

prince, in fact the vice-president is the palatine, a treasury with a skarbnik at the head and a princely 

chancellery headed by the chancellor was created. With the expansion of borders, for effective man-

agement, the state was divided into 3 regions. At the prince, a council of noblemen and military lead-

ers functioned. Power was inherited by the eldest son. The process of forming the state apparatus, the 

tax system, building new social relations against the background of often occurring wars. All these 

processes of forming statehood, building an economic system and creating a state apparatus can be 

characterized as a time of active change. 

 

960 – 1490 

a 

1491 – 1590  

 
b 

1591 – 1770  

 c 

1771 – 1863  

 d 

1864 – 2004  

 
e 

960 – 2004  

 f 

Figure 2. Fourier - analysis of the time series of changes in the territory of Poland, where (a)–time 

period from 960 to1490; (b)-time period from 1490 to1590; (c)-time period from 1591 to 1770; (d)-

time period from 1771 to1863; (e)-time period from 1864 to 2004; (f)–all time period from 960 to 

2004.  
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The system in this period is in an outraged state due to the assimilation and integration of the annexed 

territories. Therefore, the system is in a chaotic state. Since 960 up to 1490 the Lyapunov exponent 𝝀𝟏 

has a positive but close to zero value (Table 1). Fourier analysis of this time interval has a solid ped-

estal of frequencies, which also means chaos (see Fig. 2a). However, with the help of a "mathematical 

microscope" - wavelet analysis, one can examine the condition of the state at each moment of time. 

Based on wavelet analysis from 960 on 1100 on the three wavelets, multi-frequency peaks (light 

areas) are visible, which means a chaotic state (see Fig. 3a, 3b, 3c). This also means an increase in the 

energy of the state 𝐸𝑤. And indeed, during this period the Polish principality was transformed into a 

kingdom and after a significant increase in its territory during the reign of Mieszko I and his succes-

sor Boleslaw I (967 - 1025). But there were also difficult times when, after the loss of the Milska-

Luzhetsk lands, Pomorie and Mazovia, the Polish state was in an economic crisis. The result of this 

was the recognition of vassal dependence on the Holy Roman Empire in 1038. Then comes the resto-

ration of the Polish state and the period of stability. This is clearly seen also in the dark region on the 

HAAR wavelet (see Fig.  3a). On the MHAT wavelet (see Fig. 3b), this region is so pronounced. On 

the MEYR waveguide (see Fig.  3c) this region is absent. The next increase in the frequency spectrum 

of 𝜔 begins with 1300 to 1420. The period of loss of territories and the accession of new lands. The 

period of strife and attempts to consolidate Polish lands. Great troubles to the Polish kingdom caused 

the Holy Roman Empire and the Teutonic Order. Therefore, the union of the Polish Kingdom and the 

Grand Duchy of Lithuania was necessary for both states. By united forces they confronted external 

enemies. For example, the Great War with the Teutonic Order (1409-1411) which ended with the 

conclusion of the Torun Peace Treaty with the benefit of Lithuania and the annexation of Samogitia 

and Prussia. On the background of external wars, internal unrest occurred. They were caused by the 

movement of the Reformation of Jan Hus in the Czech Republic, which reached the Polish lands. 

Catholicism was opposed to the Reformation. The feudal disunity of the Kingdom of Poland led to 

the growing role of the aristocracy. This laid an important political tradition, to limit the power of the 

king. By the year 1396 on the European arena appears another powerful player - the Ottoman Empire, 

which will become a constant object of concern and problems for the Kingdom of Poland. The period 

of increasing frequencies ω (see Fig. 3a, 3b, 3c) falls on the Thirteen-year war (1454 - 1466) with the 

Teutonic Order. The frequency peak is most clearly expressed on the HAAR wavelet (see Fig. 3a), 

compared to the wavelets MHAT (see Fig. 3b) and MEYR (see Fig. 3c). 

           Table 1 

     time intervals 

first              (year) 

Lyapunov  

exponent 𝝀𝟏, 

 

 

960 – 

1491 

 

 

1491 – 

1590 

 

 

1591 – 

1770 

 

 

1771-

1863 

 

 

960 – 

2004 

𝝀𝟏 0,001 -0. 0023 0,004 -0,29 0.0078 
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The period from 1491 to 1590 was marked by the implementation of reforms by King Sigismund I 

(1467 - 1548). The military reform consisted in the division of the Kingdom of Poland into five dis-

tricts, from which, each in turn, for five years, carried military service on the eastern border. Another 

military - financial reform was carried out at the Diet of 1527 was to assess the income from the land 

and the appointment of salaries to tax collectors. This was to put an end to embezzlement. Also in 

each district (command), the commissioners choose the gentry suitable for military service and ensure 

discipline and pay their salaries. But the reforms did not last long because of resistance gentry. Not 

entirely successful war of the Grand Duchy of Lithuania with the Russian state (1512 - 1522) eventu-

ally ended in the loss of Smolensk. After the second war (1534-1537), Sebezh and Zavolochye with-

drew to Moscow. Devastating raids were made by the Crimean Tatars. During the flared up contradic-

tions between the aristocracy and the nobility Sigismund I in 1537 recognized the rights of the nobili-

ty to the election of the king. Poland waged several wars: the Livonian War (1558 - 1583), the war 

with Sweden (1561 - 1583). Finally, in 1569, according to the Union of Lublin, a federal state was 

formed called Polish–Lithuanian Commonwealth, uniting the Kingdom of Poland and the Grand 

Duchy of Lithuania. A unique experience of state education of that time. The king was elected by the 

diet, and in some ways depended on him. The Seimas had the right to enact laws, and the law could 

only be passed unanimously. During this period, on the wavelets HAAR (see Fig. 3a), MHAT (see 

Fig. 3b) and MEYR (see Fig. 3c), the multifrequency peaks (light areas) are replaced by dark regions, 

which means that the chaotic state of the state is replaced by periods of stability. The Fourier analysis 

(see Fig. 2b) of this period shows the stable state of the system. The sign of the highest Lyapunov 𝝀𝟏 

exponent is negative, which agrees with the Fourier analysis (Table 1). Period 1591 - 1770 years. is 

the period of the Polish–Lithuanian Commonwealth. The period until the middle of the XVII century 

was a “golden age” for the “szlachta” and many townspeople who enjoyed the benefits of self-

government under the Magdeburg law. In other words, economic activity, property rights, social and 

political life and the estate status of citizens are regulated by their own system of legal norms. The 

granted freedoms of the aristocracy and the gentry in the government of the state began to turn into 

abuses after a while. The tension in the state was caused by national and religious contradictions 

between Catholics and Orthodox, according to the Gorodel Union of 1413. Catholics had status supe-

riority over the Orthodox. The growth of tension resulted in the rebellion of Bohdan Khmelnitsky in 

1648. The Polish army was defeated by the Cossacks and peasants under Korsun. The value of the 

first Lyapunov exponent 𝝀𝟏 is positive but close to zero (Table1). Fourier analysis shows the chaotic 

state of the system at low frequencies and and a harmonic state at high frequencies (see Fig. 2c). On 

the HAAR wavelet (see Fig. 3a) during this period, the dark area is replaced by frequency peaks (light 

area), just coincides with the transition from the "golden age" period to the period of aggravating 

problems. On the MHAT (see Fig. 3b) and MEYR (see Fig. 3c) wavelets, this transition is practically 
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invisible. Fourier analysis as a whole characterizes the period as chaotic, without distinguishing be-

tween zones of stability and chaotic state. In 1654 in Poland the war with Russia began and a year 

later with Sweden. However, against the backdrop of these problems, King Jan II Casimir (1609 - 

1672) kept the state from disintegration and absorption by neighboring countries. The political might 

of Poland grew during the period of Jan III Sobieski, who, in particular, put an end to the expansion 

and Ottoman Empire in Europe due to his victory against the walls of Vienna (1683). During the 

wars, the state suffered catastrophic demographic losses that predetermined the beginning of the 

economic crisis. The period 1771 - 1863 years became the decline of Polish–Lithuanian Common-

wealth. Internal contradictions against the background of national and religious conflicts led to a 

protracted economic crisis. And the aggravated religious question gave neighboring states an excuse 

to interfere in the internal affairs of the state. 

 

 
a 

  
b 

 
c 

Figure 3. Time series of changes in the territory of Poland from 960 to 2004 - solid line. The time 

series is superimposed on the 2D interpretation of the wavelets HAAR (a), MHAT (b), MEYR (c). 

 

The result was a series of wars and a threefold division of Poland between Russia, Prussia and Austria 

in 1772 in 1793 and as a result of the third section of 1795 Polish–Lithuanian Commonwealth ceased 

to exist as a state. Courland, Lithuania, Western Belorussia and the western part of Volyn fell back to 

Russia. The genuinely Polish lands were divided between Austria and Prussia. Only in 1807 as a 

574



result of the Tilsit peace between Russia and France, Russia recognized the Grand Duchy of Warsaw. 

Later in 1815 Poland gained the right to the constitution, the elective diet, its government and its own 

army. An uneasy situation led to unrest and the Krakow uprising (1846), which was eventually sup-

pressed. The period from 1771 to 1815 on wavelets (see Fig. 3a, 3b, 3c) is characterized by an in-

crease in the frequencies ω. For the period from 1815 to 1863 the territory of the state has not actually 

changed, and therefore conclusions about the processes that are occurring can be made on the basis of 

the available historical data. But on the other hand at this time Poland was dependent on Russia, 

Prussia and Austria and had only partial state freedoms. The state structures functioned under the 

supervision of this triumvirate, and the independence movement was more likely to be underground 

or partisan. On the wavelet of HAAR (see Fig. 3a) and MHAT (see Fig. 3b), it corresponds to a dark 

area, on the MEYR (see Fig. 3c) this region is less pronounced. The sign of the first Lyapunov expo-

nent 𝝀𝟏 is negative. Fourier analysis shows the chaotic state of the system at low frequencies (see Fig. 

2d). 

 

Figure 4. Map of the change of the territory of Poland from 1018 to 1939. 

The period from 1863 to 2004 this is the period of the restoration of the state, which passed through 

two world wars and eventually revived in a new form. The last decades of the XIX century, and the 

first decade of the XX century in all three parts, Polish society actively resisted assimilation. Secular 

and religious structures carried out active work to preserve the Polish language and culture. New 

political parties (National Democratic, Polish Socialist and Peasant) began to form. All this took place 

against the backdrop of growing tension. As a result, the outbreak of the First World War (1914-

1918) gave new opportunities for Poland to gain independence, but in the end, in 1917, after the 

February Revolution, Russia recognized the independence of Poland. After the restoration of inde-

pendence, the state restored both the economy and state structures. In Poland, a constitution was 
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adopted that affirmed the republican system, a bicameral parliament (the Seim and the Senate). Dur-

ing the Second World War (1939 - 1945), Poland was occupied by Germany, but after the termination 

of Poland, it restored its borders and statehood. In the state there was a change of the system to a 

socialist one. This process was painful. In 1956 the Poznan uprising against the socialist system took 

place. During this period, three wavelets (see Fig. 3a, 3b, 3c) have frequency peaks (light areas), 

which coincides with the turbulent situation in the state. The subsequent developments in the devel-

opment of the state are such that, at the junction of the 20th century, and the XXI century there was a 

change in the state system and the reorganization of the state apparatus the establishment of new 

democratic norms. Before 2004 on the wavelets increases in the frequencies 𝜔 are seen. Fourier 

analysis shows a solid pedestal of frequencies (see Fig. 2e), which means a chaotic state of the sys-

tem. The results of Fourier analysis (see Fig. 2f) and the change in the sign of the first Lyapunov 

exponent  𝝀𝟏 coincide for the entire time series from 960 to 2004. Fourier analysis shows a solid 

pedestal of frequencies, the sign of the first Lyapunov exponent 𝝀𝟏 is positive. The processes of for-

mation and transformation of the state occur at high energy costs and they can be called chaotic. 

 

Сnclusions 

As a result of studies of the historical development of the territory of Poland with the help of wavelets 

HAAR, MHAT, MEYR, it was revealed that the analysis based on the wavelet of HAAR and, MHAT 

is the most accurate. The MEYR wavelet can detect only the largest events and crises. Fourier analy-

sis is used to illustrate the benefits of wavelet analysis. Since even a Fourier analysis of individual 

time intervals allows one to obtain only a representation as a whole, without having a detailed view of 

the interval studied. Studies have shown good agreement between the results of wavelet analysis, 

Fourier analysis and change of the sign of the first Lyapunov exponent. These results are in good 

agreement with historical data and allow us to identify the harmonic and chaotic periods of Poland's 

development. 
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Understanding of origination, development and the sunset of the Ottoman 
Empire using wavelets and Lyapunov exponents 

 
 

Tatyana Y. Yaroshenkо, Jan Awrejcewicz, Igor Pelve, Vadim A. Krysko  
   

Abstract. In this work historical time series of change  the territory and population of 

the Ottoman Empire (from 1299 and before the collapse in 1924) is investigated. We 

apply wavelet analysis (MHAT, HAAR) and changes in the sign of the first Lyapunov 

exponent. With the help of wavelet analysis the energy of the state is obtained. 

According to the sign of the first Lyapunov exponent, one can obtain information 

about the stable or chaotic state of the process. To computate the first Lyapunov 

exponent the methods of Wolf, Rosenstern, and neural networks are employed. 

Keywords: nonlinear dynamics, wavelet analysis, Lyapunov exponent, Haar wavelet, Meyer wavelet, 

state, Ottoman Empire, time series, territory, population. 

1. Introduction 

The study of historical processes using methods of non-linear dynamics makes it possible to give an 

objective assessment for the causes and consequences of prosperity and development crises of the 

state. The paper studies the development of the Ottoman Empire during the time interval from 1300 

until 1924, The empire passed a full cycle of development from education, to disintegration. The 

origin of the empire can be attributed to 1300 - 1452, rapid growth and flourishing is 1452 - 1617, 

decline - 1617 - 1757, attempts to reform - 1753 - 1839, the final decline and disintegration - 1757 - 

1924 (see maps of Fig. 2). The Ottoman Empire existed for seven centuries. Throughout its existence, 

it was ruled by a single dynasty named the Osman dynasty. This empire was an important player on 

the world stage for seven centuries, and it is of interest for research. In work [1] Gündüz draws an 

analogy of the development of empires with Verhulst or Lotka-Volterra dynamics. He suggests that 

the development of the empire took place according to a power law. The author takes into account the 

laws of viscoelasticity and thermodynamics for determining the energy that is allocated when 

expanding the boundaries of states. This is undoubtedly an interesting approach, which however 

raises questions about how it is possible to determine the necessary coefficients for determining the 

energy components and how accurately it is possible to compare the development of a territory with a 

power law. In references [2] and [3], the authors examine the periods of the last centuries of the 

existence of the Ottoman Empire. In paper [2] the Gundogdu examines the changes in the socio-
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economic and political structures of the Ottoman state, changes in the structures of power, when the 

vertical of power begins to change and a significant decrease in the authority and authority of the 

sultans of the ruling dynasty. In work [3], the period of the decline of the empire in the 19th century, 

which was simultaneously a period of significant state reforms, has been investigated. However, the 

reforms did not bring the expected results. Unlike the above works, we apply a technique that allows 

any one to get an idea of the entire time interval of the development of the empire, both in general and 

at each moment of time. The methods of nonlinear dynamics allow us to make an objective analysis 

of the development of the state. To study the development of the Ottoman Empire, this approach is 

applied for the first time. The flowering or decline of states depends on many factors: the quality of 

the management system, wars, natural conditions, epidemics, etc. The methods of nonlinear dynamics 

make it possible to produce a qualitative and multi-face analysis of historical events and to give an 

objective assessment. We have employed the wavelet analysis because of its obvious advantage over 

Fourier analysis. The Fourier analysis allows one to obtain an estimate of the time series as a whole, 

whereas wavelet analysis is a "mathematical microscope" and gives an idea of the historical process, 

and trace its dynamics at each moment of time. The change in the frequencies of the wavelet analysis 

makes it possible to determine the oscillations of the state energy in time. The change in the sign of 

the first Lyapunov exponent in time by Wolf's method can reveal periods of stable development and 

periods of crises. This work is a continuation and development of the methodology proposed earlier in 

[4,5]. In reference [6], the methods of nonlinear dynamics are applied to mechanical systems. 

 

2. Wavelet - analysis of historical series 

Wavelet – analysis is a universal method of nonlinear dynamics [6], which can be applied for analysis 

of time series of any kind from physical to historical processes. For example, in physics, when 

analyzing the observed data on fluxes of sunlight, the solar wind, the structure of surfaces, galaxies, 

etc. [7, 8].  

In this paper, a wavelet transform of a one-dimensional time series is applied, which consists in 

expanding it by the basis of the wavelet function by means of large-scale transformations and 

translations. Each function of the basis characterizes the localization in time and frequency 𝜔, which 

allows us to study the time series simultaneously in time and frequency 𝜔. Frequency and time are 

independent variables. The wavelet transform is the scalar product of the wavelet and the signal 

(historical time series), therefore, the wavelet coefficients 𝑊(𝑡, 𝜔) contain information about the 

signal and the analyzing wavelet. In this paper, a continuous wavelet analysis of MHAT [9] and the 

orthogonal Haar wavelet [10] are used. The time 𝑡 (years) is the shift parameter. It fixes the point of 

focus of the wavelet and the scale factor - frequency 𝜔. The "optical quality" of the wavelet, which is 

a "mathematical microscope", corresponds to the basic wavelet φ. Here, a wavelet transform of a one-
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dimensional time series is applied, which consists in expanding it in a basis of the wavelet function by 

means of scale transformations and translations.  

Discrete Haar wavelet (HAAR) is governed by the following formula 

    𝜑(𝑡) =  {

  1  ;                 𝑖𝑓   0 ≤  𝑡 <  0,5,
−1  ;              𝑖𝑓   − 0,5 ≤  𝑡 < 1,
  0  ;                  𝑖𝑓  𝑡 <  0, 𝑡 ≥  1,

                                                                                    (1) 

Whereas the wavelet Mexican hat (MHAT) is described by the function  

   

2
2( ) (1 )exp( )

2

t
t t                                                                                                        (2)      

The result of the wavelet transform of the time series yields the values  𝑊(𝑡, 𝜔), i.e. wavelet 

coefficients. Since the wavelet transformation is the scalar product of the analyzed signal and the 

analyzing wavelet, the wavelet coefficients contain information about both the signal itself and the 

wavelet. The parameter 𝑡 is the time (years) fixes the wavelet focusing point, since it is the parameter 

of the shift, 𝜔 is the frequency, the scale factor. The "optical quality" of a mathematical microscope is 

determined by the choice of the basis wavelet, in this article HAAR (see Eq. 1) and MHAT (see Eq. 

2). 

The article employes 2D visualization of the spectrum of the wavelet coefficients. With the evolution 

of the signal, increases in the frequencies correspond to local maxima or minima of the time series. 

The wavelet spectrum of the historical time series is a surface in the three-dimensional space 

𝑊((𝑡, 𝜔), 𝑡, 𝜔). Based on the 2D visualization of the spectrum of the wavelet coefficients, one can 

get an idea of the change in the energy component of the system [4]. The energy of the state is the 

internal energy of the system. The energy of the state is understood as the energy of the signal, that is 

the value: 

𝐸𝑤 = ∫ |𝑊(𝑡, 𝜔)|2𝑡2

𝑡1
𝑑𝑡        on the interval     𝑡1 < 𝑡 < 𝑡2.                                                                (3) 

The quantity 𝐸𝑤 is the total energy of the system, which consists of the internal energy of the state, 

and the external energy that is reported to the system as a result of contact with neighboring states. 

This can be trade, cultural contacts, or military actions. Applying this notion to historical time series, 

we can say that those periods, when the state undertook new campaigns to escalate military operations 

in domestic or foreign policy, correspond to an increase in the state's energy. To such periods can be 

attributed any periods of crises of any nature. 

 

3. Computation of the highest Lyapunov exponent by the Wolf method  

In the process of dynamic development from a regular state, the system can go into chaotic state and 

vice versa. Lyapunov's characteristic exponents give an idea of the speed at which the system loses 

information about its initial state, that when it goes into a chaotic state. With the increase of these 
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changes, the values of Lyapunov's exponents 𝜆1 increase. The first Lyapunov exponent  𝜆1  makes it 

possible to determine the presence of a state of chaos in the process under investigation. If Lyapunov 

exponent  𝜆1  is negative, then the system is in a stable state, the positive sign means chaotization of 

the system. The value of Lyapunov exponent 𝜆1 allows obtaining a qualitative and quantitative 

characteristic of its dynamic behavior. In this paper we apply the method proposed by Wolf [11] for 

the whole time series in general, and the change in the exponent at each moment of time. This is the 

method for calculating the first Lyapunov exponent 𝜆1 from a single coordinate, when equations 

describing the evolution of the system are unknown. The historical time series 𝑠(𝑡) is specified, 

where (𝑡 = 1, … , 𝑁) measurements of one coordinate of the historical process through the same time 

interval. The delay time 𝜏  is determined by the method of mutual information. The dimension of the 

embedding space m is determined by the method of the nearest false neighbors. A reconstruction is 

performed, as a result of which we obtain a set of points 𝑅𝑚 m in the form of a sequence: 

𝑠𝑖 = (𝑠(𝑖), 𝑥(𝑖 − 𝜏), … , 𝑠(𝑖 + (𝑀 − 1)𝜏)) = (𝑠1(𝑖), 𝑠2(𝑖), … , 𝑠𝑚(𝑖)).                                                   (4) 

We select the point 𝑠0 from a sequence (see Eq. 4). Then, as a result of the analysis of the sequence, 

we find the point 𝑠0̃, for which the following condition is satisfied    ‖𝑠0̃ − 𝑠0‖ =  ε0 < ε, where ε is a 

fixed quantity that is substantially smaller than the reconstructed attractor. The phase space is a space 

on which a set of all states of the system is represented in such a way that to each possible state of the 

system corresponds a point, and the evolution of the system is represented by the displacement of this 

point. The selected points 𝑠0 and 𝑠0̃ are separated in time. The evolution of the selected points on the 

reconstructed attractor is investigated until the distance between them exceeds a certain 

predetermined value ε𝑚𝑎𝑥. We introduce new notation: the points 𝑠1 and 𝑠1̃,  the distance between 

them is ε 0
′ , the evolution time interval is 𝑇1. Further, again from the sequence (see Eq. 4) a point 𝑠1̃, 

close to 𝑠1 is determined, for which the following condition must be fulfilled ‖𝑠1
′̃ − 𝑠1‖ =  ε1 < ε. It 

is desirable that the vectors (𝑠1̃ − 𝑠1) and (𝑠1
′̃ − 𝑠1) have the same direction. The process is repeated 

for points 𝑠1 and 𝑠1̃. As a result of the recurrence of this process, a large number (M) times, the first 

Lyapunov exponent has the following form 

λ ≅ ∑ ln(ε 𝑘
′ ε𝑘⁄ )𝑀−1

𝑘=0 ∑ 𝑇𝑘
𝑀
𝑘=1⁄ . (5) 

 

4. Computation of the highest Lyapunov exponent by the Rosenstein method 

The Rosenstein method [12] is simple to implement and shows a good calculation speed, however, 

the result of its work is not a numerical value of λ1, but a function of time: 

𝑦(𝑖, ∆𝑡) =
1

∆𝑡
〈ln 𝑑𝑗 (𝑖)〉, 𝑑𝑗(𝑖) = min

𝑥𝑗

‖𝑥𝑗 − 𝑥𝑗
′‖, (6) 
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where 𝑥𝑗  is the point under consideration, and 𝑥𝑗
′ is one of its "neighbors". The algorithm is based on 

the connection 𝑑𝑗   and Lyapunov exponents: 𝑑𝑗(𝑖) ≈ 𝑒λ1(i∆𝑡). The closest neighbor of the point under 

consideration is used for estimation. The higher Lyapunov exponent is proposed to be calculated as 

the slope angle of its most linear section. Finding such a site turns out to be a nontrivial task, and 

sometimes such a section can not be specified at all. 

 

5. Algorithm for the application of artificial learning neural network for calculating the 

spectrum of Lyapunov exponents 

A single-layer neural network is used [13]. A single-layer unidirectional neural network (see Fig. 1.) 

uses the layer n of hidden neurons to perform the next prediction  ˆkx  on the scalar time series kx :   

0

1 1

ˆ tanh ,
n d

i i ij k i

i i

X b a a x 

 

 
  

 
    (7) 

where ija  are coefficients of the matrix of size ( 1)n d  , ib  is a vector of length n . The matrix 

ija  shows the number of connections at the entrance to the network, the vector  ib is used to 

determine the contribution of each neuron at the output from the network. A vector 0ia  is an offset 

that facilitates learning on data whose mean is not zero. The idea of the method is to calculate, by 

means of an artificial learning neural network, the divergence of two nearby trajectories in n  steps 

forward. An analog, self-organizing neural network is used, which is represented in the form of real 

numbers and forms the output space of solutions based on input effects. It is a network with dynamic 

links directed strictly from input to output. In the learning process, synaptic connections are set up, 

that is 0dw dt  , where W  are the network weights. To calculate the highest Lyapunov exponent, 

a necessary time delay is estimated based on the sample; the dimension of the embedding space is 

calculated; a pseudo-phase reconstruction of the trajectory by the method of time delays; a neural 

network is constructed to approximate the time series; The neural network ija  is trained to calculate 

the next sequence vector of the time series; in the trained neural network, based on the generalized 

Benettin method [14].  
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Figure 1. Single-layer neural network of direct propagation 

6. Numerical results  

We study the dynamics of the development of two time series: changes in time of the territory of the 

Ottoman Empire and population. These time series are one of the key characteristics of the 

development of the state. The Ottoman Empire was created by representatives of the Ottoman 

dynasty. The history of this dynasty begins with Osman I (1281 - 1326) (see Fig. 2A). The favorable 

location of the Osman Beylik on the border with Byzantium made it possible to make very profitable 

raids on the border Byzantine territories in order to enrich and simultaneously carry out ideological 

propaganda. These actions eventually helped him to conquer the rest of the emirates. The values of 

the first Lyapunov exponent for the time series of the territory change according to the Wolf method 

1 0.06371  , according to Rosenshtein's method 1 0.01605  , neural networks 1 0.00612  . 

For all three methods, the values are positive, but close to zero. This means that the system was in a 

chaotic state. It is seen in Figs. 3A, 3B, that the time variation graph of the first Lyapunov exponent 

1  assumes positive values since 1376. This is the time of the beginning of the active expansion of 

the boundaries by Ottoman I. The dynamic expansion of the territory and the accession of all new 

states meant the constant allocation of the energy of the Ottoman state for the assimilation of new 

peoples (see Fig. 2B). The Ottoman Empire was a military-feudal, multiethnic (Turks, Arabs, Jews, 

Greeks, Armenians, etc.) state with a rigid vertical of power. At the head of this structure was the 

sultan, on which all structures of the state were closed: administrative - political, financial - tax, 

judicial - Muslim and judicial - non-Muslim and military.  
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 C   D 

  E   F 

  G   H 

Figure 2. Maps of changes in the territory of the Ottoman Empire superimposed on a geographical 

map with modern state borders. 

                                                                                     
The international situation at the time of the formation of the Ottoman Empire was such that around it 

there were several dynamically developing states like the Holy Roman Empire, Hungary, the Polish-

Lithuanian state and, in spite of its problems, Byzantium still existed. Undoubted and long-term 

dominance in the Mediterranean region, the Ottoman Empire was able to realize at the expense of a 

well-functioning state apparatus and the introduction of advanced technologies of that era both in the 

economy and in military structures. For example, the use of gunpowder allowed Mehmed II in 1453 

conquer the impregnable Constantinople and make it the capital of a dynamically developing 

Ottoman state. During this period, the 2D interpretation of the wavelets HAAR and MHAT shows an 
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increase in the frequency spectrum, hence, of the state's energy. For example, due to the structure of 

the Treasury and the Chancellery until the XVII century, the Empire was the most progressive among 

the Muslim and most Christian states of that era. Much attention is paid to education, so in the period 

from 1463 to 1471 eight madrasahs (religious schools) were built. In 1476 a fundamentally new set of 

laws was created, detailing the rights and duties of rulers and the supreme clergy, legitimizing a loyal 

attitude towards the Gentiles and a new administrative division of the state that increased its military 

effectiveness.  

A                                                                                      B 

 

Figure 3. The change in the territory of the Ottoman Empire is a continuous line, the change in the 

time of the first Lyapunov exponent   is a dashed line. The graphs are superimposed on the 2D 

interpretation of the HAAR (A) and the MHAT (B). 
 

The non-Muslim population, who had a majority in succeeded in handicraft, trading, usurious foreign 

trade the empire, could not legally make an administrative and military career, but its representatives 

and economic policy within the empire and towards subordinate neighboring states created an image 

of just government in the Ottoman Empire in comparison with the aggressive actions of the Catholic 

leaders of that time. The dark area on 2D wavelets (see Fig. 3A, 3B) corresponds to the period of 

stability that was due to these reforms. The 2D interpretation of wavelets HAAR and MHAT (see Fig. 

3A, 3B) shows that the highest frequencies   are reached during the peak of the empire, starting 

from 1514 - the reign of Selim I of Grozny and until 1566, the end of Suleiman I the Magnificent, 

which means a significant increase in the energy of the state. It was a "golden age" - a period of 

intense gains and annexations of new territories, reforms of the state system, the creation of a new 

legislative system, the flowering of construction, architecture, science and art. Sultan Suleiman I 

controlled much of North Africa, Eastern Europe in 1529 and the troops of Suleiman I reached 

Vienna), the entire Middle East, the navy of the empire controlled the Mediterranean and Red Seas, 

the Indian Ocean (see Fig. 2C).This is a period of significant growth in the population of the empire 

(see Fig. 4A, 4B). The values of the first Lyapunov exponent 1 for the time series of population 

change by the Wolff method over the entire time interval are positive. The average value by the Wolf 

method 1 0.17874  . The value calculated with the help of neural networks is negative, but very 
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close to zero 1 0.01439   . The 2D interpretation of the wavelets HAAR and MHAT (see Fig. 

4A, 4B) shows that the highest frequency values   are also reached during the peak of the empire 

under the rule of Suleiman I.  

A                                                                                    B 

          

Figure 4.  The change in the population of the Ottoman Empire is a continuous line, the change in the 

time of the first Lyapunov exponent is a dashed line. The graphs are superimposed on the 2D 

interpretation of the HAAR wavelet (A) and the MHAT (B) wavelet. 
 

Population fluctuations were due to epidemics that covered most of the European and Asian 

continents. Great losses were suffered by the empire during periods of unsuccessful and constant wars 

that had occurred since the end of the 17th century. It should be noted that the policy of national and 

religious tolerance, which was conducted in the Ottoman Empire, made it possible to effectively 

manage this multinational state. The empire presents a “large building” (see Fig. 4A, 4B). It is clear 

that by the end of Suleiman I rule, the state energy begins to decrease. That corresponds to the 

emerging economic problems in the form of tax increases. In many respects this was due to tax 

benefits. Initially, the feudal possessions were members of the provisional content, which was given 

to a nobleman for a certain occupation or for lifetime use, but was not hereditary. But over time, the 

posts began to inherit and with them land. To the landlords from the central power passed the right to 

collect taxes - tax immunity. This was economically very profitable for the feudal lord and not 

entirely beneficial for the state. On the other hand, such a tax policy led to the fact that part of the 

Christian feudal lords (from Bulgarians and Serbs) accepted Islam and became military-feudal 

nobility in order to preserve their possessions and receive tax benefits. While feudal lords, Christians 

who recognized themselves as vassals of the Sultan had to pay taxes. The presence of several 

multifrequency peaks ω means that despite the large number of successful military campaigns, from 

which a fifth of the extraction was allocated by the law, nevertheless the funds in the treasury start to 

be catastrophically short. The growth of former taxes and the emergence of new ones begin. Such 

changes are always precursors of the approaching economic crises, since the internal energy of the 

state during the Magnificent Age period decreased noticeably (see Fig. 3A, 3B). In the empire, in 

many respects, the vertical of management was correlated with a strong leader, and the strict 

587



regulation of all spheres of the state led to the fact that even the reforms that were being implemented 

did not keep peace with the new needs for the development of the empire. The entire infrastructure 

was programmed for war and conquest. This led to an overstrain of his forces (see Fig. 2D). After a 

succession of unsuccessful boards of weak sultans, disruption of state mechanisms, growth of 

corruption, taxes, and a slowdown in the expansion of imperial borders, there has been a decline and a 

significant decrease in state energy 𝐸𝑤 (see Fig. 3A, 3B). For the period of the end of the XVI 

century. and the beginning of the XVII century there were political and economic crises, which 

correspond to the wavelet 2D analysis (see Fig. 3A, 3B). There is an increase in the frequency 

spectrum 𝜔. At the end of the XVI century, before the Ottoman Empire, the world wave of the "price 

revolution" came, provoking a rapidly growing budget deficit and a financial crisis. The price 

revolution arose in Europe and on closely connected lands and meant an increase in trade prices of 2.5 

- 4 times. The positions of the bureaucratic apparatus and the trade and usurious class have 

strengthened strongly, taxes continued to grow. The power structures practically could not keep under 

control the development of events, the political and socio-economic crisis broke out in the empire. A 

state that has little energy is unable to function steadily, which is confirmed by a series of riots by the 

non-Muslim population, which was most dangerous, i.e. the janissary corps is the elite military corps 

of sultans. All this greatly weakened the empire and undermined its international authority, and the 

Ottomans could not perceive the next stage of the military revolution. The values of the first 𝜆1 

indicator are positive, that is, the state of the state system remains chaotic, the reforms did not help 

stabilize it. Period from the beginning of the XVIII century has a moderate increase in frequency ω. 

On the one hand, the frequency spectrum has increased, but with a different number of frequencies is 

not as large as in the previous multifrequency peaks. In the same period, the energy value of the state 

𝐸𝑤 does not increase. This is the period when the state apparatus worked ineffectively, and most of 

the collected as a result of taxes did not fall into the state treasury. Corruption practically paralyzed 

the work of the state machine. The empire increasingly became both economically and politically 

dependent on the more developed European states. At the end of the XVIII century and early XIX 

century. Reform attempts were periodically made and the situation was temporarily stabilized. This 

observation is consistent with the dark area on 2D wavelets (see Fig. 3A, 3B). For example, the 

reforms of Mustafa III (1757 - 1774), when the first public library was created in Constantinople, 

several hospitals and schools were built. Reform of Selim III (1789 - 1807), at the beginning of the 

XIX century the value of 𝐸𝑤 increases significantly (see Fig. 3A, 3B). There is a disintegration of the 

military system of the state and a deep social crisis begun. A series of military defeats and the loss of 

significant territories only aggravate the problems. At the end of the XVIII century and early XIX 

century, there were several wars between the Ottoman Empire and the Russian Empire, the Egyptian 

expedition of Napoleon, the Crimean War of 1853-1856. As a result of the defeat in these wars, the 
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Ottoman Empire lost vast territories of Crimea, almost all of Serbia, Moldavia, Wallachia, Greece, 

Greece, the eastern coast of the Black Sea (see Fig. 2I). Throughout the XIX century and early XX 

century, the empire continues to lose territory (see Fig. 2E). Attempts are being made to transform 

and reform, which bring temporary and more local solutions to problems, which corresponds to a 

decrease in the frequency peaks ω (see Fig. 3A, 3B). In particular, the progressive state elite of the 

state carried out reforms on the Europeanization of the governance system and the legislative system 

of the state, but it met the aggressive resistance of the radical Muslim population and led to a new 

surge of unrest. After the end of the First World War, which ended in the defeat of Germany where 

the Ottoman Empire allied with it, large territories were diverted from the empire and troops of 

Atlanta were present in almost every province (see Fig. 2F). In the spring of 1920, the Great National 

Assembly was convened on which the patriotic forces of the empire were united and for two years the 

foreign troops were expelled. At the end of 1922 the sultanate was abolished. In place of the empire, a 

republic was formed (see Fig.  2J), which positively affected the values of the first Lyapunov index 

𝜆1, which became zero. 

 

7. Conclusions 

As a result of the study of time series of changes in the territory and population of the Ottoman 

Empire, the Haar wavelet and the Mexican hat were chosen from a variety of options. These wavelets 

made it possible to localize the energy values of the state and clearly revealed the periods of its 

increase. For the first time to study the development of the Ottoman Empire, methods of nonlinear 

dynamics were applied and the notion of state energy was introduced. This provided an opportunity to 

analyze the social and economic development of the Ottoman Empire. The calculation of the 

Lyapunov exponent in three ways made it possible to obtain the reliability of the results. The results 

of wavelet analysis of historical time series and changes in the values of the first Lyapunov exponent 

𝜆1 are in good agreement with each other. 
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Optimal thrust programming along the brachistochronic 

trajectory with drag 

 
 

Alena Zarodnyuk, Oleg Cherkasov 

Abstract: The problem of maximization of the horizontal coordinate of mass-point 
moving in the vertical plane driven by gravity, viscous drag, and thrust is considered. 
The slope angle and the thrust are considered as a control variables. The problem is 
related to the modified brachistochrone problem. Principle maximum procedure 
allows to reduce the optimal control problem to the boundary value problem for a 
system of two nonlinear differential equations. The qualitative analysis of the 
trajectories of this system is performed, and the robust properties of the optimal 
solutions are determined. Optimal controls depending on the state variables are 
designed. Characteristic features of the designed controls allow to construct quasi-
optimal solutions for the more complex systems, where phase plane method is not 
applicable. 

1. Introduction  

The motion of a material point by a mass m in the vertical plane in a homogeneous field of gravity 

and in a homogeneous, resisting medium is considered. The slope angle and the thrust are considered 

as a control variables. The aim of the control is to maximize the horizontal range (terminal term in the 

functional) and minimize energy costs (integral term) at a given time of the process. Along with the 

problem of maximizing the range, we consider the brachistochrone problem - the problem of 

choosing the shape of a trajectory connecting two given points on a vertical plane, the time of travel 

along which is minimal, and the total control efforts should be also minimized. It is assumed that the 

dependence of the maximum range on time is monotonic. Then the problem of brachistochrone and 

the problem of maximizing the range in a given time are interrelated in the following sense. Let us 

take the maximum distance value obtained as a result of solving the problem with fixed time as a 

given final condition for the brachistochrone problem. Then the minimum time, obtained as a result of 

the solution of the latter, coincides with the time that was fixed when solving the problem of 

maximizing the range. Trajectories also coincide.  

       Various generalizations of the brachistochrone problem have not only methodological interest, 

but also have applications. Examples include the problem of optimizing the trajectories of aircraft, for 

which it is possible to control the lift force without changing the resistance force, the problem of 

optimal pursuit of a rectilinearly moving aircraft. The problem is relevant for the design of the 
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optimal drill and casing pipe drill profile in wells with given initial and final points, for determining 

the shape of trays for various bulk materials, for constructing the profile of rail sorting slides, for 

choosing the form of evacuation gangways, amusement rides like "roller coaster" etc. [1]. 

Generalizations of the classical problem of brachistochrone with the accelerating force were 

considered in [2-7]. In [2], the results of modeling for the case of an acceleration force proportional to 

the velocity were presented, and in [3] the same problem was solved using the genetic algorithm. In 

the dissertation [4] the problem of a brachistochrone with a constant accelerating force was 

considered. In [5] the problem was studied in the presence of a constant accelerating force and the 

force of linear viscous friction. In [6], the case of a quasi-constant acceleration force was investigated. 

In this case, the special class of optimal trajectories was considered, for which the transit time of each 

of its interior points is minimal for this point. In [7], the properties of trajectories with a quasi-

constant acceleration force without friction are investigated analytically.  

       In this paper two control variables are considered: the thrust and the slope angle. The results 

obtained could be considered as some generalization of the papers, mentioned above.   

2. Problem formulation 

Equations of motion of the particle with constant mass in dimensionless variables are as follows:  

cos ,
sin ,

sin .

x v
y v
v p v

 


 
    

                                                                                             (1) 

Here ,x y  are the horizontal distance and vertical altitude respectively; v  is the module of the 

velocity;   is the slope angle, considered as a control variable; p  is the thrust, another control 

variable subjected to inequality ( )p p t p   , where p is positive constant; both controls are 

piecewise continuous function. The dot over symbols indicates the differentiation with respect to a 

dimensionless time. Initial conditions for the system (1) are as follows: 

0 0 0(0) , (0) , (0) ,x x y y v v                                                                                    (2) 

final conditions for variables ,v y are free.  

Goal function is  

2

,
0

( ) ( ) min.
T

p
J x T p t dt    

                                                                                                  (3) 

Let introduce new variable   by formula 2

0

( ) ( ) ,
t

t p d    and reduce the problem (1)-(3) to the 

following Mayer’s optimal control problem for the system:  
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2

cos ,
sin ,

sin ,
( ) ,

x v
y v
v p v

t p

 


 


   
 

                                                                                                                      (4) 

with initial conditions 

 0 0 0(0) , (0) , (0) , (0) 0,x x y y v v                                                                                         (5) 

and the following goal function:   

,
( ) ( ) min,

p
J x T T   


                                                                                                      (6) 

3. Problem analysis 

The Hamiltonian of the problem (4)-(6) has a form: 

 2cos sin ( sin ) ,x y vH v v p v p C          

where C is unknown constant. Equations for co-state variables are written as follows:   

0, 0, 0, cos .x y v v                                                                               (7) 

From the transversality conditions it follows that  

( ) 1, ( ) 0, ( ) 1, [0, ], ( ) 0.x y vt t t t T T           

The conditions for the maximum of the function H  with respect to control   are written in the form  

2

2sin cos 0, 0.
cosv

H H vv 
       

  
                                                            (8) 

From the transversality conditions and the relations (8) it follows:  

, ( ) 0, cos 0.v vtg T         

The conditions for the maximum of the function H  with respect to control p  are written in the form 

2

22 , 2 0.v
H Hp
p p

 
     

 
 

Since the inequality 

 2( ) 2 cos 0pp pH H H v 
         

is fulfilled,  the extremum exists, moreover, function H reaches its maximum. The extremal thrust 

control could be calculated from formula 

 / 2 ( ) / 2.vp vtg      

Taking into account restriction for the thrust ( )p p t p    we get the following control logic: 
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( ) ,p t p if 2 ,vtg p   ( ) ,
2

vtgp t 
  if 2 2 ,p vtg p   ( ) ,p t p  if 2vtg p  .  

By differentiating 
v with respect to time according the systems (4), (7) the expression for the value 

of   could be found.  Thus, the optimal control problem (4)-(6) is reduced to the following boundary-

value problems: 

2 ,
( )

vtg p
p t p

  


                       

  

0sin , (0)
cos 1 2 sin , ( ) 0,

v p v v v

v p T
v

    

 
      


                        (9) 

2 ,
( )

vtg p
p t p

 

 
                       

  

0sin , (0)
cos 1 2 sin , ( ) 0.

v p v v v

v p T
v

     

 
      


                 (10) 

2 2 ,
( ) ( ) / 2

p vtg p
p t vtg
   

  
            

0sin , (0)

cos 1 2 sin , ( ) 0,
2

v p v v v

tgv T
v

    


     
        

  

            (11) 

Following to the presented logic, one can divide the plane into domains where the thrust takes 

boundary values, and where the value of the thrust belongs to internal range of the set of admissible 

values (see Fig.1). The system (9) has two states of equilibrium 1 1( , )v and 2 2( , )v  for 

[0;1]p , first of them is stable proper node, and the second is saddle-type point. 

 
Figure 1. The domains of the motion with intermediate and boundary thrust. 
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For  1p  one more stationary solutions 3 3( , )v  appears, it also presents the stable proper 

node. Corresponding phase portraits are presented in Fig.2 and Fig.3. The phase portrait makes it 

possible to analyze the qualitative properties of the solutions to the boundary value problem (9). It is 

seen that, at fixed value of )0(v , the initial value of (0)  must be chosen between the separatrices 

entering the saddle point and the coordinate axis to ensure that at the time when the process is 

terminated the trajectory is on the straight line ( ) 0T  . The set of possible initial conditions is 

shaded in Fig.2, 3. 

 

 
Figure 2. Phase portrait of the system (9) for [0;1]p .   

 
Figure 3. Phase portrait of the system (9) for 1p   . 
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Consider system (10). The motion with control p p   is acceptable in the domain 

2vtg p  . It is easy to check, that in this mode the trajectory doesn’t leave the domain. Thus, the 

motion under control p p  doesn’t include in the optimal trajectory.  

Consider system (11). When intermediate thrust is applied, the system has single state of 

equilibrium, the saddle point with following coordinates: 

*
* *

*

1 17 2sin,
4 ( ) 2

arctg v
tg

  
        

. 

Corresponding phase portrait is presented in Fig.4.  

 
Figure 4. Phase portrait of the system (11). 

Thus, the extremal synthesis of the thrust is designed. Extremal trajectory of the problem (4)-(6) 

consists either of single arc with intermediate thrust control or two arcs, starting with p p  and 

ending with the intermediate thrust.   

In Fig.5 the extremal control, depending on time is presented. Corresponding trajectory in the plane 

( , )x y  is shown in Fig.6.  

 
Figure 5. Extremal thrust along the trajectory, 0,2, 2,3p T  . 
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Figure 6. Trajectory in the plane ( , )x y , 0,2, 2,3p T  . 

It is a characteristic feature that the type of the stationary solution corresponding to the inclined 

motion does not change when using various models of viscous friction, and also when taking into 

account the accelerating force. The existence of a saddle point is an illustration of the stability and 

unstability of the initial and conjugate systems. This point represents an asymptotic line of extremal 

motion. Its presence is a qualitative and "rough" property of boundary value problems, to which the 

optimal control problems are reduced if the trajectory spends excess time in a limited region of the 

subspace of states. 

At sufficiently large values of the time T , the optimal trajectory consists of three parts. The first 

part corresponds to the rapid motion from the initial point to the neighborhood of the saddle point; the 

second part corresponds to the slow "drift" in the neighborhood of the saddle point; and the third part 

corresponds to the rapid motion from the neighborhood of the saddle point to the terminal point on 

the coordinate axis. The drift of the phase trajectory in the neighborhood of the saddle point in the 

plane ),( yx  is associated with the almost straight part of the optimal trajectory.  

1. Conclusions 

The qualitative analysis of the brachistochrone problem with two control variables, the slope angle 

and the thrust allows to substantiate the simulation results presented in [2, 3, 5] and elaborate the 

properties of the analytical solutions obtained in [6,7].   
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A remark on point coordinates in multibody dynamics formulations

Ulrike Zwiers

Abstract: This paper shows that condensed point-coordinate models of rigid
bodies depend greatly on the method used to generate the governing set of
equations. Referring to planar multibody systems, four different methods to
formulate dynamically equivalent two-point models of arbitrarily shaped rigid
bodies are presented, namely, reduction of three-point models, transformation
of body-coordinate models in both centroidal and non-centroidal formulation,
and a direct modeling approach. The numerical analysis of a physical pen-
dulum serving as a benchmark example reveals that the resulting two-point
models partially lack characteristics common to mechanical systems such as a
symmetric, positive-definite mass matrix. However, despite their remarkable
differences in inertia and inertial coupling, all models are proved to be capable
to predict the pendulum’s motion and the reactions at the pivot point correctly.

1. Introduction

In the point-coordinate formulation of multibody systems, also known as natural or fully

Cartesian coordinates formulation, the rigid bodies are represented as a collection of mass

points connected by massless links. The kinematic constraints of such models derive in

two ways, from the assumption of rigidity of the bodies and from the joints or kinematic

pairs. While the former leads to quadratic polynomials forcing constant distances between

the points associated with a body, the latter is covered by simple algebraic equations that

– as no angular coordinates are used – never involve trigonometric functions. Anyway, if

the bodies are allowed to share some of their points, most kinematic joints do not cause any

additional constraint equations in the formulation.

Thus, point-coordinate models can be expected to require less coordinates as body-

coordinate models, but – in general – to be not as dense as joint-coordinate models. However,

as the constraint equations occurring in point-coordinate models are significantly simpler as

those formulated in either body or joint coordinates, their use might be advantageously in

some cases.

From a didactic perspective, point coordinates allow to focus on the fundamental con-

cepts of multibody dynamics without the need to distinguish between global and local coor-

dinates, to work with rotary matrices, to pay special attention to closed kinematic chains,

and so on. Especially when restricted to planar models, the point-coordinate formulation
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enables – after a brief introduction – even undergraduate students to build quickly multibody

models as basis for numerical simulations.

In this regard, the textbook [2] by Parviz E. Nikravesh is an excellent reference apart

from giving the misleading impression that three points are required to represent a rigid

body of arbitrary geometry in the plane1. Using actually three points to represent each

body of a planar multibody system results in unnecessary large models, which motivates the

formulation of condenced point-coordinate models as studied in this paper.

A generally applicable two-point representation of a planar rigid body can be derived

in different ways. It should be noted, however, that the chosen approach determines the

structure of the resulting model, which – after a concise account of the point-coordinate

formulation – is shown by means of four methods that yield dynamically equivalent, but

significantly different point-coordinate models.

2. Fundamentals of Point Coordinates

Properly formulated point-coordinate models preserve the kinematics and inertial character-

istics of a system such that no approximations are involved. A general description of this

formulation can be found in [1], while [2] refers exclusively to planar models. The notation

used in this section is mainly adopted from [2].

2.1. Kinematics

A point in the plane is uniquely defined by its two Cartesian coordinates. If these coordinates

are constant, the point is referred to as a stationary point, whereas a point with at least one

variable coordinate that appears explicitly in the constraint equations is denoted as a primary

point. In contrast to stationary points which can be defined arbitrarily without increasing

the computational cost, the number of primary points is directly related to the model size

and, thus, should be kept to a minimum.

The position, velocity, and acceleration of a point i are defined by the x-y components

of ri, ṙi , and r̈i, respectively. As most constraints occurring in point-coordinate models

describe a condition on a vector that connects two points, such a vector between point i and

point j is introduced first as dij = rj − ri. Two points defined on a rigid body must keep

their distance constant, which can be expressed as

Φ =
1

2

(

d
T
ijdij − ℓ

2

ij

)

= 0 , (1)

1Only for the special case of a rod-like body, i. e., a body with a dominant axis along
which its center of mass as well as all other points are located, a two-point representation is
provided.
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with ℓij denoting the distance between the two points.

Taking the partial derivative of the kth constraint equation of the form (1) with respect

to the array of coordinates yields one row in the Jacobian matrix whose non-zero entries

read as

Jk =
[

· · · − d
T
ij . . .d

T
ij . . .

]

. (2)

The negative product of the time derivative of the Jacobian matrix and the array of velocities

constitutes the right-hand side array of the constraint equations at the acceleration level,

which in case of the constant-length constraint assumes the form

γk = −ḋ
T

ij ḋij . (3)

Since only the constant-length constraint is of interest in the course of this study, other types

of constraints occurring in point-coordinate formulations are not considered here.

2.2. Exact Mass Distribution

While a force whose point of application coincides with one of the particles representing a

body of a point-coordinate model can be applied directly to that particle, general loads, such

as torques and distributed loadings, must be distributed properly to the individual particles.

This also holds for inertial characteristics, i. e., the masses of the particles must be specified

in such a way that they behave dynamically just like the bodies they are representing. The

following three conditions must be fulfilled in order to obtain an exact mass distribution:

1. The sum of the masses of the particles representing a single body must be equal to

the overall mass of that body.

2. The mass center of the system of particles must coincide with the mass center of the

body.

3. The moment of inertia of the system of particles about an arbitrary point must be

the same as the moment of inertia of the body about that point.

As the second condition defines actually a vector equation, i. e., two algebraic equations for

a body in the plane, these three conditions together lead to a total of four equations defining

four unknown masses. With point S denoting the center of mass, these equations may be

expressed in expanded form as
















1 1 1 1

ξA ξB ξC 0

ηA ηB ηC 0

sT
AsA sT

BsB sT
CsC 0

































mA

mB

mC

mS

















=

















m

0

0

ΘS

















, (4)
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Figure 1. Point-coordinate representation of a planar body

with the positions of the other three points A, B, C being specified with respect to the ξ-η

coordinate system located at the center of mass S, as shown in Figure 1.

Solving the system of equations (4) allows to construct the corresponding 8×8 diagonal

mass matrix as2

M4p =















mAI 0 0 0

0 mBI 0 0

0 0 mCI 0

0 0 0 mSI















. (5)

If a planar rigid body is modeled by four points, i. e., by eight Cartesian coordinates,

five constraint equations of the form (1) must be established to end up with three degrees

of freedom. It is, however, not necessary to use actually four points to model a rigid body

in the plane as the coordinates of point S, the center of mass, can be expressed as functions

of the coordinates of the other three particles3:

rS =
mArA +mBrB +mCrC

mA +mB +mC

2As for the special case of a rigid body with a dominant axis along which its center of
mass as well as the other particles are located (rod-like body), one of the equations in (4)
becomes redundant such that the exact mass distribution is obtained by only three points.

3In case of a rod-like body, the coordinates of point S may be expressed accordingly as
functions of the coordinates of the other two particles.
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Thus, the vector of coordinates can be transformed as
















rA

rB

rC

rS

















=

















I 0 0

0 I 0

0 0 I

µAI µBI µCI

















︸ ︷︷ ︸

B











rA

rB

rC











,

with the mass ratios

µi =
mi

mA +mB +mC

, i = A,B,C .

Now, using the 8× 6 transformation matrix B, the 8× 8 mass matrix (5) can be reduced to

the 6× 6 mass matrix M3p = BTM4pB representing a planar body by only three points:

M3p=











(mA+µ2

AmS)I µAµBmSI µAµCmSI

µBµAmSI (mB+µ2

BmS)I µBµCmSI

µCµAmSI µCµBmSI (mC+µ2

CmS)I











(6)

Even though the coordinates of point S are eliminated from the model, its contribution to

the mass matrix is obviously kept. The resulting mass matrix of the three-point model is

still time-invariant and symmetric, but no longer diagonal.

Assuming a rigid body which is only subject to the gravitational force, the load vector

associated with the four-point model reads as

g4p=















F g,A

F g,B

F g,C

F g,S















with F g,j =





0

−mjg



 , j = A,B,C, S. (7)

Transforming the load vector to the three-point model according to g3p = BTg4p yields the

reduced load vector

g3p=









F g,A + µAF g,S

F g,B + µBF g,S

F g,C + µCF g,S









. (8)

Thus, for each of the remaining three points, an effective mass can be defined as

m
∗

i = mi + µi mS , i = A,B,C , (9)

which equals the sum of the corresponding rows or columns, respectively, of the mass matrix

given by (6).

Anyway, the three-point model of a planar body given by (6) and (9) together with three

constraints of the type (1) can be further reduced as shown in the next section.
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3. Two-point representation of planar bodies

There are actually various ways to end up with a two-point model of a planar body. This

study considers four of them: reduction of the three-point model (model I), transformation of

the body-coordinate model in centroidal formulation (model II), transformation of the body-

coordinate model in non-centroidal formulation (model III) and a direct modeling approach

(model IV). Even though the process of transforming an existing model is straight forward, it

possesses the disadvantage of obscuring the underlying mechanical concepts, which motivates

the attempt to formulate the model in a direct manner. Furthermore, as each method leads

to a different, yet equivalent model, this study might provide additional insight into inertia

coupling.

All models, however, lead to a differential equation of the general form

Mk





r̈A

r̈B



+ J
T
λ = gk , k = I, II, III, IV, (10)

in which the mass matrix Mk and the load vector gk depend on the method applied for

derivation. As a two-point model is formulated in four Cartesian coordinates, only one

constraint of the form (1) is required anymore. Consequently, the Jacobian reduces to a

vector given by (2).

3.1. Reduction of the three-point model

In the first instance, the three-point model introduced above is simply reduced by eliminating

one particle and its corresponding constraints from the equations of motion.

Referring to Figure 2, the position of one particle of the three-point model of a planar

body can be expressed as function of the coordinates of the two other particles, e. g.,

rC = rA +
p

ℓ
(rB − rA) +

q

ℓ
D(rB − rA) , (11)

where D is the matrix that rotates a vector in the plane counter-clockwise by 90o, i. e.,

D =





0 −1

1 0



 .

By means of the transformation expression











rA

rB

rC











=











I 0

0 I
(

1−
p

ℓ

)

I −
q

ℓ
D

p

ℓ
I +

q

ℓ
D











︸ ︷︷ ︸

T I





rA

rB



 ,
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q

Figure 2. Geometry of the three-point model

one may construct the reduced 4× 4 mass matrix as

M I = T
T
I M3pT I =





M I,AA M I,AB

M I,BA M I,BB



 , (12)

which is a time-invariant, symmetric matrix whose block matrices M I,AA and M I,BB are

diagonal each with identical non-zero entries, while the other two block matrices are dense

with identical diagonal and off-diagonal entries, and it holds that M I,AB = MT
I,BA.

The reduced load vector of this first two-point model is also time-invariant. It is con-

structed as follows

gI = T
T
I g3p =





F ∗

g,A + F ∗

g,C −
(p

ℓ
I −

q

ℓ
D
)

F ∗

g,C

F ∗

g,B +
(p

ℓ
I −

q

ℓ
D
)

F ∗

g,C



 , (13)

where F ∗

g,i, i = A,B,C, are the effective gravitational forces with the masses given by (9).

3.2. Transformation of body-coordinate models

In a body-coordinate model of a planar multibody system, three coordinates are introduced

for each body, namely two Cartesian coordinates defining the position of a point of the

body and one angular coordinate describing the orientation of the body, regardless of the

constraints that may couple some of the coordinates.

Referring to Figure 2, the lengths p and q are replaced by α and β, respectively, to

specify the position of the center of mass, denoted with S, in an analogous manner as the

position of point C given by (11), i. e.,

rS = rA +
α

ℓ
(rB − rA) +

β

ℓ
D(rB − rA) . (14)
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3.2.1. Centroidal formulation

If the local, body-fixed ξ-η coordinate system is defined at the center of mass, the equations

of motion of a single, unconstrained body read as





mI 0

0T ΘS





︸ ︷︷ ︸

MS





r̈S

φ̈



 =





Fg

0



 . (15)

As before, the body is assumed to be only subject to the gravitational force.

By means of the transformation expression





r̈S

φ̈



 =
1

ℓ2





(ℓ− α) ℓI − βℓD αℓI + βℓD

− (D(rB − rA))
T (D(rB − rA))

T





︸ ︷︷ ︸

T II





r̈A

r̈B





formulated at the acceleration level, one may construct the reduced 4 × 4 mass matrix of

the second model as M II = T T
IIMST II which is a time-variant, symmetric, but singular

matrix of rank three as the transformation introduces a redundant coordinate. However,

the governing differential-algebraic system of equations built of the differential equation (10)

and the algebraic constraint equation (1) is well defined.

It can be shown that the reduced load vector of this second model is identical to the one

of the first model, i. e., gII = gI as given by (13).

3.2.2. Non-centroidal formulation

If the local ξ-η coordinate system is defined at an arbitrary point A, the inertia matrix is

no longer diagonal and time-invariant. Furthermore, the load vector must account for the

centrifugal force and the moment now caused by the gravitational force. Thus, the equations

of motion assume the form




mI mDsAS

m(DsAS)
T ΘA





︸ ︷︷ ︸

MA





r̈A

φ̈



 =





Fg +mφ̇2sAS

(DsAS)
TF g





︸ ︷︷ ︸

gA

. (16)

By means of the transformation expression





r̈A

φ̈



 =
1

ℓ2





ℓ
2
I 0

− (D(rB − rA))
T (D(rB − rA))

T





︸ ︷︷ ︸

T III





r̈A

r̈B




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one may construct the reduced 4 × 4 mass matrix of the third model as M III = T T
IIIMAT III

which is – just like the one of the second model – a time-variant, symmetric matrix of rank

three.

As for the reduced load vector, one obtains a time-variant vector due to the time de-

pendency of the right-hand side of (16), gIII = T T
III gA, where the angular velocity can be

expressed as

φ̇ =
1

ℓ2
(ṙB − ṙA)

T
D (rB − rA) .

3.3. Direct Modeling

Another approach of deriving a two-point model of a planar rigid body consists of expressing

its kinetic energy instead of

T =
1

2
mv

2

S +
1

2
ΘSφ̇

2 (17)

in terms of the velocities of the two points A and B

T =
1

2

[

ṙT
A ṙT

B

]

M IV





ṙA

ṙB



 . (18)

This quadratic form allows to identify directly the elements of the mass matrix M IV.

The velocity of the center of mass may be expressed as

vS =
1

ℓ

[

(ℓ− α) I − βD αI + βD

]





ṙA

ṙB



 (19)

which leads to

v
2

S =
1

ℓ2

[

ṙA ṙB

]





(

(ℓ− α)2 + β2
)

I
(

(ℓ− α)α− β2
)

I + βℓD
(

(ℓ− α)α− β2
)

I − βℓD (α2 + β2)I









ṙA

ṙB



 .

In an analogous manner, the squared angular velocity may be expressed as

φ̇
2 =

1

ℓ2

[

ṙA ṙB

]





I −I

−I I









ṙA

ṙB



 ,

such that the mass matrix assumes the form

M IV =
m

ℓ2





(

(ℓ− α)2 + β2 + k2

S

)

I
(

(ℓ− α)α− β2 − k2

S

)

I + βℓD
(

(ℓ− α)α− β2 − k2

S

)

I − βℓD (α2 + β2 + k2

S)I



 (20)

where kS is the radius of inertia according to ΘS = mk2

S .
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The load vector can be constructed in different ways. For example, the gravitational

force may be split onto both points such that the load vector assumes the form

gIV =





F ∗

g,A + Fn,A

F ∗

g,B + Fn,B



 , (21)

with the effective gravitational forces F ∗

g,i, i = A,B whose effective masses are obtained by

summing up the respective entries in the columns or rows of the mass matrix:

m
∗

A = (ℓ− α+ β)
m

ℓ

m
∗

B = (α− β)
m

ℓ

The forces Fn,A and Fn,B appearing in (21) form a force couple, i. e., Fn,A = −Fn,B, acting

perpendicularly on the axis of the two-point model:

Fn,B =
n

ℓ2
DsAB , (22)

where n is the displacement moment of the gravitational force. Taking the moment with

respect to point A, it reads as

n = (DsAS)
T
F g − (DsAB)

T
F g,B .

Obviously, the load vector of this fourth model as given by (21) is time-variant.

4. Example: Physical Pendulum

In order to compare the four different two-point models derived above, numerical simulations

of the physical pendulum depicted in Figure 3 are carried out. Starting from the configura-

tion in which the ξ-η coordinate system is oriented horizontally without initial velocity, the

ξ

η

120

380

7
0

1
8
0

A
S

b
B

b
C

m = 14 kg

ΘS = 0.21 kgm2

Figure 3. Geometry and inertia of the physical pendulum
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t = 0 t = 4 s

M I









14.821 0.000 −9.377 9.333
0.000 14.821 9.333 −9.377

−9.377 9.333 17.932 0.000
−9.333 −9.377 0.000 17.932









· · ·

M II









14.821 0.000 −9.377 −9.333
0.000 8.340 9.333 −2.895

−9.377 9.333 17.932 0.000
−9.333 −2.895 0.000 11.451

















12.245 −3.172 −6.800 −6.161
−3.172 10.916 12.505 −5.471
−6.800 12.505 15.356 −3.172
−6.161 −5.471 −3.172 14.027









M III









14.821 −9.333 −9.377 0.000
−9.333 14.000 9.333 0.000
−9.377 9.333 17.932 0.000
0.000 0.000 0.000 0.000

















5.502 −2.814 −1.395 1.070
−2.814 23.319 10.404 −7.981
−1.395 10.404 11.288 −8.660
1.070 −7.981 −8.660 6.644









M IV









14.821 0.000 −9.377 −9.333
0.000 14.821 9.333 −9.377

−9.377 9.333 17.932 0.000
−9.333 −9.377 0.000 17.932









· · ·

Figure 4. Entries of the mass matrices

temporal development of both the swing angle and the reaction forces at the pivot point are

verified to assure the dynamical equivalence of the four models.

Figures 4 and 5 document the entries of the mass matrices and load vectors of the four

models at the initial state and at an arbitrary instant of time, namely after four seconds.

It can be seen that the first and the fourth model yield the same time-invariant, symmetric

mass matrix, but different load vectors. While the load vector of the first model is time-

t = 0 t = 4 s

gI









91.56
−53.41
−91.56
−83.93









· · ·

gII









91.56
−53.41
−91.56
−83.93









· · ·

gIII









91.56
−137.34
−91.56

0.00

















26.512
−203.854
−17.103
13.121









gIV









91.56
−144.97
−91.56

7.63

















11.508
−154.117
−11.508
16.778









Figure 5. Entries of the load vectors
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invariant, the load vector of the fourth model depends on time and differs even at the initial

state. On the other hand, the load vector of the second model is identical to the one of the

first model, but the mass matrix differs. The mass matrices of the second and third model

feature different, time-varying diagonal entries related to the inertia of the corresponding

coordinates.

5. Conclusion

Referring to planar systems, the two-point representation of rigid bodies is outlined in a

systematic manner applying four different methods. Even though the resulting models are

dynamically equivalent, they differ significantly, which is exemplified numerically by means

of simulations of a physical pendulum.

Using a two-point model to describe the planar motion of a rigid body appears to be a

promising approach to gain further insight into the role of mass matrices and load vectors

in the analysis of mechanical systems. It is expected that the presented models help to

interpret properly the diagonal and off-diagonal terms of mass matrices and to understand

related concepts such as inertial coupling, effective mass and dynamic isotropy.
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Modelling of high frequency dynamic responses
of engineering structures

Arkadiusz Żak, Marek Krawczuk, Grzegorz Redlarski, Wiktor Waszkowiak

Abstract: Modelling of high frequency dynamic responses of engineering struc-
tures, especially those related to wave propagation, is a real numerical chal-
lenge. Nowadays most of numerical models, used for that purpose, are based on
the application of various finite element techniques. However, finite element
discrete models may also be considered as possessing certain periodic struc-
tures, which may manifest themselves in particular scenarios. The source of
their periodicity comes from the discontinuity of the stress/strain field between
adjacent finite elements, which usually are ignored by modellers as having no
influence on numerical results. Indeed, their influence remains unnoticeable,
when low frequency dynamics is investigated. On the other hand at high fre-
quency regimes its influence may be strong enough to dominate calculated
structural dynamic responses distorting or even falsifying them completely. In
this paper certain issues of modelling of high frequency dynamic responses by
finite element techniques are discussed by the authors. In this discussion the
authors focus their interest on exemplary problems related to modal analysis
as well as wave propagation, with a special attention paid to the periodicity of
numerical finite element models. The authors also present and discuss certain
methods to minimise, or avoid, the numerical issues mentioned.

1. Introduction

The Finite Element Method (FEM), as well as its many available variants, including the

Spectral Finite Element Method (SFEM), still remain one of the most popular computational

methods used to analyse the behaviour of engineering structures [4]. As a very robust

numerical tool the FEM is employed not only for that purpose, but it also enables researchers

to carry out numerical investigations of various physical phenomena in domains of very

complex geometries [10]. Beside static or classical dynamic investigations, one of many fields

of its applications is modelling and analysis of wave propagation phenomena, especially for

the purpose of structural health monitoring (SHM) [3], where sophisticated damage detection

algorithms can be tested numerically before their practical implementation [9].

However, discrete numerical models produced by the FEM or SFEM poses certain nu-

merical properties that can be a source of significant numerical errors in particular compu-

tational scenarios. The source of these errors come from the stress/strain field discontinuity
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between adjacent finite elements (FEs) and it strongest influence manifests itself at high

frequency regimes, when high frequency dynamic responses are investigated. For this very

reason discrete numerical models may be also considered as periodic structures, which peri-

odicities result in the appearance of certain forbidden frequency band gaps in their natural

frequency spectra, in a very similar manner as it is observed in nano-scale in the case of

periodic electromagnetic or acoustic metamaterials [7]. Since structural dynamic responses

of engineering structures may be considered as a superposition of natural vibration modes of

certain amplitudes, the presence of frequency band gaps may have a profound impact on the

dynamic responses calculated. This can be very well observed in the case of wave propaga-

tion problems [8], therefore the knowledge about this kind of numerical behaviour, resulting

from the properties of discrete numerical models, should be always taken into account.

The aim of this paper is to demonstrate the influence of the structural periodicity of

discrete numerical models on calculated dynamic responses. The analysis carried out by the

authors begins from simple one-dimensional (1-D) engineering structures as rods and beams

and further on its results are generalised onto more complex two-dimensional (2-D) as well

as three-dimensional (3-D) cases. Based on this analysis certain practical conclusions are

formulated and presented by the authors.

2. Periodic properties of FE models

The immanent property of the classical (displacement) formulation of the FEM is the dis-

continuity of the stress/strain field between adjacent FEs. Because of this, regardless their

finite dimensions and various types of boundary conditions or mesh densities, FE models

may be considered as representing structures of properties typical to periodic structures.

This can be well observed for 1-D structures, however, for 2-D or 3-D structures the same

kind of behaviour may be found. Periodic properties of FE models may manifest themselves

particularly strong in the case of problems related to propagation of elastic waves, in various

elements of engineering structures, especially in the case of 1-D problems. This is a direct

consequence of the fact that this particular type of analysis require very dense and regular

FE meshes [3].

2.1. Bloch theorem and its consequences

The Bloch theorem in a analytical tool that enables researchers the investigation of the

properties and behaviour of periodic structures [1] in nano-, micro- as well as in macro-

scales. Most commonly it is used to study the behaviour of electrons in various crystals,

however, its application is much more general. The Bloch theorem can be employed to study

wave propagation phenomena in periodic media or structures. For example, in periodic
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Figure 1. Geometry of an isotropic bar.

dielectric materials the Bloch theorem is used to analyse photonic crystals or in periodic

media to analyse phononic crystals [2].

The application of the Bloch theorem is demonstrated by the authors in the case of

longitudinal vibrations of 1-D periodic aluminium bar presented in Fig. 1. For this analysis

it was assumed that the bar under investigation, of periodic boundary conditions, has the

following dimensions: length L = 2000 mm and radius R = 20 mm, as well as the following

material properties: elastic modulus E = 67.5 GPa, Poisson’s ratio ν = 0.33 and mass

density ρ = 2700 kg/m3.

In this simple case it was also assumed that the bar consists of M = 100 periodic cells of

length a = 20 mm characterised by two different wave propagation phase velocities: c1 = 5

km/s over the cell length l1 = 16 mm and c2 = 2.5 km/s over the cell length l2 = 4 mm.

The results of analytical calculations obtained by the application of the Bloch theorem are

presented in Fig. 2, together with corresponding results of numerical calculations obtained
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Figure 2. Spectrum of longitudinal natural frequencies fn (left) and natural frequency

relative errors εn (right) of a periodic bar consisting of M = 100 cells.
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by the application of the SFEM. In this case N = 500 SFEs were applied. They were defined

according to elementary theory of longitudinal vibrations of rods [5], for p = 5 degree of

approximation polynomials, and Chebyshev node distribution [3]. The total number of

nodes, i.e. degrees of freedom (DOF), of the numerical model was DOF = 2500. It can be

clearly seen that periodic properties of the bar results in the presence of frequency band gaps

in the spectrum of natural frequencies. Their widths are closely correlated with the intensity

of periodicity, which in the current case is dependent on the ratio c1/c2 as well as l1/l2. On

the other hand the number of these frequency band gaps is dependent on the number of

cells M . Moreover, it is evident that the natural frequency fn calculated numerically agree

very well with the analytical ones and the increasing modelling error εn has its source in the

periodicity of the numerical model itself.

This phenomenon is demonstrated by the results of numerical calculations presented

in Fig. 3, which are related to the same bar, but having no periodic properties. In this

case the bar of fixed ends was modelled by N = 100 SFEs of p = 5 degree of approximation

polynomials and Chebyshev node distribution. As before, the analysis carried out was related

to the natural frequencies of the bar and the relative modelling error.
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Figure 3. Spectrum of longitudinal natural frequencies fn (left) and natural frequency

relative errors εk (right) of a non-periodic aluminium bar of fixed ends, calculated for N = 100

SFEs of p = 5 degree of approximation polynomials and Chebyshev node distribution.

Indeed, the results presented in Fig. 3 confirm that the numerical model of SFEs used

in this analysis has properties of periodic nature. It turns out that the resulting model

periodicity is equal to the number of SFEs used. As a consequence of that the calculated

spectrum of natural frequencies of the bar is divided into p = 5 parts separated by p − 1

frequency band gaps. It can be also seen that the frequency band gaps associated with

high natural frequency numbers n lead to quite significant numerical errors, however, those

from the lower part of the natural frequency spectrum can also play a significant role in the

problems related to wave propagation.
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3. Natural frequency spectra and wave propagation problems

3.1. Longitudinal behaviour of one-dimensional structures

The presence of unnoticeable frequency band gaps in the spectrum of natural frequencies of

the bar under consideration has profound effects in the case of wave propagation analysis, as

shown in Fig. 4. These results were obtained for the same numerical model of the bar and

its dynamic responses in the time domain were calculated by the application of the central

difference method. The total time of analysis T = 0.8 ms was divided into 214 time steps

and chosen so, that the signal propagating within the bar as a longitudinal wave could fully

reflect from both free ends of the bar. The final position of the signal at the end of the

analysis, calculated analytically, was denoted as λm.
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Figure 4. Non-dimensional patterns of longitudinal waves in a non-periodic aluminium bar

of free ends, for two different excitation frequencies fc = 150 kHz (left) and fc = 250 kHz

(right), calculated for N = 100 SFEs of p = 5 degree of approximation polynomials and

Chebyshev node distribution.

According to the applied theory of rods the phase and group wave propagation veloc-

ities in the bar are the same cp = cg = 5 km/s, which means no signal dispersion should

be observed during the analysis. As an excitation a force signal Fx(t) was chosen in the

form of sine wave of 12 pulses and amplitude 1 N modulated by the Hann window. Two

different excitation frequencies were selected as fc = 150 kHz as well as fc = 250 kHz, with

corresponding modulation frequencies fm = 12.5 kHz and fm = 20.83 kHz. For clarity the

results obtained in Fig. 4 are presented in a non-dimensional form as related to its peak

value qp, where q denotes the displacement response at the excitation point x = 0.

It is clear from Fig. 4 that the dynamic responses of the bar calculated for the excitation

frequency fc = 150 kHz (left) are clear of any undesirable behaviour. Contrary to that the

dynamic responses of the bar calculated for the excitation frequency fc = 250 kHz (right)

reveal some undesired behaviour manifesting in strong signal distortion and some dispersion,
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Figure 5. Coefficient of determination R2
n for longitudinal modes of natural vibrations of

a non-periodic aluminium bar of fixed ends, calculated for N = 100 SFEs of p = 5 degree of

approximation polynomials and Chebyshev node distribution (left) and for N = 166 spline-

based FEs of p = 3 degree of approximation polynomials (right) and developed by the

authors.

which has its origin in the periodicity of the numerical model applied. However, it should

be also noted that according to the results presented in Fig. 3, up to frequency gap FG2,

no significant modelling errors in the natural frequency spectrum are seen. It turns out the

observed behaviour is closely related to the model inability to recover properly the modes

on natural vibrations within the frequency range of interest.

Additionally, it can be seen from Fig. 5 that this inability is much more sensible to the

periodicity of numerical model than the natural frequency spectrum. The results presented

in Fig. 5 refer to the coefficient of determination R2
n based on analytically and numerically

calculated modes of longitudinal natural vibrations of the bar. They were obtained for a
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Figure 6. Spectrum of longitudinal natural frequencies fn (left) and natural frequency

relative errors εn (right) of a non-periodic aluminium bar of fixed ends, calculated for N = 166

spline-based FEs of p = 3 degree of approximation polynomials and developed by the authors.
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numerical model based on N = 100 SFEs of p = 5 degree of approximation polynomials and

Chebyshev node distribution (left), and a numerical model of N = 166 spline-based FEs of

p = 3 degree of approximation polynomials (right) and developed by the authors.

It is interesting to note that the coefficient of determination R2
n calculated in the case

of the spline-based FEs reveals no frequency band gaps in the entire natural frequency

spectrum. This is due to the assumed, on the FE level, continuity of the strain/stress field

between adjacent FEs, which eliminates numerical model periodicity. It can be also added

that the results presented in Fig. 5 (left) fully explain the source of the undesired numerical

behaviour of the numerical model, for which results are presented in Fig. 4, despite the

fact that for the natural frequency of interest no significant band gaps are visible, but their

influence is strong on the modes of natural vibrations.
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Figure 7. Non-dimensional patterns of longitudinal waves in a non-periodic aluminium bar

of free ends, for two different excitation frequencies fc = 150 kHz (left) and fc = 250 kHz

(right), calculated for N = 166 spline-based FEs of p = 3 degree of approximation polynomials

and developed by the authors.

In order to supplement the results discussed above also the natural frequencies fn as

well as natural frequency relative errors εn of the bar under investigation are presented in

Fig. 6, calculated in the case of N = 166 spline-based FEs of p = 3 degree of approximation

polynomials and developed by the authors. Additionally, corresponding wave propagation

patters are presented in Fig. 7.

3.2. Flexural behaviour of one-dimensional structures

The results shown in Fig. 8 are related to flexural behaviour of the aluminium bar under

investigation, according to the classical beam theory [6]. Taking into account the result

presented and discussed previously, the authors decided to focus their attention on the co-

efficient of determination R2
n for two different types of FEs used. In the first case a classical

approach was used, for which the approximation polynomials in the form of Hermite poly-
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nomials of p = 3 degree were employed. These polynomial provide the continuity of the

unknown displacement functions and their first derivatives. In the second case as the ap-

proximation polynomials Hermite polynomials of p = 5 degree were employed, which provide

the continuity not only for the unknown displacement functions and their first derivatives,

but also their second derivatives.

However, it should be noted that despite the fact of the continuity of the displace-

ment functions and their derivatives the coefficient of determination R2
n calculated based

on analytically and numerically calculated modes of flexural natural vibrations of the bar

indicate the presence of frequency band gaps. Again, as before, the presence of the frequency

band gaps has a strong influence on calculated dynamic responses of the bar, which may

significantly distort wave propagation patterns observed.
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Figure 8. Coefficient of determination R2
n for flexural modes of natural vibrations of a non-

periodic aluminium bar of simply-supported ends, calculated for N = 166 FEs of p = 3 degree

of Hermite approximation polynomials (left) and p = 5 degree of Hermite approximation

polynomials (right).

3.3. Flexural behaviour of two-dimensional structures

It can be expected that to some degree the influence of the periodicity of numerical FE models

in the case of 2-D engineering structures must correspond to the observations made in the

case of 1-D problems. Indeed, this can be confirmed through careful numerical investigations,

however, due to 2-D nature of the problems and complexity of the analysis, the methodology

employed for this purpose is much more complicated.

A typical spectrum of flexural natural frequencies obtained in the case of a non-periodic

aluminium plate in the case of periodic boundary conditions is shown in Fig. 9. It was

assumed in this case that the plate under investigation had the following dimensions: length

L = 2000 mm, width B = 2000 mm and thickness h = 10 mm. The same material properties

were used here. The results presented in Fig. 9 are related to the case, when for modelling the
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Figure 9. Spectrum of flexural natural frequencies fn of a non-periodic aluminium plate

in the case of periodic boundary conditions in the reciprocal lattice, as a function of non-

dimensional wave vectors kx and ky, calculated for a regular mesh of 2500 SFEs and p = 4

degree of approximation polynomials and Chebyshev node distribution.

plate a regular mesh of 2500 SFEs was used forming a grid Nx ×Ny, where Nx = Ny = 50.

Numerical calculations were carried out for p = 4 degree of approximation polynomials

and Chebyshev node distribution. The total number of model degrees of freedom was DOF

= 120 000. In Fig. 9 calculated surfaces of flexural natural frequencies of the plate are
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Figure 10. Spectrum of flexural natural frequencies fn of a non-periodic aluminium plate

in the case of periodic boundary conditions as a function of non-dimensional wave vectors

k100(left) and k110 (right) of the reciprocal lattice, calculated for a regular mesh of 2500 SFEs

and p = 4 degree of approximation polynomials and Chebyshev node distribution.
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expressed as dependent on non-dimensional wave vectors kx and ky of the reciprocal lattice.

Observation of any existing frequency band gaps becomes much easier if the analysis is

taking place in two particular directions associated with the reciprocal lattice, these being

k100 and k110, as presented in Fig. 10.

It can be clearly seen that the results presented in Fig. 10 indicate on no observable fre-

quency band gaps in both reciprocal lattice directions. However, in the case of the reciprocal

lattice direction k100 a frequency band gap just above 100 kHz can be found. This indicates

that a mesh of FEs used in the analysis of wave propagation related problems, considered as

a numerical periodic structure, has directional properties and as a consequence may influence

results of numerical calculations related with wave propagation patters by introducing some

artificial model anisotropy. Moreover, it can be demonstrated that in the case of problems

related with low frequency behaviour this anisotropy can be, in computational practice, ne-

glected, but in the realm of high frequency excitation signals must be carefully taken into

account. This is clearly seen by the results of numerical calculations presented in Fig. 11.

Figure 11. Wave propagation patterns of flexural waves in a non-periodic aluminium plate

of free edges for the excitation frequency fc = 10 kHz (left) and fc = 44 kHz (right) at

time instance t = 3 ms, calculated for a regular mesh of 2500 SFEs and p = 4 degree of

approximation polynomials and Chebyshev node distribution.

In the case under investigation the total calculation time T = 15 ms was divided into

8000 equal time steps and, as before, in order to solve equations of motions the central

difference method was employed. The characteristic of the force excitation Fz(t), acting

transversally at the plate centre, remained the same as in the case of the aluminium bar.

4. Conclusions

Based on the results of numerical investigations carried out by the authors certain general

constitutions can be formulated:
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• FE discrete models of engineering structures can poses certain periodic properties.

• The source of these periodic properties comes form the discontinuities of the stress/strain

fields between adjacent FEs.

• These discontinuities result in the presence of so-called frequency band gaps in the

natural frequency spectra thus influencing calculated dynamic responses of the struc-

tures under investigation at high frequency regimes.

• At low frequency regimes the presence of frequency band gaps may remain unnoticed.

• More profoundly frequency band gaps influence the inability of FE numerical mod-

els to represent correctly modes of natural vibrations, on which structural dynamic

responses are built, even in the frequency regions where no apparent frequency band

gaps can be found in the frequency spectrum.

• The number of frequency band gaps is closely correlated with the density of FE mesh:

in one-dimensional cases directly with the total number of FEs, while in two- or

three-dimensional cases with the FE mesh size in particular directions.

• Analysis of periodic properties of FE discrete models in two- or three-dimensional

cases requires the application of very sophisticated analytical and numerical tools in

order to reveal any periodic properties of these models.

• The influence of periodic properties of FE discrete models may be reduced or removed

by the application of special spline-based FEs, which provide full continuity of the

stress/strain fields between adjacent FEs.
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