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PREFACE

This is the fourteenth time when the conference “Dynamical Systems: Theory
and Applications” gathers a numerous group of outstanding scientists and engineers, who
deal with widely understood problems of theoretical and applied dynamics.

Organization of the conference would not have been possible without a great effort of
the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage
over the conference has been taken by the Committee of Mechanics of the Polish Academy
of Sciences and Ministry of Science and Higher Education of Poland.

It is a great pleasure that our invitation has been accepted by recording in the history
of our conference number of people, including good colleagues and friends as well as a large
group of researchers and scientists, who decided to participate in the conference for the
first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all
over the world. They decided to share the results of their research and many years
experiences in a discipline of dynamical systems by submitting many very interesting
papers.

This year, the DSTA Conference Proceedings were split into three volumes entitled
“Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical
Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and
Engineering Dynamics and Life Sciences. Additionally, there will be also published two
volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems
in Theoretical Perspective” and “Dynamical Systems in Applications”.

These books include the invited and regular papers covering the following topics:

e asymptotic methods in nonlinear dynamics,

e bifurcation and chaos in dynamical systems,

e control in dynamical systems,

e dynamics in life sciences and bioengineering,

e engineering systems and differential equations,

* non-smooth systems

¢ mathematical approaches to dynamical systems

e original numerical methods of vibration analysis,

e stability of dynamical systems,

e vibrations of lumped and continuous systems,

e other problems.

Proceedings of the 14th Conference ,Dynamical Systems - Theory and Applications"
summarize 168 and the Springer Proceedings summarize 80 best papers of university
teachers and students, researchers and engineers from all over the world. The papers were
chosen by the International Scientific Committee from 370 papers submitted to the
conference. The reader thus obtains an overview of the recent developments of dynamical
systems and can study the most progressive tendencies in this field of science.


http://www.kmech.pan.pl/

Our previous experience shows that an extensive thematic scope comprising dynamical
systems stimulates a wide exchange of opinions among researchers dealing with different
branches of dynamics. We think that vivid discussions will influence positively the creativity
and will result in effective solutions of many problems of dynamical systems in mechanics
and physics, both in terms of theory and applications.

We do hope that DSTA 2017 will contribute to the same extent as all the previous
conferences to establishing a new and tightening the already existing relations and scientific
and technological cooperation between both Polish and foreign institutions.

On behalf of both
Scientific and Organizing Committees

Hfimica—

rman

Professor Jan Awrejcewicz
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Review on the Cell Discretization Method

Nicola Maria Auciello, Maria Anna De Rosa, Maria Lippiello, Stefania Tomasiello

Abstract: In the last forty years, the Cell Discretization Method (CDM) has
become a popular method for the statical and dynamical analysis of structures.
According to this method, the structure is reduced to a set of rigid bars linked
together by means of elastic constraints (cells). In this way, the structure is
reduced to a rigid-elastic system with a finite number of Lagragian coordi-
nates. The latter ones may be chosen in two alternative ways: the rotations
of rigid bars or the displacements of the cells. This method found several ap-
plications, for instance: the dynamics and stability of arches; masonry arches;
statical and dynamical analysis of Euler-Bernoulli beams under several load
and boundary conditions; statical and dynamical analysis of Timoshenko and
Rayleigh beams; statical analysis of plates; statical and dynamical analysis of
carbon nanotubes, by taking into account nonlocal effects. Due to the reno-
vated interest in this method, especially with regard to the application to the
field of carbon nanotubes, it seems appropriate proposing a critical review on
the method and its current and future applications.

1. Introduction

The Cell Discretization Method (CDM) has been becoming an important tool in the field of
the structural engineering, thanks to its approximation abilities and easyness to be imple-
mented.

The advent of sophisticated and totally generalized discretization tools, such as FEM,
BEM, allowed to simulate the behaviour of structures taking into account several variables
due to the removal of as many as simplified hypotheses, but on the other hand such pro-
cedures may induce to lose the physical sense of the real behaviour of the structures that
should be always at the basis of engineering studies.

In this sense, the CDM may be regarded as a technique able to address such issues. It
was developed by some of the present authors jointly with other co-workers in 80s. The idea
behind the method, that is the discretization of structures by means of rigid bars linked
through elastic constraints (cells), was in the literature since the beginning of the 20th
century. Anyway, the first time it appeared as a formally theoretically supported method is
in [1]. The method proposed in [1] was then developed to handle the problem of arches, by

computing the conservative critical loads [2].



Raithel and Franciosi in [3] extend the discretization procedure to the dynamics problem
by computing the vibration modes of arches without axial loads, while in [4] the presence
of axial loads (applied to arches) is considered as a delay effect. In the last years, several
proposals and calculation analyses were developed in the field of structural engineering,
involving the behaviour of arches with different types of constraints, such as simply elastic
supports or even rigid foundation blocks [5] — [15]. In all these works, the procedure is shown
to be very versatile and able to work in any case on a finite number of Lagrangian parameters
by bringing the solution into the alveo of the usual numerical analysis methods. With regard
to the study of masonry arches, with a few numerical strategies and assuming the presence
of non-reactive tensile units, a powerful investigation tool was proposed, for determining
the collapse multipliers [16] — [19]. In addition, this method found several applications,
even for the static and dynamical analysis of uniform and tapered Euler - Bernoulli beams,
Timoshenko and Rayleigh beams and plates under several load and boundary conditions [20]—-
[39]. More recently, some of the present authors applied the method to the dynamical analysis
of single- and double-walled carbon nanotubes, by taking into account non - local effects [40]
—[42] and they obtained results showing that the method is able to describe the nanostructure
behaviour satisfactorily with a little computational effort. At the moment, it seems proper
writing a review note on the method and its former and coming applications. This work

presents briefly the method and its application, as well as its potentialities.

2. The method

The discretization procedure of the CDM is intended to reduce the structure to a set of rigid
bars, with equal length, linked by elastic cells. The choice of the Lagrangian coordinates
can be done in two ways: the first one is choosing the rotations of the rigid bars while the
second one is assuming the vertical displacements of the elastic cells. Consequently, based on
the Lagrangian coordinates chosen, namely the set of rotations or the set of displacements,
the method allows to derive all the possible configurations of the structure and writing the
equations of motion. In the current literature, the difference between the two proposed
procedures has not been emphasized yet, probably because the basic concept is the same,
that is discretising the structure in rigid bars and elastic cells.

In this review work, we summarize the two discretization methods for the simple case
of the dynamic analysis of an Euler-Bernoulli beam, leaving the reader looking for more

complex cases in the cited works.
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2.1. The discretization

By applying the Hamilton Principle for an Euler-Bernoulli beam, with span L, section of

area A and inertia I, Young modulus E and mass density p, one has

/t2[5T75Et}dt: 0 (1)

t1

where t is the time variable and t1, t2 two arbitrarily fixed times.

The kinetic energy is

o ;/OLPA(aUg?t)fdz, (2)

where z is the abscissa along the beam axis. The deformation energy is

1t 0%v(z,t) 2

Subtracting Eq. 2 from Eq. 3, one has the Lagrangian

1t ov(z, 1)\ 1 [t 0%v(z, 1) ?
T—Et—§/0 pA( o ) dz—§/0 EI(7> dz. (4)

Performing the first variation of Eq. 4 we obtain the equation of motion and the corre-

sponding boundary conditions:

*v(z, 1) 9?v(z, 1)
El 0z* oA ot?

-0 (5)

If the structure is discretized, the Eq. 5 will be represented by the following Lagrange

equation system:

d (0T OE; .
u (8q1> + o 0,i=1,..n, (6)

with ¢; Lagrangian coordinates.

2.2. First approach: rotations as Lagrangian coordinates

The structure is regarded as a set of n rigid bars linked by n+1 elastic constraints (Figure 1),
representative of the flexural constraints. In this case, the structure configurations depend
on a finite number of degree-of-freedoms (DOFs). The rigid rotations ¢; of the bars are

assumed as Lagrangian parameters:

c=[p1,-,@is-espn]" (7)

and one can get the displacements of the beam by means of simple geometric considerations

(Fig. 1). More precisely, let L/n be the length of the rigid bar, then by considering the
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scheme in Fig. 1, the displacements v; and the relative rotations in any elastic cell are given

by

1—1 n

v =0 wv=-—piL/m,  w==Y @l/n,  ve1=-Y @l/n, (8)
i=1 i=1

Api =91, App=@—@1, Api=@i—pi1, Apn =0, (9)

which in matrix form are
v = Ac, Ap = Be, (10)

where the (n 4+ 1) X n matrices A, B are written as follows

Figure 1. First method for chosing the Lagrangian parameters: rigid rotations

0 1 0
-1 -1
L
A=— -1 -1 0 0 , B = 0 -1 1 0 (11)
n
; 0
-1 -1 -1 -1 0 0 O 0
By considering Eq. 10, the kinetic energy can be written as follows
T—1 /L AVdz— L nilm.o? (12)
2/, 7 T
The masses m; are centred in the elastic cells and are given by
L L L )
mi = %pAl, m; = %p(AZ + A1‘+1), Mpt1 = %pAnJA, i =2....n. (13)

12



Then, the kinetic energy can be written as
_ l.T T . 1-T .
T_ic A"mA ¢=¢ Me, (14)

with M the mass matrix of order (n,n + 1).
The deformation energy is given by the work done by the bending moment because of
the relative rotation in the generic elastic cell. By neglecting the shear effect, the bending

moment is given by

Mi = %EIA@Z = kiA(pi, (15)

with k; being the stiffness of the rigid links, given by
n n n
k1= EEIL k; = EE (L -+ L;+1), k‘n+1 = iEanA. (16)

Then Eq. 3 becomes

1 [F 2 1o 1 ror 17
Et:—i/o EI (v") dz:—iiz:;MiAw:—ic B'kBec= c'Kec, (17)
with K = BTk B.
Since the structure is reduced to an n DOF's system, the equation of motion will be given
by the Lagrange equations (6) with ¢; = ¢; and ¢; = ¢; which can be written as follows, by
replacing Eqs (13,16)

M¢ + Kc =0, (18)
whose solutions can be found by
det (K — w’M) =0, (19)

2.3. Second approach: displacements as Lagrangian coordinates

As a second way for discretizing the structure, one can consider as Lagrangian coordinates
the n + 1 displacements v; (Fig. 2), collected into a vector v.
By means of the vector v, one can easily get the vector of the n rotations of the rigid

bars, defined as follows

bi = n% i=1,2,....n, (20)
that is in matrix form
® =Vv, (21)

13



Figure 2. Second method for chosing the Lagrangian parameters: displacements

where V is the (n,n + 1) transfer matrix. The relative rotations between the two sides of

any elastic cell are given by

1 = ¢, i = ¢i — pi-1, Ynt1 = —Pn (22)
or in matrix form

Y =Ad, (23)

where A is the (n 4+ 1 x n) transfer matrix.

The deformation energy is centred into the cells and it will be given by

n+1

Le = %; ki = %¢Tk ¥ (24)
In order to get a quadratic form, Eqgs. 20-21 have to be used
L.— %«ka b= %q&TATk A= %VT(VTATI: AV)v (25)
By letting K = VIATE AV, then

1

L. = ivTKv. (26)

The kinetic energy, similarly to the first approach, is written as

14



or in matrix form

T= %VTMV. (28)

As mentioned in the previous section, Lagrange equations can be written as Eq. (6)

setting ¢; = v; and ¢; = v; .

3. Conclusions

In this note we analyzed the CDM, a method discretizing a structure in rigid bars and elastic
cells. Thanks to the versatility of the procedure it is easy to understand that the method
can be used for many structural types (beams, Timoshenko beams, higher order beams,
single- and multiple-walled carbon nanotubes, plates, shells, arches, masonry arches, bridges,
slightly curved beams etc.) and in the range of different theories (statical analysis, linear
and nonlinear dynamics, stability analysis, in presence of conservative and non-conservative
forces, nonlocal effects, in seismic analysis, etc.). It will be the task of researchers applying

the method to new fields of investigation.
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Theory of size-dependent physically nonlinear Euler-Bernoulli
beams in an aggressive medium with taking into account the
coupling of temperature and deformation fields

Jan Awrejcewicz, Tatyana Y. Yakovleva, Ekaterina Y. Krylova, Anastasiya
O. Sinichkina, Vadim A. Krysko - jr.

Abstract: In this paper a size-dependent theory of physically nonlinear beams described
by the kinematic theory of the first approximation is constructed. The basis of the
developed theory is the moment theory of elasticity. The physical nonlinearity is taken
into account following the Birger method of variable elasticity parameters, according
to which the physical parameters of the beam material are not constant, but are functions
of coordinates and a stress-strain state of the structure. The input partial differential
equations of motion are obtained from the Hamilton variation principle. Equations take
into account the relationship between deformation and temperature fields, material
dependence on temperature and the aggressive medium properties in which the beam is
located. The governing equations are nonlinear of the hyperbolic-parabolic type and
exhibit different dimension. The equation of beam motion is one-dimensional, and the
equation of thermal conductivity is two-dimensional. It means that no any restrictions
for temperature distribution over beam thickness are employed. A calculation algorithm
with nested iterations is developed in order to solve the problem in a reliable and
validated way.

1. Introduction

The study of the effects associated with corrosion, wear and dynamic thermal force phenomena on the
behavior of mechanical systems is an extremely complex but promising direction of the scientific
research. The reorganization of the dynamic system modes may depend not only on the change in the
parameters of the force (mechanical) loading, but also on the change in the thickness of the structure
due to the action of the corrosive medium, as well as it is influenced by the temperature effects. Interest
in such tasks is related to a need to develop mechanical structures capable of operating in corrosive
environments under conditions of uneven non-stationary heating (for example, in aviation and rocketry
industries, gyroscopes fabrication, nuclear reactor protection systems, micromechanical systems, etc.).
Engineering practice constantly requires increasing the accuracy of mathematical models describing
the vibrations of structural elements. Investigation of the effect of corrosion and wear on the vibrations
of mechanical systems in the form of beams located in temperature fields is an actual and interesting

problem.
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Thin-walled and thick-walled spherical shells subjected to mechanical-chemical of corrosion under
the action of external and internal pressure are considered in the series of papers Pronina and Sedova
[1-4]. Analysis and comparison of the results obtained on the basis of analytical solutions is done in the
works. A mathematical model of uniform corrosion of a thick-walled long flexible cylindrical tube
subjected to the internal and external pressure at different temperatures has been constructed in
reference [5]. The influence of corrosion is taken into account according to the Dolinsky model [7] with
an exponential decay in time. The problems of calculating the tensile rod being inhomogeneous along
its length, taking into account corrosion wear, and using geometric nonlinear theory, are considered in
[6]. The necessity of taking into account the nonlinearity in the problems under consideration is justified
in this paper. Fridman solved the problem of determining the dimensions of the cross-section of the
truss elements of the ring section constructions (for a given period of their operation), subject to
corrosion, using the Dolinsky model. The influence of two-sided and one-sided corrosion on the
frequency of natural vibrations of freely supported plates has been studied in [8]. With the help of the
finite element analysis, the influence of the corrosion degree on the value of the natural frequency and
on the bending shape of a plate has been investigated. The papers [9, 10] are devoted to the study of the
loss of stability of thin-walled cylindrical pipes (circular and non-circular cross section) of the
Kirchhoff-Love model. The pipes are subjected simultaneously to the action of transverse compression
forces and uniform unilateral corrosion on the outside or from the inside. The critical time of loss of
stability of pipes has been found. Also, the authors considered the problems of stability loss of thin-
walled spherical shells [11, 12] under the influence of external pressure and internal corrosion in
temperature fields. It was shown that an increase in temperature leads to an increase in the corrosion
rate. In the papers [13-17] it has been shown that to obtain more accurate results it is necessary to take
into account the coupling of the temperature and deformation fields.

In recent decades, the interest in micro-dimensional mechanical structures has increased since in
most cases they are the most important elements in MEMS [18, 19].

Many properties of the elastic bodies are associated with the characteristic dimensions, these
properties are different [20-22]. Despite a large number of works on this subject, where linear models
are used for numerical analysis, we note that it is necessary to take into account the influence of
nonlinearity on the dynamics of micro and nano mechanical systems [23]. The resolving linear
equations, initial and boundary conditions for the size-dependent Euler-Bernoulli model (the first-
approximation model) have been obtained in [24, 25] using the modified moment theory of elasticity.
The influence of the size parameter on the static deformation and the magnitude of the natural
frequencies have been investigated.

For a static problem, a linear equation of the fourth order for longitudinal displacement is

considered. The natural frequencies are investigated for small deflections using a linear equation of the
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6th order for the function of deflection. To reduce the partial differential equations to the ordinary
differential equations with respect to time, the Bubnov-Galerkin method has been empoyed in the first
approximation. In reference [26], the equations for the geometrically nonlinear Euler-Bernoulli beam
have been obtained on the basis of the Karman relations has been used. To get a numerical solution, the
Bubnov-Galerkin method in the first approximation. The effect of the size coefficient on the value of
the natural frequency of nonlinear vibrations has been investigated.

The linear problems for the determination of natural frequencies and the static problems for
investigating the influence of dimension-dependent parameters are considered in many papers. The
effect of corrosion wear along with the temperature effect was considered for macro-dimensional
mechanical systems. It is necessary to study in more detail the nonlinear deformations of size-dependent
beams under the influence of static and dynamic loads, taking into account mechano-chemical corrosion
and the related problem of thermodynamics. To study the dynamics of size-dependent beams, it is
necessary to involve the apparatus of nonlinear dynamics on the basis of Fourier analysis and wavelet
spectra, the phase portraits, the Poincaré sections, the change of the largest Lyapunov exponent (LLe)
in time, the autocorrelation functions, amongst others [27-31]. The mentioned problems have been
analysed with an account of three types of nonlinearity: physical, geometric and constructive (contact
interaction in time). However, in these papers, the results have been obtained on the basis of the classical
theory of elasticity, without considering the size-dependent behavior of structures [32-36].

At the moment, there are no mathematical models of vibrations of size-dependent beam structures
including effects of corrosion wear, temperature and strain field connectivity, physical and geometric
nonlinearity. In this paper we consider the interplay of all factors on the example of the Euler-Bernoulli

beam.

2. Main hypotheses and assumptions

A mathematical model of non-linear vibrations of a beam of variable thickness under the influence of
a normal distributed load is derived.

We make the following assumptions about the beam geometry, the material properties and the
operating conditions for formulate the mathematical models: 1) the Euler-Bernoulli hypothesis [37]; 2)
the inertia of rotation of beam elements is not taken into account; 3) external forces do not change their
direction when the beam is deformed; 4) the longitudinal size of the beam considerably exceeds its
lateral size; 5) to describe the size-dependent properties of the system, the modified momentum theory
of elasticity is employed [38]; 6) the geometric nonlinearity is taken into account in the form of Karman
[39]; 7) the physical nonlinearity is taken into account on the basis of the Bierger's variable elasticity
method [40,41]; 8) normal stresses in the direction of the normal to the middle surface can be neglected

in comparison to the main stresses. Basic stresses mean normal and tangential stresses in the middle
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surface itself and in layers parallel to it; 9) the influence of corrosion wear is taken into account
according to the Dolinsky model; it is assumed that the corrosion rate depends linearly on the maximum
stress and decays exponentially with time [42]; 10) there are no restrictions on the propagation of
temperature over the thickness of the beams, that is, two-dimensional heat conduction equations are
considered; 11) we consider isotropic homogeneous beams of variable thickness; 12) dissipative

systems are considered.

3.  Employment the moment theory of elasticity for a beam

In the modified couple stress based gradient theory [38], the potential deformation energy U in an elastic

body occupying the domain 2 ={0<x<a;0<y<b; —h<z<h}, for infinitely small
deformations is U =%f!2 (0ijeij + myxij)dv, where i,j =Xx,y,z; &;— the components of the

deformation tensor and y;; — are the components of the symmetric tensor of the gradient of curvature

_1

ou; ou;j 2 a2 20; 00;
& —2(ﬁ+a—2+zfn:1 Ym ”m>, Xij —1( Ly ‘), 6, = L (rot(w));. Here, u; represent the

ax; 0x) X0 =2 \an T o) =2
components of the displacement vector u, 6 is an infinitesimal rotation vector with the components. 6;
and §;; are the Kronecker symbols. For a linear isotropic elastic material, the stresses caused by the
kinematic parameters included in the expression for the energy density of deformation are determined
by the following state equations [38]: 0;; = Agym8;j + 2ue;j, myj = 2ul®x;;, where oy, &5, m;; and
xi; denote the components of the classical stress tensor o, the strain tensor &, the deviator part of the

symmetric moment tensor of higher order m and the symmetric part of the curvature tensor y,

Ev

respectively; A = ==
p A= w20 T 20w

are the Lamé parameters; E (x, y, z), v(x, v, z) are the Young's

modulus and Poisson's ratio, respectively; p(x,y,z) is the density of the beam material; e; is the
intensity of deformation. The parameter [, appearing in the higher order moment m;;, is an additional
independent material length parameter associated with the symmetric rotational gradient tensor.

In this paper, the mathematical model of vibrations of a size-dependent geometrically and
physically nonlinear beam exposed to unilateral corrosion wear will be constructed on the basis of the
Euler-Bernoulli model (the hypothesis of the first approximation). The model reflects only the bending
of the beam without turning and curving the cross section. The beam occupies the domain 2 =
{0<x<aq0<y<1,—-h<z<h-45}, where § =6(x,t) is the negative thickness increment
function, due to corrosive wear. The displacement of an arbitrary point in a certain layer of a beam

parallel to the median line away from it by a distance z = 0 will have the form: u, (x,t) = u(x,t) —

ow(x,t)
ox

z L uy(x, 1) = 0, u,(x, t) = w(x, t), where u(x, t) is the axial displacement of an arbitrary point

of the middle line of the beam, and w(x, t) is the transverse deviation.
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We consider the inhomogeneous theory of elasticity. The physical constants are assumed to depend
on the coordinates and the intensity of the deformations. We shall carry out the model studies, taking
into account the physical nonlinearity with the dependence E(x, y, z, e;) on the coordinates, using the
deformation theory of plasticity and employing the Bierger variable elasticity parameter [43], as is done
for flexible physically nonlinear shells [44].

We consider an isotropic inhomogeneous rectilinear beam, under the action of the distributed
transverse intensity force q(x,t). The median line is located in the plane z = 0. Taking into account
the Euler-Bernoulli hypothesis, we can write the expression for the deformation of the elongation in the
x direction, taking into account the geometric nonlinearity according to the von Karman model, the

influence of the temperature field, the variable beam thickness and the corrosion wear:

_du 1 (Bw)z 1,0 0w
2 ox? 0x?

Exx T 52 T2 \ox

—a,T(x,z2,t). 1)
The total deformation of an arbitrary point on a layer located from the median line by a distance z,

2 2
where &, is composed of the deformation of the median line uyl (a_w) - lwa—h, the deformation
ax 2 \ox 2 0x?
2
a—"; and the temperature deformation —a,T (x, z,t). Here h = h(x) is the law of the

of the bend —z
dx

beam thickness variation along its length, a; is the coefficient of thermal expansion of the beam
material, and T (x, z, t) is the function of the temperature field.
We write the expressions for the nonzero components 8, the symmetric part of the curvature tensor

X, the normal stress a,., and the nonzero components of the higher order moments:

0. — ow _ . 19*w
2—_51 XlZ‘XZl__Eale
— 424t w2 1 #%h 9w _ _ @)
Tex = (A +20) E—'—E ox _Ewﬁ_zaxz_at’r(x’z't) 1Mz = Moy =
_ 20%w
ox?’

4. Variational formulation of the problem: mathematical modelling of the flexible

physically nonlinear and size-dependent Euler-Bernoulli beams

The potential energy U, obtained on the basis of the addition of higher-order forces, the kinetic energy
K, the external work W associated with the distributed forces and energy dissipation will take the

following form:

h—&
U= %foa )2, (011811 + 2mypx1p)dzdx = ©)]
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1 a th=8 du_ 1(ow\* 1 8h_ o7
S ez (GG v E - R T +

22
pl? (axz) ) dzdx,

=305 () + (G e

w = foa(q(x, tw + e%—‘fw)dx, & — is the dissipation coefficient.

The equations of beams motion, as well as the boundary and initial conditions, are obtained from
the Hamilton-Ostrogradskiy principle. According to this principle, a comparison is made of the close
motions that lead the system of material points from the initial position at time ¢, to the final position
at time t,. For true motions, the condition: ft?(c?K — 811+ 8W)dt = 0 should be satisfied. Varying
over the variables u, w, integrating by parts, and equating the expressions for éu and dw to zero, we

obtain the resolving equations of motion and add to the resulting system the equations for corrosive

wear:

9%u  Qud*u  Awad*w 10wad*h 1 3°h ou ou ow 1 9%h
(ot i s L (A () v

dx%2 = 0x 0x? dx 9x2 20x 0x2 2 0x3 ox ox
3w %w y(2h-8) 3%u
ax3 C1o x? dCyo + dN, = 2gp, ot?’ Q)
8%u , dudiu  dwdiw 10wdih 1 93h\ow du  1(0u\% 1/ ow\%: 1 @8%h
Got ot o —mﬁ"waxa) oz Coo + [(£+E(£) +3(5) —3was) Coo -

?w ?w du  1/0u\?  1[/ow\2 1 9%h Bw ?w aw
WCIO_Nf]WJr[(EJ“E(E) +5(%) —zwﬁ)dcoo—ﬁcw—ﬁdcw+dNr]a+

63_u (62 ) 6u63 (Bzw)z 6_w63w_162w62_h_6_w63_h_l C +2( 6u6u
ax3 ax? 9x 9x3 ax? dx 0x3 2 9x? 9x? ox 0x3 2 10 ax2 ' ox ax?

awaw  1owdh 1 63h) 1 (6u)2 1 (aw)z 1 82n\ ,, 6"w(
dx 9x? 2 0x dOx? 6x3 dCyo + (6x + 2 \ox + 2 \ox 2Wax2 d”Cio dx* C20 +

Pz 20 Y _ 0w _2w 1 2p = L (Y@h=8)Pw | yQh-§)ow _ .

Zpll COO) z ax3 dCZO dx? d 20 + d M, = pl( 2g  Ot? te 2g ot )' (5)
[ ow 1 9%h 2w i

% (60 +K [(/1 +2 )< (ax) oWz 253 —a,;T(x,z, t))]) exp(—ht); (6)
where: Cyo = fh(x)_(s(x) E(x,z, ey,)dz, Cio= fh(x)_6(x) E(x,z,ey)zdz,

—h(x) —h(x)

h(x)—6(x) h(x)-6(x)
Cyo = f_h(x) E(x,z,ey)z%dz, Ny = a; [ h o) E(x,z,e.)T(x,zt)dz,
1-v

h(x)-6(x) — 1
=a ) A+n-20) P2 = 2040y

h(x)
gravity of the beam material; g is the acceleration of free fall. The effect of corrosion wear is taken into

E(x,z,e,)T(x,2,t)zdz, p; = where y is the specific

account according to the Dolinsky model, and it is assumed that the corrosion rate linearly depends on
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the maximum stress and decays exponentially with time [42]. The constants K and b are determined
experimentally [45], and &, is the initial corrosion rate.

No restrictions are imposed on the propagation of temperature over the thickness of the beam, and
therefore a two-dimensional heat equation for a nonstationary field is considered, taking into account

the coupling of deformation fields and temperatures:

Co OT A(aZT BZT)_Eafa ou 1(6w)2 1 0%h a’w
T, 0t T, o T o2) T 1var\ax T2 ax W 2o aT(x2t) ), ™

where: C, is the specific heat of the beam material; T, is the beam temperature in the initial undeformed
state.
We add initial conditions to the systems of differential equations (4)-(6):

w(x, t) = @30(x); ulx, t) = @10(x); T(x, 2, t) = p4(x,2); 6(x, ) = p5(x); t = 0;

ow(x, ou(x, (8)
Wa(: D)0 (2); ”;’t‘ D=1p6(0); t = 0.

As well as one of the boundary conditions to the system of equations of motion (4)-(5) is taken, and

to the heat conduction equation (7) one of the conditions I, Il or 111 type are employed:

w(x, t) =ulx,t) = % =0,x=0,x=1;
_ _Pw(xt) _ _ _ .
w(x, t) = ulx,t) = i = 0,x=0,x =1

©

aw(o,) _ d*w(lt) _
ax  axz

w(x, t) =ulx,t) =0,x =0,x =1, 0;

wict) = u(x, ) = 22580 = 0,5 = 0,x = [, My (x, £) = Ny(x,£) = 0,

Here ¢10(x), 030 (x), Y10 (x), Y30 (%), @4(x, 2), ps(x) are known functions that determine the
initial state of the beam. The equation of motion of the beam element contains a fourth-order derivative,
which is extremely important in proving the existence of a solution of the studied governing equations
and the convergence of various methods for their solution.

The system of governing PDEs supplemented by boundary and initial conditions is reduced to the
counterpart dimensionless form using the following variables:

X =ax, 6 = hyb, 8, = hioa_o, b = byb, h = hoh, | = hyl,w = how,

_ h¢Ey — h3 - = a _ a h: = _ 10
u,q=-r q,t—;t,E—EOE,E—h—gs,A—h—O,T——aZawT, ap = Aoy, (10)

8|

u =

Coo = thoc_oc)x Cio = th(%?o, Cyo = thgc_zo-
The system of equations of motion (4-5), corrosion wear (6), and the heat equation (7), with
allowance for the dimensionless parameters, will have the following form (bars over the non-

dimensional quantities are omitted):

d%u | qudiu , awodiw 1awd’h 1 63h) au  1f/ou\% | 1(ow\2 1 9%n
Dy O Jugt _0wdh 1, PRy (0 1o g0 4 0 e
(6x2+axax2+ax dx2 2 0x 0x%2 2 0x3 00 ax+2 ax +2 ax 2 9x? 00
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3w a%w K (2h-8) 0%u
ox1 (10~ 5z dCio +dNe = =3 2p, otz (11)
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5 (50 + Pp, ( + > (5) —SWomTZ5% —a,T(x,z, t))) exp(—Bt); (13)
82T afou  1(w\® 1 @%n 92w
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L (6x2 + ) ba, at <6x t3 (ax) W T 2on . T(x 2, t)>' (14)
Agh3 Eqa?,T, h3 h3 4a? . . .
Here 222 = 20%00 —p kg, 20 =p p,20=p, L2 _— K are dimensionless physical
a?Cya (1-v)Cy a’a a g h3Eohg

and geometric parameters; 4, is the coefficient of thermal conductivity of the beam material, and o is

the thermal diffusivity of the beam material.

5. Methods of solution

The finite difference method is used for solving the resulting system of equations (5)-(8). When
integrating the equations of motion with boundary and initial conditions, a uniform grid with the number
of nodes n along the length and m along the thickness has been superimposed on the beam. Partial
derivatives with respect to spatial coordinates, to improve the accuracy of the design scheme, have been

replaced by central finite-difference approximations:

A3 = G )1+1 ( ..... Di-1 Ae( )= i Z(C2 (;...z)i_lY

) PPV T ) PP () FEEV-Y 6 PRPE S () PO P i 200D C i
Ax4( _____ L) GDivz—4C)iv (C4) (iD)i—1+()i—a /1 ( ..... Lk) L) ik~ (Cz)k (i 1kl (15)
AZZ(Lk) (Iﬁﬁﬁﬁ)lkﬂ—z(ﬁﬁﬁﬁﬁ)lk G Dik—1 =0 k= O__

where: ¢ — is step in the spatial coordinate x, ¢ = ; step along the thickness of the beam is

1
n-1)
1
(m-1)’

p=

The resulting system of the ordinary differential equations of the second order with the
corresponding boundary and initial conditions reduces to a system of ordinary differential equations of
the first order. The obtained system is solved by the Runge-Kutta method of the fourth order of
accuracy. The choice of the method is due to the fact that the results obtained by the methods of the 4th
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and 6th order of accuracy completely coincide, but the counting time for Runge-Kutta of the 4th order
is half the size of the 6th order Runge-Kutta method [46].

At each step in time for the node x; the value of the function §(x;), which corresponds to the
change of the thickened beams due to corrosion, the values of the stiffnesses Cyg, C19, C2o and their
derivatives, as well as the temperature moments and stresses, are calculated. After that, the obtained
parameters are substituted into the equations of motion. The thickness of the beam h(x;) is recalculated
taking into account the corrosive component from the previous layer. Based on the displacement and
deflection of the beam obtained from the equations of motion, a total deformation is calculated for each
points €14 (x;, z;). Substituting it into the expression for the corrosion function 8, we obtain its new
value on the time layer under consideration. Substituting the values of the total deformation into the
heat equation, we obtain the values of the temperature field function T/ (x;, z;) at each point of the grid.
Integrating over the thickness, we will have T; in the middle line of the beam, which will allow us to
obtain the values of the temperature moments and stresses.

6. Conclusions

In the presented work, the mathematical model of vibrations of the Euler-Bernoulli size-dependent
beam with the taking into account the corrosive wear, temperature and strain field connectivity, physical
and geometric nonlinearity has been worked out for the first time. The calculation algorithm is under
development.
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Theory of coupled deformation and temperature fields
for three-layer nano-mechanical structures

Jan Awrejcewicz, Tatyana V. Yakovleva, Vadim S. Kruzhilin,
Svetlana A. Mitskevich, Vadim A.Krysko

Abstract: In this work a mathematical model of a mechanical structure consisting of
two nanoplates is developed, and between these nanoplates there is a nanobeam, and
there are gaps between the elements. The resolving equations of this mathematical
model are obtained using kinematic hypotheses of the first approximation (for the plates
- Kirchhoff's conjecture, for beams - Bernoulli-Euler). The contact interaction is taken
into account by the theory of Kantor. As a result, the obtained model takes into account
the parabolic heat conduction equation. There are no restrictions on the temperature
fields distribution in height for nanoplates and nanobeams (for nanoplates, the
temperature field is three-dimensional, for a beam it is two-dimensional). The resulting
system of partial differential equations is hyperbolic-parabolic and of different
dimension. In addition, the equations are highly nonlinear and integro-differential, since
the contact interaction between the elements of the structure is taken into account. To
obtain reliable results, we reduce the resulting system to the Cauchy problem by two
methods: the Faedo-Galerkin method in higher approximations and the finite difference
method with the approximation 0(h?) and 0(h?) with respect to the spatial coordinates.
Next, the Cauchy problem is solved by the Runge-Kutta methods of the 4th, 6th, 8th
accuracy orders regarding time. Such a variety of methods of solution is necessary to
obtain true results as a system with an infinite number of freedom degrees.

Keywords: mathematical model, temperature, strain field, contact interaction, plate-beam structures,

Faedo-Galerkin method, Runge-Kutta type methods, nonlinear dynamics.

1. Introduction

At present, the production and application of miniature sensors of inertial and external information,
micromotors and converters are in great demand. Modern micromechanical and
microelectromechanical systems find their application for a wide range of mobile objects, i.e. in
navigation equipment, automotive industry, military equipment, aircraft construction and rocket
engineering [1-5]. Compound elements of micro- and nano electromechanical systems (MEMS,
NEMS), such as vibration sensors [6], micro-drives [7], microswitches [8], are micro- and nanoscale
beams and plates. Due to their nanosize and the presence of small gaps between the elements, an
extremely important issue is the study of the contact interaction of nanoplates and nanobeams, taking

into account the connectivity of the temperature and deformation fields. In references [9, 10], the

31



nonlinear dynamics of a three-layer microplate has been studied. On the basis of Kirchhoff plate theory
and von Karman nonlinear deformations, nonlinear size-dependent transverse and plane equations of
motion have been derived. The model takes into account the nonconservative damping force of a
viscous type, as well as the external exciting load. In references [11-13], according to the momentum
theory of elasticity, mathematical models have been constructed and the layered beam nanostructures
have been studied, but in these works the connection between the fields of temperature and deformation

have not been taken into account.

2. Problem statement

In this paper we study the nonlinear dynamics of beam and plate nanostructures with allowance for
their contact interaction and connection between the fields of temperature and deformation. The
multilayer structure consists of two parallel nanoplates, and there is a hanobeam located centrally
between them. There is a small gap h, between all elements and they are connected only through the

boundary conditions (Fig.1).

Figure 1. Scheme of the studied plate—beams structure.

For nanoplates the Kirchhoff kinematic model is employed, whereas for the nanobeam we use for the

Euler-Bernoulli theory. The relationship between strain and deformations in the nanoplate ( ; =1) and

nanobeam ( 5 =0) can be represented in the following form [14]:

1 < 1 <
e =glo1-Avop) +arTm, 02) ey = 2= 015, (12) &

where: E=E(X, BY.2,£0,¢i,0), V=v(X AV, Z,£0,&j,0) . This representation is based on the

variable elasticity method [15]. The following notation is employed: &g - volume deformation, & -
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strain intensity, a1 - coefficient of linear thermal expansion, o(x, y,z) —temperature increment for

plate (B =1) and for beam (B, =0). The resolving differential equations for nanoplates and

nanobeam are yielded by the variation principle [16]:

&V +6D" — 6K = [[ (FydUy —OnsS)dA,
A

@

where éV,éD*, ™ stand for the variations of the generalized free energy, the dissipative function and

the kinetic energy, respectively; FO,@ — the surface force and displacement; n — an outer normal;

A — the bounding body surface.

After a few transformations according to the variational calculus, taking into account of (2) and

according to the momentum theory of elasticity [17], the following differential equations for a three-

layer nanostructure are obtained

2 % 2 2 %
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33

-0, =0,

®



h/2
where: Mi=ap [Efpdz, kg = KW —wy —hy )9, ‘Plzé[lJrsign(wl—hk -ws)]
—h/2

1 .
U2 = K(Wo —wg —hy )Wy, W) = E[l+ sign(wy —hy —wg)], €1 =&} + pied, (V2(0 ) — a three-

dimensional (4 =1) and VZ(H) — two-dimensional ( 5;=0) Laplace operators). Furthermore,

(71,73) and (y2,y4) are the coefficients of the general theory of elasticity and the coefficients of the
moment theory of elasticity, respectively. The contact interaction is taken into account according to the
Winkler model [18]. If there is a contact between the upper or lower nanoplate and nanobeam, then
¥, =1 and ¥, =1 if there is no contact, then ¥y =0 and ¥, =0, respectively. The expressions Qy1
and qgo represent Winkler connection between compression and contact pressure. The appearance of
clutch zones is unlikely, since the contact pressure between layers is small. The conditions of contact
between layers can depend on the coordinates and include all kinds of imperfect one-sided contact. In
the system (3) wy, w3, w, denote the deflection functions of the upper, lower nanoplate and nanobeam,
respectively; K is the stiffness factor of the transversal compression of the plate in the contact area;

h, — the gap between elements; g — the gravity acceleration; y — the specific weight of material; c -

the specific heat; G* - bulk compression modulus. The nanoplates thickness h and beam height h are
the same, the nanobeam width is 1; a denotes the nanobeam and nanoplate length, b stands for
nanoplates width, whereas q; (x, B1Y,t) is the transverse load acting on the nanoplates ( #1=1), and
acting on the nanobeam ( 3; =0).

As a result, the obtained model takes into account the parabolic heat conduction equations. There are
no restrictions on the temperature fields distribution over the thickness for nanoplates and in height for
nanobeams (for nanoplates, the temperature field is three-dimensional, for a nanobeam it is two-
dimensional). The heat exchange between the elements is not taken into account. It is possible to
consider different diagrams oj(¢j,0) describing the dependence of stress on deformation and
temperature for several chosen materials. The boundary conditions of the first type and the initial
conditions for the heat equations must be added to the system (3).

Boundary conditions of the first type. The temperature distribution is set on the body surface:

S: (0<x<a),(-h/2<z<h/?2),

0=p(x,z,t):(x,2) eS. 4)

As initial conditions, we take the distribution of deflections, deflection velocities, and temperature

increment at the initial moment of time t =0
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Also, the boundary conditions for nanoplates ( 5, =1) and nanobeam ( 3; =0) are taken.

Hinged support on the contour for nanoplates and at the ends of the nanobeam:
W, =M, =0. ®)

System (3) and boundary conditions create a system of integro-differential equations of different
dimensions of hyperbolic-parabolic type, describing nonlinear oscillations and contact interaction of
the related deformation and temperature fields for structure with physical nonlinearity, and also it
exhibits the dependence of material properties on temperature. In addition, the equations are highly
nonlinear and integro-differential, since the contact interaction between the elements of the structure is
taken into account. To obtain reliable results, we reduce the resulting system to the Cauchy problem by
two methods: the Faedo-Galerkin method in higher approximations and the finite difference method
with the approximation 0(h?) and 0(h*) with respect to the spatial coordinate. In this case, an iterative
procedure is constructed. The heat conductivity equations are solved by the finite differences method,
the temperature moments are calculated, and the found values of the temperature field are substituted
into the motion equations, and then we find deformations. For this aim, the Cauchy problem is solved
by the methods of the Runge-Kutta type: the fourth-order Runge-Kutta-Felberg method (rkf45), and
the eighth-order Runge-Kutta Prince-Dormand method (rk8pd) [19]. Such a variety of solution methods
is necessary for obtaining true results for a system with an infinite number of freedom degrees, since

the solution essentially depends on the method and the solution time step, i.e. of the initial conditions.

3. Concluding remarks

1. Mathematical model of a three-layer package of distributed mechanical structures, consisting of two
parallel plates, and a beam has been derived. Between elements there are gaps. Each of the elements
of the structure is described by kinematic models of the first approximation. Coupling of temperature
and strain fields by Fourier theory has been taken into account. Equations from the Biot functional
has been yielded. The mechanical structure is described by the modified couple stress theory.

2. The algorithm for nonlinear dynamics of a three-layer nanostructure, taking into account the contact
interaction between the elements, is developed. The algorithm is based on the application of the
Faedo-Galerkin method in higher approximations for reduction to the Cauchy problem, which is
solved by the Runge-Kutta type methods. The developed software package allows to consider various
options of heating the structure (preheated only the beam, or only one or another plate, or co-heating).
The contact interaction between the elements yield a high nonlinearity effects of the studied system.
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3. The proposed algorithm allows to solve constructively-nonlinear stationary problems.

4. Chaotic vibrations have been detected and studied.
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Variable structure systems with sliding modes

Andrzej Bartoszewicz

Abstract: The main purpose of control engineering is to steer the regulated plant in such
a way that it operates in a required manner. The desirable performance of the plant
should be obtained despite the unpredictable influence of the environment on all parts
of the control system, including the plant itself, and no matter if the system designer
knows precisely all the parameters of the plant. Even though the parameters may change
with time, load and external conditions, still the system should preserve its nominal
properties and ensure the required behavior of the plant. In other words, the principal
objective of control engineering is to design systems which are robust with respect to
external disturbances and modelling uncertainty. This objective may be very well
achieved using the sliding mode technique which is the main subject of this talk.

The theory of variable structure systems with sliding modes is currently one of the most
significant research topics within the control engineering domain. Moreover, recently a
number of important applications of the theory have also been reported. Therefore, this
paper presents a tutorial introduction to the theory of sliding mode control. Some
important results on the chattering attenuation, reaching phase elimination, finite time
convergence and optimal sliding surface design are mentioned.

1. Introduction

First research papers on variable structure systems (VSS) and in particular on VSS with sliding modes
were published in the former Soviet Union almost seven decades ago [8, 9, 10, 12, 18]. Initially, these
systems were hardly applicable because electromechanical switches available at that time (relays) could
not operate continuously at high frequencies. Therefore, only after the significant development of
semiconductor technology took place at the end of the twentieth century, practical realization of sliding
mode controllers became possible.

The principle of operation of VSS consists in the deliberate switching of different feedbacks
(controllers) according to the evolution of the system representative point in the state space. Therefore,
the dynamics of these systems are described by differential equations with a discontinuous right hand
side. Thus, the traditional assertion of the existence and uniqueness of solutions to differential equations
cannot be used directly for such systems. A. Filipov was among the first researchers to study this
problem in his work [10]. The considerations presented therein go far beyond the scope of this tutorial
presentation and therefore, only the idea of his work [10] will be given here.
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2. Filipov’s construction

Let us take into account a nonlinear and possibly time-varying, single input plant of the order n

described as

x = f(x,t,u), ()

where x is the state vector, t denotes time and u is the control input defined by the following relation

ut for s(x) >0

@

u= ’
u~ for s(x) <0
where s(x) is a scalar function of the state x, and s(x) = 0 determines the sliding hypersurface. In the
ideal case, on the hypersurface the system switches over infinitely fast between two vector fields
f(x,t,ut) and f(x, t,u"). Let us denote appropriate limits of these fields by

fr=lim fx,t,uh), ©)
and
f~ = lim fCetu). @

If the system remains in sliding mode, the following conditions are satisfied

(ds,f*) <0 ®)
and

(ds,f)=0, (6)

i.e. the scalar product of the vectors ds = grad s(x) and f* is non-positive, and the corresponding scalar
product of the vectors ds and f~ is non-negative. It results from the above that on neither side of the
sliding hypersurface the representative point of the object moves away from this hypersurface.
Additionally, in the sliding mode the object behaves as if it was affected by the “averaged” field f©

constituting a convex combination of f* and f~
x=f'=aft+(1-a)f, @

where a is a hon-negative real number smaller than or equal to one. For the representative point of the
object to remain on the sliding hypersurface, the field must be tangent to it at every point, i.e. orthogonal

to ds, hence, the following condition must be satisfied

(ds,f%) = 0. ®)
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Assuming that the scalar product (ds, (f~ — f*)) is greater than zero and solving equation (8) for
a, the following is obtained

(ds,f~) (9)

@ =@

Then, substituting relation (9) into (7), one can formulate an equation which determines the object

dynamics in the sliding mode

o e s e dsfh) o
x=af '+ U -of =g om M ~wa S (10)

To sum up Filipov’s reasoning presented here in a simplified form, one can state that the averaged
solution to equation (1) with control (2), on the hypersurface s(x) = 0 is uniquely determined by relation
(10). Let us also note that the constant « determined by equation (9) can be interpreted as part of the
time during which the representative point of the object remains on this side of the switching
hypersurface on which the switching variable s(x) assumes positive values.

Justification for introducing Filipov’s construction was the fact that traditional methods in
differential equation theories cannot directly be used for systems with ideal sliding motion. However,
as noted in [19], ideal sliding motion does not occur in real variable structure systems due to hysteresis,
inertia and the delay of switching elements. Therefore, these systems can be described by differential
equations with a continuous right-hand side, and ideal sliding motion in such systems should be treated
as a boundary case which occurs when the non-ideality of switching elements disappears. A detailed
analysis of operation of control systems with sliding motion based on such an assumption — constituting

an alternative approach to Filipov’s method — is presented in [20].

3. Equivalent control

Filipov’s reasoning discussed above allows, due to the averaging of the vector fields f* and f~,
determining the motion of the system on the switching hypersurface s(x) = 0. Another method of
determination of this motion is to introduce a concept of so called equivalent control, that is to say, such
(fictitious, and in fact non-existing) continuous control under the effect of which the system would
move in the same way as it moves due to the action of discontinuous variable structure control [19]. In
other words, the equivalent control ueq constitutes such a continuous control signal which ensures that
the representative point remains on the sliding hypersurface. The fundamental difference between
Filipov’s method and the equivalent control method is that when the equivalent control method is used,
the vector fields f* and f~ are not averaged; instead, control itself u*(x,t) and u~(x, t) is averaged.
In order to present this method, let us consider a single-input (generally nonlinear) dynamic object,

which is linear with respect to control
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x=f(xt)+glx tu, (11)

where fand g are certain non-linear vector functions, x is the state vector, u is the control signal, and t
denotes time. When the system is, and indeed remains in sliding mode, the following two relations are
fulfilled

s(x,t) =0 12)
and

$(x,t) = 0. 13)

From equation (13) it follows that

$ =(ds,(f + gw)) = (ds, f) + (ds, gu) = 0. (14)

Assuming that the scalar product (ds, g) is not equal to zero, the expression determining the
equivalent control is obtained

Ugqg = — 75— (15)

and substituting this expression into equation (11), one can, as in Filipov’s method, establish the relation
determining the object dynamics in sliding motion

. ¢ {dsf)
i=f-g5h (16)

It is obvious that equations (10) and (16) are equivalent and constitute only a different form of
description of the same motion which takes place on the switching hypersurface. An additional
advantage of the equivalent control method is that it can be directly generalized for multiple-input
systems.

As mentioned previously, one of the most important advantages of variable structure control
systems with sliding modes is their insensitivity with respect to a considerably large class of model
inaccuracy and external disturbances. To demonstrate this, let us consider a dynamic object whose
model is not precisely known, subjected to the action of disturbances

x=f(xt)+gxtu+ h(x,t), @an

The vector field h(x,t) in equation (17) represents a combined effect of (independent of the
vector x) external disturbances and the modelling imperfections. If the system remains in sliding mode,

relations (12) and (13) are satisfied. In turn, it results from relation (13) that

s={ds,(f+gu+h))=(ds f)+(ds,gu+(ds,h)=0. (18)
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Hence, assuming that the scalar product (ds, g) is different from zero, equivalent control can now

be expressed in the following form

_ (ds,f)+(ds,h)

Ugq = g (19)

Substituting relation (19) into equation (17), the following is obtained

ds,f)+(ds,h)

NP
x=f-g gt h (20)

If the vector field h(x, t) can be expressed in the form
h(x,t) = g(x, t)v(x,t), (21)

where v(x, t) is a certain scalar function, then equation (20) describing the dynamics of the object in

sliding motion assumes the form

= f— glisDridsgw

_ g o ldsf)
dsg) +tgv=f-g (22)

(ds,g)”

which does not depend on h(x,t). Thus, the sliding motion considered is invariant with respect to
disturbances and inaccuracy of the model satisfying equality (21), i.e. being in the range of input signals
of the control object. The present considerations constitute theoretical justification for desirable
properties of variable structure systems with sliding modes. These considerations are the generalization
of the seminal results given first by DraZenovi¢ in [7]. It should be added that constraints determined
by relation (21) are often encountered in various robust control problems, and are usually called
matching conditions. Let us stress at this point that sliding mode controllers ensure not only some
degree of robustness, but complete insensitivity with respect to matched disturbances and inaccuracy
of the model. This is an important property distinguishing them from other robust control methods,
which do not offer insensitivity, but only some (sometimes quite satisfactory) degree of robustness. In
other words — to the best of the author’s knowledge — sliding mode control is the only technique which
not only attenuates the effects of matched disturbance and modelling uncertainty on the plant, but totally
rejects those undesirable effects.

The considerations presented hitherto have mainly dealt with single-input control objects. In
multiple-input systems, however, it will be possible to select a larger number of switching hypersurfaces
— equal to the number of independent control inputs of the object — and to design the control in such a
way that sliding motion takes place at their intersection, i.e. at a certain manifold in the state space. In
order to analyze the operation of such systems in more detail, let us consider an n-dimensional, linear

with respect to control signals, object with m inputs

x = f(x,t) + B(x,t)u, (23)
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where x is the state vector, fis a certain nonlinear vector function, B is the matrix of dimensions nxm,
u is the vector of m control signals, and t denotes time. Let us now select m sliding hypersurfaces

s1(x) =0, s,(x) =0, s,,(x) =0, and let us form the vector

s(@) =[s:(0) 5;(x) . sE(]T, (24)
which determines a multidimensional switching variable. By calculating a derivative of this vector with
respect to time, comparing it to zero and assuming that the matrix Z—;B(x, t) is non-singular, it is

possible to calculate the equivalent control

ueq _ g_iB(xl t)]—l Z_if(xl t)’ (25)

and then, substituting equation (25) into relation (23), to determine the dynamics of the object in sliding
mode

w={1,- B0 [2B00| Zrao, (26)

where I, is the identity matrix of the order n. Equation (26) defines such motion of the system in which
the representative point of the object moves on a certain (n — m)-dimensional manifold, constituting the
intersection of m sliding hypersurfaces s(x) = [s;(x) sy(x) .. s, (x)]T =0 in the state space.
Just as it has been done for a single-input system, one can also demonstrate that the sliding motion
described by equality (26) is invariant with respect to disturbances and modeling uncertainty h(x,t)

satisfying the condition
V(x,t),3v(x,t), h(x,t) = B(x,t)v(x,t), @7

where v(x, t) is a certain m-dimensional vector function. Let us add that in the case of multi-input
objects — depending on how the controller has been designed — sliding motion can, but does not have
to take place on each of the switching hypersurfaces separately. This is because a situation can occur
when sliding motion will take place only at the intersection of these hypersurfaces and not on each of
them independently. In paper [6] an extensive discussion and a number of methods for designing sliding

mode control systems for multi-input dynamic objects are presented.

4. Conditions of the ideal sliding motion stability

In the foregoing considerations the most important properties of dynamic objects operating in sliding
regime have been described. A separate important issue is determination of conditions for the existence
of such regime, i.e. answering the question when — after representative point of the controlled object is

(slightly) thrown off the sliding mode — it will return to the intersection of the switching hypersurfaces.
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As can be seen, the issue considered here is, in its essence, the problem of sliding motion stability.
Therefore, it can be fairly easily analyzed using Lyapunov methods [17]. On the basis of [18, 20], let
us now quote a theorem concerning conditions for the existence (stability) of sliding motion.

Theorem: A sufficient condition for the (n — m)-dimensional domain D to be a domain of sliding
motion is that in a certain n-dimensional area Q c R™ where D c Q there exists, a continuously
differentiable with respect to all its arguments, scalar function V: Q x R, x R™ - R satisfying the
following conditions:

i) V(x, t, s) is positive definite with respect to s,

ii) The total derivative of the function V(x, t,s) has a negative upper limit on the spheres |[s|| = r
except the points lying on the switching surface, where control may not be defined and the derivative
of the function V(x, t, s) does not exist.

The proof of the theorem quoted herein can be found, among others, in [20]. The theorem can be
directly applied to the design of control rules that will ensure stability, and hence will guarantee the
actual occurrence of sliding motion in a variable structure system. However, this theorem is more
frequently used in an indirect manner, formulating so called conditions for the existence of sliding
motion and designing the control in such a way that one of these conditions is satisfied. One of the
conditions for the existence of sliding motion quite often used in the literature is the following inequality
[17]

Vs =0 sTs<—nls| (28)

where the constant # is greater than zero, and ||s|| denotes the Euclidean norm of the vector s. It is easy
to demonstrate that the validity of this inequality implies that the assumptions of the theorem quoted
above are satisfied. To do so, let us take into account the positive definite function of the variable s in
the form

V(s) = %sTs (29)
and calculate its derivative with respect to time
V(s)=4$"s. (30)

If condition (28) is satisfied, then this derivative has everywhere — except those points in which
s =0 — a negative upper limit equal to —n||s||. Thus, the assumptions of the theorem are satisfied and
the sliding motion in the system under consideration is stable. Let us also note that the fulfilment of
relation (28) ensures not only the asymptotic stability of this motion, but also guarantees the

convergence to the intersection of the switching hypersurfaces s = 0 in finite time

t*<n~*Is(0)ll, (1)
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where s(0) denotes the value of the vector switching variable at the start of the control process. This
inequality is of vital significance because it implies that for every time t greater than or equal to t* the
system under consideration is insensitive to external disturbances and modelling uncertainty. Of course,
inequality (28) constitutes only one of many possible conditions for the existence of sliding mode and
other similar relations facilitating the design of control systems are often used in the literature [11].

5. Selected problems in the field of sliding mode control

The previous sections illustrate important properties of VSS with ideal sliding modes. Unfortunately,
in any real application there exist unavoidable differences between the ideal characteristics of switching
devices and their actual performance. These include, but are not limited to, unmodelled inertia,
inevitable hysteresis, non-negligible delays and limited gain of switches. Therefore, the application of
the control method presented in the previous sections to any physical object causes high-frequency
oscillations. This phenomenon typically referred to as chattering is undesirable because it causes wear
and tear of the actuator components, and it can also be a reason of vibrations caused by the excitation
of unmodelled part of the system dynamics. Hence, in practical systems the discontinuous variable
structure control of the type

u, = @(x )7 (32)

where ¢@(x,t) is a vector function of time, and the system state is replaced with its continuous

approximation. In most cases, it consists in introducing a certain boundary layer [5, 15, 16, 17, 22]

S
— for |[|s||> 6
s IIs]l

u, = @x,t) , (33)
% for |s|| <6

where & is a small positive constant. However, other approaches leading to the reduction of chattering
[2] have also been proposed. Probably the most significant of them is the introduction of the second,
and higher order sliding mode controllers [1, 13].

As it has already been demonstrated (see equality (22)), VSS in the sliding mode, ensure complete
insensitivity of the controlled plant with respect to matched disturbances and modelling uncertainty.
Therefore, much work has been performed to shorten or eliminate the reaching phase. For that purpose,
on the one hand integral sliding mode control [21] has been proposed, and on the other, time-varying
sliding surfaces were introduced [3, 4]. Both of these approaches attempt to select the sliding surface
so that the representative point (state) of the controlled plant belongs to the sliding surface from the
very beginning of the control process. When integral sliding mode technique is employed, this goal is

achieved by introducing an extra state variable and extending the state space of the system. The initial
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value of the extra state variable can be chosen arbitrarily, which makes it possible to place the extended
state of the system on the sliding hypersurface at the start of the control action and keep it on the surface
for any time greater than zero. On the other hand, when time-varying sliding surfaces are applied to
eliminate the reaching phase, the surfaces are chosen to pass the representative point of the plant in the
state space at the initial time, and then they smoothly move (usually they are either shifted or rotated)
to their final location, which ensures desirable dynamical performance of the system and error
convergence to zero.

Appropriate selection of the sliding surface is of utmost importance, since the system dynamics in
the sliding mode is fully governed by the predefined surface. Therefore, the selection has to ensure
stability, and the desired performance. Furthermore, smart choice of nonlinear surfaces can guarantee
finite time error convergence to zero. VSS which actually make the error die out in finite time are
usually called terminal sliding mode VSS [14]. Finally, let us mention that some researchers made an
attempt to choose sliding surfaces in such a way that the closed loop system has become optimal in the
sense of some control quality criterion [4], like integral of absolute error, integral of time multiplied
absolute error, quadratic performance index, etc.

6. Conclusions

In this paper some basic properties of the sliding mode control systems have been briefly summarized.
First, Filipov’s construction has been presented, and the most important feature of continuous time VSS
with sliding modes, i.e. their insensitivity with respect to matched model uncertainty and external
disturbances, was demonstrated. Then the notion of equivalent control was presented and elaborated
upon. Further in the paper conditions for the existence and stability of the sliding motion were
presented. Finally, some research topics in the field were identified. These include, but are not limited
to, the design of higher order sliding mode controllers, chattering attenuation, integral sliding mode
control, design of terminal sliding mode control systems, and application of time-varying sliding
hypersurfaces. Of course this list is not exhaustive and many other research problems in the field

deserve attention and further studies.
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Generic bifurcations in thermodynamics by fractional continuum
mechanics

Péter B. Béda

Abstract: In the last years non-integer differentiation became a popular tool for
modeling complex behaviors of systems from diverse fields of mechanics. Especially,
long-range temporal or spatial dependence phenomena inherent to fractional order
systems present unique and intriguing peculiarities, not supported by their integer order
version. In dynamic stability analysis mathematical aspects of non-locality were studied
by using the theory of dynamical systems. Such approach results in conditions for cases,
when the differential operators have critical eigenvalues of zero real-parts. When the
critical eigenvalues have nontrivial eigenspace, the ways of loss of stability is classified
as a typical (or generic) bifurcation. Our experiences show that material non-locality
and the generic nature of bifurcation at instability are connected and the basic functions
of the non-trivial eigenspace can be used to determine internal length quantities of non-
local mechanics. Fractional calculus is already successfully used in thermo-elasticity.
In the paper non-locality is introduced via fractional strain into the constitutive
relations. Then by defining dynamical systems stability and bifurcation is studied for
states of thermo-mechanic solids. Stability conditions and genericity conditions are
presented for constitutive relations under consideration. Internal length effects are also
studied by calculating critical non-trivial eigenspaces and the basic functions of them.
Such functions are essential in bifurcation analysis in non-linear studies.

1. Introduction

The roots of fractional calculus, go back to Leibniz (1695) and Euler (1730) as a natural extension of
calculus [1], and most definitions were already given in the golden age of analysis Liouville, Riemann
and others. In recent years mechanics has brought back into the center of interest, because it is a useful
tool to model non-locality. Such non-locality is an old problem of solid mechanics [2], and is usually
treated by using integrals and second gradients [3], [4]. The first application was in visco-elasticity [5],
as a kind of non-local time effect. In material instability problems spatial non-locality plays an
important role in non-linear bifurcation (post-bifurcation) investigations, while in several cases local
formulation of the basic equations of solid bodies may result an indeterminate behavior [6]. In
numerical studies such behavior appears as mesh sensitivity, when the mesh used in finite element
method, determines post-bifurcation behavior. Conventionally, such problem is avoided by introducing
gradient terms into the constitutive equations. In physical interpretation: non-locality is used to cure

indeterminate behavior. The aim of the paper is to describe non-locality by using fractional calculus,
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and study a thermo-mechanical material instability problem. Here thermal stresses are added as usual
[7] to a material instability investigation and heat propagation is described by the Vernotte-Cattaneo
equation. Non-locality (in space) appears in a generalized fractional strain. Similar concept was used
by [8] for non-local time in a visco-elastic problem. The focus of the study is on the existence of a set
of regular basis for the non-trivial critical solutions in the post-bifurcation case.

The second part introduces the thermodynamic setting of a solid continuum taking into
consideration thermal stresses. For the sake of simplicity small deformation theory is applied in a
uniaxial problem. In the third part a stability and bifurcation analysis is performed. Two ways of loss
of stabilities are treated, the static and the dynamic bifurcations. A dynamical system is defined from
the basic equations presented in the previous part. The second subsection deals with the possibility of
a static bifurcation. After then two subsections study dynamic bifurcation. The first of them is a general
investigation, the second one present two special cases: a simplified version to show the possibility to
get generic dynamic bifurcation and at last we show that with no fractional description no generic
dynamic bifurcation is possible.

2. Fractional thermo-mechanics

This part describes the basic equations for a solid body with thermal stresses. In addition to the basic
equations of continuum mechanics also heat propagation should be taken into account. To avoid non-
generic behavior due to infinite propagation velocity Vernotte-Cattaneo equation is used instead of
Fourier law.

The set of basic equations consists of the kinematic equation

_ 0%

£ g @
the equation of motion

)10

U= o ox 2)
and the constitutive equation, which is in rate form reads
6 = B(¢ - 69) + xh. 3)

In equations (1), (2) and (3) the notations are: strain (for uniaxial small deformations) ¢, velocity v,
space coordinate x, mass density p, temperature 6. Overdot denotes derivative with respect to time t
and B is tangent stiffness, while y is a material constant. In (1) a generalized strain is used, where 0 <
a < 1 denotes the order of the fractional derivative.

Heat conduction is given by the Vernotte-Cattaneo equation
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; a
th+a+-0+h=0, o)

where the relaxation time of heat flux is denoted by z, the heat flux by h, and heat conductivity by a.
For the constitutive variables o, &, 9, h two types of constitutive equations are given. The one in form

(3) could be referred as mechanical constitutive equation, while the other

0,6+ 0,6+ 0;h= 8 (5)
may be called the thermodynamic constitutive equation [9], with material constants ©,, ©,, 0.
From (4)

h=-22y9_1 )

T 0x T

By substituting (1) and (6) into the mechanical and thermodynamic constitutive equations, (3), (5) we

have
5 . 9% ad h
19:(31(7‘}' E‘)Zﬁ—@g;aﬁ—@g;, (7)
. % 5 ad h
U—Bm—Beﬁ—){;aﬂ—){;. (8)
From (7), (8)
. _ 9:B+0,) 9% 01 x+03 ad 0:1x+0; h
o= (B B 1+9139) axe T (BG 1+0,B6 X) T ax19 + (39 1+0,B6 X) T’ ©
5 _ ©,B+0, & _©1x+03a 9 o O;x+03h (10)
T 1+40,B6 9x* 1+©,B6 T dx 1+0,B0 T

By using simplifying notations (9) and (10) reads

% ad h

b’=C1m+C2 ;£ﬁ+cz;, (11)
: 0% a d h
ﬁ_dlﬁ_dz;aﬁ_dz;' (12)

Now equations (2), (6), (11) and (12) for variables v, g,9, h can be used to describe the motion of the

thermodynamic continuum.

3.  Continuum as dynamical system and stability investigation

This part deals with stability analysis of a state of the thermo-mechanic continuum. A dynamical
systems approach will be used. The investigation concentrates on the conditions of having a generic
bifurcation. Generic type means the existence of non-trivial critical eigenspace at the loss of stability.
The importance of it can be obvious in non-linear bifurcation and post-bifurcation analysis, while
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nonlinearity is studied by projecting the expressions into the non-trivial critical eigenspace of a linear

operator determined by the basic equations.

3.1. Stability and bifurcation conditions

In the previous part a set of equations was derived as the fundamental equation for a solid body taking
into account the effect of thermal stresses and non-locality in form of fractional strain. This system is

of first order in time and can be studied as a dynamical system. In vector form it reads

0o 1o 0 0
. p ox
v L ad 1Y
9= | o “rax O lof (13)
I e 0 -2 —a,i[?
h Ix® raax t|Lh

a 1
o 0 -Ix 3

In (13) differential operator A is defined in a matrix form,

1d0

pox 0
o R ol v
15 a 25 2 g
A(v,0,9,h) =] ~ 9% T 0x T 5]
& 0 -d, 22 —g, 1Y
llax“ 27 0x th h

a d 1

R P

Assume that equations (2), (6), (11) and (12) has a stationary solution v, gy, 9y, h, Satisfying all
initial and boundary conditions. This solution represents a state of the thermo-mechanical continuum.
Its stability can be studied as the Lyapunov stability of solution vy, gy, 9, ho. By using perturbation

technique:
v=vy+D d=0y+6 9=09,+73, h=hy+h, (14)

where 7, &,3, h are small perturbations satisfying homogeneous boundary conditions. While (13) is a
linear equation, by substituting (14) into it a similar equation is obtained for the perturbations, and

stability investigation is performed by the characteristic equation
det(A — Al = 0. (15)

When the real parts of all 4 satisfying (15) are negative, the state of the material given by solution
Vg, 09,9, ho is stable. On the stability boundary, there is at least one A, which is zero (static bifurcation)

or the real part of which is zero (dynamic bifurcation) [10].
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Unfortunately (15) is an operator equation, which requires to solve a system of partial differential
equations causing a lot of difficulties. In most cases such solutions are found by numerical analysis.
Instead a generally used simplification can be done, when the study is restricted to periodic
perturbations

v = Hoexp(iwx), o = Goexp(iwx), 9 = Jpexp(iwx), h = hgexp(iwx). (16)

In the following subsections such simplification is used to remain at analytic approach.

3.2. Static bifurcation investigation

At static bifurcation 0 is an eigenvalue of the characteristic equation (1 = 0), thus by substituting (16)
into the matrix form of (15)

100 .
0 P exp(iwx) 0 0 ]
ae . a . 1
detl Gz exp(iwx) 0 Cy %5 exp(iwx) €27 |_ o
8« ) a . 1
ldl Py exp(iwx) 0 —d, %Z exp(iwx) —d, ;}
ad . 1
0 0 — ;aexp(lwx) -
is obtained. By calculating derivatives
1 LT
0 ;wexp (l ;) 0 0
ciw%xp (iZa 0 e, Zwexp (iZ cyt
det| ( 2 ) o ( 22 * |=o0. (17)
dyw%exp (i;a) 0 —d, ~ wexp (i;) —dZ;
. 1
0 0 - % wexp (l g) -

Equation (17) should be solved for w and a non-trivial solution is searched for. When we have such a

solution (non-zero) w;,, , the basis of the critical non-trivial eigenspace is
[Foexp(iwinex), Goexp(iwinx), Jpexp(iwinx), Roexp(iwix)] (18)

and the non-trivial solutions for post-bifurcation investigations should be searched for a linear

combination of it. In addition static internal length for this type of loss of stability can be defined as
Cint = TWint. (19)

From (17)

av2l iz (@ 2 JGa g A im0 8 in . pine g ain g\ Z g (o
w pez c;zezde 2 €z20ez -(dasezcien 17ezce =0, (20)
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consequently, only the trivial solution exists. Thus, there is no regular non-trivial critical eigenspace
for static bifurcation.

Let us study what happens, if damping is added to the mechanical constitutive equation. Then
instead of (3)

. . ; : 19% 9
a=B(s—919)+)(h+D;ﬁaa (21)

should be used, where D is damping coefficient. After similar steps as before, the characteristic equation

in case of a static bifurcation results

1 LT
[ 0 > wexp (l ;) 0 0 ]|
c,w%exp (i % a) czw*lexp (i % (a + 1)) cy %wexp (i g) CZ%
det =0 (22)
d, w%exp (i%a) d;w**lexp <i%(af + 1)) —dZ%wexp (l%) —dy =

0 0 —Zwexp(i5) 2

but (22) leads to the same result as (17), there is no regular non-trivial critical eigenspace for static

bifurcation either.

3.3. Dynamic bifurcation investigation

The necessary condition for a dynamic bifurcation is to have pure imaginary solution A = Bexp (z%)

of the characteristic equation (15). When the imaginary expression is substituted into (15)

| RN .
—fe ;we 2 0 0
ica i a iZ 1
cw%e 2" —Pe c;—we 2 Cy—
d * * =0 23
et T a T LT 1 - ( )
do%e™ 0 (-dtwe—pez)  —d,:
a i 1 iz
0 0 ——we' (——[)’eLZ)
T T

is obtained. From (23)

1 a i, a4l ica a i g1 ica , (1 i a
—wez|—c,sez2dw e —dysezqqw* ez +|=—fez —d,~w —
p T T T T

T

aiga_d a+18 iz i§a+2in —d % — iZ(1_ i%_diig _
B )ciw%e 1w ezcye Bze 270 B e . Be 2 €)=

0. (24)

Equation (24) is complex, its real and imaginary parts define a system of two equations
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pt? pr2

((dzclﬁ L —dyey ) w2 4 %ﬂzclw“Jrl) cos () + ((—dlczﬁ Lt daey ) w2 4

£ g0 (~sin (%)) - 8 (- 20— ) =0 @
((dzclﬁ% —dyoy pi) W2 4 %ﬁzclw““) sin (%) + ((—dlczﬁﬁ +dycy pi) w2 +

L ﬁclw““) cos (<) = o, (26)

and should be solved for variables 8 # 0 and w # 0. From (26) S can be expressed as a function of w,
then it can be substituted into (25), and now w can be expressed.
If ¢c; =0, then

dic,B ﬁ w**2 cos (“2—”) =0, 27

that is, there is no solution with the necessary properties. Equation (27) is satisfied, when g = 0, or
w = 0, but such solutions are excluded. The third possibility is cos (?) = 0. It happens when =% =
%, 3%, ..., but also these cases cannot be resent, because of condition 0 < & < 1. For material constants
¢y # 0 implies

0,8+0,
1+0,B0

B(1-0 )=0. (28)

Now (26) could be divided by ¢; and simplified to

p? — (1 — cot (?))‘izﬂ + ﬁ%(dzaw —d; Z—jaw cot (az—n) + cot (az—n)) =0. (29)

TZ

To obtain B = B(w) the second order equation (29) should be solved and the solution should be
substituted into (25). Then the solvability of

((dzclﬁ(w) i - d2C1 #) (l)a+2 + %(B(w)) chw‘Hl) cos (az_n) + <(—d1€2[3(w) % +

dy1 %) %2 + - B(w) c1w“+1> (=sin () = (B@))’ (~d2 2w - f(w) ) =0 (30)

should be studied. If there exists regular non-zero w satisfying (30), then the dynamic bifurcation is

generic and a non-linear investigation is possible.
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3.4. Dynamic bifurcation for two special cases

To show that (30) may have regular solution, this part will study simplified cases (a = % and a = 1),
in which such solution can easily be derived. Then the case of the conventional strain will also be treated

to demonstrate the need for fractional strain to have generic dynamic bifurcation.

df“’ and assume for the sake of simplicity that

Denote A =

¢, =0 and cot (az—n) =0 (31)
to study a simplified special case. Then (29) is
B*+AB-2=0. (32)

Equation (32) can be solved to

Bra=—3EVA | (33)
Conditions (31) imply

0;B0 =y and a = % (34)
then the positive solution from (33) should be substituted into (25), and

V2 wr — (dyaw)? — 3(dyaw)? — 3(dyaw) —1 =0 (35)

is obtained. To have a generic dynamic bifurcation (35) should have a non-zero solution wgyy,. In (35)
coefficient d, = 0.

Instead of solving (35) we may assume, that dynamic material length €4y, = wqy, is determined
by some measurement or physical experience. Then (35) presents a condition for the coefficients of the
constitutive equations in form

5 (102 () — (005 3 (0s0%2) ~3(er0) 10 @9

s s

Of course we should keep in mind all the previous assumptions (28), (34) and
@13 + 02 # 0 and @3 *0 (37)

to set up conditions for the existence of a generic dynamic bifurcation as the way of loss of stability.

At last the case of conventional strain
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_ ou
T ox

is studied. Then @ = 1 and (26) implies

ﬁz + dzamﬁ _ dyaw -0 (38)

T T2
its solution reads

draw

1 1
Bro=—=—% % (dyaw)2(dyaw + 4)2. (39)

When it is substituted into (25) at « = 1, after some calculations

1 1\3 1 z
( daaw % (dyaw)z(dyaw + 4);) (dZﬂ + 2_1T (dyaw)2(dyaw + 4)5) =0 (40)

2T 2T

is obtained. Unfortunately (40) cannot be satisfied, thus no w solution exists, because (40) is valid either

when

dyaw = (dzaw)%(dz aw + 4)%, (41)

or

—dyaw = (d, aw)%(dz aw + 4)%, (42)
Both (41) and (42) require
(dyaw)? = (dyaw)(d,aw +4) & dyaw = dyaw + 4,

which is a contradiction. That is, no generic dynamic bifurcation is possible for conventional strain.

4, Conclusions

By using dynamical systems stability analysis of thermo-mechanical continua can easily be performed,
even when fractional derivatives are used. Such case may be obtained, when non-locality is described
by a generalized, fractional strain. In constitutive formulation two types of constitutive equations are
used, thermodynamical constitutive equations should also be added to the classical “mechanical”
constitutive equations. In such a way a closed systems of equations is obtained to determine the motion
of the thermo-mechanical continuum. By using such system of equations a dynamical system can be
defined and the requirements of generic static and dynamic bifurcations can be studied. When the
investigation is restricted to homogeneous periodic perturbations, general necessary conditions are
formulated for both static and dynamic bifurcations. For the conventional setting (small deformations,
linearized constitutive equations, Vernotte-Cattaneo equation) no generic static bifurcations are found.

For dynamic bifurcation there are possibilities to have generic behavior. A general formula is derived
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for such case. Moreover, having done a few simplifying restrictions conditions are presented for the

material constants of the constitutive equations to ensure generic dynamic bifurcation. The necessity of

fractional strain is also presented, while at conventional strain no generic bifurcation is possible.
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Computation of periodic switching strategies for the optimal
control of chemical reactors

Peter Benner, Andreas Seidel-Morgenstern, Alexander Zuyev1

Abstract: In this paper an isoperimetric control problem for the optimization
of the performance measure for a nonlinear chemical reaction model with pe-
riodic inputs is considered. For this problem, a family of bang-bang controls
parametrized by switching times is introduced. The issue of defining these
switching times is addressed for periodic boundary conditions by using the
Fliess series expansion. Such a technique allows us to obtain analytical re-
lations between the boundary conditions and control parameters for the case
of small time periods. These theoretical results are illustrated by numerical
simulations for a non-isothermal reaction model with two inputs.

1. Introduction

Problems of chemical engineering stimulate the development of nonlinear design techniques in
mathematical control theory for distributed and lumped parameter systems. As an important
reference, we cite the pioneering work by J.M. Douglas [1], where the performance measure
of a nonlinear chemical reaction was estimated under sinusoidal modulations of the feed
composition. Since then, problems of increasing the efficiency of periodic operations of
chemical reactors have received considerable attention in theoretical and experimental studies
(see, e.g., the recent papers [4,5] and references therein).

A family of bang-bang extremal controls was proposed for an isoperimetric optimiza-
tion problem in our previous work [8] in order to maximize the performance of a nonlinear
chemical reaction with periodic inputs. It was noted that this control design methodology is
based on solving an auxiliary system of equations with respect to the switching times. The
properties of these switching strategies have not been fully analyzed so far, and we carry out
a further study of this problem in the present work.

Our main theoretical contribution is summarized in Section 3. In Lemmas 1-3, we pro-
vide conditions for the switching times and the initial data of the considered isoperimetric
problem. These analytic results allow to define bang-bang controls for the case of relatively
small time periods (i.e., for relatively high frequencies of the input modulations). We also

derive representations of the cost function along periodic trajectories for different switching

!Corresponding author.
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scenarios. The novelty of this approach is underpinned by the use of essentially nonlinear
techniques, based on the Fliess functional expansion, while the matrix exponentials of the
linearized problem were previously used in [8]. The above theoretical results, linking switch-
ing parameters with the initial data, are illustrated with numerical simulations in Section 4

for a non-isothermal chemical reaction model.

2. Optimal control problem

This section contains a brief presentation of the necessary results related to the isoperimetric

optimal control problem introduced in [8].

2.1. Mathematical model

Consider a mathematical model of a controlled non-isothermal chemical reaction of the type

“A — product” governed by the following differential equations [8]:

T U
z = fo(z) +urfi(z) +uzfo(z), z= ! ER? u= ! e U C R, (1)
T2 u2
U = ] < g o).

We assume that the dimensionless components of z(t) and u(t) describe the deviation of basic
physical quantities from their steady-state values under a suitable rescaling, so that z1(t)
corresponds to the outlet concentration of A, x2(t) corresponds to the temperature of the
reactor, u1 (t) controls the inlet concentration of A, and w2 (t) controls the temperature of the
inlet stream. Here ¢ > 0 is the dimensionless time. Thus, the nonlinear control system (1)
describes the reactor dynamics in a neighborhood of some steady state, so that fo(0) = 0,
and the trivial solution x = 0 with v = 0 corresponds to the operation with a constant
consumption of A at a constant temperature. More details concerning the derivation of
equations (1) can be found in [4,5,8].

The problem of maximizing the mean conversion of A to the product (or, equivalently,
minimizing the mean concentration of A at the output of the reactor) has been considered
in [8] under periodic boundary conditions. To formulate this problem, we introduce the class

of admissible controls U;, consisting of all measurable functions w : [0,tf] — U C R2.

2.2. Problem formulation

For givent; > 0, 2° € R?, and @1 € R, the goal is to find a control 4(-) € Uy, that minimizes
the cost

1 [ir

J: x1(t) dt (2)

_tfo
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along the solutions x(t) of system (1) corresponding to the admissible controls u(-) € Uy,

such that

ti Y @) dt = 3)
fJo
and

z(0) = z(ty) = 2°. (4)

The above isoperimetric problem formulation corresponds to an assumption that the
process is controlled periodically and the mean consumption of the input reactant A is fixed

to be @1 (in our dimensionless variables).

2.3. Parametrization of the switching times

If 4(t) is an optimal control for the above problem then, as it was shown in [8], the Pontryagin

maximum principle implies that

. umee + umin umes _ umin )
an(t) = M S e (pa6) + ),
. . (5)
. uar + avin wneT _ g min
o (t) = = : 2 2 5 2 _signps(t), te[0,tf],

where (p1(t),p2(t)) satisfy the adjoint equations, and the constant n: plays the role of a
Lagrange multiplier for problems with isoperimetric constraints (cf. [6]). For the case of a

reaction of order n considered in [8], the vector fields of system (1) are

kie™ — pr1x1 — ki(z1 + 1)”67%/(127%) 1 0
folwy = (M1 o] se={ ew= (") ®
kae — ¢pax2 — k2(1’1 + 1) e *2 0 1

and the adjoint differential equations for (p1(¢),p2(t)) take the following form:

p1 = —po + ¢1p1 + n(kipr + kzpz)(ﬁh + 1)71_16_%/(M+l)7

n (7)
s(k1p1 + kap2) (w1 + 1) e/ @D L st <0,
(z2+1)?

P2 = ¢a2p2 +

Here n, s, ki, and ¢; are parameters of the reaction [8].

As there is no information about the initial values of the adjoint variables p; and ps,
the principal problem for implementing bang-bang controls of the form (5) is related to the
computation of the switching times, when the functions pi(t) + 1 and pa(¢) change their

signs.
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Remark 1. The number of switchings has been estimated in our previous work [8] for the
linearization of systems (1) and (7), whenn = 1 and the differential equations for x and p are
decoupled. In this case, it was shown under an additional assumption on the parameters of
the drift term fo (which holds for the reaction considered in [8]) that each control 4(-) € Uy,
satisfying the Pontryagin mazximum principle has at mazimum 4 switchings in the interval
t €[0,ty].

Starting from this observation, we fix a natural number N and consider a finite sequence

of boundary control values

) u{nin u'inin u{naw u{naw '
uj € min ’ max ’ min ’ max = Ub7 J= 17 N’ (8)
Uz U2 U2 Uz
together with a partition
0:t0<t1<...<tN:tf, (Tj ::tj—tj71>0), (9)

in order to define the following piecewise-constant control w : [0,ts) — Up:

u(t) ==’ for t € [tj_1,t;), j=1,N. (10)

Thus, the candidates for optimal controls may be obtained by checking all controls of
the form (10) corresponding to all possible choices of N, switching scenarios (8), and parti-

tions (9) such that the constraints (3) and (4) are satisfied.

3. Equations for the switching times

In this section, we will propose analytic formulas for computing the switching times and
corresponding asymptotic representations of the cost J for the case of small periods t;. Our
study is based on the Fliess functional expansion for solutions of system (1), which can be
deduced from its Volterra representation [2]. Namely, for the analytic vector fields f;, output
function y = h(z), initial data 2(0) = z° € R?, and piecewise-continuous input u € Uy, the
value of y(t) = h(z(t)) for the corresponding solution z(t) of system (1) can be represented
as follows [2], [3, Chapter 4]:

y(t) =) +3 Y Ly, Ly, (") / di, - deg, te [0,t], (11)

v=01i0,...,i, =0 0

T

f(f d&; = &(t) = fot u;(t) for i = 1,2, and, by induction,

/ot d&;, -+ d&, = /0lt déi, (s) /08 déi, | - dés,.

where Ly, h(z) = 82(””) fi(z) is the Lie derivative, ag(xz) is the Jacobian matrix, fot déo = t,
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To simplify computations in the sequel, we assume that the mean consumption of the
input reactant corresponds to the same amount that is used to achieve the steady-state
z =0, i.e. we assume that @; = 0 in the isoperimetric constraint (3). We also assume that

the set U, is symmetric, i.e.

uT = M >0, i=1,2. (12)

2 ...,u" € Uy, we introduce positive

For a given number N > 1 and a switching scenario u*, u
real variables 71, T2, ..., 7v and denote to =0, t1 =71, ta = t1 + 72, ..., tN =tIn_1+ TN = t5.
Our goal is to define (71, 72, ..., 7n) from the conditions (3), (4) and to analyse their
properties for small values of ¢t;. By assuming that Remark 1 remains valid for the nonlinear
system (1) in a neighborhood of the origin, we will consider the cases with N < 4 only. It is

clear that any constant control u(t) € Uy does not satisfy the isoperimetric constraint

ty
/ wa(t) dt = 0 (13)
0
under the assumption (12). Thus, we will exclude the case N =1 from consideration.

3.1. Case N =2

For a given switching scenario u', u? € Uy, the isoperimetric constraint (13) is satisfied for

the control u(t) of the type (10) only if
m=7o=1t;/2 and u’=—u'. (14)
With this control u(t), the Fliess functional expansion (11) with h(z) = = takes the form
x(ty) = 2° + 271 fo(2°) + 277 Ly fo () + 71 [g1, fol (2°) + O(t}) for small ¢ty >0, (15)

where g1 = ul fi +ud f2, and [gs, fo] := Ly, fo — Ly, 9: is the Lie bracket of the vector fields g;
and fo. Note that formula (15) is valid for any vector fields f; of class C?, and its remainder
O(t}) can be estimated by Lemma 3.1 of [7]. We use the representation (15) to derive
equations for the switching times from the periodic boundary conditions (4) in the following
lemma.

Lemma 1. Let N = 2, and let the parameters of the contol u(t) given by (10) satisfy (14).
If the corresponding solution x(t) of system (1) satisfies the boundary conditions (4), then

1
fo+m {Lfofo + Q[glafo}} =O0(t7), where g1 = uifi+ usfo, (16)

and
ty

1 2 1
T = — x(t)dt:$0+71 f0+*gl +7-12 7Lfof0+7Lg1f0 +O(t?}) (17)
tr Jo 2 3 2
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for small ty > 0.

Note that the vector fields in formulas (16), (17) and in the subsequent computations

are evaluated at x = z°.

3.2. Cases N=3and N =14

If N = 3 and u',u?,u® € U,, then the isoperimetric constraint (13) is satisfied for the

control (10) if
m=m+m=t;/2 and u’=—u', ui = —uj. (18)

We summarize our analytic approach for the design of controls (10) with N = 3 as follows.
Lemma 2. Let N = 3, and let the parameters of the contol u(t) given by (10) satisfy (18).
If the corresponding solution x(t) of system (1) satisfies (4), then
22 fo + 73(2fo + 91+ g3) + 73 {2L 50 fo + g1 fol} + 27273 {2Lg fo + Lo 93}
2
+ 5 {4L g fo + 3Ly, fo + Loy fo+ 3Ly 93 + Liogn (19)

+Lgy 93 +2Lg,93 + Lg, g1} = O(t}), where gi = uifi +ubfa.

For the case N = 4, we observe that the control (10) with u',u? u® u* € U, satisfies

the isoperimetric constraint (13) if

T3 =T1, T4 = T2, 2(11 + 72) =ty and u? =t ut = - (20)

In this case, we have:
Lemma 3. Let N = 4, and let the parameters of the contol u(t) given by (10) satisfy (20).
If the corresponding solution x(t) of system (1) satisfies (4), then

2(m1 + 712) fo + 712 {2Ly, fo + g1, fo]} + T22 {2Ly, fo + [g2, fo]}

v . (21)
+ 772 {4L s fo + (g1 + g2, fo] + (g1, 92]} = O(t}), where g; = uifi + udfa,
and
1 [t 0 T191 + T2g2 2(7'1+7'2)2
T i=— z(t)dt =z + (11 + 72) fo + + Ly, fo
tr Jo 2 3 (22)
4 n@ntsdn), oo rent2n), e O(t%) for smallty > 0.

4 4

The proof of Lemmas 1-3 is based on the Fliess functional expansion (11) and is omitted

due to lack of space.
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4. Numerical simulations

In this section, we will show how the above analytical results can be applied to control the

hydrolysis reaction of the type (CH3CO)20 + HoO — 2CH3COOH. We choose the same

realistic parameters for the vector fields (6) of system (1) as in [8]: n =1, ¢1 = ¢2 = 1,

2 =16.07, ky = 3.059-107, ko = —1.058- 106, u"** = —u¥™" = 4.21, u**® = —uJ"" = 0.06.
Let us first consider controls of the form (10) for N =2, i.e. let

u',  te0,7),

u(t) = .
—u', tE€[mn,ty],

(23)
with 71 > 0, t; = 272, and u' € Uy (we take into account (14) to satisfy the isoperimetric
constraint with @; = 0). As, for an arbitrary initial condition x(0) = 2° € R?, the solution
z(t) of system (1) with control (23) does not necessary satisfy the periodic boundary con-
dition x(0) = z(t;), we use Lemma 1 to satisfy the relation between z° and 7. Namely, if
ty =21 =04, u' = —u? = (7", u3**)T, then condition (16) of Lemma 1 is satisfied with
2% ~ (—0.403, —0.006)". We have truncated the term O(t7) in the right-hand side of (16)
and solved the resulting equation numerically. The solution z(t) of system (1), (6), (23)
with the above choice of parameters is shown in Fig. 1. We observe that the solution x(t)
is tg-periodic, and the cost is J = i Otf z1(t)dt = —0.015. As J is negative, the periodic
control (23) ensures a better performance of the reactor in comparison to its steady-state

operation with x = u = 0.

001

0.006

0004

4 2 02 04
xa
00y a4 02 02
0,002 X

0,004

0,004

-0.006 5006

Figure 1. Trajectories of the control system (1), (6), (10): N =2 (left) and N = 4 (right).

To illustrate the case N = 4, we choose control (10) with the same ¢ty = 0.4 and
u' = —u® = WP up)T, w? = —ut = (W, w5 )T, Then equation (21) (with higher
order terms being truncated) is satisfied with z° &~ (0.0152, —0.0058)” and 7; = 0.1. The
corresponding trajectory z(t) of system (1), (6), (10) is presented in Fig. 1. The cost
J = % Otf z1(t)dt = —0.038 is also negative in this case, which confirms the performance
improvement with respect to the steady-state solution.

Note that the first coordinate of Z in (22) provides a representation of the cost J for small

values of 71 and 2. Hence, for future work, we plan to extend these analytical results for
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estimating the optimal phase shift in the reactor model with two periodic inputs. Another
direction for future development is related to the problems of stability and orbital stability

of the proposed periodic trajectories for justifying possible implementations of our approach.
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Nonlinear quantum systems

Bjorn Birnir

Abstract: We model the dynamics of electrons in doped quantum wells driven by ter-
ahertz radiation and a superlattice biased by a dc voltage. We compute coherent, self-
consistent electron states, density matrix equations of motion, and dipole absorption
spectra. The model simultaneously accounts for intersubband transitions and many non-
linear phenomena that have been observed in these systems. We predict a bistable re-
sponse for strong terahertz fields and bifurcations to coherent time-periodic quantum
states. These bifurcation include, period-doubling bifurcations, producing a subhar-
monic response, Hopf bifurcations producing an incommensurate frequency response,
and a cascade of period doubling bifurcations to a strange attractor. These bifurcation
have been difficult to measure in single quantum wells. Therefore we design super-
lattice heterostructures of quantum wells where these bifurcations occur and are easier
to measure.

1. Introduction

Quantum wells are fabricated (or ‘grown’) from semiconductors by depositing a thin layer of one mate-
rial, such as gallium arsenide GaAs, onto a substrate of a different material, such as aluminum gallium
arsenide A/GaAs, followed by another layer of substrate material, so that a type of ‘sandwich’ geometry
called a heterostructure is formed. The defining property of quantum wells is that the middle layer has
a significantly smaller band gap than the substrate layers, and has thickness of the same order as the
de Broglie wavelength of the electron. This causes an electron occupying the conduction band of the
middle layer to be confined to move freely in only two dimensions, while motion in the third dimension
is only possible via transitions between quantized energy levels, called ‘subbands’, see Figure 1. These
wells can be populated by a density of electrons by a process called doping and this makes them ideal
quantum systems for the study of nonlinear effects.

The success of nonlinear dynamical systems theory in the late 20th century, see Guckenheimer and
Holmes [23]], and its application in the sciences and engineering, see for example Birnir [§]], lead to the
conjecture that similar phenomena could be found in quantum systems. In semi-classical systems non-
linear dynamics and bifurcations of coherent solutions (solitons) have been shown to exist [[7,/9422130],
so it is not unreasonable to expect nonlinearity in some quantum systems far from the semi-classical
limit. In the late 1990s and early 2000s, Galdrikian, Batista, Birnir et al. [5,/6L[20] studied intersubband
transitions of doped quantum wells. They developed computational methods for determining the coher-

ent states of the electron gas in an oscillating external electric field. It was found that the density matrix
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Figure 1. Left: The conduction and valance band for a semiconductor heterostructure, showing several
‘bare’ electron and hole subbands (states). Right: The parabolic subbands of the energies Ej o Of the

envelope wavefunctions & .

equations of motion were nonlinear due to the interactions of the electron gas and that these nonlineari-
ties could be enhanced by fabricating quantum wells with certain asymmetries, so that the lowest-lying
subband levels were close to one another in energy. For sufficiently nonlinear wells, it was predicted
that the wells would exhibit a bistable response as the terahertz power of the electric field (laser) was
ramped up and then down. For strong enough terahertz fields, period-doubling bifurcations leading to
a period-doubling cascade were predicted. Galdrikian, Batista, Birnir et al. [5}|6,[20] developed this
nonlinear theory of semiconductor quantum wells, typically made out of GaAs and Al;Ga;_,As and
populated by the technique of doping, where material providing electrons is deposited close to the well
structure, see Heyman et al. [24,[25]]. The nonlinearity was introduced through the Hartree and Hartree-
Fock local density approximation where a system of n-interacting electrons is replaced by a system
of n-noninteracting electrons in a different (Hartree) potential. This latter view leads to the quantum
mechanical system of coherent electron states. These states satisfy a Schrodinger equation where the
potential depends on several parameters and when these parameters change the coherent electron states

can bifurcate.

2. The local density approximation

We now briefly describe the steps involved in obtaining the nonlinear quantum system describing the
coherent electron states and their bifurcations. It is possible to add donor-type dopants at the interfaces
of the middle layer with the substrate layers, so that a two-dimensional electron gas will occupy the
well. In order to describe such a system theoretically, we take advantage of the fact that all the materials
involved exhibit a periodic crystal lattice structure, which constrains the allowed electronic states and
leads to a set of semiconductor Bloch equations. Assuming that the electron gas is not too dense, we

make an effective mass approximation and work with a simplified model that will be discussed below.
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The starting point is the Heisenberg equation for the electron operator
Iy
ih—— = [y, H]|.
ih—=-=[v,H]

Let the x- and z-coordinates parameterize the lateral and growth directions of the heterostructure, re-
spectively. Here x is a two-dimensional coordinate parameterizing both the direction of lateral and
the transverse direction. Since the wavelength of the laser drive is much longer than the width of the
quantum well, the vertical field will be coupled to the electrons in the active region with the dipole
approximation. In the effective mass approximation, the mean field Hamiltonian including the vertical

field Fz (which falls off rapidly outside the active region) is

hZ
H(t) :/VIT(X,Z,I)[%V2+V(X7Z)+W(X7Z7t)—ezF(x,t)]l[/()QzJ) dedzv

where v and w are the time-independent and time-dependent parts of the electric potential, respectively,
e is the electron charge and m is the effective mass. The electric potential is coupled to the electron

density n by Poisson’s equation
e .
V2[v(x,2) +wlx,z,0)] = —nwzr), where n(xz,1) = {y' (62,0 ¥ (x,2,1)),

is the electron density. The electron operator is expressed as

d*k

o &)

vz = ¥ [ Ealaa ()

where the envelope wavefunctions £y (z) form a complete orthonormal basis. If the active region is
filled and the bias voltage is zero (i.e. the electron density is uniform), then the self-consistent envelope

wavefunctions may be calculated in the same manner as in Galdrikian, Batista and Birnir [5}/6,20].

3. Homogeneous quantum wells

The theory of homogenous quantum wells with the local density approximation consists of the following

steps. We discretize the integral in Equation (1)) and write the electron operator as

Ya3) =AY apee Eal2),
ky,ky 0

where A is a constant. The envelope wavefunctions obey the time-independent Schrodinger equation
n? 92 oo, o,
Tom o2 +v(2) ¢ Ea(z) = Eabal2), Eixa= %(kx +k) +Ea, 2

with the energies lying in parabolic subbands see Figure 1. The envelope wave functions satisfy van-
ishing boundary conditions at the sides of the well, which is a good proxy for a vanishing boundary

conditions at z = oo, see [|6}[20]. The self-consistent potential is determined by Poisson equation

32V@) =—7n(). 3)
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Figure 2. The first few energy states, the shape of the potential and the Fermi energy for different
doping levels and the energy difference E, — E; between the first and second state as a function of the

charge density.

The local density (or Hartree) approximation is implemented by use of the partition function that yields
the relationship between the chemical potential u, sheet density Ny and subband energies Ey, giving

the thermal weights wq

__m —BEq—) | = M
Nv_ﬂhzﬁglog{l+e }7717}"12[3;‘4}&7

where B = 1/T, T being temperature. Then the electron density can be expressed as
n(z) :Zwa\éa(1)|2~ )
o

4. The Hartree iteration

The potential v is determined by a Hartree iteration:
1. Solve Schrodinger equation (2) for {{x(z), Eq }. 2. Determine {{,wq} from {N;,Eq} and update
n(z) in @. 3. Solve Poisson’s equation and update v(z) in (3). 4. Repeat until the iteration has
converged.

Figure 2, shows the first few energy states, the shape of the potential and the Fermi energy for
different doping levels and the energy difference between the first and second state as a function of the

charge density.
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Figure 3. The absorption frequency. The leftmost picture shows the intersubband spacing (Stark shift)
and infrared absorption due to the depolarization shift, as a function of the charge density. The second
and third picture show that with fixed electron (doping) density the absorption peak shifts and changes
form with the amplitude of the incoming radiation. The blue shift between the two leftmost figures is

the depolarization shift.

5. Intersubband absorption

The nonlinear effects due to the electron density in the quantum wells have been understood and mea-
sured since the mid 1990s. The intersubband absorption when the quantum well is illuminated by an
auxiliary laser, can be simulated and measured. The simulations were developed by Zaluzny [40l/41]]
and the experiments were done by Craig et al. [16]. The incoming radiation first builds up a charge
in the quantum well, this is a Stark effect and corresponds to a redshift of the absorption frequency.
However, as the incoming radiation increases the electrons in the well shield against it, this is called
the depolarization shift and is a blue shift. Eventually, the depolarization shift dominates, see Figure
3. One can also measure the relaxation times for the densities in the quantum well, namely I'j; the

depopulation rate and I'y; the depolarization rate. This was also done by Craig et al. [[16].

6. Time-dependent local density approximation

The driving of the quantum wells with time-periodic laser fields requires the development of the time
dependent version of above theory. The laser field is added to the Hamiltonian in the electric dipole
approximation, this works well since the wavelength of the laser is large compared to width of the well.
The intersubband absorption now occurs by collective oscillations of electrons occupying the well and
the resonance is broadened and shifted away from intersubband spacing (This is the depolarization shift
discussed above). Using the time-dependent Hartree (local density) approximation, we calculate the

self-consistent fluctuations due to time-periodic driving term. The time-dependent electric field zF (r)
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now induces self-consistent fluctuations in potential v(z,) and electron density dn(z,r)

92 &2
87225\/(@1’) = —;Sn(z,t).

H(t) = H —ezF (t) + 8v(z,1);
These satisfy a Poisson equation with a self-consistency condition: v(z,7) = v(z) + 0v(z,t). n(z,t) =
n(z) 4+ dn(z,t). Then we can find a Liouville-von Neumann equation
p(z,7,1) i~
- PR _7[H(t)vp(z>z/7t)] - R[p(zvzlvl)L
at h
for the density matrix p, where R is the relaxation operator. In the final quantum mechanical dynamical

system, in 4 complex dimension, R is determined by the experimentally measured depolarization rate

I'; and decorrelation rate I'», discussed above.

The time-dependent potential is determined by a time-dependent Hartree iteration:
1. Evolve p(z,7/,t) until a periodic response is reached. 2. Compute the electron density by the formula

n(z,t) = p(z,7,1)|—,. 3. Solve Poisson’s equation and update 8v(z,r). 4. Repeat until converged.

7. Nonlinear phenomena in assymmetric quantum wells

Nonlinear bifurcation of the time-periodic coherent electron states were explored by the theory above.
In 1996 Galdrikian and Birnir [20] found the period-doubling bifurcation of these states. In 2003 Batista
and Birnir [5] found the Hopf bifurcation. These bifurcations were found in simulations of the above
model and simulations showed the period-doubling cascade to the (Feigenbaum) strange attractor in
first case [20]] and the quasi-periodic cascade to another strange attractor in the second case [6]. We
illustrate both of these in Figure 4, taken form Batista and Birnir [5]. We sample the normalized dipole
momentum < [ > /g, & = zF above, onto the two pertinent complex valued states, in Figure 4, uq
is a normalization. The first column in Figure 4 is the time series of this sample. It shows if there
is a simple oscillation present or if there are more oscillations superimposed. The pattern in the third
row is called beating. The second column is the phase portrait, the basic mode is plotted against its
derivative. Both must be sampled at the same (spatial) point. The third column is the Poincaré map,
again the mode and its derivative are sampled, but now only at each period T. This is also called the
stroboscopic map. A circle on the second column turns into a point in the Poincaré map. Finally the
fourth column is the power spectrum or the absolute value of the Fourier transform of the solution. The
fundamental frequency @ = 27 /T shows up as the biggest peak. Superharmonics are smaller peaks at
integer valued multiples n® of the fundamental frequency. In the first row, we see a periodic orbit, with
the fundamental frequency and one superharmonic on the power spectrum. The second row shows a
period doubling, we see a periodic orbit with twice the period 27, this is now a simple periodic orbit

(two dots) on the Poincaré map in the third column, and the power spectrum now has a peak at half
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Figure 4. Left: The asymmetric quantum well with two barriers; bottom, the corresponding eigenstates,

top. Right: Time series, phase portrait, Poincaré map and power spectrum.

the frequency /2. On the third row, we see a Hopf bifurcation in the Poincaré map, that means that
we now have a torus in the phase space. The Poincaré map is a cross section (cut) of this torus. The
orbits are quasi-periodic and fill the surface of the torus. On the power spectrum we now see a new
incommensurate frequency, smaller than the fundamental frequency. Then on the fourth row we see the

torus period double. On the fifth row the doubled torus deforms.

8. Semiconductor Superlattices

The observation of Bloch oscillations in semiconductor superlattices (SSLs) [31]] has led to many pro-
posed applications of these heterostructures as sources and detectors at gigahertz and terahertz frequen-
cies. More recently, nonlinear Gunn oscillations and chaotic dynamics have been observed in SSLs in
the sequential tunneling regime. These nonlinear phenomena present the opportunity for development
of new applications of SSLs, such as true random number generators and frequency mixers. Further-
more, recent advances in the design of SSLs have opened the possibility of realizing these applications
at room temperature. In support of the development of applications of SSLs in the nonlinear regime,
we theoretically characterize the nonlinear dynamical phenomena of the sequential resonant tunneling
(SRT) model of weakly-coupled SSLs in this paper. We show the effects on the bifurcation diagram
from variations of the number of periods making up superlattice, the sensitivity of the SRT model to
time-dependent stochastic fluctuations in the bias voltage and local tunneling rates, and the effect of
time-independent random perturbations of the widths of the wells and barriers. This and the next three

sections follow [18]].
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Figure 5. Left: Schematic diagram of a dc voltage-biased SSL, from Bonilla et al. [11]. Right: The
band diagram of a GaAs/Aly7Gap3As SSL (a) and GaAs/Aly45GagssAs SSL (b), from Y. Huang et
al. [32]. The conduction band and the bound states of the wells are indicated by the solid horizontal

lines. The bottom of the X-valley is indicated by the dashed lines.

Spontaneous oscillations, quasiperiodic orbits, and chaos have already been observed experimen-
tally at very low temperatures [[29/31,39|] and at room temperature [26-28}32,/35]] in 50-period SSLs
with noisy voltage sources. Simulations by M. Alvaro, M. Carretero, and L. Bonilla [1] exhibited a
strong chaotic signal. Experiments by Huang et al. [|26/[27] show that heating supresses the nonlinear
phenomena in SSLs, and we suspect this also occurs in single QWs. Huang et al. also describe a way of
suppressing the effect of heating, enhancing the current oscillations: It was hypothesized that at warm
temperatures, phonon-assisted transport though the X-valley of AlAs allowed a thermal distribution of
carriers to diffuse through the SSL, overwhelming the nonlinear quantum dynamics. This effect was
supressed by choosing the Aluminum concentration of GaAs/AlGaAs wells in order to maximize the
lowest bandgap energy, i.e. make the X and I" band gaps equal to one another (Figure @ As a result,
current oscillations were observed in SSLs at room temperature for the first time, see [26}27].

We consider the SRT theory of Bonilla ez al., which describes the electronic dynamics of SSLs
in the weakly-coupled, self-consistent regime [|15]. Two different time scales are taken into account
in this description of SSLs. The inter-site tunneling and inter-subband relaxation processes occur on
much shorter timescales than the dielectric relaxation processes [11]. Therefore, the long timescale dy-
namics of semiconductor lasers [37|] and superlattices [|1,/14]] are typically modeled using semiclassical
equations, while the short timescale processes are treated separately as noise. In the case of the SRT
model, the short-timescale processes are included through the addition of stochastic terms to the dy-
namical equations. Nonlinearities enter the model via the inter-site Coulomb interaction, which bends
the conduction band of the SSL, modifying the inter-band tunneling rates by casting the energy levels of

adjacent wells into or out of resonance [11]]. The dynamical equations are discussed in detail in [[18}36].
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Figure 6. The stationary self-consistent potential resulting from the band structure and Coulomb poten-
tial of the assymetric GaAs/AlGaAs quantum well, taken from Batista et al. [|6]. The energy levels of

the bound states are indicated by the horizontal lines.

The bias voltage, Vias, is treated as an external parameter of the model. Gunn-like oscillations in J(¢)
are found to occur in the SRT model over several intervals of Vs [[10,17]]. These oscillations undergo a
series of bifurcations, which may cascade into chaotic behavior [1]. In [36]], we characterized the route
to chaos via analysis of the Poincaré map and power spectrum, and distinguished the effects of the noise
terms from the deterministic chaos.

For sufficiently small bias voltages, the total current J(¢) through the SSL responds linearly to
changes in the bias voltage. At higher bias voltages, J(¢) suddenly transitions to a time-dependent,
oscillatory function, which passes through a further series of transitions leading to chaotic behavior.
We summarize the behavior of J(¢) below:

Fixed-point: Over certain voltage intervals, J(¢) is attracted toward a stationary value.

Bistability: The first signal of the nonlinear dynamics is a bistable response of J(z) to slow variations
in Vyias. This behavior is observable only at sufficiently low temperatures [[10,(17]]. Generically, bistable
behavior is found at voltages near the Hopf bifurcation described below.

Supercritical Hopf Bifurcation: As the bias voltage is increased, we next observe a supercritical Hopf
bifurcation. The fixed point becomes unstable, and J(¢) evolves to a periodic orbit. The periodic orbit
is topologically equivalent to a circle in phase space, which corresponds to a one-cycle of the Poincaré
map. In this regime, the SSL acts as a GHz oscillator with a discrete power spectrum involving the
frequencies f, =n/T, n=1,2,3,..., where T is the period of the lowest-frequency oscillation present.
The superharmonics n > 1 arise due to the nonlinearities present in the SRT model. In this dynamical
phase, the fundamental period T varies smoothly with the bias voltage, therefore the oscillator is also
tunable. By filtering out all but the desired harmonic and fine-tuning it via the bias voltage, a wide
range of frequences may be selected.

Period Doubling Bifurcation: In this regime, one-cycles of the Poincaré map transition to two-cycles.

The fundamental period of the oscillator is doubled, T — 2T, and the fundamental frequency is cut in
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half: @ — @/2. A new frequency peak will appear in the spectrum at half the fundamental frequency,
and the number of superharmonics will double. Following a period doubling bifurcation, the reverse
(period-halving) bifurcation may occur. We refer to the regions between these bifurcations as period
doubling bubbles. An application of period doubling, due to the subharmonic peak, is that a signal
may be read at lower frequency, where the noise may be reduced, and it can be used to make squeezed
states [21].

Period Doubling Cascade: Period doubling may occur in succession over certain voltage intervals,
and an infinite number of doublings is possible in a finite voltage range. The invariant phase space
structures transition from compact manifolds (periodic orbits of high periods) to chaotic attractors. The
Poincaré map takes on a fractal structure. Our simulations show that the SRT model does not support
true quasiperiodic orbits, hence the chaotic attractor is the most complex structure in the bifurcation
diagram. It is the result of a cascade of a period doubling sequence of periodic orbits. An application
of the chaotic dynamics in this regime is ultrafast generation of random number sequences [32]. This
has many applications in areas such as secure communication and data storage, stochastic modeling,
and Monte Carlo simulations, see [4}/191{34/|38]]. Previously the generation of ultrafast random number
sequences has been accomplished by fast semiconductor lasers but these require a mixture of optical
and electronic components. SSLs on the other hand are entirely submicron devices that can be readily
integrated into complex circuits.

In previous theoretical studies of optically-driven quantum wells, it was discovered that the intro-
duction of one or more off-center “steps” in the confinement potential, see Figure [/} had a profound
impact on the character of the nonlinear phenomena. In the presence of a single step, a period-doubling
bifurcation in the electronic response was predicted to occur near the intersubband resonant frequency
at high doping densities and strong driving fields. The presence of a second step unfolded the period-
doubling bifurcation into a supercritical Hopf bifurcation which generated quasiperiodic behavior. Both
single- and double-stepped assymetric quantum wells also exhibited period-doubling cascades to chaos.
In analogy with these results, we consider the possibility of unfolding the period doubling bifurcation
of the SRT model into a Hopf bifurcation, by breaking the periodic symmetry of the SSL, which we
term “disordered superlattice.”

The model for the superlattice is a quasi-one-dimensional resonant sequential tunneling model of

nonlinear charge transport in SSLs [[12[|14,/15]. We use the formulation in [[18}36].

9. Results

We simulate superlattices and characterize the dynamical instabilities that may be applied to create
sources, period halvers and squeezers, random sequence generators and frequency mixers, even at room
temperature. The dynamical equations in [18|/36]] are evolved using the parameter values listed in Table

1 in [36] for a GaAs/Aly7Gag 3As SSL, with the quantized energy levels corresponding to V. = 600
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POWER SPECTRA AND BIFURCATION DIAGRAM FOR N = 10
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Figure 7. (Top row) The power spectrum of J(z) plotted against the bias voltage, taken from [36].
(Bottom row) The bifurcation diagram, plotting the Poincaré map against the bias voltage. The Hopf
bifurcation from the steady state is shown in the first column. A period doubling “bubble” is shown in

the second column. A period-doubling cascade is shown in the third column

meV. The GaAs/Alg 7Gag 3As SSL is treated here in order to illustrate bifurcations as clearly as possible,
but the same phenomena and instabilities occur in Alg45Gag 55As SSLs [18]. Dynamical instabilities
are found in two distinct plateaus, over which which the local electric fields of the SSL cease to increase
monotonically as a function of Wy,s. The first plateau occurs at very low voltages, with tunneling
transport between the ground states of adjacent wells that are nearly aligned with one another in energy.
The second plateau occurs in the region of V;;,s where the the electric fields bend the potential of the
SSL to align the ground state of well i with first excited state of well i + 1. We do not observe a third
plateau because the third excited state becomes unbound at bias voltages that align it with the first
excited state of an adjacent well.

The leading edge, i.e. the lowest value of V};,5 contained in a plateau, is identified by a supercritical
Hopf bifurcation from fixed point to periodic orbit, as shown the leftmost column of Figure[§] At low
temperatures, the Hopf bifurcation may be preceded by bistability, but at higher temperatures this phe-
nomenon is supressed. Within a plateau, we may observe period-doubling, period-doubling cascades,
and chaotic attractors whose locations depend upon on the values of the rest of the parameters, in partic-
ular N, the number of wells making up the superlattice. As a general rule, shorter superlattices exhibit a
greater variety of dynamical behavior in the second plateau. In SSLs (N < 10), the Hopf bifurcation in
the first plateau disappears and the first plateau is not present. As N increases, the dynamical instabil-
ities appear to move from the second plateau into the first plateau: Near N = 20, the Hopf bifurcation
appears in the first plateau. In longer SSLs (N > 30), the second plateau contains only a supercritical
Hopf bifurcation to a periodic orbit without any further bifurcations, while the first plateau has gained

a period-doubling bubble. In this section, we give a detailed description of the dynamical instabilities
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of N =10 SSLs, then we point out the effect of increasing N. We close with a discussion of the effects

of stochastic terms and disorder on the dynamical instabilities.

9.1. N=10

As mentioned above, the first plateau does not exist for N = 10, and all oscillatory behavior takes place
in the second plateau. Combining the bifurcation diagram, power spectra and phase portraits shown in
Figures 8]and[9] we characterize the dynamical instabilities of the SRT model for N = 10:
Supercritical Hopf Bifurcation: In the leftmost column of Figure [8] we observe a transition from a
stationary state to a periodic orbit. Subsequently, we observe a circle in the phase portrait, similar to
the top row of Figure[0] The Poincaré map consists of a single point, or one-cycle, when visualized.
The power spectrum contains peaks falling at integer multiples of a fundamental oscillation frequency
as demonstrated in the top row of Figure In this regime, the SSL acts as a GHz oscillator with a
discrete power spectrum involving the frequencies f, =n/T, n=1,2,3,..., where T is the period of the
lowest-frequency oscillation. The superharmonics n > 1 arise due to nonlinearities of the SRT model.
We also observe that the fundamental frequency and resulting superharmonics can be continuously
tuned by variation of Vjiss as demonstrated in Figures[§]

Period Doubling Bifurcation: A period-doubling bifurcation is identified by a doubling of the orbits
in phase space and consequent doubling of the number of points in the Poincaré map. We illustrate
this phenomena in the transition between rows one and two of Figure 8| and in the second row of
Figure[9] The power spectrum gains a subharmonic peak at half of the former fundamental frequency,
and consequently we observe twice as many superharmonics in the power spectrum. A period-doubling
bifurcation may be followed by a period-halving bifurcation forming a period-doubling bubble as shown
in the second column of Figure|[§]

Period Doubling Cascade: A period doubling cascade is identified when many period-doubling
bifurcations occur in rapid succession over some interval of the bias voltage. In principle, an infinite
number of doublings may occur over a finite voltage interval. This process terminates when the phase
space orbits lose their periodicity altogether and the Poincaré map takes on the characteristics of a
chaotic attractor. An example of a period-doubling cascade is illustrated in the last three rows of Figure
[ The rightmost column of Figure[§]also shows several period-doubling cascades connected by regions
of orbits with very high periods. The broadening and merging of peaks in the power spectrum is
characteristic of a chaotic attractor. We also compute the Feigenbaum constant of the cascade near
2.109 Volts, shown in Figures[§Jand[9] We introduce the formula
Va1 = Va2

o, =
8 Va _anl

; &)

where V,, are the voltages corresponding to the nth doubling in the cascade. For a period-doubling cas-

cade, 8, — 4.6692... as n — oo. By taking sufficiently small steps (about 10~ Volts) in the parameter
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PERIOD-DOUBLING CASCADE FOR N = 10
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Figure 8. Representative phase portraits, taken from [36]. The first column shows the average current J
plotted against time 7. The second column shows the phase portrait Fy(r) plotted against Fy(z). The third
column shows the Poincaré map 2F(t*) plotted against ZFs(¢*). The last column shows the power
spectrum of J(¢). A periodic oscillation is shown in the first row. A period-doubling bifurcation is
observed in the second row. The period-doubling cascade to a chaotic attractor is shown in the bottom

four rows.

Vbias» We have measured the first Feigenbaum constant with less than 1% error. We conclude that the

route to chaos in the SRT model is a period-doubling cascade.

9.2. N> 10

We next describe the effects of increasing number of periods making up the SSL, keeping all other
parameters fixed. In the case of N = 20, both the first and second plateaus are present. The supercritical
Hopf bifurcation corresponding to the beginning of the first plateau is shown in the first column of Fig-
ure@ No other bifurcations are observed in the first plateau. The onset of the second plateau is shown
in the second column of Figure[I0] In the second plateau, we again find period doubling cascades to
chaotic attractors; this behavior is illustrated in the third column of Figure [T0] Comparing the third
columns of Figures @and@ we observe that the period-doubling cascade and the chaotic attractor oc-
cur over narrower voltage intervals in the N = 20 case compared with the N = 10 case. For higher values
of N, the voltage intervals containing the period doubling bifurcations become increasingly narrow, and
eventually disappear entirely from the second plateau near N = 30.

As N is increased, we observe the appearance of more dynamical instabilities in the first plateau. A
period-doubling bubble emerges in the first plateau near N = 25 and subsequently widens over a larger

interval of Vi, With increasing N. This bubble is responsible for the period-two orbit illustrated in the
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POWER SPECTRA AND BIFURCATION DIAGRAM FOR N = 20
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Figure 9. (Top row) The power spectrum of J(r) plotted against the bias voltage. (Bottom row) The
bifurcation diagram, plotting the Poincaré map against the bias voltage. The Hopf bifurcation from the
steady state in the first plateau is shown in the first column. The Hopf bifurcation from the steady state
in the second plateau is shown in the second column. A narrow region in the second plateau containing

a chaotic attractor is shown in the third column.

top panel of Figure[T2]for the case of N = 50. There are no further period-doubling bifurcations present
in the first plateau for this value of N. For N = 100, simulations by Amann et al. showed chaotic
dynamics occur in the first plateau [2]]. This result fits with the trend of dynamical instabilities moving

from the second plateau to the first plateau as N increases.

9.3. Noise

We next consider the effects of the stochastic terms in equations (8) and (9) in [18]], which model the
effects of a noisy voltage souce and intrinsically random tunneling processes. We observe that the
dynamics become increasingly sensitive to noise with increasing N. For the case of N = 10, regions of
interest in the bifurcation diagram are plotted in Figurelm We have chosen these voltage intervals to
be the same as in Figure [§] for clear comparison. We observe that the addition of noise stimulates the
Hopf bifurcation to occur at lower voltages, which widens the second plateau. Noise also has the effect
of broadening the peaks in the power spectrum as shown in the first row of Figure@

Upon perturbation by noise, period-doubling behavior may be enhanced and higher period orbits
may occur over a particular window of V;;, than do in the noise-free case, see Figure@ demonstrates
the effect of very small perturbations by noise on the phase portrait over the window containing the
period-doubling bubble, which occurs in the first plateau for the N = 50 case. For higher-period orbits,
the broadening effect of perturbations on the power spectrum can cause the narrowly spaced peaks in the
spectrum to merge, transforming high-period orbits to chaotic attractors as demonstrated in Figure [TT]

This effect may broaden the windows in which chaotic attractors occur, connecting chaotic attractors
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POWER SPECTRA AND BIFURCATION DIAGRAM WITH NOISE FOR N = 10
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Figure 10. (Top row) The power spectrum of J(¢) plotted against the bias voltage. (Bottom row) The
bifurcation diagram, plotting the Poincaré map against the bias voltage. The Hopf bifurcation from the
steady state is shown in the first column. A period doubling bubble is shown in the second column. A

period-doubling cascade is shown in the third column. o, = 1.4 x 107>V.

PERIOD-DOUBLING BIFURCATION WITHOUT NOISE FOR N = 50
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Figure 11. Period doubling with and without noise. o, =2.8 x 107V
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that are distinct in the noise-free limit as demonstrated by comparison of the chaotic regions in Figure|[g]
and Figure[TT]

Periodic orbits in the first plateau for N = 50 are more sensitive to noise than those which occur in
the second plateau for N = 10. This difference is evident upon comparison of Figure [IT] with Figure
[[2] in particular the power spectra. We see similar results but have used much less noise to produce
Figure than Figure The bottom panel of Figure [12| shows that the inclusion of noise terms
may cause the Poincaré map and power spectrum to resemble those of a chaotic system. However, we
simulate the same situation in the absence of noise in the top panel of Figure[I2] While the SRT model
is very sensitive to noise in this regime, the underlying dynamical structure is an orbit of period two,

and hence our numerical methods are able discern between noise-sensitivity and true dynamical chaos.

10. Discussion

The connection that we are making between plasmon states in single quantum wells in the terahertz
regime and density waves in superlattices in the gigahertz regime may seem to be a stretch. On the sur-
face there are many differences between these systems. A superlattice of wells in the terahertz regime
would be tightly coupled described by the equation in Section [3] with periodic boundary conditions,
very different from the coupled equations in [18,36] describing the sequential tunneling model in the
gigahertz regime. The boundary conditions are obviously different but in both cases we have a quali-
tative description for a range of parameters involved. The striking similarity between these two system
is that their qualitative behavior is in both cases governed by coherent electron states. In the former
case these are the plasmons slushing back and forth in quantum well. In the latter case they are the
density waves executing Gunn oscillations in the superlattice. In both cases these oscillations exhibit
bifurcations with increase in parameters. In the first case with increase amplitude of the laser drive, in
the second case the bifurcations take place with increased voltage bias. The bifurcating oscillations of
the plasmons have been understood for a long time, but we have shown in [18}36] that the density wave
form a coherent electron state extending through the superlattice and the oscillations of these states
show the same bifurcations at the same values of the bias throughout the lattice. This is observed by
taking different Poincaré sections for different lattice site. They turn out to be qualitatively the same for
all the lattice sites. Thus we see coherent electron states exhibiting generic bifurcations in both cases.
Both of these systems are genuine nonlinear quantum systems of coherent electron states and this makes

them qualitatively similar in spite of the physical differences.

11. Conclusions

‘We have shown that the nonlinear bifurcations found by simulations in single quantum wells in the tera-
hertz regime [5}|6}[20] also occur in semiconductor superlattices (SSLs) in the gigahertz range [2}|3}|13].

The only exception is the second Hopf bifurcation to quasi-periodic orbits on a torus, but this can pre-
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sumably also be accomplished with the design of more structure in SSL. The advantage of experiments
on SSLs in the gigahertz range is that the experiments can be conducted at room temperature and indeed
a chaotic oscillator due to the random dressing of a period two-orbit has already been measured [26,27].
In [36] we have determined that the route to chaos for SSLs in the sequential tunneling regime is the
period doubling cascade. Shorter (10-period) superlattices are observed to exhibit faster oscillations
compared with longer (50-period) ones. Two plateaus are observed as functions of the voltage bias,
and intrinsically chaotic dynamics on the second plateau are possible only for shorter SSLs, while the
dynamics in the first plateau contain intrinsic chaos only for longer (N > 50) SSLs, see [18]. The ro-
bustness of these results to stochastic perturbations in the local tunneling currents and the bias voltage
was tested in [|18]]. It was observed that shorter SSLs are much less sensitive to noise compared with
longer SSLs. Therefore two modes of random number generation are possible: Faster, intrinsic chaos
in the second plateau for shorter superlattices, and slower, noise-enhanced chaos in the first plateau for
longer superlattices, see [18]] for more details.

The effects of random variations in doping density and the width of the wells and the barriers was
also examined in [|[18]]. It was found that the period-doubling cascade is robust to these perturbations, but
the detailed shape of the bifurcation diagram can change significantly. Then these perturbations cannot
unfold the period-doubling bifurcation into a second Hopf bifurcation as we initially conjectured. They
are simply not strong enough to break the reflection symmetry of the constituent wells. To observe the
second Hopf bifurcation it is essential that this symmetry is broken analogous to the work of Batista
and Birnir [5,/6], then two or more states would also exist below the Fermi level. We conjecture this
greater number of active states will be successful at exposing the second Hopf bifurcation in a properly
designed SSL. It remains an open question whether all of these bifurcations can be extended to SSLs
in the terahertz regime. This would signify a nontrivial technological progress since terahertz devices
are difficult to make and operate at room temperature. It these bifurcations are found in teraherz range
the possibility of making all the devices discussed above opens up and such devices can be operated at

signicantly faster time-scales.
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Selected problems of nonholonomic mechanics

Alexey Borisov, Yury Karavaev

Abstract: The paper is concerned with some problems of nonholonomic me-
chanics. The results of their investigation can be useful in practice in devel-
oping various designs of mobile robotic devices. Special attention is given to
the Chaplygin sleigh with time-varying mass distribution, which arises due to
various movable mechanisms (rotors, flywheels etc.) and makes it possible to
control the sleigh. From the physical point of view, the possibility of (constant)
acceleration of the sleigh plays a key role. It is shown that all trajectories of
the reduced system can be made unbounded by an appropriate choice of mass
distribution. This, in turn, will allow one to observe the acceleration of the
sleigh. Consideration is also given to the problem of controlling a combined
spherical robot. This spherical robot is set in motion by means of an internal
wheeled platform with a rotor placed inside. The results of theoretical and
experimental research are presented for the above-mentioned prototype of the
spherical robot.

1. Introduction

We consider two problems of nonholonomic mechanics, namely, the problem of the Chaplygin
sleigh and the problem of controlling a combined spherical robot. The Chaplygin sleigh [10]
is a rigid body moving on a horizontal plane in the presence of a nonholonomic constraint:
the translational velocity at some point is orthogonal to the body-fixed direction. This
constraint can be realized by means of a weightless knife edge (skate) fastened in the body
or by means of a wheel pair [4]. A detailed qualitative analysis of the motion of the sleigh
using explicit quadratures was carried out by C. Carathéodory [9]. It turned out that if the
center of mass of the body is not displaced along the knife edge, the sleigh moves in a circle,
otherwise the sleigh asymptotically tends to a straight-line motion. Various generalizations
of the Chaplygin sleigh problem are considered in many papers [1, 8, 7, 6, 5]. It turned out
that in this case the sleigh exhibits complicated intricate behavior, which, according to the
author, resembles random walks of bacterial cells with some diffusion component. The sleigh
exhibits similar behavior under the action of the torque, which depends on their orientation,
and in the presence of viscous friction [5]. In this paper, we consider the Chaplygin sleigh
with time-varying mass distribution, which arises due to various movable mechanisms (rotors,

flywheels etc.). They enable the control of the sleigh.
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Recently, there has been a large body of research devoted to different designs of spheri-
cal robots [11, 18, 13]. The most popular methods of executing the motion of the spherical
robots are: to change the position of the center of mass [13, 12] and to change the internal
gyrostatic momentum [3, 17]. Despite a large number of models of spherical robots and
their technical implementation, the question remains open what type of propulsion device
is the most optimal in terms of simplicity of control and efficiency of maneuver execution.
Experimental investigations of the dynamics of the spherical robots with various internal
propulsion devices (pendulum, rotors, omniwheeled platform) have shown that a mecha-
nism combining the above-mentioned effects can become the most promising mechanism for

controlled motion.

2. Investigation of the dynamics of motion of the Chaplygin sleigh
2.1. Equations of motion

We explore the dynamics of a multicomponent mechanical system with a nonholonomic
constraint. The system consists of a platform that slides on a horizontal plane like the
Chaplygin sleigh [10], that is, the point R given on the body (see Fig. 1) cannot slide in

some direction n fixed relative to the platform:
(vg,n) =0. (1)

According to a given law, n material points P(¥, 4 = 1,...n, move on this platform.

19) T

Figure 1. The Chaplygin sleigh

To describe the motion of the system, we define two coordinate systems: a fixed (inertial)
coordinate system Oxy and a moving coordinate system Rxiy; attached to the platform.
The position of each point relative to the platform is defined by the radius vector in the

moving coordinate system:

p )= o), 0, i=1,...n
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We will specify the position of the platform by the coordinates (x,y) of point R in the
fixed coordinate system Oxy, and its orientation by the angle of rotation ¢, see Fig. 1.
Thus, the configuration space of the system Q = {q = (z,y, ¢)} coincides with the group of
motions of the plane SE(2).

Let v = (v1, v2) denote the projections onto the moving axes Rx1z2 of the velocity of the
point R relative to the fixed coordinate system Ozy and let w denote the angular velocity

of the body. Then
T =v1C08p —v2sing, Y=visinp+v2c08¢p, @ =w. (2)

In this case, the constraint equation (1) has the form vz = 0. The equations of motion of the

sleigh in the variables of momentum P and angular momentum M have the following form:

P=mw ca(t)w+éa(t), M=—muv c1(t)w+ca(t) ,
®3)

p=w, T=wv1C08p, Y =wvisingp,
where the following expressions can be written for the velocities v1 and w:
_ I(t)P 4+ mea(t)M — mI(t)ér(t) — mea(t)k(t)
m I(t) — mc3(t) ’

c2() P+ M — mea(t)ér (t) — k(t)
I(t) —mc3(t ’

(4)

w =

P .
where the denominator is a positive definite function. Here, m = ms+ mg) is the mass of
i=1
the entire system, I(¢) is its moment of inertia, ¢ = (c1(t), c2(t)) is the position of the center
of mass, and k(t) is the gyrostatic momentum due to the motion of points. The last four

quantities are given functions of time which are expressed in terms of the system parameters

as follows:
Y Y I R A A
i=1 i=1
(5)
m 1 X
R Sds il (4) (ﬂ«) i—1.2
Cj m J mi:1 mp p] ’ J ’

It can be seen that if the number of particles n > 0, the equations of motion contain
four independent given functions of time: c¢i1(t), c2(t), I(t), k(). The resulting system
is analogous to the well-known Liouville system describing the dynamics of a rigid body
deformable according to a given law.

Equations (3) are invariant under the group of motions of the plane SE(2). As a result,
a closed (reduced) system of equations decouples which governs the evolution of P and M.
It follows from (3) that the motion of the sleigh in the fixed coordinate system Ozy is defined

by quadratures from the known solutions of the reduced system.
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2.2. The motion of a point in the transverse direction

Consider the case of one point (n = 1) which executes periodic motions in the direction

transverse to the plane of the knife edge
pM = a, bsin(Qt) .

We also assume that the center of mass of the sleigh lies on the axis Rxi, that is, do = 0

(see Fig.2). In this case, from (5) we obtain

Y1

Figure 2. The Chaplygin sleigh

Ity =1Is+ ml(f)(a2 +b°sin®(Q)), k(t) = ml(pl)abQ cos(Qt),

e (1) (1) (6)

*di + ——a, CQ(t):mp bsin(2t), m:ms—i—mél).
m m m

Cc1 =

Let us define the dimensionless variables Z1, Z2, 7, X and Y

__P _ L — -z Y
2= T g T X = Y=
where the angular momentum L is defined by the relation
L =c(t)P + M. (7)

The reduced system of equations in these variables has the form

dZ, _ Zz—apcosT 6Z2 —pcost(ad —J — pu(l — p) sin? 1)

dr (J + (1 — p)sin®7)2 ’ (8)
dZy _ 0(Z2 —apcosT)Zy
dr — J4p(l —p)sin®r

where the following dimensionless parameters have been introduced:

W@ s _omy) o Lym)d?
Ty T HFT T T T e
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We note that in this case 0 < 1 < 1 and J > 0, and hence the denominator in the system (8)
is always positive. Moreover, it follows from the condition Iy — msd? > 0 that the following

inequality must be satisfied:
(1= p)(J = 6%) — pla—8)* > 0. (9)

The equations of motion for the configuration variables are represented as

dy X d .

— =@, —— =e@cosp, — =esing,

dr dr dr 10
Za — i cosT _JZy+psint (1 —p)Zisint + Zs — aucost (10)

e = s
J + (1 — p)sin® 7 !

J +p(1 — p)sin® 7

Thus, the problem reduces to investigating the dynamics of the system (8), (10). Next,
we consider in detail the possibility of constant acceleration of the sleigh depending on
the mass distribution of the sleigh and the position of the oscillating point. By constant
acceleration we mean an unlimited increase in the translational velocity of the sleigh which

arises for unbounded trajectories of the reduced system. Consequently, this problem reduces

to investigating the conditions under which the trajectories of the system (8) are bounded.

2.2.1. The case a # 0 and § =0

If @ # 0 and § = 0, then the value Z> = (> remains unchanged, and for Z; we obtain the

following quadrature:

u(C2 — aucos s) cos s

7 =
1(7) J+p(l — p)sin®s

dS + Cl.

In this case, for Z1(7) (for the period of motion of the point) the following equation holds:
r L]
2map p(l — p)
1- 1+———-—=
1—p + J

Zi(t+27) = Zi(7) +

Consequently, when au # 0, the function Z;(7) moves away with time (indefinitely) from its
initial value C'1, and hence the translational velocity of the sleigh increases and acceleration
is observed.

The equation for the angle specifying the orientation of the sleigh is represented as

;L Cy — aucost
T J+u(l - p)sin? 7’

@ (11)

In the case C2 = 0 the trajectories of equation (11) are periodic and have the form

P !
= —19770[\/!7 arctan D) 2
90(7-) - J(l — /L) t \/j

Possible motions of the point of contact are shown in Fig.3.

sint —+ <p<0).
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Figure 3. Various trajectories of the point of contact of the sleigh for fixed parameters
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2.2.2. The general case

Consider qualitatively the issue of acceleration of the sleigh depending on the position of the

oscillating point. For this purpose, we fix
0=0.13, p =043, J=0.14,

and from inequality (9) we find o € (—0.27,0.53).

Let us represent the kinetic energy of the sleigh in the form

1 1—p, o p(l—p)sint(Z2 — apcost)Z1
B=— - Ti|v,—0 = Z
mb2Q2 slva=o 2 o J + (1 — p)sin® 7 +
n (J — 2p+ p*(1 — p)sin® 7)(Z2 — apcos 7)?

2(J + (1 — p)sin? 7)2

The dependence AB(a) is shown in Fig.4. It follows that when a < 0, the kinetic energy
always increases. Moreover, numerical experiments show that in this case the trajectories
are unbounded and therefore a constant acceleration is observed.

Detailed numerical investigations show that the following hypothesis holds:

In the case where ad < 0, all trajectories of the system are unbounded (8), that is,
acceleration of the sleigh occurs under any initial conditions.

In order to investigate the case ad > 0, we consider on the plane (Z1, Z2) a point map
for the period 7 = 27 of the system (8). For the value o = 0.45 this map is shown in Fig. 5.

The trajectory of the point of contact of the sleigh for the trajectory on a strange
attractor is shown in Fig. 6.

The results of simulation show that the trajectory of the sleigh, with periodic oscillations
of the material point in the transverse direction depending on parameters, can be both

unbounded, accompanied by acceleration, and compact.
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Figure 4. Dependence of the change in the kinetic energy A® = ®|.—2r, — B|r=0 on « for

a trajectory with the initial condition Z; =1, Z2 =0, 7 =0.

Figure 5. A Poincaré map of the system (8) for a period with o = 0.45, § = 0.13, pu = 0.43,
J =0.14.

3. Investigation of the dynamics of the motion of a spherical robot of combined
type
3.1. Equations of motion

In this section, we consider the dynamics of a spherical robot of combined type that uses
for its motion both the displacement of the center of mass and changes in the gyrostatic
momentum. The results of theoretical research into the dynamics of such a model of the
spherical robot rolling without slipping on a horizontal plane are presented in [15]. In this
paper, we present the results of experimental investigation of the motion of the spherical
robot of combined type.

Consider a spherical robot of combined type rolling without slipping on a horizontal
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Figure 6. Trajectory of the point of contact for fixed o = 0.45, § = 0.13, u = 0.43, J = 0.14
and the initial conditions 7 =0, Z;1 = 0.5, Z3 =0.5, p =0, X =0, Y = 0.

a) b)
Figure 7. a - a schematic model of a spherical robot of combined type, b - a picture of a

full-scale specimen.

absolutely rough plane. The spherical robot is a spherical shell of radius Rs at the center
of which an axisymmetric pendulum (Lagrange pendulum) is fastened. We will simulate
the Lagrange pendulum by means of a weightless rod at the end of which a heavy rotor
is installed. The rotor is an axisymmetric body (disk) rotating about a symmetry axis
coinciding with the rod (see Fig. 7). The technical design of the spherical robot is such that
the pendulum can execute oscillations only in a given plane attached to the shell, which we
will call the plane of rotation of the pendulum.

To describe the dynamics of the spherical robot, we define two coordinate systems. The
first,OaB7, is a fixed (inertial) coordinate system with unit vectors a, 3, v. The second,
Ceiezes, is a moving coordinate system with unit vectors e1, ez, es and with axes attached
to the pendulum so that the unit vector e is perpendicular to the plane of rotation of the
pendulum and the unit vector es is directed along its symmetry axis. The origin of the

moving coordinate system coincides with the geometric center of the shell C' (see Fig. 7).
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Further, we will refer all vectors to the axes of the moving coordinate system Cejezes.

The position of the system will be specified by the coordinates of the center of the sphere
r = (z,9,0), by the angles of rotation 6 and ¢ of the pendulum about the axes e; and es,
respectively, and by the matrix of transition from the fixed coordinate system to the moving
coordinate system Q, whose columns are the coordinates of the fixed vectors a, 3, v referred
to the axes of the moving coordinate system Ce;ezes.

Thus, the configuration space of the system is the product N' = {(r,0,¢,Q)} = R* x
T2 x SO(3).

The absence of slipping at the point of contact of the shell with the plane is described

by the nonholonomic constraint

F=v-—RQx~=0, (12)

where v and €2 are the velocity of the center and the angular velocity of rotation of the shell,
respectively. This constraint does not exclude spinning of the spherical shell relative to the
vertical, in contrast to the so-called rubber body model [16, 2].

The equations of the dynamics of the system can be written in the form of the d’Alembert —
Lagrange equations of genus 2 in quasi-velocities with undetermined multipliers and forcing
actions (for a detailed derivation, see [15]). As shown in [15], the equations of motion for
the variables ¢, 9, Q, v decouple from the complete system and take the following form in

the moving axes Cejezes:

(e3, Ip3(S2 + e3p)) = Ko,

(e1,1,(2 + e16) — mRyRsez X (2 X v+ Q2 x¥)) — (e1, mp Ry Rs (2 X 7) X (R +6e1) x e3))+
+(e1, 2 x (mpRyRs (2 x v) X ez + (Is +1;)2 + e1p10 + e3ly3)) + mpRpg(e1,v X e3) = Ko,
mpRyRs (2 X v + Q2 X ) X ez + (Is + 1)+ e1 1,10 + e3ly36 — mp Ry Rs (2 X v) X (2 + 0 e1) X ez)+
+(Q2 +e10) X (mpRpRs (2 X v) X ez + (Is + 1) + e11p10 + e3lp39) + mpRpgy X ez =

= Rs((ms +mp)Rs (X7 +2XY) —mpRyp(2+0ey1) X e3) x v +

+Rs((2+e10) x ((ms +mp)Rs2 X v — mpRp(2 + 0e1) X e3)) X v,

=7 x (2+e16).

(13)

where I, = diag(lp1, Ip1, Ip3) = diag(lper + myRE, Iyer + mbRg,]bcg) is the tensor of
inertia of the pendulum relative to the center of the sphere, ms, Is are, respectively, the
mass and the moment of inertia of the spherical shell, msy, I = diag(lpe1, Ibet, Ioes) are the
mass and the central tensor of inertia of the pendulum, and the velocity of the center of

mass of the pendulum v, and its angular velocity w are given by the relations

vy, = v — Ryw X es, w:Q—l—elé—Fegap, (14)
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where R}, is the distance from the center of the sphere to the center of mass of the pendulum.
K, Ky are the moments of external forces (control actions) that set the pendulum in motion
relative to the ball and the rotor relative to the rod of the pendulum.

In [14], equations have been found to find controls implementing the motion along a
given trajectory. However, these equations are not always solvable on a given time interval;
this imposes some restrictions on possible trajectories and the maneuverability of the model
under consideration. One of the methods for eliminating the disadvantage of constructing
the control on the basis of a dynamical model is the development of a model of control using
elementary basic maneuvers (gaits), as described in [15, 14]. Steady-state solutions of the
free system and motions that transfer the system from one steady-state solution to another
are considered as elementary maneuvers. In [15] it is shown that the dynamical system
admits two types of steady-state solutions: motion in a straight line and motion in a circle.
By combining these solutions one can implement the motion from any initial point to any
end point. However, in practice, a moving spherical robot is acted upon by friction forces,
which are not taken into account in the nonholonomic model. Therefore, in what follows we
present experimental results that provide a better understanding of the process of motion of

the spherical robot of combined type and the influence of rolling friction on this motion.

3.2. Experimental investigations of the trajectory of a spherical robot

The model of a combined spherical robot shown in Fig. 7a has been implemented by using
a platform whose center of mass moves in the equatorial plane of a spherical shell. The
platform has a rotor fastened in such a way that the axis of rotation of the rotor is directed
along the radius of the spherical shell. A picture of a full-scale specimen is shown in Fig. 7b.

The spherical shell is made of a transparent polyethylene terephthalate material and
has the following characteristics (here and in what follows, all numerical values have been
brought in accordance with the SI system): Rs = 0.150 m, ms = 1.625 kg, I, = diag(25.27 -
1073, 20.73- 1073, 25.27-103) kg-m?. To ensure that there is no slipping, the platform’s
wheels, made of rubber, are synchronously actuated by two DC motors with a reduction gear.
The rotor is a homogeneous aluminum disk of radius R, = 0.087 m, mass m, = 2.46 kg and
axial moment of inertia I, = 5.64 - 1073 kg-m2. The characteristics of the internal wheeled
platform (with a rotor installed on it) are: m, = 3.25 kg, I, = diag(31.88 - 107*, 30.59 -
1073, 8.76 - 1073) kg-m?.

The controls for the spherical robot of combined type were given in the form of depen-
dences of the angles (), (t).

Consider the most general case of controlled motion, which clearly demonstrates the

contribution of each control to the character of the trajectory. An illustrative example in
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this case is the impulse control, when at a constant value of control H(t) the control action
(t) is switched on for some time and then it is switched off. In practice, this implies that, as
the spherical robot is moving in a straight line with constant velocity, the rotor accelerates
and after some time interval ceases to rotate, while the platform continues to move along

the rim of the sphere. The dependence of controls on time will be given as follows:

8
§0, t<t =0,
O(t) = _1.57-sin()?, 1 <t <ti=15 (15)
-1.57, t>t7,
8
0, t<ty=1.9,
11.304 - sin(3t — 227)°, t2 <t <t5 =34,
o(t) = _11.304, t5 <t <ts=6.9, (16)

11.304 - sin(5t — 22m)%, t3 <t <15 = 8.4,

MUURARRRY

=0, t >t

Graphs of the time dependence of control actions are presented in Fig. 8a. The trajectory
along which the spherical robot moves with the control (15), (16) within the framework of
the theoretical model considered is shown as an intermittent line in Fig. 8b. This trajectory
can be divided into three segments: accelerated motion in a straight line ¢ € [¢t1, ¢7]; motion
along a trajectory close to the circle ¢ € [t3, t3]; motion along a trajectory close to a straight
line ¢ > t3. The angle between the straight lines along which the spherical robot moves on
the first and the third segment depends on the duration of the impulse At, = t3 — t5.

The trajectory of the spherical robot with the control actions (15), (16), which has been
retrieved from experimental data, is shown as a solid line in Fig. 8b. The markers in the
figure indicate the positions of the spherical robot at instants corresponding to changes in
the control actions. The numbers of the markers in Fig. 8b allow one to determine the
position of the spherical robot at the instant of the corresponding change in the control
action. As the rotor ceases to rotate ( t € [ts, t3]), the spherical robot turns in the reverse
direction (relative to the original turn), and after some time the trajectory of the spherical
robot becomes rectilinear.

Depending on the value of At,, there are three types of possible motions of the spherical
robot with impulse control:

1. ”Long” impulse — when the rotor rotates for a long time with constant velocity, the
motion of the spherical robot becomes rectilinear. After that the stop of the rotor leads to a

turn in the reverse direction. As a result, the final motion occurs in a straight line parallel
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Figure 8. (a) - Control actions, (b) - the corresponding trajectory of the spherical robot.

to the initial motion. The motion of the spherical robot with controls in the form (15), (16)
is close to this type. The trajectory of this motion is shown in Fig. 8b.

2. "Medium” impulse — after acceleration of the rotor, the motion of the spherical robot
does not have time enough to become rectilinear. However, during the impulse At,, the force
of rolling friction affects considerably the trajectory of motion. As a result, after the maneu-
ver the spherical robot turns through some angle. However, this angle depends strongly on
the coefficient of friction, and the trajectory of the spherical robot differs considerably from
the theoretical one.

3. 7”Short” impulse — during this impulse, the forces of rolling friction do not have
time enough to considerably influence the trajectory of the spherical robot. As a result, the
real trajectory is as close as possible to the theoretical trajectory. The angle of rotation can
be adjusted by both the amplitude of the impulse (the maximal value of ¢) and its length
(within certain limits).

The motion of the spherical robot can be executed by using the above-mentioned ma-
neuvers, namely, by selecting appropriate characteristics of control actions and their combi-
nations, but to compensate for the oscillations that accompany the motion, it is necessary
to ensure a coordinated change in the controls taking into account the feedback about the
current state of the dynamical system under consideration. The development of a motion
model taking into account arising friction forces (especially spinning friction) is of the great-
est importance to spherical robots of this type, since these forces influence considerably the

trajectory and the pattern of motion.
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Time-varying spectral submanifolds: Analytic calculation of
backbone curves and forced responses of nonlinear mechanical
systems

Thomas Breunung, George Haller

Abstract: Spectral submanifolds (SSMs) have recently been shown to provide
exact and unique reduced-order models for nonlinear unforced mechanical vi-
brations. Here we extend these results to periodically or quasiperiodically
forced mechanical systems, obtaining analytic expressions for forced responses
and backbone curves on modal (i.e. two-dimensional) time dependent SSMs.
A judicious choice of the parameterization of these SSMs allows us to simplify
the reduced dynamics considerably. We demonstrate our analytical formulae
on numerical examples and compare them to results obtained from available
normal form methods.

1. Introduction

In drawing conclusions about a nonlinear mechanical system, an engineering analyst usually
faces the challenge of high dimensionality and complex dynamic equations. To reduce si-
mulation time and deduce general statements, it is desirable to reduce the dimension of the
system and simplify the resulting reduced equations of motion.

For linear systems, decomposition into normal modes is a powerful tool to derive reduced-
order models. While the lack of the superposition principle makes such a decomposition
impossible for nonlinear systems, various definitions of nonlinear normal modes are also
available in the literature (cf. [5,16,17]). Specifically, in [16] a nonlinear normal mode is
defined as a synchronous periodic orbit of a conservative system. Later Shaw and Pierre [17]
extended this definition to dissipative systems, by viewing a nonlinear normal mode as an
invariant manifold tangent to a modal subspace of an equilibrium point.

While there are generally infinitely many Shaw-Pierre type surfaces for each modal
subspace [12], Haller and Ponsioen [5] have shown that, under appropriate nonresonance
conditions, there is a unique smoothest one, which they called a spectral submanifold (SSM).
Due to their invariance, the SSMs are natural candidates for model order reduction, serving
as nonlinear continuations of the invariant modal subspaces spanned by the eigenvectors of
the linearized system. SSM-based moder-order reduction for unforced nonlinear mechanical

systems appear in [8,15,19].
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While most of the above work focuses on unforced (autonomous) mechanical systems,
here we explore further the utility of SSMs for forced dissipative nonlinear mechanical sys-
tems. For this class of systems, the existence, uniqueness and regularity of SSMs has been
clarified in [5], relying on the more abstract invariant manifold results of [6]. In this context,
a nonlinear normal mode (NNM) is defined as the continuation of the trivial hyperbolic fixed
point of the time-independent system under the addition of small time-dependent forcing
with a finite number of frequencies. Depending on the frequency content of the time-varying
terms, this continuation is a periodic or quasi-periodic orbit [5]. The SSM will be a time-
dependent surface with the same frequency basis. This SSM is then tangent to the NNM
along directions associated with a spectral subspace of the linearization.

The first attempts to construct such a non-autonomous SSM can be found in [3,10, 18]
who formally reduce an externally forced, dissipative mechanical system to a two-dimensional
time-varying invariant manifold. In [10] the reduction is carried out numerically for fixed
parameter values, aided by a Galerkin projection. This approach is extended to systems
with time-periodic coefficients in their linear part in [3,18]. There the assumed invariant
manifold is expanded in a multivariate Taylor-Fourier series and the unknown coefficients are
obtained from the invariance of the manifold. The studies are limited to specific examples and
symbolic equations to derive general conclusions about the forced response are not obtained.
Furthermore, the uniqueness, existence and smoothness of their assumed invariant manifold
remains unclear from their procedure.

A generally applicable procedure for the simplification of the (formally) reduced dyna-
mics is the method of normal forms (cf. e.g. [4]). The method applies a series of smooth
transformations to obtain a Taylor series of the original dynamical equations, which con-
tain only the terms essential for the dynamics. Jezequel and Lamarque [9] and Neild and
Wagg [13] apply the method of normal forms to nonlinear mechanical systems. Since all
state variables are transformed, the resulting dynamics have the same dimensionality as the
original system and no model-order reduction is achieved. Furthermore, both of these normal
form approaches start from conservative systems and treat damping as a small bifurcation
parameter. Therefore, the unfolding from the conservative limit has to be discussed for every
damping type separately.

Touzé and Amabili [20] seek to unite normal form theory with model-order reduction
for the first time. After a normal form transformation, they restrict their calculations to
heuristically chosen submanifolds. As pointed out by the authors, a strict time-varying
normal form is not computed. Instead, the forcing is inserted directly into the normal form.
This represents phenomenological forcing aligned with a curvilinear coordinates, rather than

specific physical forcing applied to the system.
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The model reduction methods surveyed so far are often used as tools to approximate
backbone curves, which connect points of maximal response amplitude as a function of an
external forcing frequency. As an alternative, [7,11,14] define the backbone curve as the
frequency-amplitude relationship of a periodic solution family of the conservative unforced
limit of the system. They observe that along each nonlinear normal mode (i.e. periodic
orbit) of the conservative limit, weak viscos damping can be canceled by appropriately chosen
external periodic forcing. For a general damped and forced nonlinear system however, the
relevance of periodic orbits of the conservative limit for the forced response is not well
understood. Since the backbone curve is obtained for the unforced conservative limit in
these examples, another method is needed to actually calculate the maximum amplitude for
a given forcing.

Parallel to theoretical considerations, backbone curves have been approximated in ex-
periments through the force appropriation method. In this method, the nonlinear system is
forced with a harmonic forcing such that the response has a 90-degree phase lag in a modal
degree of freedom. While this force appropriation procedure is plausible for linear viscous
damping (or nonlinear damping that is an odd function of the velocities), the approach has
remained unjustified for general, nonlinear damping (cf. Peeters et al. [14]).

An experimental alternative to the force appropriation is the resonance decay method, in
which the system is forced, such that its response is close to an envisioned invariant surface
of the conservative limit. Then the forcing is turned off and the instantaneous amplitude-
frequency relationship is identified by signal processing. Peeters et al. [14], however, relate
this curve, which is essentially a feature of the damped system, to the orbits of the conser-
vative system only phenomenologically.

We also note that force appropriation and the resonance decay aim to reconstruct non-
linear normal modes of the conservative limit. The set formed by these orbits is expected to
deviate from the forced response of the actual dissipative system for lager amplitudes and lar-
ger damping. As a recent development, Szalai et al. [19] compute the backbone curves from
the frequency-amplitude relationship of decaying vibrations on SSMs reconstructed from
measured data. A connection with the backbone curve obtained from the forced response,
however, is not immediate.

In summary, available approaches to compute forced response via model reduction for
nonlinear mechanical systems suffer either from heuristic steps or omissions in the reduction
procedure, or from a unclear relationship between backbone-curve definitions different from
the one relevant for forced-damped vibrations in a practical setting. In the present work,
we show how these shortcomings can be eliminated simultaneously. First, we employ a

mathematically justified reduction process to time-dependent SSMs in the presence of general
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damping and forcing. Second, with universal, system-independent formulas for the dynamics
on the SSM at hand, we derive explicit, leading-order approximations to the actually observed

backbone curve of the time-dependent, dissipative response.

2. Set-up

We consider a general, quasi-periodically forced, nonlinear, N-degree-of-freedom mechanical

system of the form

Mg + (C+ G)q + (K + N)q + fu(q, q) = efeus(Ut, ..., Qt), qeR"Y,

fu(a,a) = O(la* lallal, ), 0<e<1, k=1,

(1)

where the mass matrix M is positive definite and the nonlinear forcing vector f,:(q,q) is
at least quadratic in its arguments. Observe, that q =0 is an equilibrium of the unforced
system (¢=0). The external forcing ef..+ does not depend on the generalized coordinates or
velocities and has finitely many rationally incommensurate frequencies (Q1, ..., Q).

We denote the eigenvalues of the linearized system (1) by A1, ..., Aan, with multipli-
cities and conjugates included. We assume an underdamped configuration, i.e. complex

eigenvalues with nonzero imaginary part and negative real part ordered as follows:
)\j = Xj+N Im(/\]) > 0, Re(Amln) < Re()\J) < O, j = 1, ,N (2)

By (2) the q = 0 equilibrium of the unforced limit of (1) is asymptotically stable. This
context is relevant for vibrations of lightly damped structures.
By letting x=(x1,x%2)=(q,q) in (1), we obtain the first-order equivalent system of the

form

%X = Ax + Gpni(X) + eGeat (Qt, ..., Qit),

0 I 0 3)

A= 1 = , G (X) = . .

M7 (K+N) —-M " (C+G) M~ £, (x)

and denote the eigenvector corresponding to the eigenvalue A; of the linear part of system (3)
with Vij.

In [5] a 2¢-dimensional spectral submanifold (SSM) for the general mechanical sy-
stem (1), or its equivalent first order form (3), is defined as the 2¢g-dimensional invariant
manifold W(E) serving as the smoothest nonlinear continuation of an eigenspace of the

form

E =span{vi, ..., Vg, VN+41,...VN4q - (4)
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If the nonresonance conditions
q q
> miRe();) #Re(An), n=g+1,..N, 2<> m; <N(E), m;eN, (5)
j=1 j=1

hold, with the absolute spectral quotient 3(F) defined as

Re()\mm)
max (Re(\) | ©)

then a smoothest continuation W (FE) of the modal subspace (4) uniquely exists for the

nonlinear system (1) in the class of B+

manifolds [5]. The operator Int( ) extracts
the integer part of its argument. It follows from [1], that W (E) can be constructed via a

parameterization
x = W(z, Qt, ..., Ut), z € R*?, (7)

where z is the parameterization variable. As shown in [6], the parameterization W can
be approximated as a polynomial in z, with time-dependent coefficients. The dynamics of

system (3) along W(E) is given by the reduced equation of motion
7z = R(Z,Qlt,...,ﬂkt)7 (8)

which can also be approximated by a Taylor series in z near the x=0 equilibrium of (3) .
Due to their robustness with respect to parameters (cf. [6]), the SSMs, as well as their

reduced dynamics, can be expanded in ¢ for small £ >0.

3. Spectral submanifolds for the forced system

In order to construct frequency-amplitude response curves, we now assume canonical single

harmonic forcing (k=1) in the form of
fezt = £ cos(Q2) )

and focus on two-dimensional SSMs (¢ = 1). Szalai et al. [19] construct a parameterization for
a two-dimensional SSM, continuing a modal subspace of (1) for the autonomous (unforced)
limit of system (3). They give an explicit parameterization of the autonomous SSM (W (z))
and its associated reduced dynamics (R(z)).

With the existence, uniqueness and smoothness results from [5], we give strict conditions

for the validity of the reduction of the system (1) to a two-dimensional non-autonomous SSM.
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We continue a given autonomous parameterization of the SSM and the reduced dynamics

under the addition of small forcing terms (cf. (1)). In case of near resonance forcing
Q = Im(\;), (10)

we eliminate arising small denominators by keeping terms in the reduced dynamics R(z, 2t)
that could otherwise be eliminated. Focusing on vibrations around the q=0 equilibrium of
system (1), we can give an explicit parameterization of the non-autonomous SSM and the
reduced dynamics. Through judicious choice of the parameterization we simplify the reduced
dynamics significantly, such that we can solve for 27 /Q-periodic responses analytically.
Having derived condensed formulas for the forced response, we solve for the forcing
frequency, at which the response amplitude is maximal. Such amplitude-frequency pairs
form a one dimensional curve (i.e. the backbone curve) as the forcing amplitude is varied
as a parameter. Furthermore we can analytically compute stability regions of the forced

response.

4. Numerical examples

We show the application of our SSM-based analytic results on forced responses and backbone
curves on two numerical examples. The first is a two-degree-of-freedom oscillator introduced
in [17], modified and further studied in [5,19]. The nonlinearity in this oscillator arises from
a single cubic spring. Our second example, taken from [20], also has two degrees of freedom,
but its nonlinearities are more complex, consisting of both quadratic and cubic terms.

On these examples, we compare our results with the second-order normal form approach
of Neild and Wagg [13] and with a normal-form type method of Touzé and Amabili [20]. To
compare the accuracy of these two methods to ours, we generate a benchmark solution via
numerical continuation, where we use the MATCONT toolbox [2] of MATLAB to calculate the

periodic responses in the two examples directly.

5. Conclusions

For backbone curve and forced response calculation we construct an approximation for the
two-dimensional, non-autonomous spectral submanifolds (SSMs) that act as nonlinear conti-
nuations of modal subspaces of the linearized system. Under low-order nonresonance condi-
tions on the eigenvalues of the linearization the existence, uniqueness and smoothness of the
SSMs are guaranteed [5]. Through a judicious choice of the parameterization, the reduced
dynamics are simplified significantly. Due to this simplification, we are able solve for the
forced response analytically. We apply our results on two numerical examples and compare

them with the results of the Neild-Wagg method [13], the Touzé-Amabili method [20] and
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numerical continuation.

Ponsioen et al. [15] describe an automated computational algorithm to approximate two-

dimensional SSMs of nonlinear mechanical systems up to arbitrary order. It is our ongoing

effort to couple these algorithm with the results of this work.

We have limited our discussion to two-dimensional SSMs. For multi-frequency forcing

and internally resonant structures a reduction to a higher-dimensional SSM is desirable.

Since the theory developed in [1,6] applies to higher-dimensional submanifolds, our calcula-

tions can be extended to the multi-frequency setting.
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Parametric optimization in enumeration of alternative structures
of mechanisms

Stefan Chwastek

Abstract: The Machine and Mechanism Theory [1,6] provides a method of
enumerating kinematic chains which involves identification of all possible alternatives
of kinematic structures with respect to the required number of degrees of freedom and
field of work. This article outlines a methodology of selecting optimal structure from
a set of possible solutions. By introducing a certain quality criterion, such as the
minimum force or minimum energy, most often in the form of quadratic functionals,
a set of parameters optimized for the full range of motion is determined for each
structure. Accordingly, each structure is assigned a value of the optimum quality
index. The method was illustrated for a one-link crane with bilateral constraints
(eg. lever mechanisms), and comparison was made with mechanisms in rope
installations, optimized in previous works [3, 4]. For each of the optimized crane
mechanisms, a separate optimization task was formulated by defining a specific
objective function: 1) counterweight mechanism — minimum boom lifting force,
2) boom lifting mechanism — minimum boom pull force. Optimization tasks were
formulated assuming the ideal stiffness of the structure in quasi-static conditions.
Effectiveness was verified under dynamic impact conditions, taking into account rope
flexibility.

1. Cranes with a pivoting jib as complex dynamic systems

During certain crane operations: hoisting/lowering the payload connected with a slewing jib, Euler
and Coriolis forces are generated whose impacts should be minimized already at the stage of selection
of the system parameters and mechanism structure. For each investigated crane mechanisms, the
specific optimization task is formulated by defining the objective function, typically in the form of
quadratic functionals. Thus, for the assumed lifting capacity and distance jaunt we get the structure of
the crane mechanism that guarantees the minimal energy consumption. This study investigates the
energy efficiency of the jib lift mechanism structures: that with unilateral constraints (rope
mechanisms) and with bilateral constraints (eg. lever mechanisms), so that they can be optimized
together with the jib-balancing mechanism. Thus obtained optimal sets of parameters for the
mentioned mechanisms were optimized for the full range of the slewing motion. A crane with a
pivoting boom is considered whose structure is shown in Figure 1. Major parameters include the
length and weight of the boom loy = 30 m and Gy = 45 kN and the weight of the load Q =50 kN.

109



Respective forces acting in ropes due to lifting load — Sg, jib lifting — Sy, counterweight —Sp act at
acute angles to the jib: a = a(e), B = B(), ¥ = y(p) - not indicated in Figure 1.

Ul

A\

Figure 1. Physical model of a one-link crane

The physical model of a one-link crane is governed by the following equations of motion:

Iwose = LOB[Ssin(a)- So —COS((p—U)-SQ +xoE SiN(B)- Sy +xoE -sinly)-Sp —xog co:s((p)~GW]
mQ[aBC -Lgc -m% -Log Sin((p—u)~£q) +Log cos(¢—v)- o)(zp} =cos(v)-Q - So 1)
mQ[LBC g, +2-0,-Vge —Log COS((p—U)-s(p -Log sin((p—u)m(zp} =—sin(v)-Q
InEo(0)= GpLigys -coslole)- vy |-SpLgy -sinly)

The first three equations govern the motion of the boom and the load respectively. For a fixed
structure of the slewing mechanism, these equations remain unchanged. Changing the structure of the
boom lifting mechanism does not alter the form of these equations. The last of the equations (1),

describes the specific counterbalance mechanism. Changing the structure of the counterweight
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mechanism requires the alteration of the last of equation of motion. The structure and optimal
parameters of the slewing mechanism were adopted on the basis of the work [3, 4]. Optimization of
slewing mechanism discussed in [3, 4] in fact could be applied to the rope mechanism in a winch. The
main objective was to ensure such roping configuration so as to minimize the horizontal hook
trajectory error for the full variability range of the change in the jib's angle of horizontal inclination
when the winch is blocked [7, 8]. A similar problem was investigated in more recent works such as
[2, 5, 9] with respect to the luffing crane and to the two rocker port crane. The considerations focused
on the search for the optimal position of blocks in a compensation mechanism such that the boom's
unbalance moment should be minimized. In the work [5] a minimum deviation of the vertical load is
sought for a finite number of boom positions, basing on the linearized form of the objective function.

2. Exploring the alternative structures of counterweight mechanisms

For the purpose of this study, two structures of counterbalance mechanisms are considered whose
kinematic diagrams are shown in Table 1, together with the governing equations. Each structure was
assigned a value of the optimum quality index - L. (index m — represents the number of the
counterweight mechanism according to Table 1). The optimum quality index represents the value of
the slewing work of the unloaded boom which will be performed by the mechanism with optimum
parameters. Obviously, this will be the lowest value of work for a given structure, assuming the
length and weight of the boom remain unchanged. The optimum index can be calculated from the

following dependence:

Pmax
L= [M(e)de @
Pmin

Where M(o) is the residual moment of the boom unbalance (for Q = 0):

M () =Gy Los cos(¢)— Sp(e)Lor sinly). )

The moment M(p) = M(p, p1, P2, --» Px) depends on the angular position of the boom and the p;
parameters (where i = 1, 2, ..., k) of the counterbalance mechanism. The set of optimal parameters is

determined by the condition whereby the square function ought to be minimized:

Pmax
3(Py P2 k)= [[M{e. Py, P2 i )P g )

Pmin
In the optimization procedure, p; — parameters become optimization variables belonging to a limited
set of allowable solutions — Q, where Q C R¥"". Thus the limitations imposed on the parameters p;,

need to be taken into account, as explained in more detail in [3].
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Table 1. Selected structures of counterweight mechanisms

Nr

Diagram of the counterbalance mechanism, equation of motion

Optimal parameters

—
3

Y

Yp

Figure 2. Rope counterbalance mechanism

p1=Log=7.065m
p2=Lor=30m
P = Y = 85.489°
pa=Gp=67 kN

Ly =51.43kJ

p1=Log=7.065m
p2=Lor=30m

ps= yg = 85.489°
ps=Gp=T76.5kN

L12 =0.72kJ

Figure 3. Counterbalance lever mechanism

Jpe=Gplyk COS((p+\|/K)+ Splor Sin((p—\yw) (6)

pi1=Lor=4m
P2=Luk=5m
P3=yk=0°

D= Gp= 115.7 kN
Lon = Ler

Lor=Len

L, =44.95 kJ

pi=Lor=4m
P2=Luk=5m
P3=yk=0°

ps= Gp= 103 kN
Lon= Ler

Lor = Len

L22: 0kJ
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Dimensions (G, Los) present in the dependence (3), as unrelated to the counterbalance mechanism
— are considered as constant parameters in the optimization procedure. Rearranging the equation (5)
or (6) (depending on the type of mechanism under consideration) we obtain a formula representing
the force acting in the cable in equations (1) and (3). However, in the optimization procedure, the
influence of the counterweight acceleration in equations (5) and (6) is neglected in order to determine
its dependence on force - Sp. Comparing the quality index of the two optimized mechanisms shown in
Table 1, the choice of the lever counterweight mechanism is obvious. It should be noted, however,
that the optimization procedure takes into account only the mechanical properties of each solution,
without considering the involved costs. The rope mechanism, due to unilateral constraints, excludes
the occurrence of compressive forces in the line and therefore the optimum quality index has a
relatively high value. When costs are considered in the optimization model, the function (6) can be

transformed into a weight criterion.

3. Exploring the alternative options of the jib lifting mechanism

Exploration of alternative design solutions of the boom lifting mechanisms was confined to two
structures. It is worthwhile to mention that optimization of the boom lifting mechanism is carried out
for a particular counterbalance mechanism. Thus we get four variants of solutions and four
optimization tasks are possible. When these are solved, the values of the optimum quality index —
Swmn Can be determined (index n - represents the number of the boom lifting mechanism according to
Table 2). Table 2 shows the kinematic diagrams of boom lifting mechanisms: rope and rack
mechanics, alongside the values of the optimum quality index - Sym,. The optimum quality index
becomes the maximum value of the force acting in the lifting cable — Sy, at the full slewing cycle of
the boom under the nominal load — Q. The indices m, n identify the correlation: m — th
counterbalance mechanism with the n — th boom lifting mechanism in the given crane structure
variant. The set of optimal parameters is determined by the imposed condition that the square
functional be minimized:
Pmax

‘](pk+1’ Pk+24 pk+r): I[Sw(@’ Pk+1 Pk+2100s pk+r)]2d(P- )

Pmin

The formula expressing the force Sy in the optimization problem involving the boom lift mechanism
is derived from equation (1) for zero angular acceleration, ie for e£=0. The force
Sw(®) = Sw (@, Prs1s Prs2, -0 Pisr)  Oepends on  the boom angle and parameters p; (where
j=k+1,k+2, .., k +r) of the boom lifting mechanism. All parameters determined in previous sections

remain constant throughout the entire optimization procedure.
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Table 2. Selected structures of lifting mechanisms

n Diagram of the boom lifting mechanism, optimal parameters

30/\\\ x,

Figure 4. Boom-lifting rope mechanism

m Optimal parameters for a given configuration (m 1) Swm1

Pa= Gp: 67 kN P5= LOE: 30 m, Pg= LOW: 10 m, p7=yw= 116.49° 17.67 kN

2 Ps= sz 103 kN P5= LOE= 30 m, pPs= LOW: 10 m, p7=vyw= 116.879° 14.64 kN

2 .\
7
> .

Figure 5. Boom lifting lever mechanism

m Optimal parameters for a given configuration (m 2) Swm2

Pa= Gp=76.5 kN, Ps=Loe=3.75m, Ps= Lot = 3m, Pr=vyr= 50 60.55 kN

2 Pa= Gp=115.71 kN, Ps=Log=3.75m, Ps= Lot= 3.75m, Pr=vyr= 13.5° 27.33 kN
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The total value of the nominal lifting work - Lom, depends on the type and parameters of the
counterbalance mechanism, and is independent on the type and parameters of the boom lifting
mechanism. For the counterweight mechanisms with optimum parameters according to Table 1, we
will get: Lois =58.7 kJ, Lo12= 7.353 kJ, Lgp1 =44.9 KJ, Lopy=6.6 ki. The value Loy = 44.9 KJ is
associated with the need to reduce the weight of the counterweight to 103 kN in the ropes mechanism

lifting the boom combined with lever mechanism of counterweight.

Figure 6. Forces acting in the cables of the jib-lifting mechanism during the slewing motion

Figure 6 confirms that in the task involving the synthesis of crane boom lifting mechanism, Symn - is
a better indicator of the optimality than the value of lifting work - Lomn.

Advantages of minimizing the force acting in the rope in the jib lifting mechanism are:

e Small rope diameter — small pulley — low resistance during rope winding,

o Low-power electric motors (approximately 8 kW) — reduced energy demand,

e Small force variations in ropes — less overloading of electric motors — little overheating

of engines.
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4. Verification of optimization results under dynamic conditions

To verify the optimization results in dynamic conditions it is required that flexibility in the system,
including rope flexibility, should be taken into account. Rope flexibility is inversely proportional to
its effective length (sag — I ). Assuming the averaged value of the Young modulus E = 125 GPa for
ropes with a non-metallic core, in accordance with [3, 4, 7, 8], the modulus of elasticity of the rope is

obtained from the formula:
. EA
k(' ) =l T , )]

where: A — effective cross-section area of the rope, iy — multiplicity of the pulley block.

Rope cross-section areas in rope mechanisms are calculated basing on [10] and taken to be identical,
ie. Ap =Agw = Ag =3.833 cm?. Damping in the ropes is assumed to be proportional to the modulus of
elasticity through the dimensionless damping factor , (in this paper been assumed: {, = 0).

The effects of rope tension on its stiffness and damping are neglected.

The duty cycle of each mechanism involves the following stages: start, steady-state motion and
braking, yielding a trapezoidal characteristics of drive velocity. Basing on the catalogue data, the
universal model of kinematic excitations is adopted differing in the steady-state velocity values for
specific mechanisms. For the winch in the luffing mechanism steady-state velocity values is
Vswi1 = Vswar = 24 m/min, whilst for the rack-and-pinion lift mechanism combined with combined
with lever mechanism of counterweight Vsu, = 9 m/min, but combined with rope mechanism of
counterweight Vs, =7.2 m/min. The steady-state velocity for the load winch Vgo= 27 m/min.
The start-up and braking times are taken to be identical ty, = 3 s. Solving the Matlab-Simulink system

of differential equations (1) yields the vibration acceleration patterns and rope tension variations.

Figure 7. Comparison of dynamic forces acting in ropes of the hoisting boom
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Of particular importance is comparison of forces acting in ropes and power consumption in the crane
with the rope lifting mechanism and various counterbalance mechanisms under dynamic conditions.
It appears (see Fig 7) that dynamic forces acting in ropes whilst lifting the boom in the entire motion
range are smaller in the variant/ solution incorporating a counterweight lever mechanism, i.e.
Swat (1)< Syaa(t) and Sypa(t)<Swiz(t) for T =30s. In the context of energy consumption, of particular
importance are bilateral constraints in the boom-lifting mechanism. It is well demonstrated in Fig 8,
indicating that that Pyy,,(t) < Pwia(t) < Pwai(t) < Pwas(t) for t C [0; T] .

Figure 8. Comparison of power demand in boom lifting mechanisms

In this study the load characteristics of the drive motors are neglected, and for the purpose of
comparison a more universal kinematic model governed by trapezoidal characteristics of velocity in
normalized form — Vg, is considered. Multiplying the normalized speed values by the specific steady-
state velocity Vgs,mn, We obtain the drive characteristic for the relevant boom lifting mechanism. As
shown in Fig 6, forces acting in the toothed rack in cranes incorporating a rack-pinion lift mechanism
are greater than forces acting in ropes. In terms of energy consumption, the optimal approach is to
correlate the lever type counterbalance mechanism with the rack-pinion lifting mechanism, which is

assumed to be self-locking.

5. Concluding remarks

Optimization tasks involving the two rope mechanisms and two lever mechanisms in a one-link jib
crane lead us to the following conclusions:

Parametric optimization in the enumeration of alternative structures of mechanisms is aimed to yield
the best combination of different mechanisms in a given structure from a previously selected set of

structures with optimum parameters Qq. Where Qo C Q) . The procedure adopted to select the set of
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solutions acceptable in the context of functional requirements is explained in more detail in [3, 4].

For the assumed lifting capacity and distance jaunt we get such combination of counterbalance
mechanisms with the crane lifting mechanism that guarantees minimal dynamic force and minimal
energy consumption. The extended method of exploring alternative structures of mechanisms for
parametric optimization, outlined in this paper, allows for finding globally optimal design solution
and the method is a universal. Effective optimization, confirmed by dynamic analysis, allows the
dynamic overload values to be significantly reduced at the stage of design of the steel structure,
resulting in a lighter and cheaper structure. Application of dedicated software (such as Mathcad) to
solve variational problems such as finding a minimum of properly formulated quadratic functionals
proves to be very effective and rapid solution to parametric optimization problems.
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Some value distribution and growth properties of solutions of
Painlevé and Riccati equations

Ewa Ciechanowicz

Abstract: By Malmquist theorem, the first order non-linear algebraic differ-
ential equations with rational coefficients and admitting transcendental mero-
morphic solutions were recognised to be the Riccati equations. Classification
of the second order ordinary differential equations without movable branch
points, on the other hand, led to recognition of so-called Painlevé equations.
Among them, six irreducible equations, usually denoted as P — Ps, are best
known. The equations Pi, P», Py and modified Ps, Ps have only meromorphic
solutions. Moreover, for certain parameters, equations P> — Ps have particular
solutions, which can be expressed in terms of Riccati equations with rational
coefficients. Meromorphic solutions of both Riccati and Painlevé equations
have been thoroughly studied by methods of value distribution theory since
1950’s, with the topic gaining in popularity since 1990’s, yet still leaving space
for further research.

1. Introduction

In 1913 Malmquist proved that the differential equation f’ = R(z, f), where R is a rational
function, admits a transcendental meromorphic solution if it is a Riccati equation or a linear
equation [10] (see also: [8]). By the term Riccati equation we mean here the first order

non-linear ordinary differential equation of the form
f'=ao+arf+asf? 1)

where ag, a1, a2 are meromorphic functions, az(z) #Z 0. If the coefficients of the equation
(1) are constant, all non-constant solutions are either transcendental meromorphic if S :=
1(4apaz — ai) # 0 or rational (linear fractional transformations) if S = 0. Also in case
of polynomial coefficients the solutions are meromorphic and their basic value distribution
properties well known [21, Ch.5] (see also: [12, Ch.5]). More generally, if ao, a1, as are entire
then all local solutions of the equation can be extended to functions meromorphic in the
whole complex plane [12]. In we admit meromorphic coefficients, even rational ones, the
existence of meromorphic solutions is not guaranteed and depends on multiplicity of poles

of the coefficients (for examples see: [12, Ch.9]).
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By substitution u = asf + %al + %Z—z, the equation (1), preserving notation f for the
solution, is transformed into
f=Q+s, (2)

where Q(z) = apaz — % + % - %(%)2 - a21aa2§ + % [12]. This substitution sets a one-to-
one correspondence between solutions of (1) and (2). If ag,a1,az are rational, then also Q
is a rational function. Corresponding transcendental solutions of the equations differ by a
rational component. In our further considerations concerning Riccati equations we discuss
properties of solutions of (2), with additional assumption that Q(z) # const.

Painlevé equations are nonlinear second order ordinary differential equations of the form
f" = F(z,f,f'), where F is rational in f, algebraic in f’ and analytic in 2z, which possess
the Painlevé property (solutions have no movable algebraic singularities). New functions

appearing among solutions of these equations are called Painlevé transcendents. In this

paper we concentrate on two equations out of original six irreducible ones on the list,

=2 +z2f +a, (P2)
12 3
f”:é—f %—&—42)‘2-1-2(22—a)f—i—?7 (Pa)

where «, 3, are fixed complex parameters and f = f(z). We also discuss so-called equation

Ps4, given by

/li(f,)Q 2 A
= o f +2Bf _Bzf_ﬁ’

where A, B are complex parameters. The equation is connected with P via the Hamiltonian

(Ps4)

system. Hence all the local solutions not only of P> and Pu, but also of P34 can be extended
to meromorphic functions in C.

It is well-known that for special values of the parameters in the equation, Painlevé
equations P> — Ps possess special Riccati type solutions (the so-called classical solutions). In
this context the associated Riccati equations have rational coefficients. Thus all meromorphic
solutions of such an equation are of finite order of growth [12, Ch.9].

Painlevé second equation P;(«) admits Riccati solutions iff &« =n + 5, where n € Z [7].

If, for instance, & = /2, (¢ = £1,) then the Riccati equation associated with P»(g/2) is
f=cf?+ %z

As it is a Riccati equation with constant coefficients and S # 0, all solutions are transcen-
dental meromorphic. It follows from the correspondence between P> and Pss that Ps4(1, B)

also admits Riccati solutions [14].
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When dealing with Psi(a, 8) we meet with equations of the form
fl=a+bzf+ef? (3)

where a, b, ¢ are complex constants depending on parameters «, 3. By the substitution f =

L(u— %2) the equation can be we transformed into
W =P+’ (4)

with P(z) = ac+ % — %22. By Theorem 4.1 in [1], the equation (4) with the polynomial
P(z) of degree 2 admits at most one rational solution, the rest of them being transcendental
meromorphic functions. Thus also the equation (3) admits at most one rational solution.
More accurately, the equation Ps(c, 3) admits solutions expressible in terms of solutions
of a Riccati equation iff 8 = —2(2n + 1+ ea)? or § = —2n?, where n € Z, ¢ = £1 [7]. For

B = 0, the accompanying equation is
f=e(f* +2z2f) — 2(1 + ea).
Methods which were originally introduced to study Panlevé equations and thus also their

Riccati solutions, as a sort of 'backshift’, can be transferred to Riccati equations. Recently,

such an approach was shown, for example, in [19] and [20].

2. Basic notions of Nevanlinna theory

In the paper we apply the standard notations of Nevanlinna Theory [13]. By the term 'mero-
morphic function’ we always mean a function meromorphic in the whole complex plane.
Thus, for a meromorphic f and r > 0, m(r, f) denotes the mean proximity to infinity func-
tion and N(r, f) the integrated function counting poles, m(r,a, f) and N(r,a, f) respective

functions for a finite value a. Nevanlinna’s characteristic function is defined by
T(r, f) :=m(r, f) + N(r, f)-

By the First Main Theorem of Nevanlinna, for any value a € C the equality
m(r,a, f) + N(r,a, f) =T(r, f) + O(1) (1 = o0) ()

holds. The Second Main Theorem of Nevanlinna states that for a meromorphic f and a

finite number of distinct values {ax}i_, € C the inequality

> m(r,ax, f) < 2T(r, f) + O(log(rT(r, ))) (6)
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holds for » — oo, possibly outside a set E C [0,00) of finite linear measure.

Inequality (6) in the Second Main Theorem can also be formulated in the following way:
k! —_
(q_ Q)T(T, f) < ZN(T7 ak7f) +O(10g(rT(T7 .f)))7 (7)
k=1

where N(r,a, f) is the integrated function counting each a-point once, regardless of its mul-
tiplicity. Let us also add the notation Ni(r,a, f) := N(r,a, f) — N(r,a, f).

The number a is a Picard defective value of a transcendental function f if f has only a
finite number of a—points. A Nevanlinna defective value, on the other hand is a value for

which the condition

holds. It follows from the Second Main Theorem, that Y d(a, f) < 2.
a€eC
Growth of a meromorphic function is measured with respect to the characteristic. Values

o := lim sup logT(r, /) T, /) and )\ :=lim imfiIOg I(r, /)

roo  logr r—oo  logr

are called, respectively, order and lower order of a meromorphic function f.
In value distribution theory, if f is a meromorphic function, then any function s :

[0,00) = R with the property
s(r)=o(T(r,f)), r—o0, r¢kE,

for a set E of finite linear measure, is usually denoted by S(r, f). If for a meromorphic

function a(z) we have
T(r,a) = S(r, ),

then we say that a is a small function of f or, sometimes a small target of f. The set of all
functions small with respect to f is denoted by S(f).

Let us end this section with the following result on defective values of Riccati equations.

Theorem 2.1 [12] Let f be a meromorphic solution of (1) with meromorphic coefficients

small with respect to f. Then d(a, f) =0 for a = co and for all a € C such that
ao(2) + a1(2)a + az(z)a® # 0.

If a fulfills the equality above, then it is a Picard defective value of f.
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3. Special forms of the Second Main Theorem

Transcendental meromorphic solutions of Painlevé equations show extraordinary regularity.
It is visible, in particular, in the fact that the Second Main Theorem in their cases reduces

to the form of an asymptotic equality [9].
Theorem 3.1 If f is an arbitrary transcendental solution of equation P2 or Pi, then
m(r,1/f) + N(r,1/f") + Ni(r, f) = 2T(r, f) + O(logr) (r — 00).
For transcendental solutions of P34 we have a similar form of the theorem [3]

Theorem 3.2 Let f be an arbitrary transcendental meromorphic solution of

Psu(A, B), A,B € C. Then
m(r,1/f) + N(r,1/f) + Ni(r, f) = 2T(r, f) + O(log ) (r = 00).
If, in addition, A # 0, then
N(r,1/f) + Ni(r, f) = 2T(r, f) + O(logr) (r — 00).
Let us now formulate a similar result concerning Riccati equations.

Theorem 3.3 Let f be an arbitrary transcendental meromorphic solution of a Riccati
equation with rational coefficients. Then the Second Main Theorem reduces to the asymptotic

equality
m(r,1/f) + N(r,1/f) + Ni(r, f) = 2T(r, f) + O(log ) (r = 00).
In the proof of Theorem 3.3 we shall apply the following lemma [9, Ch. 3].
Lemma 3.4 Let f be an arbitrary transcendental meromorphic function satisfying

Ly~ 0@ogr) (r— o).

m(r, f') = O(logr) (r — 00) and m(r, 7

Then
m(r,1/f) + N(r,1/f") = N(r, f') + O(logr).

Proof of Theorem 3.3.
We consider the equation f' = Q + f? with Q(z) rational and its transcendental

meromorphic solution f. As f is a meromorphic function of finite order, by lemma on the
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logarithmic derivative, we have m(r, f'/f) = O(logr). Applying the properties of log™, we
get
m(r, f') <m(r, f'/ f) +m(r, f).

Applying the Clunie lemma to (2), we get m(r, f) = O(logr) and thus m(r, f') = O(logr).

We now differentiate the Riccati equation and obtain

["=qQ +2ff,
which leads to .
f_ 17 2 2
ol el
Applying the properties of the proximity function,
/ 1 f 2 2
m(ﬁ F) S m(T: @) + m(T7 7) + m(r, f) + m(ﬁ @) + m(r, f ) + 0(1)

For a rational function g we have m(r,q) = O(logr), so m(r, &) = O(logr) and m(r, %) =
O(logr). Also, by the lemma on the logarithmic derivative and the fact that f (as a solution
of a Riccati equation with rational coefficients), and therefore also f’, is of finite order we
have m(r, J}—l,/) = O(logr). Lastly, m(r, f?) < 2m(r,f) = O(logr). The conclusion, that
m(r, %) = O(logr) follows. This way the conditions of Lemma 3.4 are fulfilled, so

m(r,1/f)+ N(r,1/f) = N(r, f') + O(logr).

Now, the number of poles of @ is finite. The poles of f, which are not the poles of @) must
be simple. Thus N(r, f') = 2N(r, f) + O(logr) and Ni(r, f) = O(logr). It follows that

m(r,1/f) + N(r,1/f) + Ni(r, f) = N(r, f') + N (r, f) + O(log )

=2N(r, f) + O(logr) = 2T'(r, f) + O(log ).

4. Petrenko’s defective values

Proximity of a meromorphic function to a value a may also be estimated by means of a

different metric than in Nevanlinna theory. In 1969 Petrenko introduced the function

max logt | f(2)] for a= o0,
Lira, f) =4 &= B
‘mlax log™ |f(2) — q] for a# oco.

Hence a € C is a defective value in the sense of Petrenko if

e JL(ra, f)
B(a, f) = h}r_l}ggfw > 0.
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The quantity B(a, f) is called Petrenko’s deviation.
In 1969 in [15] Petrenko proved that if f is a meromorphic function of finite lower order,
then for all a € C we have
2 if A<0.5,

B()) := sin wA
Bla, f) < B(A) i A0, (8)

and in 1990 in [11] Marchenko and Shcherba proved the inequality
> Bla, f) <2B(N). (9)
a€eC

The estimates of deviations of solutions of P2, Py and P34 were shown in [2] Here we present

an estimate concerning Petrenko’s deviations for solutions o Riccati equations.

Theorem 4.1 Let f be a transcendental meromorphic solution of a Riccati equation (2)

with the coefficient such that T(r,Q) = S(r, f). Then, for all values a € C such that
Q(z) +a* 0,
we have L(r,a, f) = S(r, f) and B(a, f) = 0. If Q(z) + a® = 0, then B(a, f) > 1.

To prove the theorem we need the following results from [2]. They are, respectively, analogues

of Clunie lemma and Mohon’ko-Mohon’ko lemma.

Lemma 4.2 Let f be a transcendental meromorphic solution of f"P(z, f) = Q(z, f),
where n is a positive integer, P(z, f), Q(z, f) are polynomials in f and its derivatives with
meromorphic coefficients a,, b,, respectively, which are small with respect to f in the sense
that

L(r,00,a,) = S(r, f), L(r,00,b,) = S(r, f).

If the total degree d of Q(z, f) as a polynomial in f and its derivatives is d < n, then
ﬁ(T,OO,P(Z,f)) = S(T,f)

Lemma 4.3 Let Pz, f, f', .., f<")) = 0 be an algebraic differential equation
(P(z,u0,U1, ..., un) is a polynomial in all arguments) and let f be its transcendental mero-

morphic solution. If a constant a does not solve the equation, then L(r,a, f) = S(r, f) and

ﬂ(a,f) =0
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Proof of Theorem 4.1. Equation (2) can be written as % =Q—f', so it fulfills conditions
of Lemma 4.2 with P(z, f) = f(2), Q(z, f) = Q(z) — f'(2) and n = 1. Tt follows that

[:(T,f):[:(T,P(Z,f)):S(’r’,f) (T—>OO)

Next, we need to notice that if a constant a does not solve (2), by Lemma 4.3, we get
L(r, ﬁ) = S(r, f). Finally, we observe that if a constant a solves the equation (2) then,
by Theorem 2.1 it is a defective value of f in the sense of Picard. It means that this value
is assumed by f at most a finite number of times, so §(a, f) = 1. Then the inequality

5(a, f) < B(a, f) completes the proof.

5. Small target functions

According to a conjecture of Nevanlinna, it is possible to replace in the Second Main Theorem
constants ax with meromorphic functions ay(z), provided that ay(z) are small functions of
f- Let us then consider the notion of a defective function. If for a meromorphic a, we have
0(ax, f) = 6(0, ﬁ) > 0, we say that ax is a defective function of f in the sense of
Nevanlinna, and if B(ax, f) := 5(0, ﬁ) > 0, we say that it is a defective function in the
sense of Petrenko. Since 1920’s Nevanlinna’s conjecture was approached a number of times.
Finally, in 1986 Steinmetz [18] proved the analogue of (6) for small functions in general and
in 2004 Yamanoi in [22] obtained the analogue of inequality (7).

For defective functions in the sense of Petrenko the problem of obtaining the exact
analogue of (9) has not been solved in generality. Ciechanowicz and Marchenko in 2007 [4]
showed the analogue of (9) for entire f and rational ay, and in 2011 [5] for rational ax and
f meromorphic with N(r, f) = S(r, f). The most general result in this direction so far was
given by the same authors in 2017 [6]. They showed that for f meromorphic and of finite
lower order the quantity of small targets defective with respect to f in the sense of Petrenko
is at most countable. However, the upper bound they received for the sum of deviations is
not sharp.

Assessment of behavior towards small target functions of solutions of the second and

fourth Painlevé equations was conducted by Shimomura [16,17].

Theorem 5.1 Let f be arbitrary transcendental meromorphic solution of P> and let a

be a meromorphic function such that T'(r,a) = S(r, f). Then

1
f—a

T(r,f)+ O(logr 4+ T(r,a)) and o(a, f) <

DN | =

1
< =
m(r, )< 5

Theorem 5.2 Let f be an arbitrary transcendental meromorphic solution of Pi(c, )
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and a be a transcendental meromorphic function such that T(r,a) = S(r, f). If 8 # 0, then

mir, 722) < 5T f) + Ollogr + () and  8(af) < 5
and if B =0, then
m(r, ﬁ) < T ) +Ollogr + T(r,a)  and  d(a,f) < §.

The following result shows estimates of defects of a transcendental meromorphic solution of

P34 with respect to small target functions [3].

Theorem 5.3 Leta and f be arbitrary transcendental meromorphic solutions of Ps4(A, B),

A, B € C, such that T(r,a) = S(r, f). Then

DN =

7 i a) < %T(r, f)+ O(logr +T(r,a)) and o(a, f) <

If a does not solve P34 and T(r,a) = S(r, f), where f is an arbitrary transcendental mero-

m(r,

morphic solutions of Psa(A, B), then

1

T,E) = O(logr + T(r,a)) and  (a, f)=0.

m(

Let us now present a similar result concerning solutions of Riccati equations and small

targets.

Theorem 5.4 Let f be arbitrary transcendental meromorphic solution of (2) such that
T(r,Q) = S(r, f) and let a be a meromorphic function such that T(r,a) = S(r, f). If a does

not solve the equation, then

ﬁ):sw,f) and  5(a, f) = 0.

If, on the other hand, a(2)? — a(2)’ + Q(2) = 0, then §(a, f) = 1.

m(r,

Proof. Put g(z) := f(2) — a(z). Then, inserting this in the equation (2) we get
(9+a) =Q+(g+a),
S)
=g —2a9g—(a®—d +Q): =g —2ag— F(z,a). (10)

As f is transcendental, g is also transcendental and the coefficients in the equation above

are small with respect to f, hence also with respect to g. Thus, by Clunie lemma,

m(r, f —a) =m(r,g) = S(r,g9) = S(r, f).
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Next, we notice that zero solves the equation (10) only if F(z,a) = 0. If not, by Mohon’ko-
Mohon’ko lemma,

m(r, 22) = m(r, ) = S(r.g) = S(r.f).

=
Assume now that F(z,a) = 0. Then the equation (10) has the form

g = g° + 2ag,

so it is a Riccati differential equation. By assumption, T'(r,a) = S(r, g) and zero fulfills the
equation. Thus, by Theorem 2.1, zero is a Picard defective value of g, so

1

N(T,m

):N@?:O®W%
and d(a, f) = 1.

Corollary 5.5 If f and q are, respectively, a transcendental and a rational solution of
(3), then 6(q, f) = 1. If f is a transcendental solution of (3) and q is a rational function
which does not solve the equation, then §(q, f) = 0. Therefore

> ola, f) =1,
qeQ

where Q denotes the set of all rational functions.

It is also possible to formulate the following theorem on Petrenko’s deviations from small

targets.

Theorem 5.6 Let f be arbitrary transcendental meromorphic solution of (2) such that
T(r,Q) = S(r, f) and let a be a meromorphic function such that T(r,a) = S(r, f). If a does
not solve the equation, then
1
f—a
If, on the other hand, a(z)* — a(z)’ + Q(z) = 0, then B(a, f) > 1.

L(r, )=S(r, f) and B(a, f) = 0.

Proof. As in the proof of Theorem 5.4 we put g(z) := f(z) —a(z), insert this in the equation
(2) and get

9 =9 —2ag - F(z,a),
with F(z,a) := a(2)* — a(z)’ + Q(z). Assuming that F(z,a) # 0, zero does not solve the
equation. By Lemma 4.3, we obtain

F=5) = £(r0.9) = S(r.g) = S(r.f)

and B(a, f) = 0. If, on the other hand, F(z,a) = 0 then zero solves the equation (10) and,
by Theorem 2.1, we get S(a, f) = 8(0,9) > 6(0,g9) = 1.

L(r,
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A bifurcation and symmetry discussion of the Sommerfeld effect

Eoin Clerkin, Rubens Sampaio

Abstract:

The Arnold Sommerfeld effect is an intriguing resonance capture and release
series of events originally demonstrated in 1902. A single event is studied
using a two degree of freedom mathematical model of a motor with imbalance
mounted to laterally restricted spring connected cart. For a certain power
supplied, in general the motor rotates at a speed consistent with a motor on
a rigid base. However at speeds close to the natural frequency of the cart, it
seemingly takes on extra oscillations where for a single rotation it both speeds
up and then slows down. Therefore in a standard experimental demonstration
of the effect, as the supplied torque force is increased or decreased, this may give
the illusion that the stable operation of the motor is losing and gaining stability.
This is not strictly the case, instead small oscillations always present in the
system solution are amplified near the resonant frequency. The imbalance
in the motor causes a single resonance curve to fold back on itself forming
two fold bifurcations which leads to hysteresis and an asymmetry between
increasing and decreasing the motor speed. Although the basic mechanism
is due to the interplay between two stable and one unstable limit cycles, a
more complication bifurcation scenario is observed for higher imbalances in
the motor. The presence of a Z2 phase space symmetry tempers the dynamics
and bifurcation picture.

1. Historical background of and introduction to the Sommerfeld effect

Arnold Sommerfeld’s posthumous biography complied from his written correspondence [5],
mentions an intriguing engineering problem proposed by Prof. Hermann Boost also of the
Technical University of Aachen whereby a steam engine is to be installed in a building which
is itself to be supported by beams. As a demonstration to the district association of German
engineers (VDI), using a weighted motor with small imbalance screwed tightly to a table-
top, he caused the motor to become enthralled to the frequency of the table which induced
large vibrations highlighting to the audience the catastrophic potential of resonance. The
phenomenon is justified with reference to linear resonance curves for harmonic forced linear
differential equations in his seminal 1902 paper [16]. It was fifty years later with the work of
Blekhman [1,7] that the phenomenon was named in his honour and more than fifty years still
it has seen a renewed interest among the applied mechanics and mechanical engineering com-

munity, being a main discussion point at the 2015 IUTAM symposium in Frankfurt [2,8,10].
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Figure 1. Schematic diagram of laterally Figure 2. Sweep diagram showing the
restricted spring-connected and damped rotor speed as the torque force is slowly
cart with a driven rotor with imbalance. increased (red) and decreased (blue).

In order to study the Sommerfeld effect as a purely mechanical phenomenon, a transla-
tional oscillator rotational actuator, as schematically drawn in Fig. 1, has been investigated
by a number of authors [2,8,9,11] as a minimal model that is believed to encompasses only its
essential dynamical attributes. This paradigmatic example is made up of a rotor with a small
imbalance (m) a certain distance from its centre which is mounted to a laterally-restricted
spring-connected and damped cart. This drawing (Fig. 1) follows the normal applied me-
chanics convention whereby a single wall span implies restriction in two spatial directions.
In addition, the rotor would normally be orientated in the horizontal plane, so as to remove
any need to consider gravitational effects. Physical parameters expected to be important to
model such a scenario would be mass inertia of the cart, imbalance and rotor, the spring
and damping constants as well as a measure of the symmetry-brokenness in the rotor, i.e
the distance between the imbalance and its centre of rotation. The supplied power or torque
force to the rotor is varied to unveil the Sommerfeld effect.

As shown by the red curve in Fig. 2, as the power is monotony increased to the non-
ideal [6] motor, its angular velocity increases until it approaches the natural frequency of the
spring, which is normalised to one in this manuscript. After which, additional increases in
power does not increase the motor speed, but instead leads to the growth of oscillations in
the smooth operation of the motor and in the displacement of the cart (not seen). A log-scale
diagram of rotor speed versus the supplied torque is shown in Fig. 2 where a linear response
of the angular velocity to the torque appears as a logarithm function. Subsequently, as the
torque force is increased further (red curve), there comes a point where the oscillations in
the cart fall relatively silent and the rotor rapidly speeds up to match the expected speed

of the rotor had it been on a rigid base. Characteristic of the Sommerfeld effect is an
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Figure 8. For u = 0.1, time-traces showing a symmetric, resonance captured S-type cycle (5).
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asymmetry between increasing (red curve) and decreasing (blue curve) the power to the
motor, and significant hysteresis is seen, meaning that two distinct states for the system are
concurrently stable. In fact, this was already alluded to in Sommerfeld’s 1902 paper [16]
where he discussed temporarily grasping the table legs to change the motors speed to a state
operating at higher frequency. In our case, when the system is operating in the resonance
captured zone, a temporarily restriction on cart’s movement would allow the rotor to be
released from resonance. The succeeding section to the next will explain the dynamics behind

Fig.2, but first we introduce the equations of motion which were integrated to generate it.

2. Mathematical model of a translational oscillator rotational actuator

In order to investigate a single Sommerfeld resonance capture and release event, a model
for a translational oscillator rotational actuator as schematically drawn in Fig. 1 is studied.

The kinetic and potential energies of the cart and rotor are available from Appendix B of
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Ref. [15] which can be used to derive the system of equations with dimensions such as those
in Refs. [9,11]. The following work uses the non-dimensionalised version of these equations

from Ref. [7] as it significantly saves on the number of required parameters.
diz + Bdiz + v = —ed; (cos (¢)), (1a)

d; o + vdip = u + ersin(p)d;z. (1b)

The system has two degrees of freedom, the displacement of the cart x, defined positively
to the right and negatively to the left from its equilibrium position, and ¢ as the angle of
the imbalance in the rotor, defined by the normal mathematics convention from the right
horizontal axis as shown in Fig. 1. In this paper d; to the left of or a dot above a variable
represents the operation of differentiating with respect to non-dimensionalised time ¢.

The non-dimensionalised parameter 8, ¢, k, v encapsulates dependant dimensioned pa-
rameters such as the mass of the cart and imbalance, damping in the cart and rotor, level of
symmetry-brokenness, and moment of inertia. Parameter values were chosen to compare with
the work in Refs. [9,11]. After transforming these parameter to their non-dimensionalised
form, the parameter values become § = 0.01983, x = 0.017, v = 857.143 and the natural
frequency in the spring-cart is normalised to one (cf. Fig. 2). € = {0.005,0.0125} is one of the
more important parameter as a measure of imbalance or symmetry-brokenness in the rotor
which results in the coupling between relations (1a) and (1b) in Eq. (1). For this parameter,

the following symmetry exists.
— — parameter symmetry (2)

Physically e is proportional to the length between the imbalance and its centre of rotation
and therefore the parameter symmetry (2) may be interpreted as a redefinition of orientation
of = displacement as the imbalance is translated by 180° after going to negative length.
The torque u is the force supplied to the rotor, which is the parameter used to unveil
the Sommerfeld effect and is the main sweep parameter in this study. A parameter space

symmetry also exists, namely

— 4 parameter symmetry (3)

<
IS

which allows one to obtain the dynamics due to clockwise driving of the rotor from the anti-

clockwise driving by means of the additive inverse of the displacement and angle, thereby
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velocity and angular velocity of the cart and rotor. Because of these two parameter symme-
tries, we may limit this study to positive torque and positive € only and still obtain the full
dynamical picture.
Unlike the two introduced parameter systems, a phase space symmetry such as the

following involutionary (a.k.a reflection) symmetry influences the dynamics by itself.

z — - Z2 symmetry (4)

¥ p+m
This means that if y1(¢) is a solution to the Eq. (1) then so is y2(t) = Ryi(t) where R is
the action of the symmetry. As this study’s primarily interest is in periodic orbits in the
system as the resonance frequency of the cart is transversed by the rotor, it is of importance
to consider how symmetry (4) may affect limit cycles. To this aim, we will use the results
and language of Refs. [13,14]. The phase space may be decomposed R* = X+ @ X~ where
the action of the symmetry (4) is Rv = v forv € X and Rv = —v forv € X~. Some
care needs be exercised when doing this as ¢ is not strictly in R, so we consider various
coordinate transforms such as {p, ¢} = {¢cosp, psinp} € R? which enforces this. Tt may
be thus deduced that X = () and this has the immediate consequence to limit the types of
limit cycles permitted in system (1), namely limit cycles of fixed or mixed fixed-symmetry
type of Refs [13,14] do not exist. The only cycles remaining which are invariant to Zs
symmetry (4) are of the following type

Ty | e+ D, S- and M-type (5)

@ e+ 2
where 7 is the minimal period of the limit cycle. In the nomenclature of Refs. [13,14], these
are called symmetric or S-type cycles. As can be seen after half the period of oscillation the
displacement is exactly its negative. Likewise this rule applies for the velocity. Therefore,
cycles invariant with respect to condition (5) must average to zero for these variables over
one cycle. A typical limit cycle of system Eq. (1) is shown in Fig. (3) which can be seen to
be invariant with respect to Eq. (5). It is known [12] that a period doubling bifurcation may
not occur in limit cycles of S-type due to a multiplicity of two in their Floquet multipliers.
In later sections, cycles which are symmetry-broken with respect to Egs. (4) and (5) will be

discussed.

3. Basic mechanism of the Sommerfeld effect

By direct integration of the equations of motion (1) with different initial angular velocities,
Refs. [4,11] highlight the existence of "hidden” bistable attractors. The 2D diagram Fig. 4
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shows the ultimate limit cycles of these trajectories by the red and blue solid closed periodic
orbits. The red curve shows large variance in the displacement and velocity, hence large
potential and kinetic energy in the cart. Conversely, although the blue curve shows higher
eccentricity thus a higher ratio of kinetic to potential energy in the cart, both energies are
are substantially less than that of the red limit cycle, instead it has considerably greater
total energy in the rotating rotor. This can be seen in Fig. 5 where the blue limit cycle has
larger maximum angular velocity than the red limit cycle. In the case of the blue limit cycle,
the rotor operates at the frequency consistent with a motor on a rigid base whilst in the case
of the red limit cycle, the rotor rotates at an average frequency approximately consistent
with the natural frequency of the cart. This oscillation frequency persists over an extensive
change of torque as can be seen in Figs. 2 and 5 and the red limit cycle is captured by the
resonance. In the resonance captured range of torque, there is therefore at least bistability
of limit cycle states. which was, in fact, already alluded to in the seminal 1902 paper [16]
where Sommerfeld discussed temporarily grasping the table legs to change the motors speed
to a state operating at higher frequency. In our case, when the system is operating in the
resonance captured zone, a temporarily restriction on cart’s movement would allow the rotor

to be released from resonance.
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Figure 4. 'Two stable limit cycles Figure 5. Continuation of the S-type cycle using

(red and blue) separated by an un- AUTO [3] showing a loss and gain of stability at

stable limit cycle (green - dashed). fold bifurcations of limit cycles (F). (cf. Fig 2)
Generated for u = 0.15.

In fact, a third limit cycle exists between the resonance captured and resonance released
dynamics as shown in Figs 4 and 5 by the green dashed line. This limit cycle has intermediate
energy in the cart and although it is unstable, it controls the limits of the stable dynamics. As

the torque is increased from its value in Fig. 4, there comes a point, actually a fold bifurcation
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of limit cycles, where the green unstable limit cycle collides with the red resonance captured
limit cycle. They annihilate one another leaving the blue limit cycle as the only stable
attractor. Consequently transience ensues as the dynamics is exponentially attracted to its
new higher in terms of rotating speed but lower in terms of cart vibrations state. Physically
this explains the resonance release event (cf. Fig 2) whereby the rotor is now free to rotate
at a frequency approximately consistent with its supplied torque. Conversely, decreasing the
supplied torque force from its value in Fig. 4, the blue resonance released limit cycle collides
with the green unstable limit cycle. They annihilate one another in a fold bifurcation of
limit cycles leaving only the red resonance captured limit cycle. This can also be seen in
Figs 2 and 5 but the speed-down for the rotor is more modest as the blue and red limit
cycles are much closer together at this bifurcation than the higher torque fold bifurcation.
It should be noted that the red limit cycle follows the normal operation of the limit cycle
on a rigid base for low torque force. We stress that the red limit cycle undergoes no change
in its dynamical state, i.e. bifurcation, as it becomes captured by the resonance of the cart.
Instead, small oscillations always present in the cart and rotating rotor are merely amplified
in the resonance zone. As is often the case when a resonance curved is transversed, there is
a phase difference of half the period between the red and blue limit cycles. This can been
seen in Fig. 3 as the displacement proceeds the velocity by a quarter period, the opposite
is the case for the resonance released cycle. Lastly we’d like to mention that the rate of
change of the torque is important in the physical observation of the effect as the torque may
be already significantly higher before the transient behaviour has had time to settle, this is

emphasised well in Ref. [6].

4. Larger imbalance in the motor - Symmetry-broken limit cycles

As imbalance is needed in the motor to create the resonance capture and therefore the
Sommerfeld effect, ndively one may assume that an increase in the overall imbalance may
lead to resonance capture to occur over a greater range of the supplied torque. In this section,
it will be seen that this is not the case, but instead a different sequence of bifurcations than
in Sec. 3 are possible whilst still maintaining the Sommerfeld effect phenomenon. The red
points in Fig 6 are rastored data from an integration in time of the equations of motion (1)
as the torque parameter is varied, but sufficiently slowly to allow the dynamics to settle to
its steady state at each step. In order to concentrate on the resonance captured event, the
resonance released dynamics, the blue curve in Figs. 2, 4 and 5 are not displayed in Fig. 6.
As before, when the torque force is increased, the dynamics is captured into resonance. It
can be seen that the rotor speed becomes enthralled to the resonance frequency of the cart

but oscillates in ¢ with an amplitude that modestly grows as the torque increases. After
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Figure 6. For e¢ = 0.0125, the torque is slowly increased showing the resonance captured
event. The dynamics undergo several bifurcations before at approximately v = 0.19 the
resonance captured dynamics is released. Over plotted lines shows the maximum rotor
speed of the limit cycles from continuation data. Blue line follows a S-type cycle (cf. Fig. 3),
the purple line are M-type cycles (cf. Fig. 7, and brown line shows a M-type cycle of
doubled period (cf. Fig 8). Solid lines are stable and dashed lines show unstable limit cycles.
Bifurcations points are shown as solid black dots and labelled P to denote a supercritical

pitchfork bifurcation of limit cycles and D to denote a period doubling bifurcation.

u = 0.1, there comes a point where the dynamics significantly changes. Continuation using
software AUTO [3] reveals the S-type cycle (Fig. 5), crucial to the basic Sommerfeld effect
mechanism outlined in Sec. 3, looses stability when a Floquet multiplier crosses the unit
circle at real part one. This is a supercritical pitchfork bifurcation which is labelled P in
diagram Fig. 5. After this point the S-type cycle although unstable continues in a similar
bifurcation sequence discussed in the previous section.

At the supercritical pitchfork bifurcation, stability is transferred to a not-previously-
discussed type of limit cycle, those that of course obeys the symmetry (5) but is no longer
invariant to it but is symmetry broken. For these cycles applying the action of the symme-
try (5) results in a different albeit congruent cycle. In the nomenclature of Ref. [14], these
are called M-type cycles for “mirror” as they occur as a twin pair. If a change of stability or
local dynamics happens to one of them, it must automatically happen to the other. However
as the symmetry is now broken, the symmetry (4) no longer restricts the dynamics and the

bifurcations that may occur individually. As the torque force is increased further, it can
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Figure 7. For w = 0.17, time-traces showing a symmetry-broken with respect to sym-

metry (4), resonance captured M-type cycle [14], which momentary rotor reversal. Period

= avng) 8.28 — 6.48. = can be seen to preceed & by . e =0.0125.

be seen in Fig. 6 that eventually the rotor speed oscillations go through zero and become
negative. Physically this would mean that the rotor, momentarily reverses to rotate in the
clockwise direction before resuming its normal anti-clockwise revolutions. Dynamically the
point at which this occurs is not special, however we caution that for some coordinate sys-
tems, continuation of the M-type cycles may be difficult. A typical M-type cycle, displaying
this reversal of rotor direction is shown in Fig. 7. In these time-traces, applying the action of
the symmetry (4) to the purple limit cycle results in the pink limit cycle and visa-versa. The
two M-type cycles may now be distinguished by the purple limit cycle having lower maxi-
mum positive displacement but higher maximum velocity than the pink limit cycle. Both
share the same angular velocity and therefore are difficult to distinguish in Fig. 6. The next
significant change in dynamics seen in Fig. 6 is a period doubling bifurcation, labelled by
the letter D. We note that although S-type weren’t permitted to undergo a period doubling,

no such restriction occurs for M-type cycles. At this point the twin cycles loose stability
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Figure 8. For u = 0.18, time-traces showing a symmetry-broken M-type limit cycle with
27

respect to symmetry (4), with momentary rotor reversal. Period has doubled r = oot X2 =
8.28 x 2=12.87. = can be seen to preceed & by 7. e =0.0125.

and a new M-type cycle pair with double the original frequency is born. The displacement,
velocity, angle of imbalance, and angular velocity of the rotor for this limit cycle is displayed
in Fig. 8. The limit cycles are also symmetry-broken as can be seen from them having
significantly different average displacement and velocity in the cart. Applying symmetry 4
converts between the congruent purple and pink limit cycle pair as before. Shortly after the
torque force is increased further in Fig. 6 these period-doubled limit cycles in turn looses
stability at another period doubling bifurcation creating stable limit cycles of even higher
periods. Nevertheless, the stability of the resonance captured range is soon after lost and
the dynamics is released from resonance to enter the higher rotor speed state. Comparing
Figs. 2, 5 and 6, we note that this occurs at a significantly reduced torque strength than in

Sec. 3, meaning that the resonance captured region was reduced by the extra imbalance.
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5. Summary

In this manuscript we describe the basic Sommerfeld effect mechanism as a resonance curve
folded back on itself creating two fold bifurcations of limit cycles. Although this basic mecha-
nism has been known for some time, the authors are not aware of it being directly articulated
in a fashion similar to this paper. The fold bifurcations explain the jump phenomena when
the driving parameter is moved outside the domain of existance of a limit cycle solution
creating fast transience to a neighbouring attractor. This naturally leads to an asymmetry
between increasing and decreasing the driving parameter and a bistability of states. The
symmetries present are discussed in order to categorise the observed limit cycles.

In Sec. 4 we examine the Sommerfeld effect at a larger imbalance in the motor. A
different more complicated bifurcation sequence of pitchfork and period doubling bifurcations
are witnessed allowing for multistabilities of limit cycles. Although the effect is considerable
different than the lower imbalance in Sec. 3, both scenarios ought to fall under the general
term of the Sommerfeld effect. The same resonance capture and release events occur but the
general area of resonance captured has been significantly reduced by the symmetries in the
system and the increase of imbalance. It may be therefore hoped that a further study of the
bifurcation along with purposely added symmetries in the rotor and system may allow for a

smooth passage through resonance.
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On the acoustic metamaterial with negative effective mass

Livija Cveticanin

Abstract: Recently a significant attention is directed toward so called ‘acoustic
metamaterials' which have large similarity with already known ‘electromagnetic
metamaterials' which are applied for elimination of the electromagnetic waves. The
stop of electromagnetic waves is realized with the negative refractive index, negative
permittivity and negative permeability. Motivated by the mathematical analogy
between acoustic and electromagnetic waves the acoustic metamaterials are
introduced. It was asked the material to have negative effective mass. To obtain the
negative effective mass the artificial material, usually composite, has to be designed.
The basic unit is a vibration absorber which consists of a lumped mass attached with a
spring to the basic mechanical system. The purpose of the unit is to give a band gap
where some frequencies of acoustic wave are stopped. We investigated the nonlinear
mass-in-mass unit excited with any periodic force. Mathematical model of the motion
is a system of two coupled strong nonlinear and nonhomogeneous second order
differential equations. The solution of equations is assumed in the form of the Ateb
(inverse Beta) periodic function. The frequency of vibration is obtained as the
function of the parameters of the excitation force. The effective mass of the system is
also determined. Regions of negative effective mass are calculated. For these values
the motion of the forced mass stops. It is concluded that the stop frequency gaps are
much wider for the nonlinear than for the linear system. Based on the obtained
parameter values the acoustic metamaterial could be designed.

1. Introduction

Metamaterials represent a novel type of engineered materials characterized by exceptional
properties which are not commonly found in natural materials. Properties of these materials are not
the result of their chemical composition. Materials are man-made designed composites with special
structures for energy absorption or elimination. Originally metamaterials started in the field of
electromagnetic waves where researchers found that the negative electrical permittivity, negative
magnetic permeability and negative refractive index available absorption of electromagnetic waves
[1]. Recently, using the mathematical analogy between acoustic and electromagnetic waves, acoustic,
also known as mechanical or elastic, metamaterials for mechanical sound and vibration attenuation
are designed [2], [3]. The purpose of these materials is to absorb acoustic waves and vibrations at
certain excitation frequency. To fulfill this task and due to analogy with electromagnetic

metamaterials it is required that mechanical metamaterials have a negative mass property. It is well

143



known that there are no materials with negative mass, but a concept of 'negative effective mass' is
introduced into consideration. The effective mass is a mathematically calculated parameter whose
value may be negative. Milton [4] introduced the dynamics of metamaterials with such non-
conventional behaviour. It was seen that the negative effective nass density of metamaterial is
obtained due to local resonators included as basic, units of material [5]. For the negative effective
mass a stopband frequency area exists. The single mass-in-mass resonator offers negative effective
mass property over a specific frequency range [6] — [8] and by connecting them into a system we
obtain an acoustic metamaterial which exhibits negative effective mass density [9] — [11]. Based on
the theoretical conclusion about negative effective mass systems the new acoustic metamaterials with
local resonator units are designed [12] — [15]. The experimental investigation on these metamaterials
give results which differ from those which would be predicted using the theoretical analysis. Because
of that the modification of the model is necessary.

Our aim is to improve the model by introducing of the nonlinear property of the resonator unit and
to investigate the influence of the nonlinearity on the resonance frequency bandgap. The resonator is
assumed to be a two-degree-of-freedom mass-in-mass system with nonlinear elastic property. Already
some investigation are done for the mass-in-mass unit where the spring is with cubic nonlinearity
[16]. In this paper the generalization of the nonlinearity in the mass-in-mass system is done. The
nonlinearity is assumed in the polynomial form of displacement with integer or noninteger order. The
motion for the general periodic excitation is analyzed. The concept of effective mass is for the
nonlinear system is newly defined and the negative effective mass is calculated. The bandgap for
vibration at resonant case is determined and applied for explaining the property of the acoustic

metamaterial in the chiral form.

2. Concept of effective mass in linear mass-in-mass unit

The single mass-in-mass unit is plotted in Fig.1. The unit contains the outer mass m; and the inner

mass m,. The inner mass is coupled to the outer by a linear spring of stiffness k, (Fig.1a).

Figure 1. Mass-in-mass system: a) linear model, b) nonlinear model.
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The system has two degrees-of-freedom and two generalized coordinates: the displacement u, of the
mass m, and u, of the mass m,. If the subsystem is excited with a harmonic force or harmonic wave,

the differential equations of motion are [17]:
m,ti, +kZ(u, —u,) = F cos(Qt), )
m,, +k22(u2 -u;) =0, 2

where F and Q are the amplitude and the frequency of the excitation force. This system of coupled
and linear second order differential equations has the exact closed form solution in the form:

u, = AcosQt, u, =BcosQt, (3)
where amplitudes of vibration are:

_ F(k; -Q°m,)
(kzz _szl)(kzz _szz)_k;1 ,

(4)

o Fk2
(kzz _szl)(kz2 _szz)_k;1 ,

Q)

Analyzing the obtained results it is obvious that the inertial force of the subsystem under
resonance works against the excitation and attenuates the vibration. Using this conclusion the concept

of effective mass is introduced [18].

Figure 2. Mass-in-mass unit and its effective mass mer.

The concept is based on the physical condition that the motion of the outer mass m; has to be equal to

that of an equivalent effective mass merr depicted in Fig.2, ie, Myl =FcosQt and

— Mg Q*A=F . Thus, the effective mass is:

Qz
Mg :(m1+m2)+mm2, (6)

2
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where @, = \/kzz /m, . Analyzing (6) it is seen that the effective mass is negative for excitation

frequency which satisfies the relation:

182 /M @
2] m,

According to (7) it is evident that for the negative effective mass a narrow band gap region exists
which is near to the local resonance frequency (Q/w,=1) of the internal mass m,. In [6] it is shown
that the negative effective mass region corresponds to the band gap region of the dispersion curve
when wave propagation is considered. Namely, if the mass becomes negative the acceleration is in the
opposite direction to the applied force according to the Newton's second law of motion and the
response amplitude reduces. This effect is greatly increased for the resonant case when the excitation
frequency Q approaches the frequency of the system w,. From (7) it is clear that the band gap region
can be broadened if mass m; is increased and m, decreased. So, maximizing of the band gap region
can be reached by increasing of the mass ration m,/m;. Unfortunately, the effect of negative mass is
significant only close to Q/w,=1, while in the broadened region the amplitude of negative mass is
small and little reduction during wave propagation occurs.

3. Nonlinear vibration of the mass-in-mass unit

In Fig.1b a nonlinear mass-in-mass nonlinear subunit is plotted. Masses m; and m, are connected with
a spring with nonlinear properties. Let us assume that the elastic force in the spring is a nonlinear
displacement function:

Fe = k§U2|U2|a4!- (8)

where k’ is the coefficient of nonlinearity and « > 1 € Re, is the order of nonlinearity. For the

nonlinear two degrees-of-freedom mass-in-mass subunit the mathematical model is:
.. 2 a-1
m1u1+ka(u1_uz)|u1_u2| =f, )
.. 2 a-1
My, + k3 (U, —uy)Ju, —u,|" =0, (10)

where f is the excitation force and u; and u, are displacements of masses m; and m,. Equations (9)

and (10) are coupled and strong nonlinear.

Let us assume that the excitation force has the form of the cosine Ateb periodic function ca:

f = Fca(a,1,Qt)caa L, Qt)|“7l, (11)
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where F and Q are amplitude and frequency of the force and a > 1 is a positive constant of integer or

non-integer type. (The Ateb function is the inverse Beta function [19]). The period of the force is:

T=201,=2B 1 ,3 : (12)
a+l 2

where B is the Beta function which depends on a. Introducing (11) into (9) and (10) equations of

motion are:
mydiy + k2 (U —U,)ju; —,|*" = Fea(aL, Qt)ea(a, Qt)| ", (13)
.. a-1
My, + k3 (U, —uy)Ju, —u,|" =0. (14)

The procedure for solving of the system (13) and (14) is introduced. Let us transform equations (13)
and (14) into a system:

m,0, +m,l, = Fea(a,1, Qt)ca(al, Qt)|“71, (15)
.. a-1
My, + k3 (Uy —Uy)u, —u,|" =0, (16)

which is suitable to be solved. The first equation is linear and nonhomogeneous, while the second is a
homogenous strong nonlinear differential equation. For the forced vibrations the solution is assumed
in the form [19]:

u, = Aca(a,1,Qt), u, =Bca(e10t), 17

where A and B are unknown constants. Using the second time derivative of the Ateb function [20] and

substituting (17) into (15) and (16) we obtain a system of a linear and a nonlinear algebraic equation:

a+l
mlA+sz=—FE, (18)
—m292i8+k5(B—A)|A—B|“’1=o. (19)
a+l
Substituting
a=-Meg patl (20)
m, 20Q°m,

into (19) the unknown parameter B is the solution of:
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a-1
2 m, +m m, +m
m, 2% gy MtM g, p ot Imsme g “jl| ~0.
a+l m, 20°m, )| m, 2Q m1|
Otherwise, for:
B=-Tia p 2l
m, 2Q°m,
the relation for A is:
20 ,(m +m a+1 |m +m a+l |7
m, A-kZ| —=A+F 5 L __ZA4F 5 =-F.
a+1 m, 2Q°m, )| m, 2Q m2|

For simplification let us introduce the amplitude ratio C:

C=—.
B

Introducing (24) into (18) it is:

F(a+1)
202
For (25) the equation (21) transforms into:

(mC+m,)B=—

a-1
m2+kj(c_1)a+21|F(anl) c-1 | o
202| 207 mC+m,|
Let us rewrite (26) into the form:
FC-n |
(292)“m2+k§(C—1)(a+1)“g =0.
m,C +m,

It is obtained that the motion of the outer mass 1 stops for C=0.

4. Concept of effective mass in linear mass-in-mass unit

(21)

(22)

(23)

(24)

(25)

(26)

(27)

Usually, it is suggested to transform the mass-in-mass model into a single effective mass whose

motion corresponds to the motion of m;. Namely, the linear momentum of effective mass with

velocity u, is equal to the sum of the linear momentums of masses m; and mz:

Mg U = MU, +m,U,.

Using the relations (17) the effective mass is:
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mZ
meﬁ = ml "r?.

Substituting (27) we obtain:
2 lla
2Q m,
m, 2pa-1
a+1k.B”

ZQZ m 1a '
1—| = 72
[a +1 kiB‘”j

where the amplitude of vibration B is the solution of the relation (21). The effective mass depends not

Mg =M, +M, + (29)

only on the masses of the unit and rigidity properties of the spring, but also the parameters of
excitation (amplitude and frequency). The relation (29) is negative for:

P la
< 20 % <1+&. (30)
a+1k.B* m,

Introducing the notation for the eigenfrequency of the system:

kZBa—l
QF ==

1+ ), (31)
2

We transform the relation (30) into:
0 m al2
l<—<|1+—2| . (32)
Ql ml

It is evident that the band gap is broadened with increasing the nonlinear property of the spring.
Besides, the position of the resonant regime varies dependently on the parameter «. For the linear
case, when a=1, the width of the band gap frequency (7) is smaller than for any nonlinear case and the
position is fixed for Q/Q4=1.

5. Acoustic metamaterial: Subunits connected in one dimensional lattice

Let us consider the case when the mass-in-mass subunits are connected in lattice [21] (see Fig.3).
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Figure 3. Mass-in-mass subunits connected in a 1D lattice [21].
For the case when the elastic property of the connection is nonlinear, equations of motion for the unit

cell follow as:

e i i - et - i i iy |7t
ml(l)ul(l) +k§(u1(” _ugl))|u1(1) —ué” +k(u1“’ _ul(J l))|u1(1) _ul(J 1)|

y+1

ok —ulu —ud " =g,

T . . . N a-1
mé”ug” +k§ (u§” _ul(J))|u§J) _ul(J) -0, 33)

where yERe, (integer or noninteger positive real number) is the order of nonlinearity and k is the
rigidity constant.
Using the method of normal modes, suggested in the previous section, the relation between modes

of vibration is:
u =Ku, uIP =Ku$?, ul? = Kud, (34)

where K is an unknown constant. Applying (34), equations (33) transform into:

a-:

. . _ . . 1 _ s . . P -1
KOG + k2 (K ~DK ~4u@ " + kKK [ @l —ug)ug? a2

(35)
KKK P —ud 9 )ufd —ufd[ ™ <o,
m{aS +k2 (- KK ~4“ uP s = o. (36)
The wave form solution is:
0™ =uf ep(ipL), ul? =uf exp(-iL), 37)

where L is the length, f is the wave number and i=V(-1) is the imaginary unit. Substituting (37) into

(35) the equation transforms into:
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Km®ad + u§”|u§i>|“(k§ (K =D[K —1" + kK|K["™ @~ exp(-iAL))L - exp(-iAL)|
(L-exp(ipL)L—exp(AL) ™ =0.

7+l

+kK|K]
Comparison of equations (36) and (38) yields:

1
Km®

k@ KKK (- exp(-iAL) - exp(-iL)
ml

k2(K-DK -1

7+l 7+l 1

Km{)

+—Kr;|'|-fj) kK|K| (1— EXp(lﬂL))ll—eXp(lﬂL)| kj (K —l)|K _l|a—1.

The equation (36) is a second order strong nonlinear differential equation with general solution:

ul? = Bea(a,1, Qt),

where the frequency of ca Ateb function is:

a+1 [k at od
Q=== ["«1-Cclc-128B2?,
2 \m,

and B is the amplitude of vibration. According to 41) the constant C follows:

2 0 e
Ko1-| 22 M|
a+1k’B**

Substituting 42) into 39) the dispersion equation is obtained:

2 i el
) 1_(29 ms ] [(L—exp(~iL)L—exp(-ipL)

a+1k2B“?

. 202 MO [ m® Mm@ (202 m@ V'
+(1—exp(ifL))L—-exp(ipL)] 1= o L 2 +1|

a+1B“H m{’ mi|a+1k2B?

(38)

39)

(40)

(41)

(42)

(43)

If the lattice system is reduced to a homogenous monoatom lattice system, where only effective

masses Mest are connected by springs with rigidity k, the homogenous lattice system is obtained. The

dispersion equation of the system is:
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20— exp(-i - exp(-i AL + (- exp( AL explAL) . (4)

Q% =kB“t =—=
2M 4
Rewriting (44) into:

2M 4
kB“ ™ (a +1)
And substituting (45) into (43) we obtain:

2

= (L-exp(-iAL-exp(-iAL) " + (-exp(iALNL-exp(AL) ", @5)

N 1 (202 mp Y
My =mP +m + mP-| ===

200 m a+1k;B“*
1-— 2
a+1k’B**

202 mi )} g _ 202 mi ) !
-|1- 2 )+mP (1|1~ 2 ).

a+1k2B“* a+1k’B“*

(46)

For the case when the order of nonlinearity of the connecting elements of the absorber are equal, i.e.,

a=y, itis:

1

: la
(200 mp Y
a+1k’B*™

2 0 1/a]* ‘ 2 m(j) e l*
—1—(29 mZ) )+m1“>(1—1—(2Q 2] )).

a+1k’B“* a+1k’B“*

207 my )"
m. =m® +mid 4 £ my
eff — 1 2

a+1k’B“*

z (mf”(l—[

(47)

The monoatom lattice system is equivalent to the original mass-in-mass system if their dispersion
systems (43) and (47) are identical.

5.1. Linear connection

If the connection between subunits is linear the order of nonlinearity is y=1. Then, reducing the lattice
system to a homogenous monoatom one, we obtain that only effective masses mesr are connected by

springs with rigidity k and the dispersion equation is

My 202 1

1-cos(AL) =  ailBT

(48)

Eliminating the wave number f and using the relation (46) the effective mass is:
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0 e
a+1k2B“!

: lVa °
L[ 2 mg”
a+1k2B“*

Comparing (49) with the previous result for only one subunit (29) it is obtained that the monoatom

My =mP +m) 4

(49)

lattice is equivalent to the original mass-in-mass system if the dispersion equations are identical.

6. Conclusions

Theory of acoustic metamaterial with resonators modelled as two-degree-or-freedom nonlinear mass-
in-mass systems is considered. Concept of the effective mass for the nonlinear unit is developed. The
regions of negative effective mass are calculated. The theory is extended on the nomoatom lattice
system which is often used in acoustic metamaterials.Based on the investigation the following is
concluded that resonators, which are basic units of acoustic metamaterial, eliminate the wave
propagation at certain vibration frequencies. The concept of effective mass, introduced in the paper,
gives the possibility to obtain the region of negative values for which wave propagation band gaps
exist. For the case when the mass-in-mass subunits are connected into an one-dimensional lattice, the
effective mass of the monoatom lattice system is equivalent to the original mass-in-mass system if
their dispersion equations and the mass ratio are identical.
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Application of Pade approximations to the solution of nonlinear
control problems

Yulia Danik, Mikhail Dmitriev, Ekaterina Komarova, Dmitry Makarov

Abstract: In this paper the Pade method of approximate solutions construction for
various continuous control problems with a parameter, where it is possible to
construct the control function asymptotics for small and large values of the parameter,
is developed. As a result of constructing the asymptotic Pade interpolation (API), we
obtain a control interpolation surface, where asymptotic approximations of the control
are used as interpolation nodes. Such a dependence on parameters exists in numerous
applications, where the large parameter value corresponds to large control gain
coefficients, and small parameter values appear in case of weakly controlled systems,
that is a family of controls with the varying gain is generated. For the case of a two-
point API the constructed surface serves as a “bridge” that is asymptotically close to
the exact control surface for the parameter domains for which the asymptotics are
constructed. The properties of stability and optimality of the resulting feedback
controls are studied for linear quadratic optimal control problems with a parameter
perturbations. The results of numerical experiments are discussed.

1. Introduction

The Pade approximation (PA) [1,2] is one of the asymptotic approaches that allows to approximate a
function expanded in a Taylor series by a rational function of a given order — a ratio of two
polynomials of degree m in the numerator and a power of 7 in the denominator. To construct the PA,
it is necessary to solve a system of linear algebraic equations.

One of the possible applications of this technique is the solution of control problems, namely the
approximation of the optimal control law [3-4]. In papers [3-4], for example, the transfer function of a
closed-loop control system is expanded into a series and is replaced by a Pade approximation. The
unknown controller parameters are found from the equations and constraints obtained for the
simplified transfer function of the second order.

Here we will consider the matrix Pade approximation of the solution of a state dependent Riccati
equation (SDRE) for a particular class of nonlinear control problems, namely, a control problem with
a parameter that can take both small and large values, thereby determining either a weakly controlled
system or a system with a large gain. For the corresponding SDRE we construct the asymptotic
expansions of its solution for large and small values of the parameter. The well-known review [5] is

devoted to the SDRE technique of suboptimal nonlinear control synthesis. The methods for
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constructing approximate solutions of continuous and discrete matrix algebraic Riccati equations with
state-dependent coefficients on the basis of asymptotics by a formally small parameter are presented
in [6-10]. Each of the two mentioned asymptotic expansions is applicable in its local domain. It is
possible to extend the results obtained by asymptotic methods and to get one single solution that has
better quality (better approximation of the exact solution) than each of the asymptotics in the
«middle» of the parameter values interval by the construction of the Pade approximation.

This method allows to construct a solution for all possible values of the parameter by the
combination of two asymptotics. The asymptotics splicing for the initial value problem solution of a
singularly perturbed system of ordinary differential equations with the help of a two-point Pade
approximation, or the so-called Pade-bridge, was carried out in [11] and also in [12]. In [11], a
procedure for constructing approximations of the solutions of initial value problems with a parameter
is proposed. In [12], an algorithm for constructing a parametric Pade-bridge for the solution of an
optimal control problem with the free right end and two groups of motions is demonstrated. A
singularly perturbed problem with left and right boundary layers is solved for small values of the
parameter, and a regularly perturbed optimal control problem for large values of the parameter. The
scalar Pade approximation constructed for this problem contains three series (with coefficients
depending on ¢, fast and slow time, respectively) for each component of the solution vector, as in the
Vasil'eva's boundary functions method [13]. A system of equations for the coefficients of the Pade
approximation was constructed, and a theorem on its solvability was presented.

In this paper a procedure for constructing a matrix Pade-bridge for the feedback control gain
matrix on the basis of two asymptotic approximations of matrix Riccati equation solutions obtained
for small and large values of the parameter is proposed. Matrix Riccati equation is used in the SDRE
approach (State Dependent Riccatti Equation) which is applied here to a particular class of SDC
(State Dependent Coefficients [5]) control systems with a parameter which defines either the weakly
controlled system, or a system with a large gain. The conditions of the closed-loop system stability for
all positive values of the parameter in the case of a stationary linear system are given here, i.c. the
conditions under which the Pade regulator ensures robust asymptotic stability properties of the
closed-loop system with respect to the parameter value. Another advantage of the proposed approach
is that there is no need to recalculate the solution once the parameter value changes, as in the

traditional SDRE method.

2. The control problem statement and the construction of asymptotic expansions of

the Riccati equation solutions

Let us consider the following optimal control problem for nonlinear continuous systems with a

parameter
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X = A(x)x + B(x)u, x(0) =x°, (1)

(xTQ(x)x + uTRu)dt — inf, 2)

oS3

where x(1)e X cR",u(t)eR",t e (0, oo), X < R" - is a certain fixed bounded state space

subset, A(x) € R™", B(x) € R™", rank B(x)=r,Vxe X, O(x)>0, R>0, £€(0, ©)is a

parameter which can take either small or large values. In the first case, system (1) is a weakly
controllable system, in the second case, (1) is a system with a large control gain. All matrices’

elements in (1) are rather smooth functions of their arguments. It should be noted that weight matrices

Q(x) and R are defined subjectively. Our aim is to find an approximate solution of problem (1) as a

function of parameter ¢. The question is whether it is possible to construct a parametric synthesis in
(1) for all values of & from a certain domain, including "middle" values, which provides good
performance in comparison with the corresponding feedback control asymptotic approximations
constructed in the specific domains of the parameter values.

The system (1) has state-dependent coefficients. So we will use the SDRE approach scheme [5]
to find a feedback control. Such a control is sought with the help of the solution scheme of the

standard linear-quadratic optimal control problem with the infinite-time-horizon, i.e.

u=—¢R"'B" (x)P(x,e)x, Vxe X, £€(0, ), 3)

where P(x,&) is a symmetric, positive-defined solution of the next matrix SDRE
—A" (X)P(x, &) — P(x,£)A(x) + &> P(x,&)B(x)R"'B" (x)P(x,&) — O(x) =0, 4)

which follows from sufficient optimality conditions. Regulator (3), (4) is often quite close to the
corresponding optimal control. But the computational difficulties associated with the solution of (4)
give rise to various approximate constructions, in particular, created on the basis of matrices
representation in a weakly nonlinear form [9]. In this paper, taking into account the parameter
variation domain, we will use the Pade approximation (PA) formalism to obtain an approximate
solution of (4). The Pade approximation can be constructed both on the basis of individual asymptotic
approximations in the regions of small and large parameter values, and on the basis of their

combination, for example, two-point PA or Pade-bridges.
At first, we construct the next formal second-order asymptotic approximation of P(x,&) for

small values of &
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B(x,6) = B (x) +eB(x)+& B(x), )

representing matrix Q(x) as

O(x,8) = 0)(x) +£Q,(x) +&°0y (x) , (6)

Substituting (5) into (4), and then equating the terms with the same powers of & , we obtain the
following tree matrix relations
~A" MR )~ B0AX) - 0,(x) =0, = 4" () A ()~ R A(x) 0, (x) =0,

—A" (X)B,(x) - B,(x) A(x) + B,(x)B(x)R™' B (x) B, (x) — 0, (x) =0, @

which are the Lyapunov matrix equations for £(x0), B(x), B(x) .

Next, we construct a second order formal asymptotic approximation of the solution of (4) for the

1
case when ¢ is rather large. Let’s make a substitution & = — and seek the solution of (4) as

H

B (x, 1) = B,(x) + pP (x) + 12 P, (%) ®)

Thus, we have
~A" (VB + 1B (x) + 12 B, (x)) — (B, + pB (x) + 1 By (x)) A(x) +

H By OO+ B (DS B+ B+ 4By () =0, = 0,(6) = 5. 0,(0) =0,
p p ﬂ U

where S(x)=B(x)R™'B" (x). After equating the terms with the same powers of & we obtain the
following system of equations for terms of (8)

B(x)S(x)By(x) - 0,(x) =0,

B(x)S(x)B(x) + B(x)S(x) B (x) - 0, (x) =0,

— A" () B, (x) = B (x)A(x) + B (x)S(x) By (x) +

+B,(x)S(x) B, (x) + B (x)S(x)B(x) = 0y (x) =0

©

The next statement follows from the Lyapunov's linear matrix equations solvability

Theorem 1. If matrices A(x),B(x) and the introduced positive definite matrices
0,(x), Q,(x), O,(x) satisfy the next conditions for each x € X
I.ReA(4(x)) <0, Vxe X,

1. Q,(x)—P,(x)B(x)R'B"(x)P,(x) >0, Vxe X,
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Il rank B(x)=n,Vxe X ,

V. Q, + A" (X) B (x) + B, (x) A(x)— B(x)S(x)B(x) > 0, Vx € X,

then the following is true

1. The Riccati equation (9) has a positive definite solution 130(x) forall xe X .

2. The Lyapunov equations in (7) and (9) have unique positive definite solutions é) (x), [j}(x),
P(x), é(x) Isz(x) foreach xe X .

3. Asymptotic approximations f’z (x, &), ]32 (x, y) from (5) and (8) are positive definite matrices
forall xe X, £>0.

When the terms of representations (7), (9) are defined it is possible to establish the existence of a

positive definite solution P(x,&) of (4) in some domains of large and small parameter values with

the help of successive approximations method and it is also possible to obtain some asymptotic
estimates. Thus we have

Theorem 2. Let us suppose that all the conditions from Theorem 1 are satisfied, then there exist

a sufficiently small constant gé >0 and a sufficiently large constant 6‘3 > (0 such that equation (4)

has a positive definite solution P(x,¢&) forall xe X and 0 <&<g, £>¢&;, and the following is

true

"P(x, 8)—132(x,g)|| =0(’),0<¢e<g,xeX

(1 1 s (10)
P(x,e)-P| x,— ||=0| = |, €2¢&,xeX
& g

3. Pade bridge or a two-point PA.

By splicing of the two asymptotic expansions (5) and (8), we can now obtain an approximate solution
of (4) for the entire interval of € variation with the help of (10). That is, it is possible to construct a PA
which will be close to (5) for small values of € and will be close to (8) for large values. For "middle"
values of ¢ it may be expected that such PA will be closer to an exact solution than any of these two
asymptotics.

Definition. A two-point matrix Pade approximation (PA) will be referred to as a matrix Pade-
bridge on the half-line for the solution of Riccati equation (4) if it exists for all 0 < g <ooand
estimates in (10) hold.

Obviously, different PAs can be constructed, but here we restrict ourselves to constructing only

the right-hand PA of [1/2] order (see [1]), which we seek in the form
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PA ) (x,6) = (M, () + M, (0) (I +&N,(x) + N, (), (1

where /is a 7Xn identity matrix.

Note that if (11) exists for any x € X, & >0, then such a Pade-bridge is an interpolation
surface that approximates the surface P(x, &) by splicing the asymptotic approximations obtained in

the neighborhoods of small and large values of ¢.

Thus, taking into account (5) and (8) we have
(M, (x)+eM,(x))(1 +&N,(x)+ gzNz(x))’1 =B (x)+&P(x)+&°P(x)+0(&),

(M) + M, (0) I+ £N,(x) + £N,(0)) :z%(x)+11%(x>+i21%<x)+o(i3j.
& & &

Multiplying both equalities on the right by (1 +&N,(x)+ 82N2 (x)) and equating the terms for

the same powers of ¢ we get the next systems for determination of matrices in (11)
&' M, (x) = B(x), My(x) = B (x) + BN, (x) + B (x) N, (x)
&' M, (x) = B ()N, (x) = B (x) =0, M,(x) = B(x)N,(x) + B(x)N,(x)

or M,(x)= 130(x) and

I - 0 )(M©) B(x)
0 B B | N |=|B®-BX) | (12)
-1 P(x) P(x))\N,(x) 0

Let us introduce the condition

V. The system (12) is uniquely solvable, the matrix (I+gNl (x)+$2N2(x)) is nonsingular,

and the real parts of the P4, (x, g) eigenvalues are positive for Vxe X, €>0.
The condition V actually determines the existence of the Pade-bridge (11) for the Riccati
equation (4) solution for all & € (0,00) based on the asymptotic approximations (5), (8).

Now we can introduce the next regulator for all x € X, £ >0

u(x,e)=—eR™'B" ()K (x,&)x, (13)

(PA[I/Z] (x,g) + PAT[I/Z] (x,g))

5 >0 forall xe X, ¢>0.

where the symmetric matrix K (x, é‘) =
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Theorem 3. Under conditions I, III-V, there exist the Pade-bridge PA[1 1] (x,g) (11,
constructed for the solution of Riccati equation (4) on the basis of the asymptotic approximations (5),
(8), for Ve €[0,00).

Remark 1. The condition II is not required in Theorem 3, since it is not used for the construction

of the Pade-bridge (11).

4. The Pade regulator and stabilization
Let us consider the case of the stationary problem (1),(2), where all matrices do not depend on time.
Accordingly, a positive definite matrix K (8) can be used to construct the Lyapunov function
V(x,e)=x"K (g)x for such problem.

Now let’s calculate the total time derivative along the trajectories of the closed-loop system
(1),(13). We have

dV(x,e)

dt

= (Ax—ngK(g)x)T P, x+x"P,, (Ax—ngK(g)x) -

= xTATK(g)x— gszK(g)SK(g)x +xTK(g)Ax -&’x'K (g)SK (g)x =

=x"[A'K (£)+K (&) Alx—&’x" (K (£)SK (¢)+ K (£)SK (£))x

= (%)TK(g)x+xTK(5)% =(Ax+ gBu)T K(&)x+x"K(&)(Ax+eBu)=

By the Lyapunov lemma (see, for example, [14]), there exist such matrix D, >0, that

dv(x.e) _

D =—-A"K(g)-K(&)A. So we get 0

—x"Dix-&’x"D,x<0,Ve>0, x#0,

where D, =2K (g)SK (g) > 0. Thus the next theorem is true

Theorem 4. If all matrices in (1),(2) are constant, then under conditions I, ITI-V, the regulator
(13), based on the Pade-bridge (11), stabilizes the system (1) for any & € (0,0).

Remark 2. Examples show that due to the positive definiteness of the matrix terms of asymptotic
approximations (5),(8), and the special choice of matrices J,(x), Q,(x), O,(x), the condition V can
be satisfied.

Remark 3. The assertion of Theorem 4 can be generalized to weakly nonlinear systems by the
scheme presented in [9], where the regulator (13) will be used in the zero order approximation.

So, the stabilizing regulator (13) is robust by ¢ for (1) in the stationary case, because the

asymptotic stability of a closed-loop system along this regulator is preserved for any perturbations of

parameter ¢ in the admissible domain of its variation.
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Remark 4. Stabilizing Pade regulators can be constructed not only for continuous, but also for
discrete time control systems with a smooth dependence on a parameter, for which the results on the

stabilizing regulators asymptotic approximation can be found in [7, 10].

5. Numerical experiments.

Let us consider the following example with a  vector control,  where

(2 08) (2 04) (5 05) (1 0)  (10) (10
1 207/ B los 14/ 9 os s 90 1) 1) o 1)

X, = (—1 I)T . It clearly follows that here matrices £, 131, 130 . 131, IA’2 ,M, are symmetric and positive

2315 -2.130

definite, M, = [_2 130 5.093

], and matrices M|, N;, N, have positive eigenvalues but are not

e 0.602 -0.635 0.070 -0.086 1.786 -1.317
symmetric = LN, = ) =
Y 10509 1130 )" 10.024 -0.022) * (-0936 2.656

j. A series

of experiments were performed with different ¢ for the Pade regulator (13) and the SDRE regulator
(3). The results of these regulators comparison by the quality criterion are presented in Table 1, and

the trajectories of the corresponding closed systems are shown in Fig. 1.

Table 1. A comparison of two control algorithms by criterion values

€ 0.01 0.3 1 6 15

SDRE regulator 9,109 7,385 3,697 1 1.72
(SDRE) 870 728
Pade regulator (PA) 9,109 7,592 3,720 7,186 | 20,143

I(u)

Asymptotics by large e | | 553904 | 17700 | 3947 1,870 1,728
(second order)

Asymptotics by small ¢ 9,109

1 42 13,4 24
(first order) 8,180 | 7425 3,433 700
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Figure 1. System stabilization for different values of ¢ in the stationary case

It can be seen from Table 1 that the Pade regulator demonstrates good performance almost for all
values of ¢ except large values and Fig. 1 shows that it stabilizes the closed-loop system for the

specified values of e.

6. Conclusion

One of the possible stabilizing regulators for nonlinear control systems with a positive parameter
86(0, oo) is presented, which is based on the matrix Pade [1/2] approximation. The Pade
approximation is constructed on the basis of two asymptotic approximations of the state-dependent
matrix Riccati equation solution. For stationary control systems it was established that the constructed
family of regulators is an approximate symbolic description of the parametric set of stabilizing
controls. Numerical experiments show that two-point Pade regulators by using two asymptotic
approximations can be more effective than regulators based on individual asymptotic expansions. For
certain domains of parameter values the Pade regulator is close to the SDRE control, which is in some
cases close to the optimal solution. The stabilizing Pade regulator is robust by the parameter in the
stationary case, because the asymptotic stability of a closed-loop system along this regulator is

preserved for any perturbations of parameter in the admissible domain of its variation.
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Developments of non-linear dynamics FEM simulation of the impact
performance of road safety barriers with use of experimental validation of

models

Irina Demiyanushko, llya Karpov, Beka Tavshavadze

Abstract: A computer simulation with application use of the non-linear finite element
programs developed to computational research of vehicle (cars, buses) collisions with
road barriers having various original designs. It is demonstrated that for obtainment of
adequate results of vehicle impact action on complex barrier structures an experimental
validation of models is needed which allows obtain the main characteristics of the
structures by calculation. Simulation calculations performed using approach virtually
substitute field tests of the structures. Features of wave processes at single and repeated
impacts, and corresponding power interactions in elements of designs investigate.

Road barrier is a device designed for traffic arrangement: reducing the number of cross-median
crashes, collision with oncoming vehicle, hitting on roadside structures. In Russia, traditionally
installed—concrete barriers (Fig. 1a) and metal guardrail (Fig. 1b), that prevent penetration of a vehicle

to the oncoming lane or accidental exit from the road.

a) b)

Figure 1. Types of road barriers: a) concrete barriers; b) —guardrail barrier

Due to the increase vehicle mass and size, traffic load on the main routes, increase in driving
speed, for retention of vehicles it is necessary to enhance the impact energy of road barriers, which is
the main characteristic of barrier structure. The lateral impact energy — U corresponds to kinetic impact

energy — E kJ, occurring at vehicle impact on the barrier, which the barrier must withstand without
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considerable destruction and at the same time provide for a variety called consumer-oriented
characteristics [1].
The impact energy calculated by

_ m(v * sina)?
=

o — impact angle, degrees, m — vehicle mass, t; v— impact speed, m/s

E (D

Normally, the U value of the most barriers is within 90 =700 kJ [1].
Figure 2 shows the scheme of vehicle run into lateral barrier installed on the road center line and
specifies some typical parameters, the target impact angles 20 degrees (average statistical value), value

of barrier maximum dynamic deflection at the moment of impact.

Figure 2. The scheme of vehicle running into the central line barrier

Enhancement of the lateral impact energy of classic barriers provided with increase of their
height and material volume. The barriers become increasingly bulky, they occupy a substantial part of
road space and block the road perspective for the drivers, disturb the architectural look of the roads.
Some years ago developed new barrier structures— roadside and median versions of the cable barrier
(Fig. 3) and "front barriers" that designed for damping of direct impact and installed on V-junctions

and in front of lateral barriers [3].

a) b)
Figure 3. Cable median and roadside barrier (a) and front barriers (b) in front of the bridge footing

166



Evaluation of compliance with the requirements of basic barrier parameters is carried out by
field testing of the barriers where vehicles run into a barrier. The tests carried out on special purpose
testing grounds. However, in the design of the structures, benchmarking analysis, minor changes of the
parameters and analysis of accident situations they currently widely use the computer simulation
methods — so called "simulation analysis".

At Moscow Technical University MADI researches are conducted with design of barrier
systems, laboratory tests of the elements and development of the computational simulation analysis.
Use of mathematical simulation analysis based on modern computer products and modern computing
technology made it possible in a short span of time to address the issues related to rational choice such
structures, as of cable barriers, demonstrate their operating peculiarities, efficiency in holding /
retaining of different type vehicles, and consequences of running into. The impact process when a
vehicle runs into a barrier represents a highly nonlinear and fast process, so average value of vehicle
interaction from the moment the vehicle touches the structure to the exit normally lasts for 200-300 ms.
A barrier structure normally consists of thin-walled elements (beams) and cables — in cable structures;
vehicle body parts are thin-walled as well, thus during the impact, considerable mutual deformations
and displacements, contact interactions, plastic deformations take place, therefore the run into tasks is
highly nonlinear. The structural complexity dictates use of the finite element method (FEM) for the
computations. In this context, for solution of impact simulation task when a vehicle runs into a barrier,
the multi-purpose FEM program complex LS-Dyna DYNA (Livermore Software Technology Corp.,
California, USA) (licensed version) was used [2]. Our experience in numerical analysis of different
barrier structures and comparison with field and experimental study results made it possible to lay down
requirements to computations, which formed in appropriate specifications and guidelines. The basic
principle for construction of FE-analysis models is the necessity to verify the built individual FE-
models of the structures and the full-size structure of colliding bodies system.

Thus, when selecting FE models for cables, required for simulation of cable barriers, they
studied the statics and dynamics (Fig. 4) of currently used steel cables, developed appropriate testing
methods [3,4] resulting in selection of an adequate model consisting of beam-shell elements considered
in [5]. Those studies showed that the propagation of deformation waves in the cable in case of impact
is a complex process, and the impact energy absorption is mainly due to friction of cable wires and
depends heavily on cable pre-tension.

A similar verification study of impact on a barrier posts, mounted in a shell and concrete
foundation or directly in the road top carried out both by experiment and simulation computation

method (Fig.5) [6].
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a) b)
Figure 4. Test for cable dynamic model validation: (a) experiment, (b) FE model

a) b)
Figure 5. Cable barrier post's test: a) experiment b) FE simulation

The studies show, that the simulation FE computation of impact on the posts reasonable
accurately replicates the experiment results both qualitatively and quantitatively that afforded grounds
for selection of appropriate FE models. Essential points in development of adequate simulation models
are issues of selection and simulation of friction surfaces and work of connection elements in barrier
structures under consideration.

The simulation analysis determines all characteristics of impact interaction of a vehicle with
a barrier. Thus, the injury severity index I, which actually represents an average value of inertial
accelerations in the center of vehicle mass, is one of the most important characteristics of the barrier.

The injury severity index determined by a formula [1]

=[G 6T @
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where Ny, N,, N- are average values of inertial accelerations along vehicle axes in m/s? are determined
and analyzed in the simulation computation. Equally, important characteristics determined by the
computational analysis are dimensions of so called "corridor", i.e. capabilities of impacted vehicle run
beyond tolerable limits, as well as the coefficient of vehicle internal dimensions integrity determined
by relative deformations of the vehicle body in the intended directions for each vehicle type.
Following are the results of simulation analysis of cable barrier behavior run into and impacted

by a bus (Fig.6). This is a typical analysis carried out in accordance with safety standards.

a) b)

Figure 6 — Simulation of cable barrier elements, a) — solid model, b) — FE model

a) b)
Figure 7. Initial moment of bus impact on the cable barrier a) FE model b) Test

Tracking of bus runway identity in field tests and simulation computation (Fig. 7), as well as

comparison of all parameters (Fig. 7- 9) makes it possible to establish adequacy of the computational

model.
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Figure 8. Change of cable forces in cables during the impact

Figure 9. Accelerations in the center of bus masses when running into a barrier, / = 0.56, variation
from the experiment equals to 7.5%.

Operating principle of different barrier structures is, certainly, different. If a cable barrier
absorbs the impact energy due to the high friction and, consequently, damping in the system though the
main forces in the cables are stretching forces then the barrier works as a beam system loaded with
dynamic transverse forces. For these reasons, FE models of barrier railings differ from cable barriers.
For simulation of a barrier beam, which is the main load-bearing element, they use shell elements; the
appearance of FE models of the main barrier railing structural elements and their connections shown in
Fig. 10 a, b. For connection of beam with a console-shock absorber are use a deformable destructible
bolt connection. Connecting elements used for connection of the console-shock absorber with the poles

are rigid and indestructible RBE-elements (Fig. 10b).
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(@) (b)
Figurel0. Appearance of barrier railing connection elements: (a) bolt connection of the beam
with compensators, (b) connection of compensators with the pole using RBE-elements

Steel barrier beam is made of light-gauge sheet metal and FE model of the beam simulated with
two-dimensional shell elements. Compensators, which along with the beam take the impact load,
simulated with shell elements as well. The barrier post mounted (piled) in the soil body as well

represents a beam of different section — a U-section for this example (Fig.11).

Figure 11. FE model of guardrail road barrier
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Fig.12 illustrate an example of calculated model behavior at different time intervals in
simulation of a bus running into a barrier at E=300 kJ, along with representation of not only the first

impact but the bus turn and repeated impact on the barrier with its rear part.

a) b)
Figure 12. Guardrail and bus interaction: a) side view b) top view
Accelerations in the center of mass making possible to assess the impact effect on the
severity of consequences following computation results compared with the experimental results, Fig.

13, the computation results are coincides with the experiment.
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Figure 13. Acceleration in FE model in directions: X (red), Y (green), Z (blue)

In this article, we, naturally, were unable to demonstrate all study materials on simulation of
run into processes and impact of various type vehicles on road barriers of different structures. However,
even these limited results show, that application of modern numerical methods of nonlinear dynamic
computation to complex tasks of vehicle impact collision with deformable safety barrier systems
provide sample opportunities for analysis of these processes. It should be noted, that the costs of initial
development of adequate FE models are, certainly, heavy; these procedures require the compulsory
verification of the models by comparison with the experiment, however, in the future those costs reduce
significantly due to use of the analogies, specifically, in models of materials and structures. For
instance, we had no opportunity here to demonstrate extremely interesting solutions on analysis of
vehicle running into rigid concrete barriers, where a concrete destruction simulation task occurs, and
which is of great interest and which was resolved along with the use of nonlinear analysis complex
MSC. Software / MARC [7]. Analysis of running into front barriers with account of variety of their

structures and used materials is a challenge as well.
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Nonlinear differential-difference equations related
to the second Painlevé equation

Galina Filipuk

Abstract: As a result of classification of second order ordinary differential equa-
tions without movable branch points,

f//:F(Z7f7f/)7 f:f(z)7 /:d/dZ7

where F is rational in f, algebraic in f’ and analytic in z, a number of the
so-called Painlevé equations was obtained. Among them, six irreducible equa-
tions are best known. They led to the recognition of new functions, called the
Painlevé transcendents. The Painlevé equations have numerous applications
in modern mathematics and mathematical physics. They can be obtained
by similarity reductions from certain integrable partial differential equations
(e.g., KAV, mKdV and others). They possess a number of other remarkable
properties (e.g., Backlund transformations, classical solutions, the Hamiltonian
structure). Via the Hamiltonian structure the Painlevé equations are related to
their associated equations, the so-called o—equations. In this paper we derive
Béacklund transformations for two o—forms of the second Painlevé equation
(with respect to two different Hamiltonians) and use these transformations to
obtain nonlinear differential-difference and difference equations for the solu-
tions.

1. Introduction

The sixth irreducible Painlevé equations are nonlinear second order ordinary differential

equations of the form

f”:F(Z,f,fl), f:f(z)7 l:d/dza (1)

where F is rational in f, algebraic in f’ and analytic in z, which possess the Painlevé prop-
erty (solutions have no movable algebraic singularities). They were obtained in the papers
of Painlevé [5] and his student Gambier [1]. In general, solutions of nonlinear differential
equations may have very complicated movable singularities, which depend on initial condi-
tions [3], but the Painlevé property guarantees that solutions have at most movable poles.
The Painlevé equations (and their associcated equations, including oc—forms and discrete

equations) have numerous applications in modern mathematics and mathematical physics.
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They can also be obtained by similarity reductions from certain integrable partial differ-
ential equations (e.g., KdV, mKdV and others). The Painlevé equations are irreducible in
the sense that they cannot be linearised or their solutions cannot be expressed in terms of
classical special functions for general values of the parameters in equations. However, for
special values of the parameters, Painlevé equations may possess either rational or algebraic
solutions, or solutions expressed in terms of classical special functions (e.g., Airy, Bessel,
(confluent) hypergeometric functions).

In this paper we shall concentrate on the second Painlevé equation given by
=2 +z2f+aq, (P2)

where « is a fixed complex parameter and f = f(z).
The Painlevé equations are known to possess the Hamiltonian structure [4]. Equation

P () can be represented as a Hamiltonian system with the Hamiltonian

1 1 1
Hi(p,q,2) == 5p° — (" + §Z)p - (a + *> q,

2 2
such that
dg _9Hy _ 2712
dz ~ 9p DR @)
d_ M pta+ti
dz~  0q a 2’

where ¢ solves P> and p solves equation Ps4 given by

v _ ) 1\?
@) +2p2_zp_<a+7>
2p 2

£
2p’

(Ps4)
The so-called o—form of the second Painlevé equation is obtained as follows. By putting
o(z) = Ha(p,q,2),

it can be shown that the function o solves the following second order second degree nonlinear

differential equation:

1 1\?
(") +4(0")? + 20" (20" —0) = 1 (oz + 5) ) (S2)
Conversely, if o is a soluton of S, then
40" +2a+1
1= 8a’ ’ (3)

/

p=—20
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solve P» and Pss4 respectively. Note that we have a constant solution to equation So if
a=-1/2.

It is known [2] that the second Painlevé equation possesses the so-called Bécklund trans-
formations. They relate solutions with different values of the parameter «. In particular, if
q = ga(z) is a solution of P»(«), then go+1 given by

200+ 1

h 2¢2 £2q¢' + z (4)

qot1 = —¢q
solve P>(aw £ 1). Equations in (4) can be used to obtain a nonlinear difference equation for
the solutions of P,. Indeed, eliminating q’ between two equations (4), we get

20+ 1 20 — 1
Ga+1 + o Qo + Qa—1

+4¢® +2z=0. (5)

The main objective of this paper is to obtain Backlund transformations for the o— form
of the second Painlevé equation and use them to find the analogue of (5). Moreover, we
shall also use another Hamiltonian system, derive the corresponding o—form and examine

various properties of its solutions.

2. Backlund transformations for the o— form of P>, and nonlinear difference

equations

From (2) we have
_ 1 2 /
p=5(2+2¢" +29),
and the Hamiltonian, which is also the function o in our notation, becomes
1
o= —g(z2 +4Q2a+1)q+ 4z + 4¢* — 4q/2). (6)

Next, we write the Hamiltonian system (2) for ¢a+1 and pa+1. Using (4) we can find
expression of po+1 in terms of ¢ = ¢o. Substituting this expression into o4+1 and eliminating

¢" and higher order derivatives by using P», we get

1

— _(16a+8— 2" —2qg1 —2¢ 4(z+2¢>)q” + 8¢
8 og7 T ag) 16e 8= 2" — 2000 — 2002 + 4(2 + 200" + 847, (7)

Oa+1 =

where g1 = 22(2a — 1) + q(32% + 2¢(2¢® + 32g + 4a — 2)) and g2 = 2> + 492 — 1 + zq + ¢*).
Substituting (3) into (7), we get an expression of go41 in terms of o and its derivatives
up to order 3. We can now use equation Sz to get

1 !
40" + 8oc ,—2a—1. )
8o

Oa+1 =
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Equation (8) is a (forward) Béacklund transformation for the o— form of the second Painlevé
equation. It relates solutions of equation S with parameters o and o + 1.

To get a differential-difference equation for the solutions of S2 we can take (7) and (6)
and compute the resultant to eliminate ¢’. Next we can substitute (3) for g in terms of o and
its derivatives and use equation Sz to eliminate the third and higher order derivatives of o
and powers of ¢”. The resulting equation, which is quadratic in o4+1 and contains o, o', 0",
is cumbersome and we shall not present it here.

Similar procedure yields

Oa-1= é(4q — 2% —8aq — 42¢* — 4¢* + 4¢"%) 9)
and
1 !
Gy = 40" 4+ 800’ + 2a + 1. (10)
8a’
Note that
Ta—1 :o’—|—q, (11)

Thus, we have the following theorem.

Theorem 2.1 The Backlund transformations for equation Sa are given by (8) and (10).
Moreover, using (8) and (10), we get the following differential-difference equation:

200+ 1
Oatl — Oa—1+ — =0.
4o

We also remark that since 01 can be expressed in terms of ¢ and ¢’, and since ¢ = 6o_1—0,
q = ol,_1 — o', we can find an expression of g,41 in terms of oo—_1, 0 and their derivatives.
This will give another differential-difference equation.

To get the analogue of (5) for solutions of equation Sa, we use expressions of o and oa41
in terms of ¢ and ¢/, substitute there ¢ = 041 — 0 and compute the resultant to eliminate

¢'. In the result, we get a nonlinear difference equation relating oo+1 and o.

Theorem 2.2 Let 0 = 0o and o+1 = oa+1 be solutions of equation Sz with parameter

a and a £ 1 respectively. Then

(2a+1)z  (2a+1)?
2 o 4(0’1 — 0'71) ’
(12)

(2a+1)o — 2a—1)o1)o + ((2a+ 1)o1 — (2a+ 3)o)o-1 +
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3. Classical solutions of the o—form of P

It is well-known that for special values of the parameter in the equation, P» possesses special
Riccati type solutions (the so-called classical solutions). In particular, if &« = 1/2, then

solutions of

¢ =q¢+z/2 (13)
also solve P». For @« = —1/2 we have another one-parameter family of classical solutions:
¢ =-q"—2z/2 (14)

Clearly, for family (13) we have p = z 4 2¢* and for family (14) p = 0 using the Hamiltonian
system (2). For equation Sy these two families of Riccati solutions correspond to o = —¢q

and to o = 0. Using (3) we have for a = 1/2

"

1
o’ = —5(40/0 +1).

Substituting this expression into S2(1/2) we get an equation for Riccati solutions for the

o—form.

Theorem 3.1 Solutions of
N TP
o = —5(20 + z)

solve So with o = 1/2. The Bdcklund transformations (8) and (10) for this family are

1

srzen 7=l

03/2 =
Therefore, we have Airy functions as special solutions of Ss.

4. Patterns for expansions

It is well-known that solutions of the second Painlevé equation are meromorphic functions

in the complex plane. There are two types of expansions around movable poles:

9(2) = 7 _le = B(oz0) - Tz - 20)* + aa(z — 20)" +O((z - 20)") (15)
1 20 a—1 2 3 4
12)=—— -+ gE—2) - (z—=20)" +a3(z — 20)" + O((z — 20)"), (16)
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where a3 is an arbitrary constant. The corresponding expansions for p in the Hamiltonian

system are
200+ 1 2+ 180 200+ 1
p(x)= =20 F Ly 20180 e et s oG — 20)Y)
2 36 6
or
_ 2 zo 1 28 + 36as 2 | 20 3 4
p(z) = =) +g 2(z z0) + % (z —20)% + 18(,2 20)° + O((z — 20)*).

Therefore, using the definition of o we have the following expansions:

_ _#+180ay  2a+1

o(2) =~ g (2= 20)" +0((z = 20)°)
o(z) = . _1ZO 2 —31680(13 _ ZEO(Z — ) — é(z _ 20)2 +O((z - 20)3).

Next we shall study how corresponding expansions change after Backlund transformations.

For the solutions of P> we have

Gos1(2) = S+ O((z = 20)
dor1(2) = —— = 2= z0) - T2 2 4 O((e - 20))
and
Ga1(2) = ~ gy + (e — 20) = S (= 20)° + O((z — )°)

2
25 — 180as _
Ga—1(2) = 718(2a71) + O(z — 20).

Note that for the expansion of ¢ with residue 1 at z = zp the forward Béacklund transformation
gives a regular expansion, whereas the backward Bécklund transformation gives a polar
expansion with residue —1. On the other hand, for the expansion of ¢ with residue —1 at
z = zo the forward Béacklund transformation gives a polar expansion with residue 1 and the
backward Bécklund transformation gives a regular expansion at z = zo.

For the solutions of S> we have

(3 4 20) (28 + 180a3)
36(2a+1)

Oat1(z) = — + O(z — 20)
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or

2180 20+ 3
Cari(x) = =L = T (2 - 200 + O((2 - 20)°),

and

B 1 z8+180az 20, . 1. Y
Uafl(z)—(z_z()) 36 5 (2= 20) = g(z = 20)" + O((2 = 20)")

or

2
_ZO - 180@3 _ 20 — 1 _ 2 _ 3
= e 0 - 20)")

Oa—1(2) =

Note that for the regular expansion of o at z = 2o the forward Béacklund transformation gives
a regular expansion, whereas the backward Bécklund transformation gives a polar expansion
with residue 1. On the other hand, for the expansion of ¢ with residue 1 at z = 2o both the
forward and the backward Béacklund transformation give a regular expansion at z = zo.
Finally, we note that we can use equation (12) to get some information on the expansions

of solutions of equation S2. In particular, substituting the Ansatz

o(z) = Z bn(z — 20)", Ga-1(2) = Z en(z —20)", Oat1(z) = Z dn(z — 20)"

with the assumption c_1 = 1 we can consecutively get a few relations between the unknown
coefficients by, ¢n, dn. For instance, (2a + 1)do = (2a + 3)bo.
Similarly, substituting the Ansatz

o(z) = Z bn(z —20)", 0a-1(2) = ch(z —20)", Oat1(z) = Zdn(z — z0)"

with the assumption b_1 = 1, we get do = co, d1 = ¢1, d2 = c2+ (2a+1)/4 and so on. This

is similar to the results when we search for the expansions of (5) for instance in the form

q(z) = Z b”l(z - Zo)nv qotfl(z) = Z Cn(z - ZO)na QDle(Z) = Zdn(z — Zo)n

with b_1 =1 and get c-1 = —b_1, co = —bo, c1 = —b1, ca = —(b2 + (2a. — 1)/4) or in the

q(z) = Z bn(z —20)", qa-1(2) = z:cn(,z—zo)"7 Gat1(z) = Z dn(z — 20)"

n=-—1 n=-—1

with b_1 = —1 and get d_1 = 1, do = —bo, di = —bl, do = —(b2 —+ (201—|— 1)/4).

181



5. Another Hamiltonian

Recently a new Hamiltonian for the second Painlevé equation was introduced in [6]. It has

the form

_ 1 1 1
Hs(z,p,q) = 51?2 - 5q4 - 5zq2 —agq.

The corresponding Hamiltonian system is

d=p p=2¢+z2+a

By introducing s(z) := Ha(z,p, q), we get

1 1 1
5= 5!1’2 - 5!14 - §zq2 - agq, (17)
S/I—l 2 s = —ad
S0 aq’.

Next we derive the o—form of P» with respect to this Hamiltonian and present Backlund
transformations. We also briefly discuss differential-difference and difference equations, clas-

sical solutions and expansions of solutions around movable poles.

Theorem 5.1 The function s(z) := Ha(z,p, q) satisfies the following second order fourth

degree differential equation:
(s +85'(s") (s + 8'(25" — 2)) + 16(5")*(2as’ + (s + 5’ (25" — 2))?) = 0. (18)

Moreover,

(s")? +8(s")% — 42(s')? + 4ss’

2 /
Tos , ¢ +2s =0.

q=—

The Bécklund transformations are given (in terms if ¢ and ¢’) in the following theorem.
Using expressions for ¢ in the theorem above, we can get cumbersome expressions in terms

of s and its derivatives up to second order, but we omit these expressions.

Theorem 5.2 Let g be a solution of P>(c). Then

1( 3 20 +1
ar1 == (¢7 - %)+ 2> 1
Sa+1 2<q q(¢° + zq + a)+2q’+2q2+z (19)
and
1 2 3 200 — 1
a1 = = — 2 _ 2
Sa-1 2((1 a(q” +2q + cv)+2q,_2q2_z> (20)

solve (18) with parameters a.+1 and a — 1 respectively. If s is defined by (17), then we have
the following differential-difference equation:

2(az + 20¢* — q')

21
22 — 8ag — 8s 1)

Sa+1 — Sa—1 =
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To get a nonlinear difference equation for s, sa+1 and sa—1 we use equation (21) to find
¢'. Substituting this expression into (17) and into either (19) or (20) we can eliminate q by
computing the resultant. The resulting equation is very cumbersome.
As in the previous section, we can compute expansions of s, which correspond to expan-
sions (15) or (16). We have
1 722 —360as 2o

s(z) = 30— 70) + = +E(Z—Zo)-‘r%(Oé+1)(z—z0)2+0((z—z0)3)

or

1 722 + 360a:
+ 2y + as 2o

1 2 3
s(z) = 30— 20) ™ +€(z—zo)—§(a—1)(z—z0) +O0((z — 20)").

We also have

1 725 —360as | zo a—2 2 3
Sa—1 = 30— 20) + ™ +35 (z — 20) (z—20)"+0O((z — 20)°)
or
_ 720as(a — 1) + 25 (14 — 5)
Samt = 72(2a — 1) +0(z — )
and
_ T20a3(a+1) — 2§(14a +5) B
Sact1 72(2a + 1) +0(z = )
or
B 1 723 +360as 2o (a+2) 2 3
Sat1 = 30z — =) + = + 6 (z—20) + 3 (z—20)"+O((z — 20)°).

Finally, for both (13) and (14) we have 2? = 8(aq + s), which, using ¢*> = —2s’, gives
the following Riccati equation of (18) with ov = +1/2:

12825’ + 64s? — 162%s + 2% = 0.

For the family (13) we have

2(2a 4 1) + 2% — 8zaq + 22%¢* — 16a¢®
8z + 1642

83/2 =

and for the family (14) we have

22 —2(2a — 1) — 8zaq + 22%¢* — 16a¢®

5-3/2= 8z + 1642
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Kahan discretisation of a cubic Hamiltonian system

Galina Filipuk, Thomas Kecker

Abstract: We apply Kahan’s discretisation method, also known as the Hirota-
Kimura method or Runge-Kutta method, to a cubic Hamiltonian system of
Painlevé type. The system being non-autonomous it is not clear from the
start whether discretisation will preserve integrability. Although the resulting
discrete system is non-integrable, by introducing a parameter into the equations
one obtains a system with reduced (though non-zero) algebraic entropy.

1. Introduction

It is a by now well-established fact that the integrability of differential and difference equa-
tions is closely linked to the singularity structure of their solutions in the complex plane. In
the setting of (ordinary) differential equations the term ‘integrability’ is often synonymously
denoted by the Painlevé property, meaning that all (movable) singularities of every solution
of an equation are poles. The Painlevé test is a useful necessary criterion for an equation to
have this property: At every point in the complex plane there must exist a sufficiently large
family of Laurent series solutions with finite principle part (finitely many negative powers).

In the setting of discrete equations there is a known list of integrable difference equations,
known as discrete Painlevé equations which possess continuum limits to the classical Painlevé
equations [11]. There are several notions of discrete analogues for the Painlevé property,
namely singularity confinement, zero algebraic entropy [5], and the existence of sufficiently
many finite-order meromorphic solutions [4]. The method of singularity confinement has been
a successful tool to detect integrable discrete (difference) equations, although it only provides
a necessary criterion for the integrability of discrete systems, similar to the Painlevé test for
differential equations providing a necessary criterion for an equation to have the Painlevé
property. Within a given class of equations with a certain number of parameters or arbitrary
functions it allows to single out those equations which are in some sense exactly solvable.
A more refined criterion for the integrability of discrete systems is the degree growth of the

iterates under the discrete mapping, measured by the algebraic entropy,

. logd,

€alg = lim ——
g )

n— oo n

(1)

where d,,, n = 1,2, ..., denotes the degree of the nth iterate of a rational solution under the

discrete mapping. For a generic (non-integrable) mapping ¢ with deg ¢ = d one would assume
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deg ¢™ ~ d". When cancellations occur in the iterations the algebraic entropy will be less
than log(d) but possibly greater 0, meaning that the degree growth is still exponential. When
strong cancellations occur and the degrees only grow polynomially the algebraic entropy is
zero which, in most cases, means that the dynamical system is integrable. Equations which
have the singularity confinement property but which are not integrable as their the algebraic
entropy is greater 0 were denoted quasi-integrable in [9]. There it was also noted that apart
from second-order difference equations there are no known higher-order quasi-integrable
difference equations or systems of order two or higher.

In this article we study the discrete version of a system of equations studied earlier by

one of the authors in [10], given by a cubic Hamiltonian,

H=:(p"+4¢°) +2zpg + ap+ Bq,

Wl

thus leading to a quadratic vector field given by

/ a 2 / a 2
_0H _ < N 2
¢ =3, =7 +2q+a, p 94 ¢ —zp—p (2)

This system is known to be related to the fourth Painlevé equation (Prv), the combinations

_ —1+14V3

wJ:wJp+oD]qu, j:07132a w = 2 )

satisfying the equation
2uw” = w? — w —4z0° — (20 4 28 + 322w’ — (1 — a + B)?,

which can be re-scaled to Prp. In this way the solutions of (2) can be expressed by the
transcendents of two copies of Pry, with different sets of parameters. We remark that the
Hamiltonian system retains the Painlevé property if z is replaced by a linear function cz + d,
which can be achieved by a simple re-scaling of the independent variable.

The discretisation for the system (2) is performed using the Kahan method [8], which
is also explained e.g. in [1], where it was applied to autonomous quadratic vector fields
and also for instances of the Painlevé equations I, II and IV. Kahan’s method was also
applied to find integrable models for the discrete top [6,7], and is thus also known as the
Hirota-Kimura method. Incidentally, for quadratic vector fields this is also equivalent to the
so-called Runge-Kutta method as was shown in [3]. We will apply the method to system
(2), re-written as an autonomous system in three dependent variables. We will also rescale
the variable z by introducing an additional parameter, ¢, into the equations. As we will
see when discretising the system using Kahan’s method, the resulting discrete system will
in general be non-integrable. Only when c takes on a specific value do we at least obtain a

quasi-integrable system.
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2. Singularity confinement

We describe briefly the method of singularity confinement, which can be seen as a discrete
analogue of the Painlevé test. Consider the second-order difference equation

a
Tn4+1 + Tz—1 = Tpn + 22 (3)

n

introduced by Hietarinta and Viallet [5]. When z,, = 0 we encounter a singularity, £n4+1 = 00
and xp42 = oco. The behaviour for z,4+3 is indeterminate. To study the behaviour at
the singularity an infinitesimally small parameter € is introduced, letting z,—1 = ¢ (finite
non-zero constant) and x, = e. Letting ¢ — 0 this gives rise to a definite sequence of
values, ...,c,0,00,00,¢,c + a/c2, ..., the sequence returning to finite values meaning that
the singularity is confined. However, the map (3) is known to be chaotic and singularity
confinement is too insensitive to detect this. In particular, the system has non-zero algebraic
entropy, which is a refined measure for integrability.

An example where singularity confinement successfully singles out integrable equations

is provided by the class of difference equations

AnTn + by
— (4)

Tn41l + Tn—1 =
Tn

Here, the singularity confinement test leads to a sequence

bTL a7l/
1= —+—+0(1
Tn+t1 2 + c + 0(1)
Tnt2 = —€+ LZH € +0(%)
- )
Tngs = bn+2€2 bn _ an+2 Zm+1 + an + 0(1),

showing that singularities will be confined if the conditions an42 — 2an+1 + an = 0 and

bnt2 — by, = 0 are satisfied. Thus equation (4) becomes

(an+ B)an +v+ (=1)"6

7

Tntl + Tn—1 = 5

where «, 3,7, are constants. The iterates under this map have polynomial degree growth,
i.e. the algebraic entropy is zero and the system is known to be integrable, being a discrete

Painlevé equation with continuum limit to P;.

3. Kahan discretisation

We are now going to study a discrete version of this system obtained by a method of Kahan,
also known as the Hirota-Kimura method. Kahan first used this method in numerical calcu-

lations and found that the solutions of the discretised system are stable under small changes
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of parameters. Independently, Hirota and Kimura applied the same method to discretise the
equations of motion of a spinning top, namely for the integrable cases of the Euler top [6]
and Lagrange top [7]. These are, of course, autonomous systems and they have shown that
integrability is preserved under discretisation in these cases by finding a sufficient number
of conserved quantities. In [1] the method was also applied to some non-autonomous Hamil-
tonian systems, namely those for the Painlevé equations I, II and IV. Here it was noticed
that when discretising the system the integrability is only preserved in the case of the first
Painlevé equation and in some special cases for the fourth Painlevé equation. The Kahan

discretisation of systems of equations of the form

y'(t) = f(y), yl(to) =yo,

where f is a quadratic vector field, was shown to be equivalent to the Runge-Kutta method

YT L= (Y58 ) 4 i), 6

with step size h [3]. We introduce an additional parameter ¢ into the system (2) and apply

the method to the extended, autonomous system

G=p" +eczqt+a

p=-q¢"—czp— B

where a = ?T(:' Applying Kahan’s method (5) to the above system yields

z(n+1) — z(n)
h
yin+1) —y(n)
h

=a+ 1hc[(mr(n + 1)+ (n+ Dz(n)] +yn+ 1)y(n)
2 (6)
=—f- ihc[(ny(n + 1)+ (n+ Dy(n)] — z(n + 1)z(n),

where z(n) and y(n) correspond to ¢(t), p(t) and z(t) = nh. Solving the equations (6) for
z(n+1),y(n + 1) yields the first order difference system

a(n+1) =( = (Wen+2) (a(n) (Fc(n + 1) + 2) + 2ah) + 2hy(n)* (Ke(n + 1) - 2)
+ 48R%y( )/((h2cn— ) (h%en +2) — 4h2x(n )

yn+1) =( = (FPen —2) (y(n) (* n—|—1)—2)—|—2,3h)+2h9:(n)2( c(n+1)+2)
+4ah’a(n)) /(((h%en = 2) (Wen +2) — 4R’a(n)y(n) ).

(7)
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We can interpret this system of difference equations as a rational map on complex
projective space CP? by letting z(n) = u(n)/w(n), y(n) = v(n)/w(n) and re-writing the

dynamical system in the homogeneous variables [u(n) : v(n) : w(n)],

w(n +1) = (en — 2) (en + 2) w(n)® — 4u(n)v(n).

The advantage of working in projective space is that singularities become just ordinary points

which can be analysed accordingly.

4. Singularities of the discrete system

We are going to apply the singularity confinement test to the difference system (7) which,
as we will see, fixes the parameter ¢. There are two major differences with this system
compared to the examples above. Firstly, the denominator in the system (7) is n-dependent
and so a singularity appearing in one step will move on. Secondly, there is a whole infinitude

of singularities (z(n),y(n)) defined by the equation
(hQCn -2) (hzcn +2) - 4h*z(n)y(n) = 0. 9)

Starting with any pair (z(n),y(n)) satisfying equation (9) one obtains a singularity in the

step, (x(n+1),y(n+1). For the singularity confinement test we here choose the factorisation

hen 1 hen 1
x(n):T*EJrE» y(n):TJrng@

where ¢ stands for an infinitesimally small quantity. In principle we should have put &1
and e2 here to express the fact that these small perturbations are independent, however,
this makes no difference for the confinement test. In the next step we obtain the following

singular behaviour,

(2+ch’n) (a— B —c)

pn+1)= 2h2cne +0()
ym+1p:@_d€2$;6_@+om

In the case ¢ # a — 3, continuing this procedure we obtain

he(n + 2) 71+E’

he(n + 2)
* 2 h

1
w(n+2) = —— te ynt2)=
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and in the next step the singularity prevails in the expressions for z(n + 3) and y(n + 3).
However, in the case where ¢ = a — 3, the singular behaviour in the expressions z(n + 1)
and y(n + 1) is avoided. Strictly speaking in this case, there is no singularity confined, but
rather the singularity doesn’t arise in the first place! The situation becomes clearer if we
perform the analysis in projective space. Starting from a point

[u(n) () s win)]) = [ = 1+e: S +14ei1], (10)

leads to
22+ cn)(c—a—B) + (c2n(n +1)+2c(1—2n)+4(8—3)) e+2(c(n+1) — 2)e”
22— cen)(c—a—B) + (*n(n+1) — 2¢(1 — 2n) + 4(a — 3)) e+ 2(c(n + 1) — 2)€” :
—4cne — 452] .
When we let the parameter ¢ = a — 8 the O(1) terms in the expansions vanish and, since

we are in projective space, one can reduce the expressions by a common factor of €, leaving

us with
[(a = B)*n(n +1) +2(a = B)(1 = 2n) +4(8 = 3) +2((ar = B)(n + 1) — 2)e :
(= B)’n(n+1) +2(a — B)(1 = 2n) + 4(a — 3) + 2((a — B)(n + 1) — 2)e :
4(8 — a)n — 4¢].
A consequence of this cancellation is a reduction in the degree growth of iterates under the
rational map as explained in the next section. However, the cancellation are not strong

enough to render the system integrable unless, of course, @ = 8 which, however results in

an autonomous system.

5. Algebraic entropy of the rational map

Algebraic entropy, defined in (1), is a measure for the degree growth of a family of rational
functions obtained by iteration under the difference equation. In the generic case of the
system (7), ¢ # o — 3, starting from a rational functions of degree 1, we obtain the sequence
of degrees 2,4, 8,16,32,. .., so the algebraic entropy is log(2). However in the case ¢ = a— 3,
where we observe singularity confinement, some cancellations in the rational expressions
obtained by iterating the difference system take place, and the first numbers of the degree

sequence obtained are
1,2,4,8,15,28,52,96,177,326,600,1104, ...

Although the first few terms obey a 2™ rule, when cancellations take place the degrees of the

subsequent iterates are lower. The sequence above is consistent with the recursive formula

dn = 2dn71 - dn747
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if we define d,, = 0 for n < 0. This sequence still grows exponentially, d, ~ A", where
A= 1.839... is the largest root of the characteristic equation of the resursive formula. The
algebraic entropy is 0 < ealg &~ 0.609--- < log(2), meaning the system is quasi-integrable.
Although Kahan’s method did not preserve full integrability in this case, the example shows

that integrability can be improved upon by introducing some parameters into the equations.
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Computation of a Finsler-Lyapunov function
using meshless collocation

Peter Giesl

Abstract: We study the stability of invariant sets such as equilibria or peri-
odic orbits of a Dynamical System given by a general autonomous nonlinear
ordinary differential equation (ODE). A classical tool to analyse the stability
are Lyapunov functions, i.e. scalar-valued functions, which decrease along solu-
tions of the ODE. An alternative to Lyapunov functions is contraction analysis.
Here, stability is a consequence of the contraction property between two adja-
cent solutions (or incremental stability), formulated as the local property of a
Finsler-Lyapunov function. This has the advantage that the invariant set plays
no special role and does not need to be known a priori. In this talk, we nu-
merically construct a Finsler-Lyapunov function by solving a first-order partial
differential equation using meshless collocation. This method ensures that the
partial differential equation holds at a set of given collocation points. If the
equation is known to possess a smooth solution, error estimates are available.
These error estimates provide bounds of the error between the true solution
and the approximation in terms of the fill distance, measuring how dense the
collocation points are. While meshless collocation has been used to compute
classical Lyapunov functions, the computation of Finsler-Lyapunov functions
is new and has the advantage that no information about equilibria or periodic
orbits is required. In the talk we describe the method and present how it
performs in examples.

1. Introduction

We study the stability of invariant sets such as equilibria or periodic orbits of a Dynamical

System given by a general autonomous ordinary differential equation (ODE)
= f(z),z € R™. (1)

A classical tool to analyse the stability are Lyapunov functions. These are scalar-valued
functions, which decrease along solutions of the ODE and measure in some way the distance
of a point to the invariant set, thus being a global quantity. An alternative to Lyapunov
functions is contraction analysis [7]. Here, stability is a consequence of the contraction
property between two adjacent solutions, so formulated as a local property, e.g. of a Finsler-
Lyapunov function [1]. This has the advantage that the invariant set plays no special role

and does not need to be known a priori.
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We search for a Finsler-Lyapunov function of the form® V: R" x R" — Rg , defined on

the tangential bundle of the manifold R™ for every (x,v) € R™ x R™ which satisfies
LV (2,v) = (Vo V(z,0), f(2)) + (VoV(2,) " Df (z)v <0, 2)

where (-,-) denotes the Euclidean scalar product in R™, as well as the property ci|v]|? <
V(z,v) < cof|v]|? for ap > 1 and 0 < ¢1 < ¢2. The inequality (2) describes the contraction
between solutions through the point x and the point x + v.

For more details on Finsler-Lyapunov functions and the relation to contraction analysis
see [1]. In particular, (2) implies that the system is incrementally stable, i.e. the evolution
of the distance between any two solution is bounded for all positive times. If the inequality
in (2) is replaced by sharper conditions, then the system can be shown to be incrementally
asymptotically stable (distance converges to 0) or even incrementally exponentially stable
(distance converges to zero exponentially fast).

While a Finsler-Lyapunov function satisfying (2) for all v € R™ shows contraction in
every direction v, we can modify the condition to capture only contraction in specific direc-
tions, e.g. to study problems with symmetry or to show the existence of periodic orbits as
in this paper. To this end, a horizontal Finsler-Lyapunov function is defined in [1], where
the tangent space at z is divided into a direct sum R"™ = H, @ V. and (2) only is required
for all v € H, i.e. the contraction is only guaranteed in horizontal direction.

Applied to periodic orbits, we choose H, = {v € R" | v L f(x)} and V, = span(f(z))
for all x which are no equilibria, and assume that (2) holds for all v € H,. If V(z,v) is a
quadratic form in v, then [6,8], see also [4, Section 2.10], have shown under some additional
assumptions that this implies the existence, uniqueness and stability of a periodic orbit and
gives information about its basin of attraction.

In this paper we numerically construct a Finsler-Lyapunov function by solving the PDE
(VoV(2,0), f(2)) + (VoV(2,0) " Df(@)v = —|lol ©)

using meshless collocation [10], which has been used to compute classical Lyapunov functions
[2,5]. One advantage of the proposed method is that the restrictions on the points v for
which (3) is required, such as all v perpendicular to f(z), can be easily implemented.

Let us give an overview of the contents: In Section 2 we introduce meshless collocation
in general and then apply it to our specific problem. Section 3 presents the application of
the method to three one- or two-dimensional with either an equilbrium or a periodic orbit.
Section 4 discusses existence results and error estimates for the case of an equilibrium before

we end with conclusions and an outlook in Section 5.

!Note that Finsler-Lyapunov functions as defined in [1] are more general than considered
in our case.
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2. Meshless collocation

In this section we introduce meshless collocation. We first introduce Reproducing Kernel
Hilbert Spaces, and then formulate the generalised interpolation problem, which in our case

is a linear PDE with fixed function values. We follow [5, Section 2], see also [10].

2.1. General method
We start with a short introduction to the general method of solving a generalized interpola-
tion problem in a Reproducing Kernel Hilbert space of functions with domain in R?", which
is motivated by our application.

Let O C R?®" be a bounded set with Lipschitz continuous boundary. A Reproducing
Kernel Hilbert Space (RKHS) is a Hilbert space H of functions g: O — R with inner product
(,-)m such that the following properties hold with a kernel ®: O x O — R:

1. ®(,z) € H for all £ € O,
2. g(z) ={(g,®(-,2)) forall T € O and g € H.

We want to solve the following generalized interpolation problem:
Given N linearly independent functionals A1, . . ., Ax € H*, where H* denotes the dual of

H, and N numbers 7 € R, i = 1,..., N, find the norm-minimal interpolant s € H satisfying
1. Ni(s) =7 for alli=1,...,N (interpolant),
2. ||s||lsr = min{||3||x | 5 € H,\i(3) =7 for alli=1,...,N} (norm-minimal).

It is well known that there is a unique norm-minimal interpolant, which is a linear com-
bination of the Riesz representers of the functionals, and the coefficients can be determined
by solving a system of N linear equations. If H is a RKHS, then we have the following

formula for the norm-minimal interpolant s:
N ~
s@@) = > aNe(, ), (4)
j=1

where the superscript 4 in /\g denotes the application of the functional with respect to .

Note that & € RY is the solution of the linear system
Ada = 7, (5)

,,,,,,,,,, N € RY*N is given by
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The matrix A is positive definite, since the functionals are assumed to be linearly indepen-
dent. In the following we consider the Sobolev space W3 (R*") with 7 > n, which is a RKHS.
While the reproducing kernel is rather complicated, there is a reproducing kernel, defined by
a Wendland function, see Definition 2.1, which generates the same Hilbert space, but with

a different, yet equivalent norm.

Definition 2.1 (see [9]) Let k € Ng and | € N. We define xy = x forx >0 and x4 =0
for x < 0. We define by recursion the Wendland function for r € Rf

1
pro(r) = (1—r)l, S r+1(r) = / toui(t) dt.

The following proposition follows from [5, Proposition 3.11] and the arguments in the

proof; note that the space dimension in our case is 2n.

Proposition 2.2 Let k € N, c € R" and set I =n + k + 1. Define 1o(r) = ¢y (cr), where
o1k was defined in Definition 2.1, and ®(z,7) = ¥o(||Z—7l|), where ||-|| denotes the Euclidean
norm in R*™. Then ® € C** is a reproducing kernel of W3 (R®") with 7 = k 4+ n + % (and

equivalent norm,).

From now on, we choose a Wendland function with smoothness degree k > 2 and choose ®
to be the kernel of the RKHS H = Wy (R*") as above, with 7 =k +n + 3.
Now let us apply the method to solve the problem
Lv(z) = r(&)forzeO, (7
V(&) = ro(&)for z €T, (8)
where L is a first-order differential operator of the form
LV(#) = Y cs(®DV(#), (9)
I8]1<1
cg: O = R, r(#) and ro(#) are given functions and O,T" C R*". We call a point & € R*" a
singular point of L if ¢g(Z) = 0 for all |§] < 1.

We choose collocation points X1 = {Z1,...,Zn} C O and Xo = {51, e ,EM} C I' and
define the functionals A\j =z, o L, j =1,...,N and An4; = 6§~j oid, j=1,..., M to find
the norm-minimal interpolant.

These N = N + M functionals are linearly independent if the collocation points z; are
no singular points of L, see [5, Proposition 3.3]; note that 7 > 1 + n.

We then have error estimates in terms of the mesh-norms hx, 0 = SUPzco minggj ex, |Z—
Zj|| and hx,,r = supger ming ¢ x, |7 — &;]|, which measure how dense the collocation points
X liein O or X5 in T, respectively. Note that the error estimates in [5, Corollary 3.12] hold
in the same way if I is not part of the boundary of O, but a smooth subset of O.
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Theorem 2.3 Let T’ be a smooth subset of O. Let cg € WE™(0O) and let the solution V
of (7) and (8) satisfy V € W2]€+"+1/2(O). Let X1 = {Z1,...,&n} C O be pairwise distinct
points, which are not singular points of L, and X2 = {él, e 7§~M} C I be pairwise distinct
points. We denote by s the norm-minimal interpolant of the data.

Then, for sufficiently small mesh-norms, we have

k—1/2

ILV = Lsllzaio) < CRY G IV Iansisz o, (10)
k+1/2

IV =sliwm < ORIV aensira g, (11)

where C is a constant independent of V.

2.2. Application to our specific problem

We denote & = (w,v) € R*™. We define the differential operator L acting on a function

V(x,v), where z,v € R" by
LV(z,v) = (VoV(z,0), f(2)) + (Vo V(2,0))" Df(x)v. (12)
We wish to solve the problem

LV(z,v) = —|vl?
V(x,0) 0.

(13)

Note that the first equation in (13) is (3). The second equation in (13) fixes the values
of V(z,0) = 0 at v = 0, since otherwise the function V' will in general not satisfy the

requirement ci1||v||? < V(z,v).

Lemma 2.4 (z,v) € R* is a singular point of L as defined in (12) if and only if f(x) =0
(x is equilibrium) and D f(z)v = 0.

We fix a bounded set K C R™ with Lipschitz continuous boundary and define B,(0) :=
{v € R" | ||v|| £ r} with 7 > 0 small. We choose points Z; € K x B.(0) for j =1,..., N,

which are no singular points of L, see Lemma 2.4, and denote this set of points by X; :=

{Z1,Z2,...,Zn}. Moreover, we choose points for which we fix the values of V(z,0), namely
& = (£,0) € K x {0} =: T for j = 1,...,M; we denote this set of points by Xo :=
{&1,... Eu}.

The ansatz for the approximant v of the function V' is given by (4), namely

s(@) = Y a8z, o L)"o(lIZ = gll) + D Bevo(IE — &l)- (14)
k=1 k=1

197



where 1o was defined in Proposition 2.2. The coefficient vector is the solution of the following

system of linear equations, see (5),

Al )= @) wima=| A P ) erovrroxevin (15)
8 b DT B
The right-hand side of the linear system (15) is determined by a; = —|jv;||* for 1 < j < N

and b; = 0 for 1 < j < M. The sub-matrices A = (a;) € RY*N B = (b;) € RM*M and
D = (djx) € RY*M have the elements, see (6),

aje = (3z, 0 L)*(8z, o L) vo(Z — 7ll),
bie = vo(l& — &),
dix = (8z; o L)*o(||IZ — &)

To compute d;x and a,, explicitly, let us define recursively ¥py1(r) = %% fork=0,1

and r > 0. Note that under our assumptions, these functions can be continued continuously

up to r =0.
We have, denoting & = (z,v), § = (y,w), & = (zx,vx) and & = (&, 7))

di = =Ua(lld; = &) (& — 5 F(@))) + Om = v) Df )y -
Using the notation zj, = z; — zx and vjx = v; — vi, we have

aje = —a(I%; — @) [(@in, £(@5)) (@i, £ (@) + (@ir, £(23)) v D f (2r)vr
@k, f(x)) 03 Df (2505 + vie D f(25)v; - v D f () vi ]
—n (185 — &) [(F@n), £(@))) +v] Df ()" Df (@r)on]

We have, similarly to the computation of aj;, the following formula, using the notation

T =2 — 2 and v.x =V — Vg,

Ls(z,v) = Y an(8z0L)*(8z 0 L) ¢o(||Z = Fl1) + Y Br(dz o L)*tho([|F — &)
= -> cwc{lﬁ2(||CE = &) [(@or, £ (@) (ks f ) + (@, f(2))0 D f (e )or
k=1

+z g, f(z))0 e Df () + v Df(z)v - v.q;;Df(a:k)vk]

+1(1 = &) [(£(@n), F(@) + 0" D (@) Df (wr)vi] }

=" Bt (17 = &) [(€x — @, F@)) + (e — 0)" DS ()]

k=1
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3. Examples
3.1. One-dimensional example

We consider n = 1 and the dynamical system given by
T = x—x (16)

which has one asymptotically stable equilibrium at 0 and two unstable equilibria at 1. We
use the Wendland function o (r) = ¢a,2(r) = (1—7)% (3572 +18r+3) and the collocation grids
X1 = {(z,v) | x € [-0.7,...,—p,0,p,...,0.7],v € [-0.1,...,—7,0,7,...,0.1]} and X, =
{(z,0) |z € [-0.7,...,—p,0,p,...,0.7]} with p =0.7/19 = 0.0368 and T = 0.1/3 = 0.0333.
The grids have N = 272 and M = 39 points, respectively, so together N =N+ M =311.

Figure 1. Example (16). Left: The function s(z,v). Right: The function Ls(z,v) which

approximates —|jv||? well.

0L F [ XOOOBIIIHIIHI IO S XA XXX HK

DLF | OOOBHHRKHHHXHHHK I IIKIKHIKEHHKIHH KKK

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
X

Figure 2. Example (16): The collocation points as well as the level set Ls(z,v) = 0 (red) and
s(x,v) = 0,0.005,0.01 (blue). Note that Ls(z,v) < 0 holds in the area where the collocation

points are placed, apart from a small area near v = 0.
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Figure 1 (left) shows the computed function s(z,v) which satisfies c1|Jv||? < s(z,v) <
c2||v)|? as well as Ls(z,v) which approximates —||v||?> well. Figure 2 shows the collocation
points, the area where Ls(z,v) = 0 (red) as well as some level sets of s(z,v) (blue) in the

area where s(z,v) satisfies the conditions.

3.2. Two-dimensional example — stable equilibrium

We consider n = 2 and the dynamical system given by

& = —z(l-a2"—y’)+y

17
g = —y1-2"—y") -z (17

which has one asymptotically stable equilibrium at the origin and an unstable periodic orbit

at the unit sphere. We denote x = (z,y) € R? and v = (v,w) € R%.
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Figure 3. Example (17): Some points in the x = (z,y)-plane, where the sign of L(x,v) is
calculated: if the sign of L(x,v) is negative for a v, then a blue circle is plotted, if the sign is
non-positive for a v, then a red cross is plotted. The points with the correct, negative sign

are thus points with a blue circle only.

We use the Wendland function t5.2(r) = (1 — r)%(16r% + 7r + 1) and the collocation
grids defined below containing N = 8580 and M = 441 points, respectively; altogether we
have N = N + M = 9021 points.

X1 = {(x,v) € Bs(0,0) x R* | 2,y € {-0.7,...,-0.07,0,0.07,...,0.7},
v € {r(cos(a),sin(a)),r € {0.05,0.1},a = 2kx/10,k = 1,...,10}}, and

X {(x,0) e R* x R* | 2,y € {-0.7,...,-0.07,0,0.07,...,0.7} },
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Figure 3 shows points x where L(x, v) was evaluated for many v # 0. For each v where
L(x,v) < 0, a blue circle was plotted at the position x, while for each v where L(x,v) > 0
a red cross was drawn at position x. Points x can thus have both a blue circle and a red
cross, meaning that some directions v have the correct (negative) sign, while others have
not. Points with only a blue circle are points where L has the correct sign, while points with
any red cross are not. One can clearly see that the square [—0.7,0.7]?, where the collocation

points where placed, contains only blue circles.

0005+
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Figure 4. Example (17). Left: The function Ls((0.5,0.5), (v,w)) which approximates
—|l(v,w)||?> well. Right: The function s((0.5,0.5),(v,w)) which has its minimum 0 at
(v,w) = (0,0). Note that the point x = (0.5,0.5) does not belong to the collocation grids.

Figure 4 shows the functions s(x,v) and Ls(x,v) for a fixed xo = (0.5,0.5); note that
there is no collocation point with this value. The function Ls(xo, V) approximates —|v]||?

well (left) and the function s((0.5,0.5),v) (right) satisfies c1]|v||? < s(x0,V) < ca||V]2.

3.3. Two-dimensional example — stable periodic orbit

We consider the dynamical system given by

o) +y

g o= yl—-2-y*) -z

z = z(l—-=z (18)

which has one unstable equilibrium at the origin and an asymptotically stable periodic orbit

at the unit sphere. This time we solve the problem

LV (z,v) —||v||? for v L f(x)
V(z,00 = 0.
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Figure 5. Example (18): Some points in the x = (z,y)-plane, where the sign of L(x,v) is
calculated: if the sign of L(x,v) is negative for all directions v L f(x), then a blue circle is
plotted, if the sign is non-positive for all directions v L f(x), then a red cross is plotted, and
if some directions v result in a negative and some in a non-negative sign, then both a red
cross and a blue circle are plotted. The points with the correct, negative sign are thus points

with a blue circle.

We use the Wendland function t5,2(r) = (1 — )% (161> + 7r + 1) and the points

X1 = {(x,v) € B12(0,0)\ {(0,0)} x R? | z,y € {~1.2,...,—p,0,p,..., 1.2},
v € {£0.05 f(x) /[l f (), £0.1 F(x) /Il F ()1} }
Xo = {(x,0) € Bi12(0,0) xR |z,y € {-1.2,...,—p,0,p,...,1.2}},

where p = 1.2/9 = 0.1333, with N = 1168 and M = 293 points, respectively, altogether
N = N + M = 1461 points.

Figure 5 shows points x where L(x,v) was evaluated for several v L f(x). For each v
where L(x,v) < 0, a blue circle was added, while for each v where L(x,v) > 0 a red cross
was drawn. Points with only a blue circle are points where L has the correct (negative) sign,
while points with any red cross are not. One can clearly see that the ball of radius 1.2, where

the collocation points where placed, contains only blue circles.

4. Existence and error estimates

In certain dynamical situations we can prove the existence of a function satisfying (13),

enabling us to obtain error estimates.
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Proposition 4.1 Assume that xo is an exponentially stable equilibrium of (1), where f €
C°(R™,R"™), o > 2, with basin of attraction A(xo).
Then there is a function V€ C° ' (A(xo), R™) satisfying (13) for all (z,v) € A(zo) xR™.

PrOOF: Choose the positive definite matrix C = I € S, where S" denotes the symmet-
ric matrices in R™*". By [3, Theorem 4.4] there exists a matrix-valued function M €

C° Y (A(x0),S™) satistying
Df(x)" M(x) + M(z)Df(x) + M'(x) = —I for all z € A(xo). (20)

Here, M'(x) denotes the matrix with entries (V5 M;;(z), f(x)), 4,5 = 1,...,n, the orbital
derivative of M(zx). Defining the C°~'(A(xo),R™) function V(z,v) = vI M(x)v we have
V(z,0) =0 for all z € A(xo) and

LV(z,v) = (ViV(z,v),f(2)) + (VoV(z,0)" Df(x)v
= "M (2)v + 0" M(z)Df(z)v + 0" Df(x)" M(z)v
= —[lvo|* by (20)
for all x € A(xo) and v € R". O

In the situation as above, where we know that a solution V' with a certain smoothness

exists, we can use the error estimate Theorem 2.3.

Proposition 4.2 Let k > 2 be the smoothness degree of the Wendland function. In the
situation of Proposition 4.1 let f € C°(R™,R™) witho > k+n+1, K C K C A(zo) be an
open bounded set with Lipschitz boundary andT' = {(x,0) | x € K}. Then, for the collocation
points as described in Theorem 2.8 the estimates (10) and (11) hold.

PROOF: Let O = K x Bgr(0) with R > 0. We check that the assumptions of Theorem 2.3
are satisfied: we have cs € C°7*(R"™) € WXF"(O) and by Proposition 4.1 we have for the
solution V € C7 ' (A(wo),R™) C W T/2(0). O

5. Conclusion and outlook

We have presented a method to numerically construct Finsler-Lyapunov functions, which
show incremental stability of solutions of an ODE # = f(x), « € R". A Finsler-Lyapunov
function is a scalar-valued function with domain (z,v) € R™ x R™, where z denotes a point in
the phase space and v a point in the tangent space at x. We have used meshless collocation

with a Wendland function, and have solved a first-order PDE with prescribed values at v = 0.
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Finsler-Lyapunov functions can be used to show existence, uniqueness and stability for
different kinds of attractors, such as equilibria or periodic orbits, and give information about
their basin of attraction. Depending on the set of v for which the contraction condition holds,
we can distinguish between different types of attractors. This can be implemented easily in
the proposed method by choosing collocation points in the respective set. Further work will
explore this feature further, studying symmetric systems and higher dimensional-ones. We
have shown existence results and error estimates in the case of equilibria and seek to extend

these results to other attractors such as periodic orbits in the future.
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Chaos and strange attractors in environmental radioactivity
dynamics of some geosystems: Atmospheric radon **’Rn

Alexander V. Glushkov, Yuliya V. Dubrovskaya, Vasily V. Buyadzhi and
Eugeny V. Ternovsky

Abstract: The work is devoted to the development of the theoretical foundations and
further application of an effective universal complex chaos-dynamical approach to
description of the deterministic chaos, bifurcations and strange attractors in dynamics
of the environmental radioactivity systems. In particular, the atmospheric radon ?Rn
concentration temporal dynamics is studied and computed. The analysis methods
include advanced versions of the correlation integral, fractal analysis, algorithms of
average mutual information, false nearest neighbors, Lyapunov exponents, surrogate
data, non-linear prediction schemes, predicted trajectories algorithms, spectral
methods etc. to solve problems quantitatively complete modeling and analysis of
temporal evolution of the atmospheric radon **’Rn concentration. There are firstly
received data on topological and dynamical invariants for the time series of the ?’Rn
concentration, discovered a deterministic chaos phenomenon using detailed data of
measurements of the radon concentrations at SMEAR II station of the Finnish
Meteorological Institute in the Southern Finland (2000-2006).

1. Introduction

The importance of studying a phenomenon of stochasticity or chaos in dynamical systems is
provided by a whole number of applications, including a necessity of understanding chaotic
features in different geophysical (hydrometeorological, environmental etc) systems. New
field of investigations of these systems has been provided by a great progress in a
development of a chaos and dynamical systems theory methods [1-28]. In our previous
papers [21-38] we have given a review of new methods and algorithms to analysis of
different systems of environmental and Earth sciences, quantum physics, electronics and
photonics and used the nonlinear method of chaos theory and the recurrence spectra
formalism to study stochastic futures and chaotic elements in dynamics of
hydrometeorological, environmental and physical (namely, atomic, molecular, nuclear
systems in an free state and an external electromagnetic field) systems. The non-trivial
manifestations of a chaos phenomenon have been discovered. The studies concerning non-
linear behaviour in the time series of atmospheric constituent concentrations are sparse, and

their outcomes are ambiguous. In ref. [12,21] there is an analysis of the NO,, CO, O;
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concentrations time series and there is no evidence of chaos received. Also, it was shown
that O; concentrations in Cincinnati (Ohio) and Istanbul are evidently chaotic, and non-
linear approach provides satisfactory results. In Ref. [21,22,25,29] the detailed analysis of
the NO,, CO, CO, concentration time series has been fulfilled in the Odessa and industrial
regions of the Ukraine and Poland) and the evidence of a chaos has been definitely obtained.
Moreover, a short-range forecast of atmospheric pollutants time evolution using non-linear
prediction method has been given. These studies show that chaos theory methodology can be
applied and the short-range forecast by the non-linear prediction method can be satisfactory.
Time series of concentrations are however not always chaotic, and chaotic behaviour must
be examined for each time series.

The work is devoted to the development of the theoretical foundations and further
application of an effective universal complex chaos-dynamical approach to the atmospheric
radon >*’Rn concentration changing analysis and prediction from beta particles activity data
on radon monitors. The approach presented consistently includes a number of new or
improved methods of analysis (correlation integral, fractal analysis, algorithms, average
mutual information, false nearest neighbors, Lyapunov exponents, surrogate data, non-linear
prediction, spectral methods, etc.) to solve problems of quantitatively complete modeling
and analysis of temporal evolution of the atmospheric radon *?Rn concentration.
Topological and dynamical invariants data for the time series of the **’Rn concentration has
been received. By means (or Using) of detailed data of radon concentrations measurements
at SMEAR II station of the Finnish Meteorological Institute during 2003 a deterministic

chaos phenomenon has been revealed that is agreed with the preliminary data [9].

2. Universal chaos-dynamical approach in analysis of dynamics of the complex
geosystems

As many blocks of the used approach have been developed earlier and need only to be
reformulated regarding the problem studied in this paper, here we are limited only by the
key moments following to Refs. [1, 11-33]. Let us formally consider scalar measurements
s(n) = s(ty + nAt) = s(n), where ¢, is the start time, A¢ is the time step, and is # the number of
the measurements. Further it is necessary to reconstruct phase space using as well as
possible information contained in the s(n). Such a reconstruction results in a certain set of d-
dimensional vectors y(n) replacing the scalar measurements. Packard et al. [14] introduced
the method of using time-delay coordinates to reconstruct the phase space of an observed

dynamical system. The direct use of the lagged variables s(n + 1), where T is some integer to
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be determined, results in a coordinate system in which the structure of orbits in phase space

can be captured. Then using a collection of time lags to create a vector in d dimensions,
y(n) = [s(n), s(n + 1), s(n + 27), ...,s(n + (d-1))], (1)

the required coordinates are provided. In a nonlinear system, the s(n + jt) are some unknown
nonlinear combination of the actual physical variables that comprise the source of the
measurements. The dimension d is called the embedding dimension, dz. Any time lag will be
acceptable, is not terribly useful for extracting physics from data. If t is chosen too small,
then the coordinates s(n + jt) and s(n + (j + 1)7) are so close to each other in numerical value
that they cannot be distinguished from each other. Similarly, if t is too large, then s(n + jt)
and s(n + (j + 1)t) are completely independent of each other in a statistical sense. Also, if T
is too small or too large, then the correlation dimension of attractor can be under- or
overestimated respectively [1]. Therefore it is necessary to choose some intermediate (and
more appropriate) position between above cases. First approach is to compute the linear

autocorrelation function
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and to look for that time lag where C;(d) first passes through zero. This gives a good hint of
choice for t at that s(n + 1) and s(n + (j + 1)1) are linearly independent. However, a linear
independence of two variables does not mean that these variables are nonlinearly
independent since a nonlinear relationship can differ from linear one. It is therefore
preferably to utilize approach with a nonlinear concept of independence, e.g. the average
mutual information. Briefly, the concept of mutual information can be described as follows.
Let us assume there are two systems, 4 and B, with measurements «; and b;. The amount one
learns in bits about a measurement of a; from measurement of b, is given by arguments of
information theory [20,21]. The average mutual information between any value a; from

system A and b, from B is the average over all possible measurements of 7,z(a;, by),
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To place this definition to a context of observations from a certain physical system, let us
think of the sets of measurements s(n) as the 4 and of the measurements a time lag t later,

s(n + 1), as B set. The average mutual information between observations at n and n + T is

[p(0)= ZPAB(anbk)IAB(aiabk)

arhy )
Now we have to decide what property of /(t) we should select, in order to establish which
among the various values of T we should use in making the data vectors y(n). One could
remind that the autocorrelation function and average mutual information can be considered
as analogues of the linear redundancy and general redundancy, respectively, which was
applied in the test for nonlinearity. The general redundancies detect all dependences in the
time series, while the linear redundancies are sensitive only to linear structures. Further, a
possible nonlinear nature of process resulting in the vibrations amplitude level variations can
be concluded.
The goal of the embedding dimension determination is to reconstruct a Euclidean space R?
large enough so that the set of points d, can be unfolded without ambiguity. In accordance
with the embedding theorem, the embedding dimension, dg, must be greater, or at least
equal, than a dimension of attractor, d,, i.e. dg>d,. However, two problems arise with
working in dimensions larger than really required by the data and time-delay embedding [1,
14-16, 21-24]. Firstly, many of computations for extracting interesting properties from the
data require searches and other operations in RY whose computational cost rises
exponentially with d. Secondly, but more significantly from the physical point of view, in
the presence of noise or other high dimensional contamination of the observations, the extra
dimensions are not populated by dynamics, already captured by a smaller dimension, but
entirely by the contaminating signal. When an embedding space one is too large it is
unnecessarily to spend time working around aspects of a bad representation of the
observations which are solely filled with noise. It is therefore necessary to determine the
dimension d,. There are several standard approaches to reconstruct the attractor dimension
(see, e.g., [11-24]), but let us consider only two methods in this study. The correlation
integral analysis is one of the widely used techniques to investigate the signatures of chaos
in a time series. The analysis uses the correlation integral, C(r), to distinguish between

chaotic and stochastic systems. The Grassberger-Procaccia algorithm [19] is the most
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commonly used approach to compute the correlation integral.. If the time series is
characterized by an attractor, then the integral C(r) is related to the radius » given by
d=t log C(r)
i logr i (6)
where d is correlation exponent that can be determined as the slop of line in the coordinates
log C(r) versus log r by a least-squares fit of a straight line over a certain range of r, called
the scaling region. The saturation value of the correlation exponent is defined as the
correlation dimension (d,) of the attractor. The method of surrogate data [1,8,9] is an
approach that makes the use of the substitute data generated in accordance to the
probabilistic structure underlying the original data. Often, a significant difference in the
estimates of the correlation exponents, between the original and surrogate data sets, can be
observed. In the case of the original data, a saturation of the correlation exponent is observed
after a certain embedding dimension value (i.e., 6), whereas the correlation exponents
computed for the surrogate data sets continue to increase with the increasing embedding
dimension. It is worth consider another method for determining dy that comes from asking
the basic question addressed in the embedding theorem: when has one eliminated false
crossing of the orbit with itself which arose by virtue of having projected the attractor into a
too low dimensional space? By examining this question in dimension one, then dimension
two, etc. until there are no incorrect or false neighbours remaining, one should be able to
establish, from geometrical consideration alone, a value for the necessary embedding
dimension. Advanced version is presented in Refs. [21]. The Lyapunov’s exponents (LE) are
the dynamical invariants of the nonlinear system. In a general case, the orbits of chaotic
attractors are unpredictable, but there is the limited predictability of chaotic physical system,
which is defined by the global and local LE. A negative exponent indicates a local average
rate of contraction while a positive value indicates a local average rate of expansion. In the
chaos theory, the spectrum of LE is considered a measure of the effect of perturbing the
initial conditions of a dynamical system. In fact, if one manages to derive the whole
spectrum of the LE, other invariants of the system, i.e. Kolmogorov entropy (KE) and
attractor's dimension can be found. The inverse of the KE is equal to an average
predictability. Estimate of dimension of the attractor is provided by the Kaplan-Yorke

conjecture:
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Jj+l | , (8)

j Jj+l
where j is such that Z A, >0 and Z A, <05 and the LE A, are taken in descending order.

a=1 a=l1

There are a few approaches to computing the LE. One of them computes the whole spectrum
and is based on the Jacobi matrix of system. In the case where only observations are given
and the system function is unknown, the matrix has to be estimated from the data. In this
case, all the suggested methods approximate the matrix by fitting a local map to a sufficient
number of nearby points. To calculate the spectrum of the LE from the amplitude level data,
one could determine the time delay Tt and embed the data in the four-dimensional space. In
this point it is very important to determine the Kaplan-Yorke dimension and compare it with
the correlation dimension, defined by the Grassberger-Procaccia algorithm. The estimations
of the KE and average predictability can further show a limit, up to which the amplitude
level data can be on average predicted. Other details can be found in Refs. [1,9,11-24].

3. Analysis of the SMEAR station atmospheric radon concentration time series
(2003) and conclusion

The first application of the chaos-dynamical approach to analysis of chaotic time series of
the environment radioactivity has been preliminarily presented in [9] on the example of
analysis of the atmospheric radon concentration time series during 2001 year.
Measurements of the radon concentrations at SMEAR 11 station (61 ° 51'N, 24 ° 17'E, 181 m
above sea level; near the Hyytidld, Southern Finland) has been performed by group of
experts of the Finnish Meteorological Institute (FMI) and actually integrated into the system
long-term measurements (see details in Ref. [5] and [8,9] too). Here we list the analysis of
the corresponding data on the atmospheric radon for 2003. It is worth to note (look details in
Refs. [9]) that the continuous measurement was performed during 2003 on the seventh
heights (from 4.2 m to 127 m). Technologically, a device with a pair of the Geiger-Miiller
counters, arranged in the lead corymbs is used for the beta particles detection. Registration
of the beta particles was cumulatively carried in 10-minutes intervals. Effectiveness of a
detection was 0.96% and 4.3% for beta radiation from 2'*Pb and 2!*Bi respectively. Estimate
of the 1-c statistical counting is £ 20% for stable concentrations of **Rn (1 Bq/m®). The

mean-daily values of atmospheric “?Rn concentrations were in the range from <0.1 to 11
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Bg/m®. In fact, the lower limit of this range was limited by a hardware detection limit of the
radon monitors. The average geometric value for the daily average radon concentrations was
amounted to 2.3 to 2.6 Bq- m™ per year. In general during 2003 as hourly, as daily values of
a parameter, which corresponds to the radon concentration, were ranged from about 1 to 5
Bg/m®. In Figure 1 there is presented the typical time dependent curve of the radon
concentration, received on the base of measurements at SMEAR 1I station (61° 51'N, 24°

17'E, 181 m above sea level; near the Hyytidld, Southern Finland) [5]).

Figure 1. Time dependent curve of the radon concentration, received on the base of measurement

(SMEAR 1I station)

In Table 1 we list the results of computing different dynamical and topological invariants
(time delay rt,correlation dimension (d,), embedding space dimension (d g), Lyapunov
exponent (4;), Kolmogorov entropy (K., ), Kaplan-York dimension (d;), and chaos
indicator (K., ) [13] for Rn concentration time series (2003). For comparison there also

listed data of the analogous analysis of the Rn data during 2001 year [9].

Table 1. Time delay t,correlation dimension (d ,), embedding space dimension
(d g), Lyapunov exponent (4;), Kolmogorov entropy (K., ), Kaplan-York dimension

(d 1), and chaos indicator (K, ) for the radon concentration time series (2003)

Year T d 2 d E ),1 /12 Kent d L K
2001 12 5,48 6 0,0182 0,0058 0,024 | 5,36 0,80
2003 14 5,72 6 0,0198 0,0064 0,026 | 5,58 0,84

The analysis of the dynamical and topological invariants shows that, for example, the
resulting Kaplan- York dimension is very close to the correlation dimension and is smaller

than the dimension of attachment, which confirms the correctness of the choice of the latter.
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This conclusions is fully analogous the conclusions [10]. To conclude, let us underline that
the presented results of application of the chaos-dynamical approach to analysis of temporal
evolution of the atmospheric radon **’Rn concentration and received values of the
topological and dynamical invariants for the time series of the **’Rn concentration allows to
reveal the deterministic chaos elements. It can be of a great theoretical and practical interest
for the further studying environmental radioactivity time series for different radionuclides
and by the way give the basis for the construction of the corresponding forecasting temporal

and space distribution models (look in details [17, 1,21-24,28]).
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Stochastic bifurcations in discontinuous and impacting nonlinear
systems

Sayan Gupta, Pankaj Kumar, Sadagopan Narayanan

Abstract: The non-smooth dynamics of Duffing van der Pol (DVDP) oscillator
under additive Gaussian white noise excitation with unilateral or bilateral non-
elastic constraints is numerically investigated. Applying the Zhuravlev-Ivanov
non-smooth variable transformation, the discontinuous problem is first mapped
into a continuous phase plane. A stochastic bifurcation analysis of the system
is carried out using concepts of D- and P-bifurcations. P-bifurcations involve
analysing the topological changes in the joint probability density function as-
sociated with the state variables. The joint pdf is obtained by solving the cor-
responding Fokker-Planck equation numerically using finite element method.
D-bifurcation analysis is carried out by studying the behaviour of the largest
Laypunov exponnet (LLE), computed using the Nordmark-Poincare map in
conjunction with Wedig’s algorithm. A measure based on Shannon entropy
has been developed to quantitatively estimate the onset of P-bifurcations. A
global parametric study carried out to identify the stochastic stability regimes
using the concepts of D- and P-bifurcations reveal that the regimes could be
slightly different. More studies on the interpretation of this phenomenon is
currently being investigated.

1. Introduction

Nonlinear dynamical behaviours resulting due to impacts of elements of dynamical systems
with rigid or elastic barriers exhibit many complex behaviour that cannot be explained us-
ing theory of smooth dynamical systems[4]. The fundamental nature of the non-smooth
dynamics of the impacting systems, and the resulting qualitative changes in the dynamics
is a matter of great interest[2]. Selection of appropriate mathematical model for impact is
crucial for simulating accurately the behavior of the dynamical system. The simplest way
of modeling impacts is based on the hypothesis of hard collision, which assumes infinitesi-
mally small contact duration time and constant value of the coefficient of restitution. This
model is based on the assumption that the impact is instantaneous, hence works well when
impacting surfaces are hard. For many other practical applications, impact can be modeled
more realistically by modelling it as soft impact described by using continuous functions of
force-deformation relations during contacts. The Hertz impact law is such an example. A

comprehensive survey for various impact models can be found in [4].
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The presence of noise in the excitations for such non-smooth nonlinear systems leads
to further complexities in the system behaviour of these systems. Noise has the potential
to alter the stability boundaries and can play an important role in the design and life of
non-smooth mechanical system. This has prompted investigations on the influence of noise
on the dynamical behaviour and bifurcation characteristics for these non-smooth dynamical
systems.

This study focusses on the development of a methodology for the stability and bifurcation
analyses of a stochastically excited discontinuous Duffing-Van der Pol(DVDP) oscillator,
with impacts modeled with hard as well as soft nonlinear elastic-damping structures (Hertz’s
damping contact model). The main objective is to analyze qualitatively and quantitatively
the influence of Gaussian white noise on these two different models and to compare the
resulting response. The analysis is carried out using two distinct approaches. Changes in the
dynamical stability of the system is examined through the largest Lyapunov exponent (LLE)
associated with the trajectories of the system. In computing the LLE, the discontinuities in
the equation of motion on account of impact present difficulties which are bypassed by using
the Nordmark-Poincare mapping [1] approach. Additionally, the bifurcation characteristics
are examined using the topological structure of the joint probability density function(pdf)
of the state variables. The difficulties in writing the Fokker-Planck (FP) equation associated
with the vibro-impact system whose governing equations of motion are discontinuous, are
addressed by using the Zhuravlev-Ivanov transformation [9, 5, 2]. A numerical solution to the
FP equation in the transformed space is obtained using a recently developed finite element
method [6]. Subsequently, a measure based on the Shannon entropy [7] is used to quantify
the regimes where P-bifurcations take place. Parametric studies are carried out to examine
the D- and P- bifurcation characteristics where the position of the barriers, the intensity
of the excitation and the damping are taken as control parameters. The advantages and

disadvantages of both models are discussed.

2. Mathematical model of the system

Discontinuous DVDP oscillator under stationary, zero-mean Gaussian process W (t) as pre-
sented in Fig. 1 is considered. A/2 represents the locations of the barriers on either side of
the equilibrium position (taken to be at the origin). The barrier has been modeled as rigid
Fig. 1(a) or elastic-damped (Hertz’s damping contact) model Fig.1(b). The corresponding

governing equations of motion for the oscillator with rigid barriers are

X —aX —eX 4+ AX° - BXK 4 BX K =oW(); D <x<T 1)
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Figure 1.  Schematic of the (a) impact based on restitutional model (b) Hertz contact

impact model.

with the impact condition being mathematically expressed as
- - A
X" =—-eX", X::I:E 0<e<l, (2)

where o and ¢ denote the linear stiffness and damping coefficients, {8;(t)};—, are system
parameter constants that define the nonlinear stiffness and damping and e is the coefficient
of restitution. The corresponding governing equations of motion for the oscillator with

impacts based on Hertz contact model is given by

X —aX — X + BoX? — 1 X’ X 4 B XX + f(X,X) = W(t), (3)
where using Hertz’s contact model of nonlinear damping the collision force f(X, X) is math-

ematically expressed as

kn(X + 521+ X) ifX < -5
J(X,X) =4 0 if-2<Xx<% (4)
kn(X — 2321+ enX) if X > 5,

here, k;, and ¢, denote the stiffness and damping coefficients corresponding to the Hertz

contact model.

3. Vibro impact oscillator

The non-smooth nature of the governing equations of motion for vibro-impact dynamical
systems pose analytical and numerical challenges in their analysis. These difficulties can be
overcome by invoking suitable non-smooth variable transformations that enable rewriting the
governing equations of motion in a transformed variable space without any discontinuities.
For oscillators with one sided rigid barrier a non-smooth variable transformation - known

as the Zhuravlev transformation - has been proposed in [9]. Mathematically, Zhuravlev
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transformation involves mapping the problem from the (X X ) space to the (Y, Y) space
such that

X =|Y|=Ysgn(Y), X = YsgnY, (5)

where, sgn(+) is the signum function. While this transformation removes the discontinuity in
the phase plane, the effect of impact and the consequent abrupt change in velocity is modelled
into the governing equations of motion as an additional dissipative term (1—e)Y|Y|§(Y). The
presence of the discontinuous functions such as |- | and the d(-) presents numerical difficulties
which can be bypassed by approximating using arc-tangent and Gaussian distribution of very
low variance respectively.

The double sided impact changes the nature of the dynamics and the Zhuravlev-Ivanov
transformation which is essentially a mirror image transformation cannot be applied. Instead,
a piecewise differentiable periodic transformation proposed by Zhuravlev [9] for double sided
barriers can be used to convert the equations of motion without any discontinuities. As a
first step, a non-dimensional displacement variable Y = X7 /A is defined. The equation of

motion between impacts can now be expressed as

V—a¥ — oV 4 BY° = BIYPY + BV o W(), -Z <Y<, (6)
with the impact condition defined as
V= —ev, Y:ig, 0<e<l. (7)

The superscript primes that appear in Eq.(6) refer to the corresponding non-dimensional
parameters of the problem. Next, Eqs.(6-7) need to be transformed into the constraint
free form. For case of elastic impacts e = 1, the following 27 periodic functions are first

introduced [9]:

Z if - T<z<T
1(2) = R (8)
—Z4+n fF<Z<3,
, 1 if-T<z<zT,
M(2)=1(2) = i w )
-1 if <725

The prime on H/(Z ) denotes differentiation with respect to Z. This enables expressing the

displacement variable Y and its time derivatives in terms of II(Z) and M (Z) as

Y =11(2), Y=MZ)Z, Y=MZ)Z+M (22> (10)
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Substituting Eq.(10) in Eq.(6), the equations of motion can be expressed as
7 —aM(Z)I(Z) — cZ + BoM(Z)1*(Z) — BiT1X(2) 2 + BT1X(2)Z = o M(Z)W (t). (11)

For inelastic impacts, when (0 < e < 1), a modified smooth variable transformation has been

suggested in [3] where

Y I(Z+AN(Z), Y =(M(Z)+\I(2))Z,

e M (2)22 + M(2)Z + AM(2) 2% + \N1(Z)Z. (12)

Here, N(Z) is 27 periodic i.e., N(Z + 2m) = N(Z) and is given by

72 2 .
z? _ = f-IT<z<T, _
NzZ)={ 2 & Prpsasen o 2(1=e) (13)
Z<3i7T
=7

_(Zf_ﬂ-)erg if T < 1+e

3.1. Stochastic bifurcation

Bifurcations in nonlinear dynamical systems are characterized by the birth or destruction
of attractors at different parameter regimes, leading to dramatic and abrupt changes in its
behaviour. Typically, it has been observed in the literature that systems subjected to noise
could undergo bifurcations in two distinct modes: (a) dynamical or D-bifurcations occur
when there are drastic topological changes associated with the phase space trajectories,
and (b) phenomenological or P-bifurcations are observed when the underlying probabilistic
structure of the long term behavior of the state variables undergo topological changes. More
details on D- and P- bifurcations for the vibro-impact system being studied is discussed in

the following sections.

3.1.1. P-bifurcation

P-bifurcation is characterized by changes in the probabilistic structure of the stationary joint
pdf of the state variables at different parameter regimes. A parameter change leading to the
changes in the attractor would lead to a corresponding change in the topology associated
with the joint pdf; this is defined as a P-bifurcation. Under Gaussian white noise excitation,
the state vector Z = [Z1 Z2)T corresponding to the equations of motion Eq.(11) will be
Markovian, and hence, the time and space evolution of the joint pdf p(Z, ¢|Zo, to), is governed

by the following FP equation.

op Op 3
Z *22371’372{[ aM(Z)(Z1) + cZa — BoM(Z0)T1(Z1)
, , g2
PO (2) 22 = ST (2) Z2lp} + T (14)
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The FP equation for the inelastic case corresponding to Eq.(12) is given by

12

op B dp o 82p
ot~ oz, ToAPrazz
~0[cZs + [A] ' [A(B) — Bo(B)* — AM (Z1)23] + B1(B)*Z> — B5(B)* Zalp

57 (15)

where, A = M(Z1) + MI(Z1), B =1I(Z1) + AN(Z1). In this study, the recently developed
finite element method [6] has been used to numerically estimate the stationary j-pdf of the

response variables.

3.1.2. D-bifurcation

The dynamical stability characteristics of the attractors are estimated by investigating the
long term behaviour of the trajectories and are best measured in terms of the LLE. Using

the principle of Oseledec’s multiplicative theorem, the LLE is mathematically defined as

T lim 1 [lu(t)]]
)\m_max{tﬁooE[t10g||u(0)||:|}’ (16)

where {u(t) : ¢ > 0} are the solution trajectories of the linearized differential equations when

the governing equations of motion are linearized about a reference solution. However the
presence of discontinuities through the signum functions lead to difficulties in the compu-
tation of the Jacobian essential for estimating the LLE. Instead one can use discontinuity
mapping proposed in [1], which provides a local decomposition of a Poincare mapping into
a sequence of four classes to distinguish between the contributions from the flow and those
from the impact process. When the flow trajectory is continuous, a small perturbation v to

the trajectory Xo(¢) - the solution of Eq.(1), is governed by the linearized equation

X>A for one sided barrier;
V=3 { S . | | a7)
—5 <X <5 for both sided barriers,
where, J is the Jacobian matrix obtained for the corresponding equations of motion. The
approximate discrete map, for the perturbation v at the time of impact can be constructed

using the Nordmark local map

_ X1 =A for one sided impact,

v = Dpc] vy, 18
k [ Xo(t) © X, =+4 (18)

for both sided impacts,

where, Dp. is a compound map which describes the impact process through the Jacobian

matrix
—e 0
Dpc= Q0 (14e)axy, +80X5, +ow (1) : (19)
X2, —€
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3.2. Boundaries of stochastic bifurcation regimes

D-bifurcations are characterized by a sign change in the LLE and the locus in the parameter
space where these sign changes occur indicates the boundaries for D-bifurcations. In contrast,
P-bifurcation analysis is primarily a qualitative analysis, based on visual inspection of the
structure of the pdf of the response. This makes it difficult to define the stability boundaries
in terms of P-bifurcations. A quantitative measure based on the Shannon entropy has been
recently proposed in [7] for identifying P-bifurcations quantitatively. The Shannon’s entropy

of X(t) at time ¢ is defined as

H(a,t) = — /00 p(a,t)log, p(a,t)da, (20)

—o0

where, b is an arbitrarily chosen logarithmic base, usually taken to be Euler’s number. It
has been shown in [8] that under stationary conditions, the entropy flux is proportional to
the negative sum of the Lyapunov exponents implying that the entropy changes depend on

the phase space contraction and a correction term that depends on the noise strength o.

P(X1X2)

Figure 2. p(X1X2) for e=0.98,0 =0.1,c = -0.1, (a) A = —0.75, (b) A =0, (c) A =0.25.

3.3. Numerical results

For the numerical calculations, the parameters in Eq.(1) are taken to be 8y = 0.5, ¢ = —0.1,
B1 = P2 = 1. The offset position A, coefficient of restitution e and the noise intensity
o are taken to be the control parameters which are varied. To investigate the effect of
position of the barrier offset A, on the stability characteristics of the dynamical system, the
stationary pdf are computed for the cases A = —0.75, 0 and 0.25, when o« = —1,0 = 0.1,e =
0.98. Figure 2 shows the j-pdf for these three cases while Fig. 3 shows the corresponding
contour plots. With barrier offset at relatively large distance A = —0.75, Figures 2(a)
and 3(a) clearly reveal the bistable character of the pdf; the two stochastic attractors -

one representing small amplitude oscillations while the other represents large amplitude
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oscillations - are clearly visible in the contour plot. This is indicative of the presence of two
stable attractors. As A is decreased to A = 0, one observes that the strength of attractor
at origin increases while the large amplitude oscillations weakens and is significantly less
pronounced; see Figs. 2(b) and 3(b). This can be attributed to the greater energy loss due
to increasing damping effect upon impact, hence system has less energy for large amplitude
oscillations.The corresponding contour plot in Fig. 3(b) shows that system exhibits small

amplitude oscillations at this parameter regime. On further increasing A = 0.25, the barrier

Ny

0.5 3 1
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0.4 25 08
o 2
03 2 0@ 0.6
15
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D 05 !l 15 2
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Figure 3. Contour plot of p(X;X3) e =0.98,0 =0.1,c = —0.1, (a) A = —0.75, (b) A =0, (c)

A =0.25.

forces the system to move away from the attractor at the origin to the large amplitude
oscillations. This is the reason why the attractor at the origin no longer exists and the
system exhibits only large amplitude oscillations; see Figs. 2(c) and 3(c). These changes
in the topological characteristics associated with the stochastic attractors is indicative of

P-bifurcation.

—e=1 ," —e=1 ,'",'l,
0.5 ---e=0.99 ':' e
M ~--e=0.9§ .
@
E
<

-0.5 A O 0.5

(b) (c)

Figure 4. LLE for ¢ = 0.1, = —1 using Nordmark mapping (a) ¢ = —0.08, (b) ¢ = —0.1, (c)

c=—0.14.

To investigate the dynamical bifurcation characteristics, the LLE are computed using
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Nordmark mapping. Figure 4 shows the variation of the LLE as a function of the barrier offset
for different values of ¢ and e. An inspection of these figures clearly shows that in all cases,
the LLE denoted by Amax, 18 negative for A < 0. However, as the barrier offset is varied,
there is a dramatic change in Xmax and at A = 0, S\max > 0 indicating loss of dynamical
stability. Hence D-bifurcation occurs at A = 0. This type of stochastic instability is referred
to in the literature as discontinuity-induced instability. This can be explained by the fact
that placing a barrier at the origin prevents the system from reaching the attractor causing

the system to lose stability.
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Figure 5. Identifying stochastic stability regimes for ¢ = —0.1,0 = 0.1 based on (a)
qualitative analysis of the joint pdf px, x,(z1,22) (b) Shannon entropy measure estimated

from the pdf of amplitude, P4(a) and (c) sign of the largest Lyapunov exponent.

Next, a global parametric study is undertaken for identifying the stability regimes in
the A — e plane for the noisy DVDP vibro-impact oscillator. Figure 5(a) shows the different
regimes identified based on visual inspection of the joint pdfs computed from the solution of
the FP equation; this is the traditional P-bifurcation analysis based on qualitative changes
in the structure of the joint pdf. Figure 5(b) shows the bifurcation diagram using the
Shannon entropy definition H(a) based on pa(a). Here, the regimes are demarcated based
on the quantitative approach to P-bifurcation analysis. The bifurcation diagram shown in
Fig. 5(c) is obtained based on D-bifurcation analysis from the computation of the LLE. The
parameter space in Fig.5(a) is mainly subdivided into three different zones, the nomenclature
of which is as follows: (i) half limit cycle — the only attractor is the limit cycle where one
obtains large amplitude oscillations in the positive half space (due to impact) (ii) unimodal
— only one attractor exists at the fixed point, characterzied by small amplitude oscillations,
and (iii) bistable — both stochastic attractors - large amplitude as well as small amplitude
oscillations exist simultaneously. It must be emphasised here that the boundaries of these

zones do not have sharp demarcations and these are based on qualitative analysis based on
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visual inspection of the joint pdf. On the other hand, Fig. 5(b) is divided into regimes based
on the sign of H(a); H(a) > 0 in the regions marked by the plus signs. It is observed that
there are very close similarities between Figs.5(a) and (b). The parameter ranges where
H(a) > 0 in Fig.5(b) correspond to regimes where the system exhibits bistability. This
indicates the usefulness of the Shannon entropy approach in quantifying P-bifurcations. The
demarcation of the regimes in Fig.5(c) is based on the sign of LLE. A comparison of the
bifurcation diagrams in Fig. 5(c) with either Fig.5(a) or (b) clearly indicates that D- and P-

bifurcations need not occur simultaneously for certain parameter ranges.

0.5
0

Xy 2 0.5 X

(a) (b) (c)
Figure 6. Stationary joint pdf px, x,(z1,22); ¢ = 0.1, ¢ = —0.1,e = 1; (a) % = 40.75, (b)
S =21, (c) § ==14.
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(a) (b) c)
Figure 7.  Contour plots for px, x,(z1,22); 0 = 0.1, ¢ = —0.1,e = 1; (a) % = £0.75, (b)
S =421, (c) §=+14.

Next, the numerical calculations are presented for the case when the barriers are placed
symmetrically about the equilibrium position of the attractor and a = 1,0 = 0.1,e = 0.98.
Figures 6(a)-(c) show the j-pdf of the response variables when the distance between the

barriers are 1.5, 2.0 and 2.8 respectively, while Figures 7(a)-(c) show the corresponding
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contour plots. An inspection of these figures clearly indicate, that when barriers are closer to
the system stable point, pdf has singular peak at both the barrier and system gains stability
as barrier move away. When barrier is sufficiently apart such as case of % = £1.4, (see
Figure 6(c)), the oscillator is free from any impact, and reveals the existence of two attractors.

Figures 8-9 show the corresponding j-pdf of the state variables and the corresponding contour

—OfaX1

(a) (b) (c)
Figure 8. Stationary joint pdf px, x,(z1,22); ¢ = 0.25, c = —0.1,e = 1; (a) % = 40.75, (b)
S =41, (c) §=+14.

plots for the case o = 0.25. A comparison of Fig. 6 with Fig. 8 reveal that as the intensity
increases the two distinct attractors appear to merge together. This can be attributed to
the fact that the higher energy available to the system enables it to move from the basin
of attraction of one attractor to the other. Also as observed in Fig. 8 increase of noise
intensity leads to decreasing its peak value while increasing the probability in the tail region
significantly. Hence now even for the case of % = £1.4, system will have sufficient energy

to touch both the barriers.

-3
05 x, 0 05 1 05 y,0 05 1 -1 05,0 05 1

(a) (b) (c)
Figure 9. Contour plots for px, x,(z1,22); 0 = 0.25, ¢ = —0.1,e = 1; (a) % = 40.75, (b)
S =21, (c) § =+14.
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4. Impact based on Hertz contact model

The DVDP oscillator with a barrier as presented by Egs. (3) and (4) can be written equiva-

lent to three stochastic system, which have a continuous and differential vector field defined

as follows;
£ : XfaXchﬁBOX?’fﬁ1X2X+52X4X+kh(X+%)3/2(1+chX) =W(@), X< f%,
f2: X —aX —cX+ X - f1X°X + XX = W(t), —% <X < %, (21)
f5 : XfaXch+,BoX3761X2X+ﬂ2X4X+kh(Xf%)3/2(1+ch)'() =W, X> %.

The response X1, X2 of Egs. (21), is a Markov vector and the transitional joint pdf p(X, ¢|Xo, to),
is governed by the following FP equation;

O, Op  O(h(X1,Xo)+ (X1, Xo))p o &p A

o~ X ax, 0X5 Tyoaxz X<

Op dp  O(WMX1,Xa))p o* O%p A A

£ - _X — — —— <X < = 22
ot 2ax, X, T 2oxz 2= (22)
O, Op  O(h(X1,Xo)+ (X1, Xo))p o &p A

ot = 2w, e Tyax YT

where h(X1,X2) = aX1 + cX2 — BoXT + 1 X7 X2 — B2 X1 X2 and p = p(X,t|X°, t0), the

joint transition pdf of the state variables is used for notational convenience.

4.1. Numerical Results

First, case of a single sided barrier fixed at equilibrium position at X = 0 is considered and
fora = —1,0 = 0.1,¢c = —0.1, barrier damping, c;, will be varied. Fig. 10 shows the j-pdf,for
three different values of damping coefficient of damped-elastic barrier with ¢, = 0.01,0.1
and 0.5. With increasing the damping of barrier to 0.5 the LCO is completely destroyed
and only one stable attractor - the fixed point at the origin, emerges, see Fig. 10(c). Hence
similar to case of vibro impact, increasing the damping of barrier dissipates more energy and
hence reduces the large amplitude oscillation. The topological changes in the nature of the
stochastic attractor - from a stable limit cycle to a regime of bistability and subsequently
the weakening and destruction of one attractor to the birth of another - is indicative of
P-bifurcation.

Next, we consider bilateral impact, when @ = 1,0 = 0.1,¢ = —0.1. System dynamics of
oscillator with bilateral barrier is completely different from that of single sided barrier. The
barrier modeled on the Hertz contact model adds additional stiffness as well as damping to

main oscillator. Hence depending on proximity of barrier position overall system behaviour
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(a) ecn =0.1 (b) cn =0.75 (¢) ecn =25
Figure 10. Stationary joint pdf of px, x, (z1,x2) with A =0

is similar to barrier free DVDP oscillator of combined stiffness and damping. As shown in
Fig. 11 for A = +1.5, when barrier is away from oscillator, system dynamics is similar
to barrier free oscillator. For A = £0.25, when barrier is very close to oscillator, barrier
stiffness and damping added with main oscillator and hence system dynamics is very much

resemble to equivalent stiffness and damping of oscillator.

X2 22 X; “rz -2 Nl

(a) A =40.25 (b) A =+£0.5 (¢) A==+1.5
Figure 11. Stationary joint pdf of px, x, (z1,z2) with bilateral offset.

5. Conclusions

Investigations on the stochastic bifurcations for a DVDP oscillator having hard or elastic-
damped single or double sided barrier subjected to Gaussian white noise excitation has
been carried out. Offset position, noise intensity, coefficient of restitution and stiffens of
elastic barrier have been taken to be the control parameters. P-bifurcation analysis has been
carried out by solving for the stationary probability density function of the state variables
from the corresponding Fokker-Planck equation using a finite element based approach. The
estimated largest Lyapunov exponents have been used for carrying out D-bifurcation analysis.
The locus of the parameters at which the sign of the LLE changes indicates the dynamical
stability boundaries. A newly developed quantitative measure based on the Shannon entropy
associated with the amplitude process has been used to identify the onset of P-bifurcations.
A global parametric study has been carried out to identify the stochastic stability regimes
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based on visual inspection of the pdf of the state variables, the sign of the Shannon entropy

measure and the sign of the largest Lyapunov exponent.
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Study of dynamical systems by fast numerical computation of
Lyapunov functions

Sigurdur Freyr Hafstein, Asgeir Valfells

Abstract: In this paper we discuss a computational method of numerically
searching for Lyapunov functions for nonlinear systems and demonstrate its
efficacy. The method is built upon applying various theoretical Lyapunov func-
tions, given by integrating some specific positive functions along solution trajec-
tories in the state space, to the vertices of a simplical complex. Then we assign
the remaining values by convex interpolation over the simplices. The benefits
of explicitly constructing the candidate functions in this manner are twofold.
Firstly it is computationally inexpensive, growing linearly with the number
of vertices we calculate a candidate function on, and secondly the freedom in
choosing a positive function allows us flexibility to not be overly constrained
by the shape of the attractor. Finally we will demonstrate the method on
two planar examples. Most notably we will see that the constructed Lyapunov
functions give us lower bounds on basins of attraction that are significantly
larger than those found by other methods in the literature.

1. Introduction

Consider the dynamical system, whose dynamics are given by the ODE
x = f(x), 1)

where f : D — R", D C R", is locally Lipschitz. We denote the (unique) solution to (1)
with initial value & € D at t = 0 with ¢ — @(t,&). If n € D is an equilibrium point for (1),
i.e. f(n) = 0 and consequently ¢(t,7) = n for all ¢ € R a constant solution, its stability
properties are of much practical interest. The equilibrium point 7 is said to be asymptotically
stable if it is stable (in the sense of Lyapunov) and attractive. The former means that for
all € > 0 there exists 6 > 0 such that || —n|| < 0 implies ||¢(¢,€) —n|| < € forall ¢ >0
and the latter denotes that there exists a neighbourhood N, of 1 such that £ € N, implies
limy oo ||@(¢,€) — m|] = 0. The set of all points that are attracted to the asymptotically
stable equilibrium 1 as t — oo, i.e. the largest possible Ny, is called its basin of attraction
and its spatial extension is a measure of the robustness of the equilibrium’s stability.
Stability of equilibrium points and basins of attraction are concepts of fundamental rele-

vance in applications of dynamical systems. They are usually dealt with using the Lyapunov
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stability theory. Some good references are [12,16,18]. The centerpiece of the Lyapunov sta-
bility theory is the so-called Lyapunov function, a scalar-valued function from the state-space
of the dynamical system that is decreasing along all solutions of the system in a neighbour-
hood of the equilibrium in question. Lyapunov functions deliver lower bounds on basins of
attraction through their sublevel sets and for linear systems x’ = Ax they can be constructed
explicitly using algebraic methods. For nonlinear systems there is no general method, but
one can resort to linearization around the equilibrium in question and construct a Lyapunov
function for the linearization. This Lyapunov function is also a Lyapunov function for the
nonlinear system in a neighbourhood of the equilibrium, but it is not a good Lyapunov
function in the sense that it does in general deliver very conservative lower bounds on the

equilibrium’s basin of attraction. For exact formulas see, e.g. [9].

2. Method to Compute Lyapunov Functions

For the reasons discussed in the last section there have been numerous methods proposed in
the literature to generate Lyapunov functions for nonlinear systems [8]. One approach is to
approximate numerically formulas for Lyapunov functions [1,4,5,10] from classical converse
theorems [11,14,19] in the Lyapunov stability theory. These converse theorems assert the
existence of Lyapunov functions for systems with asymptotically stable equilibria and give
formulas, in terms of the systems’s solution, for these Lyapunov functions. Because these
formulas include solutions to the systems, that are in general not obtainable for nonlinear
systems, one resorts to approximate their values at a finite number of points. The Lyapunov
function must be decreasing along solution trajectories in a whole neighbourhood of the
equilibrium in question. If this cannot be asserted the constructed (Lyapunov) function
is of little use, i.e. an approximation to a Lyapunov function is of little value. Therefore
the computed values must be interpolated such that the resulting function is a Lyapunov
function in a whole area. This can be achieved by using the linear programming (LP)
problem from [7], but instead of using LP to compute the values of the Lyapunov function
at the vertices of a simplicial complex, one uses a formula from a converse theorem to assign
values at the vertices and then verifies if the linear constraints of the LP problem are fulfilled
using these values. If the linear constraints are fulfilled for all vertices of a certain simplex,
then the affine interpolation of these values over the simplex defines a function, whose orbital
derivative is negative along all solution trajectories passing through this simplex. This was
already shown in [1].

We improve this method in two ways. First, we incorporate sharper error estimates in
the next section for the LP problem from [7], which leads to less conservative conditions in

its linear constraints. Second, we tune the positive definite function in an integral formula
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from [14] to enlarge the lower bound on the basin of attraction, i.e. we approximate the
Lyapunov function

T el
V(">‘/o 5+ e @

for some appropriately chosen T, 4d,p > 0 at the vertices, instead of using
T 2
Ve = [ el 3)
0

3. Sharper Error Bounds

The error bounds in the LP problem form [7, Def. 6] that served as basis for the constructions
in [1,10] can be sharpened using more regular triangulations and results from [13]. Further,
the statement of the essential part of the LP problem can be considerably simplified.

To achieve this the linear constraints LC4 from [13] must first be rewritten in the notation
of [7]. Denote by Sym,, the set of the permutations of {1: n} :={1,2,...,n}, by B({1:n})
the powerset of {1 : n}, and set Z := Ny X P({1l : n}). Let I and PS;, i = 1 : n,
be strictly increasing functions R — R that vanish at zero and define PS : R" — R",
PS = (PS1,PSy,...,PSy) . Define R7 (x) = S0 | (—1)XVz;e; for every J € B({1: n}),

X7 = Ze"(j) for every o € Sym,, and every i =1:n+ 1, and (4)
j=i
ygzl‘y) : PS(RJ(Z +x3)) forevery (z,J) € Z, every o € Sym,, and every i = 1:n+ 1.

Assume that the components of f in the system (1) are C? and let Bg"ﬂ for every (z,J) € Z

and r,s = 1:n be a constant fulfilling

0 fr(x)

Bﬁfﬁj) > max
0z, 0xs

xeps(RJ(z+ 0,1]m))

()

For every (z,J) € Z, every k,i = 1:n, and every o € Sym,,, define

z,J z,J z,J
A% = ey - (y5T) — y &), (6)

The constraints LC4 from [13] can now be written as: For every (z,J) € Z, every

o € Sym,,, and every i =1:n+ 1:

z,J z,J
ya,] )]_V[ ¢ j )

z,7) ,J+1 z,J
B ED e e fen ") (7)
j=1 eU(J) yo] o‘,j+l)
(2,7) (2,7)
1 (2,7) A(2.T) ( 4(2,T) @ | Ve, 1= Viys il
+ 5 Z B’I‘S AO"I"L (Ao',s,z +Aa s,1 )Z ( (z, j) (z, ]))
r,s=1 j=1 €s(j5) yO’a] o,j+1
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In [13] the vectors

x77 = R7 <z + Zeg(j>> for i =0 : n are used. (8)
j=1
The relationship between the (4) and (8) is with 1 :=e; +e2 + ... + e, that
X177 +y7 = PS(R(2)) + PS(R7 (2 + 1)) (9)

for every (z,J) € Z, every 0 € Sym,,, and every ¢ = 1: n+ 1. Thus with a € Sym,, defined

through a(i) = o(n+1—14) for i = 1 : n, we have o(i) = a(n + 1 — i) and y(Z ) = x279 .
Hence, from (6)
z,J z,J z,J zJ zJ o
AT = len - (v =y S0 = lew - (T =267 =2 ARG
and (7) can be rewritten as
n V[xzja ] _ V[xzja]
J n+1— n zJ
- F“|Xz+?71|” > Z 5 zJ Jz‘ja f(!(n+1 ])( n+?7i)
j=1 Ca(n+1—j) (Xn+1 —7 n— ])
e n | vpals ) - vbaZs
+5 BT ARG i(AZS i+ AT Y e rad I
2 r;1 ; €atnti—j) (X575, — %2 75)

Thus by renaming i < n+ 1 — ¢ and o + «, the linear constraints LC4 from [13] in (7) are

fulfilled, if and only if for every (z,J) € Z, every o € Sym,,, and every i = 0 : n, we have

n V[ija] _ V[xzja

JU
X7 ” Z ZJU, zjg)fU(])

j=1

- (7) (10)

n V[XZJ"] V[XZJU]
(77|

1 = z z (e z o z o
+g D BETANT(AL + AT

r,s=1 Jj=1

€o(j)

We now show the connection between (10) and the statement of the constraints using

the gradient of the Lyapunov function VV as in [7, Def. 6]. The so-called shape-matrix

X270 of the simplex &,7, := co (xg]”,xfj", e ,xf;ﬁ’) is defined by writing the vectors
x2J —xﬁj", x27 —xgﬁ, o, x2Te —x(z)j" consecutively in its rows. For the affine function

Vego : 627, — R defined through

‘/;jg <Z )\szjo) — Z)\jV[ijo] (11)
j=0 =0

for all convex combinations of the vertices of &, 7, it is not difficult to see that with

.
Vage = (VBET) = VT, V7T = VG, VT - Vi)
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we have
Vago (%) = (X, 7, Vago) - (x = x677) + VI[x§77] = viz7e X, 7, (x = x§77) + V[x577] (12)

for all x € 6,7,. This is a simple consequence of the fact that (11) and (12) are affine
functions with identical values at the vertices of &,7,. Thus the gradient of V, 7, is given by
(the column vector) VV, 75 := X;jlavzgg. The linear constraints in [7, Def. 6] corresponding

o (10), but for more general triangulations than discussed here, can be formulated as
~L[Ix277N] = VVage - £577) + B[V Vago |, (13)

where E?7° is a simplex-dependent error bound.

To shorten formulas in the following computations we fix the simplex G,7, and thus
z, J, and o and set X := X,7,. It is not difficult to see that X = LSP, where S :=
diag(s1, s2, . . ., sn) is a diagonal matrix with s; = PS(R7 (z + e;)) — PS(R7 (2)),

10 0
10
) -1 1 0 - 0
L= with L' 0 -1 1 0 , (14)
11 1
0 0 0 --- -1 1

is a lower-triangular matrix L;; = 1 if ¢ > j, and P is a permutation matrix, e/ P = e;(i)
for i = 1: n. Especially P71 = PT. Now set x; := sz" Vi :=VI[x;], VV := VV,7,, and
=(Vi —=Vo,Va—Vo,...,Viu = Vo) T = Va7, and note that

.
YV f(xi) = v X Tf(x;) = (VTX*Tf(xi)) =f(x:) X 'v=Ff(x) PTS 'L v

i—W i—W
T T a—17-1 Va—Vo T 5T a—1 Va—W
= f(X-L) P 57 L~ . If(Xl) P 57
Vn - ‘/0 Vn - Vn—l
=3 B () TP Tey = 30 (o] Pr()
- Sj ; Sj
Jj=1 j=1
AN A 7 Vi —V;
= e pf(x) Z T fo ) ().
j=1 j=1

This implies that in our setting (10) is equivalent to (13) and we can replace the error bound

E*77 in [7, Def. 6] with the sharper estimate from (10):

n
1 Bﬁ"j)Af‘zg A=T7 4 A%77)  wwhich is always < E*J97, 15
2 Ji S0 s

r,s=1
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Remark 1: Notionally it is often more convenient to suppress the dependance on z 7o
and just refer to a simplex &, rather than &,7,. When using this simplified notation one
then refers to BY, and not B for all simplices &, such that &, ¢ PS(R7 (z + [0,1]")),
and it is not difficult to see that one can use different estimates By, for the different &, C
PS(R7(z + [0,1]™)), although this hardly justifies the effort.

Remark 2: From the decomposition X = LSP one can easily derive concrete upper
bounds on some matrix norms of X ' = X! = PTS~'L~! For any matrix norm induced
by a vector norm we have [|X || < [|PT | [|S~H | 1L~ For |- | = |- [ and || || = | - [ln

one can easily see from (14) that for n > 2 we have
—1 —1 -1 -1 -1 T T
12 = 1 e =2, 17 M = 157 oo = _max s ™", and [|P7 |y = [|P7 o = 1.

It follows that || X '] < 25* and || X }leo < 25* with s* := max;—1., |s;|”* and from the
well known || X 1|3 < || X Y1 ]| X5 ||l it additionally follows that || X ~!|le < 2s*.

4. Examples

We present two examples for our method, where we approximate the Lyapunov function
from (2) at the grid points with some appropriately chosen T, d,p > 0. Then we interpolate
and verify the negativity of the orbital derivative of the interpolation as in [1], but use
the sharper error estimate (15) in the LP program. Note that the orbital derivative of
the Lyapunov functions computed by our method is not guarantied to be negative very
close to the equilibrium. This is a known feature of the method, that can, however, be easily
accounted for by using a local Lyapunov function for the linearized system at the equilibirum
to assert its local stability.

We compare our results with the Massera construction from [1], i.e. where the Lyapunov
function is approximated using (3) at the vertices, and to two other approaches suggested
in the literature. The computations were programmed in C++ and run on a PC with an
19-7900X processor.

4.1. Example 1

The first example is a planar system from [6, Ex. 6],

x' = f(x) with f(z,y) = )
0.1z — 2y — z® — 0.12°

We assign in the LP problem (notation from Remark 1 in Section 3)

Bluyl =2 + 06 max |:r| and Bluyz = B;l = 85,2 = 0

(z,y)€EG,
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We set T' = 20 for (3) and (2) and for the latter we set 6 = 0.6, and p = 0.6. The grid
used for the vertices of the simplices was 2001 x 2001 with 4,004,001 points and 8,000,000
simplices/triangles. This corresponds to using the simplices G,7, for z € {0 : 999}*, J €
{0,{1},{2},{1,2}}, and o € {(1,2),(2,1)} in the notation of Section 3. The computation of
the Lyapunov function using (3) was done on the rectangle [—20, 20]?, i.e. the mapping PS
from Section 3 is given by PS(x) = 0.02x (because 0.02-1000 = 20). The computation took
43.6s and the verification of the negativity of the orbital derivative took 0.45s. In 11.96% of
the triangles/simplices the orbital derivative was not negative. For the computation using
(2) on the rectangle [—20, 20] x [—40,40], i.e. PS(z,y) = (0.02x,0.04y) ", the corresponding
runtimes were 51.8s and 0.45s. In 10.05% of the triangles/simplices the orbital derivative
was not negative. In Figure 1 the Lyapunov functions using formulas (3) and (2) respectively
are plotted. In Figure 2 the level sets {x € R? : V(x) < 33} and {x € R? : V(x) < 9}
for these functions respectively are plotted. These level sets are chosen such that they do
not intersect with the areas where the orbital derivative is nonnegative and thus give lower

bounds on the basin of attraction.

Figure 1. The Lyapunov functions computed for system (16) using formula (3) [left] and
formula (2) [right].

In Figure 3 we compare our results with the approach from [17] as implemented in [15],
where a rational Lyapunov function is computed for the same system, and to the method
presented in [3], where Lyapunov functions that are sums of squared polynomials (SOS) are
computed. The software SMRSOFT from [3] was downloaded and used for the computations.
We computed 4th, 6th, and 8th order polynomial Lyapunov functions, but only draw the
level set for the 4th order one, because it delivered the least conservative estimate. It is

notable, that even though this method delivers a much smaller estimate of the basin of
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Figure 2. Level-sets of the Lyapunov functions computed for the system (16) using formula
(3) [left] and (2) [right]. The area where the orbital derivative is not negative is drawn in
red. Since the level-sets do not intersect the area where the orbital derivative is nonnegative

they are lower bounds on the basin of attraction of the equilibrium at the origin.

attraction, it is not a proper subset of our estimates.

4.2. Example 2

The second example is a planar system from [2, Ex. 1],

— Llegz
K = B(x) with fmy) = [ YT D) (17)
—z —y + xy + z cos(x)

We assign

Bl = ( m)ax max(e”/2,2|sin(z)| + |z cos(z)|), Bi2=DBs1 =1, and B3, =0.
z,y)ES,

Further, we set 7' = 20 for (3) and (2) and for latter we set 6 = 0.4, and p = 0.3. As in
Example 1 the grid was 2001 x 2001 with 4,004,001 points and 8,000,000 simplices/triangles.

The computation of the Lyapunov function using (3) was done on the rectangle [—8,4] x
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Figure 3. Level-sets of the Lyapunov functions computed for the system (16) using formula
(2) (outermost, black), (3) (red), the method from [15,17] (blue), and using the software
SMRSOFT [3] (green).

[—8,8] and took 35.6s and the verification of the negativity of the orbital derivative took
0.4s. In 27.9% of the triangles/simplices the orbital derivative was not negative. In most of
the area where the orbital derivative was not negative the Lyapunov function was not defined
because the initial-value problems diverge too fast on the interval [0,7] for the numerical
solver.

For the computation using (2) on the rectangle [—8,3] x [—10,10] the corresponding
numbers were 45.2s and 0.4s. In 23.4% of the triangles/simplices the orbital derivative was
not negative, also mostly because the numerical solver was not able to assign values to the
Lyapunov function at the grid points.

In Figure 4 the Lyapunov functions using formulas (3) and (2) respectively are plotted.
In Figure 5 the level sets {x € R? : V(x) < 8} and {x € R? : V(x) < 5.9} for these functions
are plotted. These level sets are chosen such that they do not intersect with the ares where
the orbital derivative is nonnegative and thus give lower bounds on the basin of attraction.

In Figure 6 we compare our results with the approach from [17] as implemented in [15],
where a rational Lyapunov function is computed for the same system. We also compared it
with the method from [2], but the level sets obtained are very close to the ones from [15]

and we omit drawing them.
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Figure 4. The Lyapunov functions computed for system (17) using formula (3) [left] and
formula (2) [right].

Figure 5. Level-sets of the Lyapunov functions computed for the system (17) using formula
(3) [left] and (2) [right]. The area where the orbital derivative is not negative is drawn in
red. Since the level-sets do not intersect the area where the orbital derivative is nonnegative

they are lower bounds on the basin of attraction of the equilibrium at the origin.

5. Conclusions

We presented an improved method to estimate the basin of attraction for equilibria of dy-
namical systems. The method is based on approximating the values of Lyapunov functions
from converse theorems and assign these values to the variables of a linear programming
problem. The linear constraints of the problem are then verified and in simplices, of which
they are fulfilled at all vertices, the function defined by interpolating these values over the
simplex has a negative orbital derivative along the solutions of the system. Our method is an
advancement of the method presented in [1], but with sharper error estimates and thus less
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Figure 6. Level-sets of the Lyapunov functions computed for the system (17) using formula
(2) (outermost, black), (3) (middle, red), and by using the method from [15,17] (innermost,

blue). In [2] results very close to the ones from [15,17] are obtained using SOS programming.

conservative linear constraints and a more general positive definite function of the solution
under the integral in the Massera construction. We compared our novel method for two
systems with the method from [1] and two other approaches from the literature; one using
rational Lyapunov functions [15,17] and another using sum-of-squares programming [2,3]. In
all cases our method delivered considerably larger inner estimates of the basins of attraction.
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Energy dissipation, free and forced modes in dynamics of two
classes of fractional order systems

Katica R. (Stevanovi¢) Hedrih

Abstract: Generalized functions of fractional order dissipation of energy in the discrete
system and in multi-body system with interconnections by discrete continuum
fractional order layers are defined. Energy dissipations in dynamics of two analogous
classes of the fractional order systems are analyzed. Fractional order modes of the free
and forced oscillations in dynamics of those two analogous classes of the fractional
order systems are identified as eigen independent free as well as forced fractional order
modes. Also, using formulas of transformation of a system of independent generalized
coordinates and eigen main coordinates of considered classes of fractional order system
dynamics relation between total mechanical energy (sum of kinetic and potential
energies) and generalized function of fractional order energy dissipation on one eigen
main fractional order mode is derived. On the basis of these relations, two theorems of
energy fractional order dissipation of a class of the fractional order system with finite
number of degrees of system are defined and proofed. A number of electrical fractional
order oscillators and analogous mechanical fractional order oscillators with one, two or
three degrees of freedom are described. For each of these analogous system expressions
of kinetic and potential energies and generalized function of total system energy
dissipation are formulated with corresponding analogies and corresponding physical
explanations. Corresponding analogous energy analysis for each of analogous pairs is
done. A number of energy change theorems are defined.

1. Introduction

The conception of this paper is to indicate an analogy between separately published different
results of energy analysis and energy dissipation of two class of different mechanical systems, by
identifications of structural, qualitative and mathematical analogies between models giving in result
formally same vibration phenomena in different type of vibration of fractional order system dynamics
as it is discrete system with finite number of degree of freedom and multi-body fractional order system
containing same number of coupled deformable bodies with standard light discrete continuum
fractional order layers. Also, it is possible an identification of analogies [14, 15, 17] with some electrical
circuit chains.

For that reason, for first, let’s to present a number of author’s previous published research results

in series of the papers.

241



In the Refs. [5] and [6] a generalized function of creep fractional order dissipation of fractional
order system total mechanical energy and generalized forces of system no ideal visco-elastic creep
fractional order dissipation of system energy for generalized coordinates are introduced and defined. A
theory of generalized function of visco-elastic creep fractional order dissipation of system energy is
defined. In the Ref. [5], extended Lagrange differential equations second kind for fractional order
system dynamics in matrix formal form are introduced. By use presented matrix method, as special
case, the fractional order chain system dynamics is considered. One example of the fractional order
system with two degrees of freedom as an abstraction of the real part of geared planetary system
dynamics is considered and solved for special case.

In the Ref. [2] a theory of free vibrations of discrete fractional order systems with a finite number
of degrees of freedom is developed. A fractional order system with a finite number of degrees of
freedom is defined by means of three matrices: mass inertia, system rigidity and fractional order
elements. By adopting a matrix formulation, a mathematical description of a class of fractional order
discrete system free vibrations is determined in the form of coupled fractional order differential
equations. The corresponding solutions in analytical form, for the special case of the matrix of fractional
order properties elements, are determined and expressed as a polynomial series along time. For the
eigen characteristic numbers, the system eigen main coordinates and the independent eigen fractional
order modes are determined. A generalized function of viso-elastic creep fractional order dissipation of
energy and generalized forces of system with no ideal visco-elastic creep fractional order dissipation of
energy for generalized coordinates are formulated. Extended Lagrange fractional order differential
equations of second kind, for fractional order system dynamics, are also introduced. Two examples of
fractional order chain systems are analyzed and the corresponding eigen characteristic numbers
determined. It is shown that the oscillatory phenomena of a fractional order mechanical chain have
analogies to electrical fractional order circuits. A fractional order electrical resistor is introduced and
its constitutive voltage - currency is formulated. Also, a function of thermal energy fractional order
dissipation of a fractional order electrical resistor is discussed.

In the Reference [7], dynamics of multi deformable, ideal linear elastic bodies (beams, plates,
membranes, belts with corresponding same boundary conditions, see Fig.1) coupled by standard light
fractional order discrete continuum layers is considered by using Petrovi¢’s theory of elements of
mathematical phenomenology (see Refs. [15] and [16]). The sixth chapter of Petrovié’s theory contain
phenomenological analogies and include the mathematical and structural analogies and qualitative
analogy. Starting with coupled partial fractional order differential equations along transversal
displacements of the linear elastic beams, same boundary conditions, and coupled by fractional order
discrete continuum layers, system of coupled ordinary fractional order differential equations along

eigen time functions in each eigen amplitude functions is obtained. Independent eigen main fractional
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order modes and set of characteristic numbers of the corresponding eigen time function corresponding
to eigen amplitude function are obtained. Using Petrovi¢’s theory of mathematical analogy and
qualitative analogy properties of eigen main fractional order modes and characteristic numbers of time
functions of transversal vibrations of multi-plates as well as multi-membranes coupled by fractional
order discrete continuum layers are obtained. Energy analysis in fractional order discrete continuum
layer is done. Generalized function of fractional order energy dissipation in fractional order discrete
continuum layer is defined.

0% y.t) ,,'/ ! N(x,y)

______

VT
Y ow,(xy,t)

a* b*

Figure 1. Figure 1. Models of multi membrane hybrid system: Five membranes, same contours and
boundary conditions, coupled by discrete continuum fractional order layers with translator
and rotator inertia properties: (a*) circular membranes; and (b*) rectangular membranes
(from Reference [13]).

In the Reference [13], see Fig.1, a model of multi membrane fractional order oscillations is
presented and corresponding partial fractional order differential equations are solved. A hybrid
fractional order element with translator and rotator inertia properties is introduced by corresponding
constitutive relations. Generalized function of fractional order energy dissipation is introduced.
Generalized forces of two membrane and fractional order layer as well as of its constitutive element are
expressed by energies and generalized function of fractional order energy dissipation. For obtaining
solution of system of partial fractional order differential equations, it is used Euler-Bernoulli method
of particular integral and transformation of the system of ordinary fractional order differential equations
along eigen time functions introducing eigen main coordinates of fractional order system. In result it is
obtained a system of independent ordinary fractional order differential equations each along one eigen
fractional order main coordinates. Eigen fractional order main modes of an eigen tine function in each
of infinite number of eigen amplitude shapes are defined. Energy analysis of the multi membrane

system vibrations as well as energy analysis of eigen fractional order modes are presented.
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In the Refs. [3] and [4] elements of mathematical phenomenology, and especially focused to
mathematical, structural and qualitative analogies, are presented by numerous examples.

In the series of author’s published References, starting from [1], and continued by [8-12] ,
serries of research results concerning vibrations and energy analysis in different mechanical
conservative and no conservative discrete and/or discrete continuum systems, as well as in bio-
dynamical systems are presented. Also, a series of theorems of mechanical energy change in dynamics
of discrete fractional order system and of a multi-deformable body fractional order system are defined
with corresponding proofs. Using structural, qualitative and mathematical analogies between
mechanical chain system and electrical chain system the theorems of total mechanical energy change
in mechanical fractional order system are presented as analogous with the theorems of total electrical
energy change in electrical fractional order system. Also, see Ref. [16] by Rosikin Yuri and Maria
Shitikova.

2. List of some selected earlier published theorems

Using previous published results and formulated theorems it possible to point out some of these
for their use to obtain new conclusion of energy change, fractional order dissipation of energy in the
system dynamics and point out some main mathematical, structural and qualitative analogies.

For that reason we made some list of selected energy change theorems:

Theorem 1: For a class of fractional order no conservative discrete system dynamics, with N

degrees of freedom, determined by matrix column of independent generalized coordinates (X) and

k=1,2,3,...n

defined by: matrix of system inertia properties A = (akj)i 1230

, matrix of system rigidity
k=1,2,3,...n

A , matrix of system visco-elastic creep fractional order properties
1=1,2,3,...n

properties C = (ij)i

k=1,2,3,...n

] , the rate
j=12,3,..n

_ L k=1,2,3,..n . . 5T . _ ( )¢
C,= (ca’kj )_) 12 and matrix of system viscous-linear properties B = bkj R

of fractional order degradation of system total mechanical energy E =E, + Ep is equal to negative
sum of double classical Rayleigh function 2 and matrix product between velocity (X) and first

partial derivative _ 0P,  of generalized function Pa of fractional order energy dissipation with
oDy {x}

respect to fractional order derivative D/ [x] and presented in the mathematical form:

k=n j=n
9E_ Lo 'Z oP, for a=0 and O<a<1 @)

X )
dt <™ oD X, )
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where D;”[-] is fractional order differential operator of the ath derivative with respect to time tin

the following form:

P T O S I ) @
D)= =ra_aﬂi£@_aa7

and F(l—a) is Euler Gama function; Pa is generalized function of fractional order energy dissipation

in the form:

P (0 1) 5 Ol e x5 (07 be. 22 7, e ) @

@ is classical Rayleigh function in the form: q)(x) = %(X)B{X}

For proof of this theorem see References [2,5].

Theorem 2: For a class of fractional order no conservative discrete system dynamics, with N

degrees of freedom, determined by matrix column of independent generalized coordinates (X) and

k=1,2,3,...n

defined by: matrix of inertia properties A=(akj)¢ 228
— j=1,2,3,...

, matrix of rigidity properties

k=1,2,3,...n

C= (c )i k=L23.-1 ‘matrix of viscoelastic creep fractional order properties C = (cﬁ )J’ ]
kj/_y a 0K/ j=1,23,..n

=1,2,3,..n

k=1,2,3,...n

) , with properties that both side product
j=1,2,3,..n

and matrix of viscous linear properties B = (bkj)L
N

Vv k=1,2,3,...n

by modal matrix R :({Knsk }):(Kjk)

129 of corresponding linear system produce all system
— s=1,2,3,...

matrix  in  diagonal  fom: A =R'AR =diag(a,) C =R'CR =diag(C,)

B =R'BR =diag (655) C,=R'C,R=diag (E(a)ss), then rate of each system independent eigen
main fractional order mode total mechanical energy E, =E,;, +E o degradation is equal to
negative sum of double Rayleigh function 2<I)S and matrix product between velocity .fs and first

partial derivative 8Pf ] of generalized function of fractional order energy dissipation with respect
oDy g

to fractional order derivative D [£_]:

dE . oP
s =20, ¢, ——, for a#00<a<1s=123..,n 4)

or in the form:
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d(isz—zqns—aa,ssgsof[gs], for a#00<a<l s=123..,n ()

where &, S=1,2,3,...,N eigen (main) fractional order system normal coosdinates.

Shaoes of independent eigen fractional order modes &, (t, a), §s=123,..,nfor0<a<1
in function of time and fractional order drivative ¢ , graphycally are presented in References [2] and

[5].

Theorem 3: For a class of fractional order no conservative discrete system dynamic, with N

degrees of freedom, determined by matrux column of independent generalized coordinates (X) and

) . _— . k=1,2,3,.. . - .
defined by: matrix of inertia properties A = (akj)¢ 2123 ” , matrix of rigidity properties
k=1,2,3,...n . . . . )
C= (ijy 1230 matrix of visco-elastic creep fractional order properties
_ k=1,2,3,...n . . . . _ k=L,2,3,..n :
C,= (Ca,kj)i i-12.3..n and matrix of viscous linear  properties B = (bkj)i 23" with

properties that both side product by modal matrix R = ({Krfk }): (KS )¢ K230 o corresponding

nk /- s=1,2,3,...n

linear system produce all system matrix are not in no diagonal form: A =R’AR=diag(5ss)
C=R'CR=diag(C,) B=RBR= diag(tzs) C,#RC,R# diag(E(a)SS)nthen each of the

system eigen main fractional order mode, determined by coordinates fs ,$=12,3,...,N are coupled

and no independent one to other.

i = followin
For thise case, by use matrix formula of coordinate transformation {X} R{é } g

matrices B = R'BR =(5,5) amd ¢ _R'c,R = () S22 ' are not diagonal, and then expressions

s=1,2,3,..

of kinetic energy, potential energy expressed by new coordinates &, S =12,... N are same as in

previous case defined in theorem 2., but Rayleigh function of linear energy dissipation and generalized

function of energy fractional order dissipationof energy take the following form:

20 =(x)B{x}=()B £ |= Z;le b, & = SZ:ZSZ::&D 6)
2P,.. =Py ix))c, Pr ixlf= 0 e e, r e} 7
Szn:ic era[gs]Da[gr] Eizpwoy, for =0 O0<a<l 8)
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where @ and P, are denotations of the term in the functions of linear and fractional order energy

#0.sr

dissipation which are dependent of all coordinates 55 ,$=12,...n and which express interactions

between fractional order modes, which are not independent.

3. Main coordinates and main eigen normal fractional free and forced modes of eigen
time functions of eigen amplitude shape of transversal vibrations of multi-
deformable body system with discrete continuum fractional order layers

Transversal free and forced vibrations, of a hybrid multi membrane system, are analytically
investigated in multi frequency vibration regimes on the basic of result obtained for corresponding
structurally analogous with multi beam, as well as multi plate system transversal vibrations (for detail
see Refs. [13] and [7]).

Using obtained conclusions for fractional order free as well as forced transversal vibrations of three
deformable body (beam, plate or membrane) fractional order system with same contour and boundary
conditions is possible on the basis analogies and generalization of these analogies between generalized
coordinates of vibration of the discrete fractional order chain systems with finite number of degrees of

freedom M and finite number of eigen time functions in each eigen amplitude shape function of
transversal vibration of bodies in fractional order system and to write following analogies between
kinetic parameters and eigen time functions in one eigen amplitude shape function describing fractional
order free vibrations:

1* eigen amplitude shape functions for membrane w _(x,y), n,m=1234,....,c0 are analogous
with eigen amplitude shape functions for plates W, (x,y):N,m=1234,....,0, (as well as for beam with
W, (x):m=12,34,....,00}

2* Eigrn time functions in an eigen amplitude shape function for transversal vibrations of

membranes and plates Tk(nm)(t) k=123,....,M, nm=12,34,....,co are analogous with eigen time
functions in an eigen amplitude shape function for transversal vibrations of beams Tk(m)(t) ,
k=123,...,M,m=1234,....,00 in vorresponding eigen amplitude shape function;

3* Eigrn main normal coordinates (as well as eigen normal fractional order modes) of eigen time

function in an eigen amplitude shape function for membranes and plates f(nm)s (t) $s=123,..,M,
n,m=1234,....00 are analogous with eigen normal coordinates (as well as eigen normal fractional

order modes) of eigen time functions in an eigen amplitude shape function for beams g(m)s(t),

§=123,..,M, m=1234,...,0;
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4* eigen square of circular frequencies a)nzm(s) and E)j(nm)(s), s=123..,M,

n,m=212.3,....,00 of eigen normal fractional order modes of an eigen time function in a eigen
amplitude shape function of free transversal vibrations of plates and membranes are analogous with
eigen square of circular frequencies 07£(5) and @j(m)(s), $s=123,....M, m=1234,....,0 of
eigen normal fractional order modes of correspodning eigen time fubctions in an eigen amplitude shape
function of free transvesal vibrations of beams;

5* Eigen normal fractional order modes [g(nm)s(t)]uke cosl ,$=123,....M,

Fam)(s 1+ am)s))
n,m=12,3,....,00, of corresponding eigen time function in an eigen amplitude shape function of free

transversal vibrations of plates or membranes are analogous with eigen normal fractional order modes
[é(m)s (t)]Like cos(

function in an eigen amplitude shape function of free transversal vibrations of beams;
.§=123,....M,

_ , §=123,....,M, m=1234,....,00 of corresponding eigen time
m s +e(m)s)) T

. o .
6* Eigen normal fractional order modes [‘f(nm)s (t)]Like iy
n,m=123,....,00 of corresponding eigen time function in an eigen amplitude shape function of free
transversal vibrations of plates or membranes are analogous with eigen normal fractional order modes
[g(m)s (t)]Like Sin(’r)(m)(s)lJra(m)(S)) 'S :1’2'3'""’ M.m :1’2’3’4’"“’00 of corresponding eigen  time
function in an eigen amplitude shape function of free transversal vibrations of beams;

7*Ordinary fractional order differential equations of each independent fractional order oscillator of

eigen time functions in an eigen amplitude shape function of plates or membranes along normal
coordinates in the form £ (t)+ @2 (o) Ems (t)+ E)j(nm)(s)D{’[g(nm)s(t)]:O, $=123..,M:
n,m=2123,....,00 are analogous with ordinary fractional order differential equations of each
independent fractional order oscillator of eigen time functions in an eigen amplitude shape function of
beams along normal coordinates in the form: f(m)s(t)Jr5;(S)§(m)s(t)+@j(m)(S)Df[g(m)S(t)]zo,
s=123..,M, m=1234,..,00 and present analogous eigen fractional order independent

oscillatory modes of eigen time function in an eigen amplitude shape function in free vibrations regimes
of multi body system dynamics.

7* Corresponding system of three independent ordinary fractional order differential equations
along eigen main coordinates f(nm)s (t) §s=123, n,m=1234,....,00.0f eigen time function in

an eigen amplitude shape function for forced transversal vibrations of three plate or three membrane
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system excited by three surface single frequensy forces distributed along deformable bodies, and with

different frequencies, are in the following forms:

h01,nm sin (Ql,nmt + ‘91,nm) Kgr)n)sl Kzir)‘n)m
hoz,nm Singgz,nmt + '92,nm) Kzﬁr)n)SZ KEiZn)zz (9)
B ~ ~ w Do SINE2; it + S Kfi)m)ss Kgr)n)as
<§(nm)1(t)+ wnzm(i)g(nm)l(t)"' wnzr(nm)(l)Dt [g(nm)l(t)]> = K(l) K(Z) K(3)
(nm)31 (nm)31 (nm)31
Kﬁnm)SZ Kgir)n)sz Kmﬂsz
K&)m)% Kgﬁgﬁn Kgian
K&)m)al hOl,nm sin (Ql,nmt + "gl,nrn) Km)n
Kﬁ)m)az hoz,nm sin Egs,nmt + ‘gz,nm; Kﬁir)n)az (10)
K® s Do SIN(Q ot + & KR
¥ ~2 ~2 a (nm)33 '03,nm 3,nm 3,nm (nm)33
<§(nm)z (t)+ Oon(2)S(vm)s Z(t)+ a)a(nm)(Z)Dt [";(nm)z(t)}) = K® K K®
(nm)31 (nm)31 (nm)31
K&)m)SZ Kzﬁ)m)SZ Kgi)m):az
Kg\)m)aa Kgir)n)as Kgirln)as
K %1)m)31 K m)31 ho1 nm Sin(fll,nmt + ‘91 nm)
K b o (11)

r)n)33 h03,nm Sin(Q&nmt + ‘93,nm)

(
( (H)
2 .
:n)m)sz K}nm)sz hOZ,nm sm(gz,nmt +9
(1) }2
(nm n
)

<§(nm)3(t)+ B (1) + D2y [§<nm)a(t)]> = e
)31 (nm)31

)
r)“)32 K{i?mz
r)n)33 Kﬁ%)xa
s=123, n,m=1234,....,0

Previous system (9)-(11) of ordinary fractional order differential equations of each independent
fractional order forced oscillator of eigen time functions in one eigen amplitude shape of plates or
membranes along eigen normal coordinates f(nm)s(t)vs =123,...M:n,m=12,3,....,00 are analogous with
corresponding system of ordinary fractional order differential equations of each independent fractional
order oscillator of eigen time functions in one eigen amplitude shape of beams along eigen normal
coordinates é:(m)s (t) s=123,...,M, m=1234,....,c0 and present analogous eigen fractional order
independent forced oscillatory modes of eigen time function in one eigen amplituude sjape function in

forced vibrations regimes of multi body system dynamics.

From previous, last, system of ordinary fractional order differential equations, three eigen main

coordinates ;’(nm)s(t) of eigen fractional order time functions T, (t). k=123,

n,m=1234,....,00 in one eigen amplitude shape function W__(X,y), nm=1234,....,0 of

forced transversal vibrations of the three plate system is possible to obtain by use Laplace transform
and developmement in time series, and result after inverse Laplace transforms. Also, this system is
possible to solve by use the generalized Lagrange method of variation constants using obtained

particular solutions. We can see that these vibrations will be like four frequency fractional order
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vibrations, as a result of combinations of free fractional order like one frequency vibrations and
additional three of three frequency external excitation three forces distributed along each of middle
surfaces of the bodies (plates, membranes or beams). But, our aim is to present analogies and
mathematical phenomenology in this paper, no to present solutions and analogies between changes of

energies carried on the eigen main fractional modes. .

4, Conclusions in the form energy analysis

In part 3, from pointed results, we can conclude that eigen main coordinates of eigen time function
in one eigen amplitude shape of transversal vibrations of a class of multi-body fractional order system
correspond to eigen main coordinates of a chain fractional order system for free as well as for forced
vibrations and that in considered class of the systems appear independent fractional order modes for
free as well as for forced vibration regimess.

Previous conclusions directed us to the two previous theorems 1 and 2 from chapter 2. From these
theorems mathematical formulation (1), (4) and (5) present change of total mechanical energy of
fractional order system dynamics carried on vibration system dynamics, and also carried on each of
eigen fractional order modes in a class of discrete fractional order oscillatory system dynamics in
analogy applicable in full to a class of multi-deformable body (beams, plated and membranes) system
with coupling discrete continuum fractional layers, but for free vibrations.

For forced vibration it is necessary to take into account power of active transversal forces
distributed along middle surface of all deformable bodies along transversal displacements during
transversal vibrations in the system and expression (1) from Theorem 1 take the following form:

dE k=n j=n ) oP k=3 . and O <o S 1
kS Y P o A, f
=20 S5 g S (v (oA for a=0

=1 j=1

Also, expressions (4) and (5) from theorem 2, for forced vibrations, need correction by an

additional term presenting power of generalized force for eigen normal coordinate fs,

§=1,2,3,...,N along system motion along this coordinate.
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Estimates of asymptotic solution of linear-quadratic optimal control
problems with cheap controls of two different orders of smallness

Margarita Kalashnikova, Galina Kurina

Abstract: This paper is devoted to a linear-quadratic optimal control problem
with a performance index containing two different powers of a small parame-
ter at quadratic forms with respect to controls. Problems of such type arise,
for instance, as a result of applying the convolution method to problems with
three performance indices, where the cost of one cheap control is negligible
in comparing with another one. Estimates of the proximity of the solution of
the original problem to an approximate asymptotic solution are obtained for
the control, trajectory, and performance index. The used asymptotic solution
has been constructed with the help of the so-called direct scheme method con-
sisting of immediate substituting of a postulated asymptotic expansion of a
solution into the transformed problem condition and determining optimal con-
trol problems for finding terms of the asymptotic expansion. The transformed
problem is obtained from the original one as a result of variables change. It is a
singularly perturbed optimal control problem with three-tempo state variables
in a singular case. The constructed asymptotic solution contains regular and
boundary functions of four types. It is also proved that a value of the perfor-
mance index does not increase when higher order asymptotic approximations
to the optimal control are used. The illustrative example is given.

1. Introduction

The motivation for a study of cheap control problems is justified in [4] by the pole assignment
problem if eigenvalues that are ”infinite” of different orders may be desired. Problems of such
type also arise under research of models of multi-sector economics where control functions
have different levels of ”cheapness”. If we apply the convolution method to problems with
several performance indices, where the cost of one control is negligible in comparing with
the other ones, we again obtain a problem with cheap controls.

Publications devoted to cheap control problems basically deal with the case where con-
trols in a performance index have the same order of smallness (see surveys of such publica-
tions, for instance, in [2,5,8]). The papers [3-5,7,10] concerning cheap controls with different

order costs are reviewed in [9].
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The present paper deals with a problem, having controls of two different levels of ” cheap-

ness”, of the form

T 2
(k) (k)
I, Dy =12 /(z'W(t, e)z+ 3 v R(t,)v) dt — min, (1)
0

k=1

dz/dt = A(t,e)z + C(t,e)v, t €[0,T], 2(0,¢) = 2°, (2)

where T' > 0 is fixed, (1k))(7§7 €) € R™, v(t,e) = ((11))

(k)
W(t,e), R(t,e), A(t,e) and C(t, €) are assumed to be sufficiently smooth with respect to their
(k) (k)
arguments, W (t,e), R(t,e) are symmetric, W (¢,0), R(t,0) are positive definite, k = 1,2,

2
(t,e), (v)(t, )", z(t,e) € R", the matrices

n = n1 + ng, the matrix C(¢,0) is invertible for all ¢ € [0,7]. Here and further in this paper
€ > 0 is a small parameter and the prime denotes the transposition.

The formalism of constructing asymptotic solution of problem (1), (2) of the first and
higher orders has been presented respectively in [5] and [9]. It is based on the so-called direct
scheme method (see [1], [2]) and boundary function method (see [12]) applied to transformed
problem obtained from (1), (2) with the help of variables change. This method consists of
immediate substituting of a postulated asymptotic expansion of a solution of the boundary
layer type into the problem condition and determining optimal control problems for finding
terms of the asymptotic expansion.

In this paper, we will estimate the proximity of an approximate asymptotic solution
constructed in [5] and [9] to the solution of original problem (1), (2) with respect to the
control, the trajectory and the performance index. It is established that a value of the
minimized functional does not increase when higher order asymptotic approximations to the
optimal control are used. Moreover, we provide an example, which illustrates the paper’s

results.

2. Formalism of constructing asymptotic solution

In this section, we present some results from [5,9] concerning the algorithm of constructing

asymptotic solution of problem (1), (2).

At first, using the variables change (Z)(t, €)= sk('lf))(t, £), (glj)(t, €)= (f (']LC))(S, e)ds, y(t,e) =
(5 (te), D t2)), alt,e) = 2(t,e) - Clt,)ylte), witie) = (@(t,2),y(te)), ult,e) =
((é)(t, e), (121)(t, ¢)’)" original problem (1)-(2) is reduced to the following three-tempo optimal

control problem

Poi Ju(u)=1/2 / (W' Wt ) + W' R(E, )u) dt — min, 3)
0
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)

dx/dt = A(t,e)x + B(t,e)y, Ekd(z)/dt =G , k=12, (4)
2(0,¢) = 2°, y(0,e) =0, (5)
W (t,e) W (t,e)C(t,¢) (€)) (2)

where W(t,e) = , R(t,e) = diag( R(t,e), R(t,¢€)),

C(t,e)Wi(t,e) C(t,e)W(t,e)C(t,e)
B(t,e) = A(t,e)C(t,e) —dC(t,e)/dt.
Since for sufficiently small € > 0 the matrix R(¢,¢) is positive definite and the matrix
W(t,e) is positive semi-definite then problem (3)-(5) is uniquely solvable and the optimal

control can be found from the equality
B¢ —R(te)u=0, (6)

where the costate variable £(t,e) = (C(¢,¢),n(t,e)")’, n(t,e) = (<117)(t7€)'7<727)(t,5)')', is a

solution of the problem

5(5)% =W(t, e)w — A(t,e)'€, (7
&(T,e) =0, (8)
(1) (2)
A(t,e) B(t,e) B(te) ) ) 0
At =| o 0 o | Bta=| Bue Bue [B=]|In 0

0 0 0 0 In,
It denotes an identity matrix of the order k, £(¢) = diag(In,eln,,e%In,).
According to [12], [13] a solution of problem (3)-(5) is sought in the following form

1

v(t,e) =V(t,e) + Y _(ILiv(ri,€) + Qiv(0i, €)), 9)

i=0

where v(t,e) = (w(t,e),u(t,e)), ¥(t,e) = 3,50 gv(t), t € [0,T], 7 = t/e', o, =
(t=T) /e Wiv(ri,e) = 32150 €' iv(73), Qiv(oise) = Y5067 Qigv(ei), i = 0,1, v,(t) are
regular functions, II;;v(7;) are boundary functions of the exponential type in a neighbour-
hood of t = 0, Q;;v(c;) are boundary functions of the exponential type in a neighbourhood
oft="1T.

The algorithm of the direct scheme method consists of immediate substituting expansion
(9) into problem condition (3)-(5) and determining the optimal control problems P;, II;; P,
Qi; P for finding v;(¢), ILi;v(m:), Qi;v(0oi), i = 0,1, respectively. The explicit expressions for

these problems are given in [9].
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3. Asymptotic estimates for control, trajectory and performance index

Suppose that optimal control problems P;, II;;P, Qi P, i = 0,1, j = 0,n, have been
solve(/i.v Let us esti/rvnate the proximity between the asymptotic sollition of problem (1)-
() Vnoa(te) = Walti)/¥, Zulte) = Fnlt,) + jp[CL LY (b nmss k = 1,2,
constructed by the direct scheme method and the exact solution. Here for the expansion
of a function w = w(e) with respect to e: w(e) = 3,5, e/w; we use the following notation
[W]n = Wn, Wn = E;L:O EjUJj.

We write down the costate variable in the form of expansion (9)

1
.f(t, 5) = g(tv E) + Z(Hzf(Tz, 5) + Qi&(gi, 6))3 (10)
i=0

where the each summand is represented as a series with respect to non-negative integer

powers of & with corresponding coefficients Zj(t)7 1L;€(7), Qijé(o:), 1 =0,1.
Further we write the relations for the remainder terms of asymptotic solution of problem
(4)-(8). Let us introduce the notation r,w = (rp@’,1y’) = W—Wn, Th€ = (rul’,ran’) = £—
(k) ~ e (k)

~ x (k) y ~ Tn (*) Y Tn® (%)
§nX: 7YZ Xn: ~ Y'n: —~ ,’I"nX: 7rnYZ
) (k) ) ) *
n Cn 7 m™(
” (?5)
" E k = 1,2. Taking into account that state equations and costate equations for
Tn 1

constructed optimal control problems P;, II;; P, Qi; P, i = 0, 1, are obtained by substituting
expansions for v(¢,¢) and £(¢,€) into (4), (6), (7) and equating coefficients of the same power
of ¢ separately depending on t, 7;, 0;, © = 0,1, we get for sufficiently small ¢ > 0 from (4),

(6), (7) the following system

dr,X 6] on @ 2 (0
T A(t,e)rn X+ B(t,e)rn Y + B(t,e)rn Y + V(t,¢),
dr (Yl) 1) ) Qo 2
€ chLt = A(t,e)rn X+ Bi(t,e)rn Y + Ba(t,e)rn Y + V(t,¢), (11)
2)
ydrnY @ 2) o @ 2 @
T At e)rnX 4+ Bi(t,e)rn Y 4+ Ba(t,e)rn Y + V (t,€),
0 (@) (ZB) 0 ) 0 0
where A = > = (1) ai = 17 27 [ (é') @ :l = WC, A = (1) (1)
W A S 0 s -B
Diy D12 | () 0 él—)l (€0 0 0| @ 0 0
D=CWC=| , B1= , B2 = A= @
D1z D2 Diu 0 D2 0 s’ —B
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(2)

@ 0 0| @ 0 R , , ,
Bi= , , Ba= (for brevity, the arguments ¢, ¢ in the notation of
12 0 Dy 0
© S SN RC) @ - @
matrices are dropped), V (t,£) = A(t, )Xo + - B(t,e)Yn+ Bt a) —dXn/dt, V(te) =
(1) ~ (1) 1) (1) (2) (1) (2) ~ (2) (1)
Alt, s)X + Bl(t E)Y + Ba(t,e) Y, —edY n/dt, V(t,e) = A(t e)Xn + Bi(t,e) Y, +

@ @
Ba(t,e)Yn—e¢ dYn/dt.

Taking into consideration conditions for terms of expansions (9), (10) and the equalities
ooz (10) = 0, Myoz(r1) = Mnz(m1) = 0, Hw(gl;)(n) = 0 we obtain from (5) and (8) the

boundary conditions

raw(0,€) = —Qonw(—T/e, ) — Qunw(—T/e?, &),
r&(T,e) = —ﬁOnﬁ(T/a, €) — ﬁlng(T/52,e).

(k)
In view of the algorithm of constructing asymptotics (9), (10) the functions V, k =0, 2,

satisfy for sufficiently small € > 0 the following estimates:

(0)
IV ()l < el + " (exp(—t/e)+

+exp(a(t—T)/e)) + en_l(exp(—wt/SQ) + exp(ee(t — T)/SQ))), (13)
IVl < (™ + ™ (exp(—z0t/e2) + explan(t — T)/e2), |V (t, o)l < ee™,

where positive constants ¢, & in this paper are independent of ¢, ¢.
Using the variables change pnw(t,e) = rnw(t,e) + Qonw(—T/e,e) + Quaw(—T/e2,¢),
pn(t,€) = rul(t,e) + Moné(T/e,e) + 1, &(T /<2, €) we get from (11), (12) the system

donX (€] o @ @ (O
P2 = At )paX + B(t)pn Y + B(t,e)pnY + V (t,2), (14)
iy @ (1) oW @ o (15)
€ chLt = A(t,&)pn X+ Bi(t,e)pn Y + Ba(t,e)pn Y + V(t,¢),
d (2) (2) (SO INC)) @ @
g? p;t = A(t E)pnX 4+ Bi(t,e)pn Y + Ba(t,e)pn Y + V (8, ¢), (16)
pnw(0,€) =0, pné(T,e) = 0. (17)
(k)
Expressions for V (t,e), k = 0,2, can be easily written. They satisfy respectively esti-

mates of form (13).

Since D(t,0) is positive definite for all ¢ € [0, T] then the matrices Das (¢, 0) and Dy (t,0) =
(1)
D11(¢,0)—D12(t,0)Daa(t, 0) "' Diaf(t, 0) are also positive definite. Therefore A1 (t) = B1(t,0)—
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Bat.0) Bt 0 Broy= | O BG4 A = Bat0) =
D11(¢,0) 0
0 R0
= (t,0) are positive Hamiltonian matrices. For each t € [0,7] they
Das(t,0) 0

have non-zero real eigenvalues which are symmetric with respect to the origin.

Assume that the following condition takes place
(¢) for all t € [0,T] eigenvalues of the matrices Ax(t), k = 1,2, are different and arranged in
the order of increasing.

In view of the forms of Ax(t) the boundary value problems

(k) k) (K k
Y Jdt = Au(8)Y, G ©0) =0, T (1) =0, k=1,2, (18)
are uniquely solvable.
. o (R) (k) (k) (k) . . .
It is easy to see if (Y1,..., Y, , M-, M, ) is an eigenvector of the matrix Ax(t) for
k k k k
the eigenvalue A, then (—%;1), . —(y)nk,gh), s (n)nk)' is the eigenvector of the same matrix

for the eigenvalue —A. It follows from the assumption (¢) that eigenvectors of the matrix
(k) (k)

: . : Y Bu B
Ak(t) are linearly independent. If we consider the matrix B = () (k)

Bao1 B2z

of eigenvectors of the matrix Ax(t) corresponding to eigenvalues arranged in the order of
(k) (k)
increasing then it is obvious that matrices B 11, B 22 of the order ny are non-singular. Hence

consisting

the conditions from [13, p.125] are fulfilled and following to [13] it is possible to construct
for boundary value problems (18) the matrix Green functions (Gk)(t, s,€), which satisfy the
inequalities H(g(t,s,a)n < cexp(—ea|t — s|/e¥), t,s € [0,T], k =1,2.

Note that a limit passage of initial value problem solutions for systems of differential
equations containing small parameters in front of the higher derivatives has been studied
in [11] under small parameters tending to zero. Following to the terminology of [11], equations
(18) are called as associated systems of the second (k=1) and first (k=2) orders. The limit
passage of boundary value problem solutions for systems of such type has been researched
in [6].

Further the following two lemmas are needed.

Lemma 1 If G(t,s) is a matriz Green function of the uniquely solvable on [0,T] boundary

value problem

dx/dt = A(t)x + f(t), Piz(0) =0, (I — P)z(T) =0
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where the operator A(t) is invertible for all t € [0,T] and Py is a projector then

0G(t,s) OG(t, s) 1
T _A(t)TA(S) , t#s.

Let G be a contractive mapping acting in a Banach space X, i.e. there exists a number

0 < ¢ < 1 such that for all 1, x> € X the inequality ||G(z1) — G(z2)|| < q||z1 — 22| is valid.
Lemma 2 Ifzq =0, zx = G(zk—1), k=1,2,..., and ||z1]| < a, then ||zk| < a/(1 —q).

Theorem 1 Under sufficiently small € > 0 for a solution (5)*(-,5), k=1,2, z.(-,€) of

(k)

k
problem (1), (2) the inequalities |0 x(t,€) — & n_n(t, )| < ™5, |zu(t,€) — Zalt,€)|| <

ce™, t € [0, T), are realized.

For the proof of this theorem system of differential equations (14)-(16) with boundary con-

ditions (17) is reduced with the help of Lemma 1 to a system of integral equations. Lemma

2 and the estimates for the matrix Green functions (g(t, s,€), k =1,2, allow us to apply the
principle of contracting mappings.

Problem (4), (5) with some control ('Z)(t), k = 1,2, belongs to the critical case in the
singular perturbations theory. Such case has been studied in [14]. One of the approaches for
finding asymptotic solution for controlled systems consists of searching a feedback control
ensuring the system stability (see, for instance, [3], [10]). However according to specific

structure of the considered problem for a special control the following lemma is valid.

Lemma 3 Asymptotic solution of form (9) can be constructed for problem (4), (5) with
1) (2 1 1

the control u = U, = ((u)n, (u)n). Moreover asymptotics terms Iz, Qsjx, Hij(y), Qij(y),

. 2 @ oo = B 2 @ o e NG

i=0,1, Iy, Qujy withj =0,n, y;, llo; y, Qoj y with j =0,n—1, and T;, y; with

7 =0,n — 2 coincide with the corresponding terms in the expansion of the optimal trajectory

() (2)
Tx, Y * 7 Yy *

Theorem 2 For sufficiently small € > 0 the inequality J((ll;>n_1,(12))n_2) — J((ll))*,(?*) <

ce®™ 72 takes place.

Theorem 3 For sufficiently small e > 0 the values of the performance index do not increase

1 @
if the next approximation to the optimal control is used, i.e. the inequalities J(('U)jfl, ('U)j72) <

1 2
J((U>j_2,<v)j_3), j=1,n, are valid.

The proof of the last two theorems is based on Lemma 3.
Unfortunately, in view of the limitation of the paper size we cannot present here proofs

of the statements in details.
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4. Example
Consider the following optimal control problem of form (1), (2)

1
J(9, D = 1/2/(((?)2 (D) + 2@ + D)) dt - min,
0

d2dt =Y 2+ 6 -100)%, d2/at =%, P(0,¢) =10, P(0,¢) = 5.

Using the control optimality condition in the Pontryagin maximum principle form, it is

not difficult to obtain the exact solution of this problem.

k k
With the help of the variables change (llL) = 6(11J), <12L) = 52(121), (y>(t,5) = Ot(v>(s,5) ds,

P -9 _ (5- 105)(31/)7 @-9_ (12/), we get the following three-tempo optimal control

problem of form (3)-(5)

Je(u) = 1/2/(<w,Ww> + (u, Ru)) dt — muin,

(2) (2)

42t =2 )2+ (5 —100)% /2, dP jdt = 0, ed'y jat = &, 2% jat = 2,

@(0,6) =10, P(0,6) =5, §(0,6) =0, F(0,¢) =0,

1 0 5-10e 0 1/2 0 (5-108)/2 0
0 1 0 1 0 0 0 0
= 9 ,A: 7R:
5—-10e 0 (5—10¢)* 0 0 0 0 0 0
0 1 0 1 0 O 0 0

The symbols Wi, A;, R; will denote coefficients with ¢’ in expansions of three last matrices
with respect to non-negative integer powers of ¢.

Following to [9] we present here optimal control problems for finding asymptotics terms
of the second order for the transformed problem solution. Symbol ¢ denotes the costate

variable in constructed optimal control problems.

1
Po: Jo = 1/2/(@0,1%@@ + (@0, RoTio)) dt — min,
o
0

1) (1) (1) (2) () (1) (2)
dTo/dt = T0/24+57/2, dTo/dt=0,0= wo, k=1,2, To(0) =10, ZTo(0) =5.

+oo

HO()P . HooJ = 1/2 /((Hoow, W0H00w> + <H()()’u,7 R0H00u>) dT() — l[[nin,
J 00
k 1 1 2) (D 1
dHoo(l’)/dTo =0, k= 1,2, dHoo(y)/dTo = Hoo(’u), 0= Hoo(u>, @O(O) =+ Hoo<y>(0) = 0.
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0

QooP : QooJ =1/2 /((Qoow,WoQoow + (Qoou, RoQoou)) doo — QH}]%)%’

(k) (1) (1) (2)
onow/dffo =0, k=1,2, onoy/dUo =Qoou, 0==CQoou.
—+oo
IT10P : Il10J = 1/2 /((Hlow,WoH10w> + <H10u,RoH10u)) dr — 1I_Inin7
10U

0

k
de(.Z‘)/dTl = O, kJ = 1,2, de(QlJ)/dTl = 0, dHlo(ZZJ)/dTl = Hlo(’LZL),

(2) 2 2
7 0(0) + TIoo %/ (0) + 105 (0) = 0.

0
Q1P : QuoJ =1/2 /((Qlow,Wleow> + (Q1ou, RoQuou)) do1 — glin,
10U

k 1 1 2
dQ10<$)/d0'1 = 0, k= 1,2, dQ10(y>/d0'1 = Q10<u), 0= Qm(u).

1

Py j1 = /(<El, 1/2WOW1 + (Wlﬁo — Allao» + <ﬂl, 1/2Roﬂl>) dt — min,
w1
0

& W W »® @ W @
dT1/dt=T1/2457,/2—-57,, dT1/dt =0, dy,/dt=u1, 0= T,

(k) k k
T 1(0) + o1 @ (0) + T, 2(0) = 0, k = 1,2.
oo

o1 P: Tl J = ((Hmw, 1/2WOH01’LU + (WlHOO'LU - A'1H007/1)>+

O\

+<H01u, 1/2R0H01u>) dro — glin,

01w
dH(n(ZIE)/dTQ = HQO(ZIE)/Q + 51_[00(11/)/2, dH01<.%)/dTo =0,

6) ) ) @ O 6)) 1)
dH()l Yy /dTo = H()l u, dHoo y /dT() = Hm u, Yy 1(0) + H()1 y (0) + Hu(’y (0) =0.

0

Qo1P: Qo1J =1/2 /(<Q01U17W0Q011U> + (Qo1u, RoQoru)) dog — gf)ifi’

1 1 1 2 1 1
dQ01<iE>(Uo)/dUo = QOO(LE)/Q + 5Q00(y)/2, dQOl(CL’)/dUO =0, de(y)/dUo = Qol(u)>
2 2
dQOO(y)/dJQ = Q[)l u)
—+oo

1111 P : II11J = 1/2 /((Hllw,WoH11w> + <H11u,RoH11u)) dr — lI_Inin,
11U
0

Al % Jdr = 0, k= 1,2, dll;1 % Jdr = o'W, dily %) jdm = T @,
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(2) (2)

2 2
71(0) + oy 5 (0) + 11, (0) = 0.
0
QuP: QuJ=1/2 /((Quw,Wanw) +{(Quiu, RoQuu)) doy — Qmin,
11U

k 1 1 2 2
dQll(x>/d01 = O, k= 17 2, dQll(y)/ddl = Qm(u), dQH(y)/dal = Q11(7.L>.
1
?2 : jz = /((EQ, 1/2W0@2 + (Wlﬁl + Whwg — .Allal» + <ﬂz, 1/2Roﬂz>) dt — rgim
o
0

€] ) ) o ®@ ©) o ®@ ©)
dTo/dt = T2/24+5Y,/2—-5%,, dT2/dt =0, dy,/dt= Tz, dY,/dt = T2,

(k) (k) (k)
X

52(0)4-1—_[02 (O)+H12I(0):0, k=1,2.
—+oo
o2 P @ Tlo2J = / ((Hozw, 1/2WoIloew + Willonw + Wallgow — A1 o19)))+
0

+<H027.L, 1/2ROH02U>) dT() — min,

ITgou
1 1 1 1 2 1 1
dHoQ(CC)/dTQ = H01(CC)/2 + 5H01(y)/2 — 5H00(y), dH02<JJ)/dT0 = O, dHoQ(y)/dTo = Hog(u),

2 @ @ @) )
dH(n(y)/dTo =1Ilp2u, ¥y 2(0) + Io2 y (0) + Ili2y (0) =0.

0

Qo2P : Qo2J =1/2 /((Qo2w7WoQ02w> + (Qo2u, RoQo2u)) doo — glin,

02U
—oo

1 1 1 1 2
dQ()z(.II)/dO'o = Q01($)/2 =+ 5Q01(y>/2 — 5Qoo(y), onQ(Lt)/dUo =0,

dQOQ(é)/dUO = Qoz(ili), dQ01(22J)/dUo = Qoz(lzb)-
“+oo
9P : i =1/2 /((ngw,WoH12w> + (12w, Rolliou)) dry — %111121114’
0
A1 Jdr = o' /2 + 5110 /2, dilie'® Jdr = 0, dll1'y Jdr = T %W,

2 2) (@ (2) (2)
dH12<y)/d7'1 =1Ilsu , Y 2(0) + Ilo2 Yy (0) + 112 y (0) =0.

0
Q2P : Q12J =1/2 /(<Q12W,W0Q12w> + (Q12u, RoQ12u)) do1 — giizll,

1 1 a (2
dQ12($>/dG1 = Qw(x)/Q =+ 5Q10 y>/2, dQ12 13>/d0'1 = 07

(1) (1) (2) (2)
dQi2y /do1 = Quu v, dQi12y /dor = Qiz2 v .

The results of calculations are given in Fig. 1, 2 and in the table.
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Figure 1. Control (111>(t, €) with e = 0.3.

Figure 2. Trajectory (?(t,a) with e = 0.3.

| O first order approximation of the solution +++++ second order approximation of the solution

exact solution

®  ®solution of the degenerate problem

=+ = zero order approxination of the solution

. J(%),l,%),g (i),l,(f;),g (11})0’%)71) (%)17(5)0) J((qu)*,(%)*
0.3 98.5 36.46 18.80 12.60 9.21
0.1 98.5 4.99 1.54 1.40 1.39
0.05 98.5 1.51 0.60 0.59 0.59

5. Conclusions

Estimates of the proximity of the asymptotic solution to the exact one, given in this paper,
show that the direct scheme is an effective method for asymptotic solving the considered class
of problems. Moreover, according to lack of growth of values of the performance index under
using new asymptotics terms of the optimal control, we obtain for some £ the minimizing

sequence of controls {u,(t,e)}. The presented example demonstrates this property.
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On some exact solutions for a forced response of nonlinear
oscillators

Ivana Kovacic

Abstract: This work presents a theoretical concept for obtaining exact solutions for a
forced response of a wide class of externally excited nonlinear oscillators. This
includes Duffing-type (hardening, softening, bistable, pure cubic) oscillators and
purely nonlinear oscillators whose power of nonlinearity can be any positive real
number higher than unity. For that purpose, the external excitation is designed in a
special way as having the appropriate form related to the free response of these
oscillators, i.e. it is modelled in terms of Jacobi elliptic and Ateb functions. The
concept also enables one to design the external excitation of a nonlinear oscillator in
such a way that it responds as a completely different type of nonlinear oscillator or as
a linear one. In addition, certain known approximate solutions for harmonically
excited oscillators in primary resonance can be derived from these exact solutions.

1. Introduction

Nonlinear oscillators with a single or multi-term power-form restoring force appear in many systems
in science and engineering [1, 2]. Of interest for this study are those whose free response can be
expressed in terms of an exact, closed-form solution. They are governed by the following equation of

motion:
X4 cyx + casgn(x)]x|* = 0. 0

This model includes the following Duffing-type oscillators (DO) with cubic nonlinearity (a = 3):
hardening (c; > 0,c3 > 0), softening (¢; > 0,c3 < 0), bistable (c; < 0,c3 > 0), and pure cubic
(¢, = 0,c3 > 0). This also includes purely nonlinear oscillator (¢ > 1, ¢; = 0, ¢, > 0). The aim of
this study is to show how to design a periodic external excitation F(t) acting on them, so that the

corresponding equation of motion
X+ c1x + cosgn(x)|x|® = F(t), 2

has the steady-state response obtained as an exact solution as well. The motivating methodology is
presented in Section 2. Section 3 contains its extension to Duffing-type oscillators, followed by an
illustrative example. Section 4 is structured in the same way but it is concerned with purely nonlinear

oscillators. Section 5 contains the derivation showing that the well-known approximate solution for
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harmonically excited Duffing oscillator in primary resonance can be derived from the exact solution
obtained for the system with an elliptic-type excitation.

Given the fact that the oscillators listed above have the exact solutions in terms of Jacobi elliptic
and Ateb functions, the external excitation F(t) will also be expressed in terms of these functions.
Thus, the external excitation will be periodic, but not harmonic as in the case F(t) = cos(Qt), which
has been widely studied in the literature (see, for example, [1] and [2] and the references cited
therein). Dynamics of such harmonically excited nonlinear oscillators have been thoroughly
investigated and associated with approximate solutions for their steady-state responses. However, the
investigations presented herein are fundamentally different as they are associated with exact solutions
for their steady-state responses. It has already been demonstrated that some of the already known
approximated solutions can be derived from such exact solutions obtained for a specially designed
periodic excitation [3, 4], which makes this approach very interesting and general. The idea of a
special design of the external excitation to obtain the exact solution for the resulting steady-state
response dates back to Hsu [3]. This idea has recently been extended to forced one-degree-of-freedom
undamped nonlinear oscillators with cubic and quadratic nonlinearities [5], multi-degree-of-freedom
purely nonlinear chains [6] as well as to pure cubic bars exhibiting longitudinal vibration [7]. The
results presented subsequently are the continuation of these investigations, aiming to contribute to

their further extensions.

2. On the motivating methodology

Let us start with a simple harmonic oscillator (SHO) governed by Eq. (1) with ¢, = 0, where ¢; > 0.

Its free response corresponding to the following initial conditions x(0) = A, x(0) = 0 has the form

x = A cos(y/cq t). 3)

Although the initial amplitude A4 and the coefficient ¢, in front of the linear term (the square of the
natural frequency) can be both made equal to unity by an appropriate normalization, they are left in
this form for the sake of clarity and clear generalizations.

If one takes the external excitation F as proportional to the displacement =B x, where B stands

for the coefficient of proportionality, the equation of motion is
X+ (c; —B)x=0. “4)

The solution satisfying ¢; > B is easily obtained based on Eqgs. (3) and (4) in the form:

x =Acos(Qt), Q=./c; —B. (5a,b)
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Equations (5a,b) can now be used to transform Eq. (1) with ¢, = 0 into the equation of motion of the

forced SHO

¥+ cyx = BAcos(\/c; =B t), (6)

whose response has the form given by Eq. (5a,b). Note that since there is no damping in the system
and the excitation acts from =0, the resulting response does not have a transient part and a steady-
state part, but it goes straight to the latter. It should be emphasized that there are three parameters
involved in the solution 4, B and Q and only one relationship between two of them, Eq. (5b). This
implies that 4 can be arbitrarily chosen, while one a priory decides whether to define B or (1, and the
other parameter should then be calculated based on Eq. (5b).

The external force is assumed here to be proportional to the displacement to yield the forced
response in a straightforward way, but it can actually be interpreted as being proportional to the
restoring force. This interpretation enables one to apply the same methodology to nonlinear

oscillators, which will be demonstrated subsequently.

3. Application to Duffing-type oscillators
Let us consider now conservative Duffing-type oscillators listed after Eq. (1). Their free response can
be expressed as in terms of different Jacobi elliptic functions [4, 5, 8] as follows

x = Aeplw tim], ™

where ep stands for the cn or sn Jacobi elliptic function, w is their frequency and m is the
corresponding elliptic parameter. Note that both the frequency of these elliptic functions and the
elliptic parameter are amplitude-dependent. Only in the case of the pure cubic oscillator, the latter is
constant and equal to Y. Note also that for ¢; > 0,c3 = 0, the elliptic function turns into the

trigonometric function [4] and the solution of motion for the SHO is obtained, Eq. (3).

Let us now focus on externally excited DOs, assuming that this excitation has the form of the
Duffing-type restoring force F = Bx + Dx3, where B and D are constants. With this substitution, Eq.

(2) becomes
%+ (cy —B)x+ (c3 — D)x3 = 0. (8)

By comparing Eq. (8) to Eq. (1) with @ = 3, and using Eq. (7), the exact solution for the resulting

response X, is found to be

xr = A eplo;, tim;], )
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where w, and m, now differs from the one in Eq. (7) in the fact that the constant c; is replaced by

c1 — B, and the constant ¢ is replaced by c; — D. The external excitation is then
F = BA eplw, tlm,] + DA ep®[w, t|m,]. (10)

Note that if the signs of the expressions (¢; — B) and (¢; — D) are the same as in the original
unforced DO, then the type of ep and the expressions for its frequency and elliptic parameter stay the
same, but if their signs change, resulting in another type of the DO, then one needs to use the
appropriate forms of the solution for such type of the oscillator [4, 5, 8]. Thus, not only that this
approach can be used for obtaining the exact solution for the steady-state forced response, but it
enables one to design the external excitation to make DOs respond as free DOs of the same or

different types. This approach is illustrated subsequently on an example.

3.1. Examplel

The methodology presented can be used for choosing the external force to change the type of the
oscillators governed by Eq. (8) and there are several possibilities for doing so. The case D=0 when the
external force is proportional to the displacement, i.e. to the linear part of the restoring force, is
considered in [S]. The general case when B and D are different from zero, i.e. when the external
force is related to the overall restoring force is analysed in [3]. Here, the case that is not covered in
these publications is considered: B = ¢4 and c3 > D. With these conditions used, Eq. (8) turns into a

pure cubic oscillator, with the exact solution for the response

xr=Acn[wrt%],wr= cz—DA. (11a,b)

By introducing this solution into the expression for the force and then into Eq. (2) with B = ¢4, the

following equation of motion is obtained

¥4+ cix+c3x3 =c;Acen [mA t|§] + DA3cn® [mA tl%] (12)

There are three parameters 4, D and w, here and one relationship between them, which is given by
Eq. (11b). Thus, two of them are arbitrary. If the amplitude is to be calculated, the frequency-
amplitude relationship (11b) needs to be used. Note that for c; close to D, the value of 4 can be very
large, which might be undesirable and should be carefully dealt with.

In order to illustrate the results derived, let us make the requirement that the period of the
response T is fixed. This period is related to the frequency of the cn function via the relationship
T = 4K(m,)/w,, where K(m,) = K is the elliptic integral of the first kind, which gives w, =
4K(m,)/T . By choosing D as well, the amplitude 4 can be calculated from Eq. (11b). The

corresponding example with the period of 10s is shown in Figure 1a (the rest of the parameters ¢4, c3,
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D are given in the figure caption, while the amplitude is calculated to be A = 2v2K G) /5=
1.04882. As another example, the additional requirement is introduced: let the period, the parameters
c; and c3 stay the same, but the amplitude is reduced for 50%. Equation (11b) leads D = —1, and the
corresponding responses are presented in Figure 1b. Numerical solutions of the original equation of

motion of the hardening DO, Eq. (1) are also plotted as the green dotted line, clearly illustrating the
change caused.

Figure 1. Time response corresponding to ¢c; = 1, ¢z = 1 and: a) D = 0.5 A = 2v2K G) /5,b)

D=-1A=+2K (%) /5. Numerical solutions of Eq. (12) - black solid line, the analytical response

(11a,b) - red dots, the numerical solution of the original equation of motion of the hardening Duffing

equation (1) - green dotted line.

To provide additional insights into the harmonic content of the response for the case shown in

Figure 1b, the Fourier series expansion for the cn function with the elliptic parameter m = 1/2 is

used. It gives:
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"—/; ~ 0.95501c0s(0.62832¢) +0.04305c0s(1.88496¢) + 13

0.00186c0s(3.14160¢) +0.00008c0s(4.39823¢) +...,

leading to the conclusion that the first harmonic takes 95,5% of the overall response, the third
harmonic 4.3% and the rest of them all together contribute less than 0.2%. The corresponding force

from the right-hand side of Eq. (12) can be developed into the following Fourier series

F,,, ~ 0.4019590s(0.62832¢) —0.0175306c0s(1.88496r) —0.0048146%0s(3.141601) +... ~ (14)

The expression for the force given by Eq. (14) defines how this tuned excitation can be generated in a
lab - as a multi-term harmonic excitation. Figure 2 is plotted based on it. It contains: i) the numerical
solution of Eq. (12) (black thick solid line); ii) the numerical solution of Eq. (12) where the right-hand
side is approximated by Eq. (13), labelled by the green dotted line; iii) the numerical solution of Eq.
(12), where the right-hand side is approximated by first two terms from Eq. (14) and labelled by the
blue dashed line; iv) the numerical solution of Eq. (12), where the right-hand side is approximated
only by the first term from Eq. (14) and labelled by red solid line. It is seen that the approximations
described under ii) and iii) are in good agreement with the exact one, while the last one described
under iv) shows some discrepancy around the maximal displacement, as better seen in the enlarger

part of the time-response plotted in Figure 2b.

4. Applications to purely nonlinear oscillators

Let us consider now purely nonlinear oscillators governed by Eq. (1) with @« > 1, ¢; =0, ¢, > 0.

Their free response can be expressed in terms of the Ateb function [9 - 11], as follows

x=Acala,l,wt), w=A@D/2 /@ . (15a,b)

When a = 1, this Ateb-form solution transforms into the Cosine solution, Eq. (3).
Focusing now on the external excitation in Eq. (2) with ¢; =0, it is assumed that F(t) =

Bsgn(x)|x|%, so that the equation of motion becomes
X%+ (cq — B)sgn(x)|x|* = 0. (16)

Assuming that ¢, > B, the steady-state response has the form (15a) with ¢, in (15b) replaced by

(cq — B). So, the equation of motion and its response x, are

i + casgn(x)|x|®* = BA ca (a, 1, Ale-D/2 ’M t), (17)
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x, =Acala 1,4l D/2 [CaB)atD) ) (18)
2

Another possible modification is that one assumes the excitation force in the form
F(t) = casgn(x)]x|* — Esgn(x)|x|*, (19)

where E>0 and 8 > 1. The resulting response will have the form (15a,b) but with a replaced by £,
and c, replaced by E. So, the response will correspond to a free purely nonlinear oscilaltor with a

different power of nonlinearity 8. One example is given subsequently to illustate this methodology.

Figure 2. Time response correspondingto ¢; =1, cg =1, D=1, A=

ﬁi@ a) several
periods; b) an enlarged part around the maximal displacement. The numerical solution of
Eq. (12) - black thick solid lines, the numerical solution of Eq. (12) with the right-hand side
approximated by Eq. (14) - green dotted lines, the numerical solution of Eq. (12) with the
right-hand side approximated by first two terms from Eq. (14) - blue dashed lines, the
numerical solution of Eq. (12) where the right-hand side is approximated by only the first

term from Eq. (14) - blue solid lines.
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4.1 Example 2

If B =1, the resulting oscillator is the SHO. Its solution has the form of the Cosine function:
x, =4 cos(\/Et) (20)
which should be substituted into Egs. (1) and (19) to derive the equation of motion:

X+c, sgn(x)|x|a = casgn(A cos(\/ft))‘A cos(\/Et]a —-EA cos(\/ft) 21)

If =3, the excitation in Eq. (19) would yield the equation of motion corresponding to a pure

cubic DO. The corresponding response is given by

x, =4 cn(\/EAt

1
5} (22)

After substituting it into Eqs. (1) and (19), the equation of motion of externally excited purely

nonlinear oscillators that respond as a conservative pure cubic DO is derived:

3 S

It is believed that this can be a convenient way for modifying the stiffness characteristics without

X+c, sgn(x)|x|a = casgn{A cn[\/EAt

—EA’ cn{\/EAI

A cn[\/EAt

1
5]. (23)

influencing internal elements, but by using the external excitation.

Figure 3 contains the time responses of the original oscillator with the power of nonlinearity
a=1/2 as well as time responses for all the following cases: f =1 (Figure 3a), # =3 (Figure 3b).
It is clearly seen that the change of the power of nonlinearity causes the extension of the period. The

shape of vibrations also changes implying the modification of the harmonic content.
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Figure 3. Time responses for purely nonlinear oscillators corresponding to ¢,,, =1,

a=1/2,E=1,4=1anda) f=1;b) B =3.Numerical solutions of the externally excited
original oscillator with the force given by Eq. (20) - black solid line, the resulting analytical
response - red dots, the numerical solution of the original conservative oscillator Eq. (1) -

green dotted line.

5.  On some approximations

Let us consider now the case when the external force is propotional only to the linear part of the
restoring force, which is given by Eq. (8) with D=0 [3]. Using the well known exact solution for the

Duffing conservative oscillator [4], its solution can be written down as:

2
x=4 cn[a)rt,m], o, =\1-B+c A, m= <4 (24a-c)

C2(1-B+e,4?)

Equations (24b,c) yield the following expressions for amplitude of the response 4 and the constant

B:

A= [P0 B=1-w(1-2m) (25a,b)

,
G
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Thus, the excitation F=Bx is given by

F = z—ma),_ [1-?(1-2m)len[w,t,m] (26)

G

It will be demonstarted now that this case can be transformed into a harmonically excited Duffing
oscillator and the exact solution (24a-c) can be simplified to the well-known approximation for its
steady-state primary resonance response. The harmonic excitation with the amplitude F,, and the

angular frequency Q is

F = Fcos Q. 27)
Comparing it with Eq. (26) and using (25a), one finds that

F, = A[l- (1 -2m)], (28)

while the equality of periods of the elliptic and harmonic function imposes 4K/, =27/Q , where

K(m)EK. This yields Q=w. /2K . Using this expression, Eq. (25a) and the series expansion

2 .
K* ~ Z-(1+2), one can derive

A’ =20 m=0. (29)
Analogously, Eq. (28) transforms into

I—QZ-#EmQ2 =§. (30)
2 A

Equations (29) and (30) give:

3 F,
Q' =1+>c, 4 -2, 31
26 y 3D
which is the well-known frequency-amplitude equation of a conservative harmonicallz excited
Duffing oscilaltor [1, 2]. Furthermore, the exact solution (24a) can be developed into the Fourier

series, expanding also the first two coefficients into series with respect to m to derive
V3 V4
x=A4 cn[a),_t,m]z AC cos| —wt |+ AC;cos| 3—a,t |+...=
2K ’ 2K

(32)
= Al 1= Jcosur + Aﬂcos(SQZ) =|A4- LQAB cosQf + LC;Aj cos(3Qt).
16 16 32 32
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This approximate solution has the form of the well-known solution obtained by the classical method
of multiple scales [1, 2]. The fact that the exat steady-state response of the Dyffing oscillator with an
elliptic-type forcing can be transformed into the well-known and widely used expressions for the
harmonically forced Duffing oscillator speaks in favour of the presented methodology involving

specially designed external excitation, despite the fact that it is given in terms of special functions.

6. Conclusions

This study has been concerned with a methodology related to the design of external excitation of
conservative nonlinear oscillators that enables one to obtain the exact solution for the corresponding
steady-state response. The nonlinear oscillators considered have included Duffing-type oscillators
(hardening, softening, bistable, pure cubic) and also purely nonlinear oscillators. They have the exact
solutions in terms of Jacobi elliptic functions and the Ateb function, respectively. These solutions
have been used to express the external excitation in terms of these functions as well. It has also been
demonstrated how one can design the external excitation of a nonlinear oscillator in such a way that it
responds as a completely different type of nonlinear oscillator or as a linear one. Furthermore, it has
been shown that certain known approximate solutions for harmonically excited Duffing oscillators in
primary resonance can be derived from these exact solutions, which speaks in favor of their generality

and requires further investigations of these approximations for other nonlinear oscillators.
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Derivation and investigation of the generalized nonlinear
Schrodinger equation of cosmogonical body forming

Alexander M. Krot

Abstract: This work considers the statistical theory of gravitating spheroidal
bodies to derive a new generalized nonlinear Schrodinger-like equation of a
gravitating cosmogonical body formation. The statistical theory for a cosmogonical
body forming (so-called spheroidal body with fuzzy boundaries) has been proposed in
our previous works. This paper investigates different dynamical states of a gravitating
spheroidal body and respective forms of the generalized nonlinear time-dependent
Schrodinger equation. In particular, the derived time-dependent generalized nonlinear
Schrodinger-like equation describes not only the state of virial mechanical
equilibrium and the quasi-equilibrium gravitational condensation state, but the initial
equilibrium gravitational condensation state taking place in a forming gas-dust
protoplanetary cloud as well as the soliton disturbances state occurring in a spheroidal
body under formation and also the gravitational instability states providing a
formation of core of cosmogonical body.

1. Introduction

A statistical theory of a gravitating cosmogonical body formed by a numerous of interacted particles
isolated from an influence of external fields and bodies has been proposed in our previous works [1—
4]. Within framework of this theory, the forming cosmogonical bodies are shown to have fuzzy
contours and are represented by spheroidal forms (unlike ordinary macroscopic bodies having distinct
contours). It has been pointed out that a spheroidal body has a clearly outlined form if the potential
energy of gravitational interaction of its particles is sufficiently great and the body’s mass itself is
relatively small.

A process of slow-flowing-in time initial gravitational condensation of a spheroidal body has
been investigated in Ref. [1-3]. Within framework of this approach, the equations have been derived
for description of a slow-flowing gravitational condensation of a spheroidal body in a vicinity of
equilibrium and quasi-equilibrium state.

For the first time the problem of gravitational condensation was investigated by J. Jeans [5]. Let
us note that the gravitational condensation problem of an infinitely distributed substance is directly
connected with the gravitational instability problem, see for example Ref. [6]. The main difficulty of
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Jeans’ theory is connected with the gravitational paradox [6]: for an infinite homogeneous substance

there exists no potential of gravitational field ?, in accord with Poisson equation.

E. Nelson [7] and later on L. Nottale [8, 9] have developed their theories to describe both
deterministic and stochastic behavior of a particle in gravitational field. The important point in
Nelson’s work [7] is that a diffusion process can be described in terms of a Schrddinger-type
equation, with help of the hypothesis that any particle in the empty space, under the influence of any
interaction field, is also subject to a universal Brownian motion.

In this work, we derive the generalized nonlinear Schrodinger equation of cosmogonical body
forming within framework of the statistical theory [1-4]. With its help, we also investigate the
dynamical states of a process of gravitational condensation of cosmogonical body.

2. The mass density and potentials in result of an initial gravitational condensation of

a molecular cloud

To solve the mentioned problems of gravitational condensation of a molecular cloud we will use the
statistical theory [1-4]. We consider the statistical theory beginning from the derivation of a
distribution function of particles in a space filled in homogeneous and isotropic initially gaseous
nebula. The statistical aspect of the problem results from the fact that the considered body consisting
of gaseous matter is a system containing a large number of particles interacting among themselves by
oscillations in a cosmic vacuum. In microphysics, the cosmic vacuum represents a ground energetic
state of quantum fields, and its experimental manifestation is Casimir effect [10 p.1154]. The similar
oscillations modifying forms of particle trajectories have been considered by Nelson [7] and Nottale
[8, 9], so that we can say about the initial oscillatory interactions of particles. In macrophysics, it is
alleged that the cosmological constant describes the cosmic vacuum [10, 11].

According to our previous work [1] the volume probability density function @ describing a
particle distribution into a rotating gaseous cloud (being in a state of relative mechanical equilibrium)

can be expressed in spherical coordinates as follows:

O(r, 0) =/ 27)"* (A gl ) 50", €
where I' is a distance, @ and g are polar and azimuth angles, ¢ is a parameter of gravitational
condensation, &, is a constant of stabilization of the variable & .

Obviously, when goz — O then the equation (1) goes to the describing volume probability density

equilibrium function in the non-rotational case (or slowly rotational one) [1, 3]:

O(r) = (a/27)¥ %" /2, o)
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If M is a mass of gaseous body then its mass density is p = Md simply. Therefore, the mass
density for a rotating gaseous body can be written in spherical coordinate system [1, 3]:

p(r,0) = py(1=gg)e ™ Hsm O, ®

where p =M (a/27z)%?. Obviously, the iso-surfaces (isostera) of the mass density (3) are flattened
ellipsoidal ones, and 502 is a parameter of their flatness (g, is the eccentricity of ellipse). As a
rule‘go‘ << 1, so that these mass density iso-surfaces become spheroidal surfaces. Thus, under the

influence of the initial oscillations of particles an isolated gaseous cloud can be transformed to the
spheroid-like gaseous body or, simply say, spheroidal body [1-4].
Let us consider the important particular case of spheroidal body which is sphere-like gaseous

body. Really, we can see that if gg — QOthen the equation (3) becomes the mass density function for a

slowly rotating or immovable spheroidal body [1-4]:
p(r) — poe—tzr2/2 ) (4)

Calculating the derivatives of , (3) with respect to the spatial coordinates h and Z as well as
the parameters ¢ and ¢, (supposing them as slowly changing functions, i.e. ¢ = o(t)ande, = ¢, (t)) we

can obtain the following general equation of antidiffusion with regard to a deformation of spheroidal
body as a result of its rotation [3]:

©__&ovip ©)

where é(t) is the generalized gravitational compression function (GCF):

1 da . 1 de, (6)

ct= 202 (t) dt agy(l—&2) Cdt

In the particular case when ¢, =const and &, =0, Egs.(5) becomes the pure antidiffusion equation

of initial gravitational condensation of immovable (or slowly rotating) spheroidal body [1-4]:

%It) =—G(t)V?p, @
where G(t) = 2a]2-(t) .%tx' ®)

Analogous equation of initial gravitational condensation of gaseous substance is true for the
distribution function @ of an immovable (slowly rotating) spheroidal body [1-3]:

“@__ G(H)V?D. ®
ot
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Thus, initial gravitational interactions of particles stipulated by their quantum oscillations in an
isolated gaseous cloud form a spheroidal body and lead to gravitational field becoming. Namely, there

is a threshold (critical) value ¢ thatif ¢ > ¢, then gravitational field arises in the spheroidal body [1-

3]. In the simplest case (4) we can seek a spherically symmetric solution of the Poisson equation:

0,(r)=—277% je’?xz dx. (10)

ar g

In the general case of a rotating spheroidal body, the axial rotation creates a flattening of its
core, therefore the gravitational potential of a uniformly rotating spheroidal body is described by the
following expression:

242 qin2
w _al-g)r'sin®0  2c0lp

2 ds
r,0)=-22mp,(1-&)[e Zetas o 2w . (11)
0 (r0)= {2 °)£ 2+ as 2+ a(l-£2)s]

3. The density of antidiffusion mass flow and the antidiffusion velocity into a slow-
flowing gravitational compressible spheroidal body

Taking into account that GCF G(t) as well as é(t)does not depend on the spatial variable (see (6)

and (8)) we can note therefore the both equations (5), (7) remind completely the continuity equation

expressing the law of conservation of mass in a nonrelativistic system [12]:
P, divi=0 12)
ot

if ] is a continuum flow density (like a conductive flow) arising at the slow-flowing gravitational
condensation of both spheroidal bodies [1-3]:

j =G(t)gradp; j=G(t)gradp. (13a, b)

The conductive (owing to diffusion or thermal conductivity) flows satisfying analogous Eq. (12)
in dissipative systems were investigated by I. Prigogine and his co-workers (see, for example, [13,
14]). As it follows from Eq. (13a,b) directly, there exists an antidiffusion mass flow density in a
slowly compressible gravitating spheroidal body [1-3]. Indeed, applying the equation of continuity
(12) to this antidiffusion flow density (13a) (or (13b)) we obtain again the linear antidiffusion
equation (7) (or (5)) of initial gravitational condensation. In this connection, let us introduce a
conductive velocity for the antidiffusion mass flow density or, simply say, the antidiffusion velocity
(unlike of the ordinary hydrodynamic velocity ) for an immovable (or a slowly rotating) spheroidal
body [2, 3]:
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=G Y2 = 6t) VL2 _ Gtygrad In(p ! py). (14)
e ol p,

Since the mass density of spheroidal body is directly proportional to the probability volume density
function @, then antidiffusion velocity (14) can be defined by the probability volume density

function:

b= G(t)% — G(t)grad In®. (15)

Now let us estimate the antidiffusion velocity (14) of particles into a spherically symmetric
slow-flowing compressible spheroidal body taking account of its mass density function (4):

U(7,t) = GOV In(p/ py) = GV(- a(t)F212) = ~G(R)a (t)F. (16)

We can see that the antidiffusion velocity @ is expressed by the very simple relation (16) in the case
of a spherically symmetric cosmogonical body.
In the general case of rotating ellipsoid-like cloud when -0 we can also estimate the

antidiffusion velocity of particles using the general equation (5) of antidiffusion mass transfer and the
formula (3) of mass density [3]:

= é(t)%p =G(t)gradIn(p(h, 2)/ p,) = G(t) gradin(L- &2 )- afh?(1— 22 )+ 22 ] 2} =

=—é(t)a{(1—3§)h~éh+z~éz}=uh-é’h+uz-éz (17a)

where g, and g, are the basis vectors of cylindrical frame of reference, uhand u, are the radial h-

projection and the axial Z -projection of antidiffusion velocity respectively:

u, =-GMall-z2); u, =-G(t)ez. (17b, ¢)

3.1. The derivation of the equations of substance movement into a slow-flowing

gravitational compressible spheroidal body
Without loss of generality, we suppose g — 0, so that we are going to use Eq. (7) of the slow-

flowing gravitational compression of sphere-like cosmogonical body. Since the antidiffusion velocity

u of antidiffusion mass flow satisfies the mentioned continuity equation (12):

%’+ div(pt) =0 (18)

then we can calculate the partial derivative of the antidiffusion velocity (14) with respect to the time:

ou  dG(t) 1 0p] dG)[ 1 1, .
=g dadin g+ Gtgrad {;'Ep} - dt{(}mu}G(t)V{p (~div(p u))} - (19)
_dInG@ H—G(t)V{V U+ u@} — _G(t) grad(div ) —grad(@?) + 1M SO 5

dt P dt
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Let us rewrite Eq. (19) based on the familiar formulas of vector analysis [12, 15]:

%gradﬁz _ (@ V) G+ [ix rota} V2 = grad(div ) — rot(roft). (20a, b)

Taking into account Eq. (14) we can see that rott = 0, so that Egs. (20a, b) become respectively:
gradu’® = 2(G- V)i; V21 = grad(div G). (21a, b)

Substituting Egs. (214, b) in Eq. (19) we obtain:
%“ —~G(Vv* i-2(u v)u+ 2050 '”df’(t) 0. (22)

Substituting Eq. (21a) again, the equation (22) can be written as follows:

%ﬂ (6 V)1 = —grad(@/2) - GO)V? m%u. (23)
The obtained equation (23) is similar to Navier—Stokes equation of motion of a viscous liquid [12, 15]
under conditions that a gas-dust substance of spheroidal body is isolated from influence of external
fields and G(t) = G, =const .

Along with the antidiffusion velocity Ti there exists an ordinary hydrodynamic velocity v (or a
convective velocity [13, 14]). In principle, the hydrodynamic velocity v of mass flow arises as a
result of powerful gravitational contraction of a spheroidal body on the next (field) stages of its
evolution. The growing magnitude of gravitational field strength & induces the significant (i.e.
observable) value of hydrodynamic velocity v of mass flows moving into spheroidal body. This
means that the value of antidiffusion velocity (14) becomes much less than the value of

hydrodynamic velocity, i.e.‘u‘«‘v‘. Under this condition, a common (hydrodynamic and

antidiffusion) mass flow density inside a spheroidal body satisfies the hydrodynamic equation of
continuity [12, 15]:

%”mv(pm -0, (24)

Taking into account Eq. (24) we can also calculate the partial derivative of the antidiffusion velocity
(14) with respect to the time:

ou _dG(t) 10p|_dG@H) ] 1 _ 1, N
o grad In p+G(t) grad {p P } v {G(t) u}+G(t)V{p( dw(pv))} = (25)
-0 G(t)V{V v vvf’} - -G grad(aiv) -grad(v) + L0 g,

P
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As known from a fluid-like description [12, 15], the complete time-derivative of the common
(hydrodynamic plus antidiffusion) velocity v+t inside a spheroidal body defines the common
acceleration (or gravitational field strength of spheroidal body) including the partial time-derivatives
and convective derivatives [2, 3]:

a=d0+0) 7a—v+(v V)v+a—u+(u V)u.
dt ot ot

(26)

Taking into account Eq. (23) as well as Eq. (21a), the complete acceleration (26) can be represented
in the form [2, 3]:

__dE+0) _av

25, dINGO) 27
a== o =+ (V-V)V-(U-V)U- G(t) V2T ratt

Let us note that rotti = Ofor the antidiffusion velocity (17a), too. So, we can see that Egs. (21a,b) are
also true. Thus, if we replace GCF G(t) on the generalized GCF (~3(t) in the Egs. (19), (23), (25)-(27)

they remain valid in the general case of a rotating ellipsoid-like cosmogonical body. Obviously, the
antidiffusion velocity (15) of probability volume flow density also satisfies the same equations.

3.2. The derivation of the dimensionless equations

Using Egs. (25), (27) we can carry out an analysis of dynamical states of a spheroidal body by

introducing the scales of physical values T,L\V,U,F,G,and the respective dimensionless
variablesz, £ v,u, f, g as follows:

t=Tr, F=L& V=VV;, U=U0; a=Ff; G(t)=G.g(), (28)

where G(t) = G, = const under the condition of mechanical equilibrium state.

By substituting Egs. (28) in Egs. (25), (27) we obtain:

vai_ —G(t) B grad(divv) — —grad(VU) Y d dinG(H a; (292)

T or dt

= 2
VOV g V. V)V+U grad(d /2)+G() ) grad(di u)—gwﬁ. (29b)
Tor L it

Similarly to [15], dividing Eq. (29b) by V?/L and Eg. (29a) by VU /L we derive the following
dimensionless equations:

Sh a = _Ss. grad(dlvv) grad(VQ) + Sh ———=
or v KR

ding(t) ;. (30a)
at
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sh ;ﬂ - % f - (@-V)0+Kograd(@/2) + Zs. g(t) grad(diva) —sh-k 41190 g(t) i (30b)
T

where Sh = L/VT is the Strouhal number, Fr=V?/FL is the Froude number,Re =VL/v is the

Reynolds number (v is a kinematic coefficient of viscosity of flow of particles [15]), K=U /V isa

new number of similarity.

The new number of similarity is a measure of the values \U\ Versus ‘\7‘ prevailing:
K =|g] /]v} (1)

When this similarity number exceeds unity (K >>1) the antidiffusion contraction of a spheroidal

body occurs exclusively, so that the value of hydrodynamic velocity is negligible (‘\7‘ ~ 0) because a

gravitational field is absent practically. If the similarity number becomes close to unity (K ~1) then
the hydrodynamic velocity v of mass flow arises as a result of a gravitational contraction of a
spheroidal body on the field stage of its evolution. As mentioned, the value of antidiffusion velocity

(14) becomes much less than the value of hydrodynamic velocity \U\ << ‘\7‘ when K <<1. This means

that the growing magnitude of powerful gravitational field strength & induces the significant value
of hydrodynamic velocity v of mass flows moving into a spheroidal body. Thus, like the Mach
number M [15] the new number of similarity K is a control parameter of dynamical states of a
forming spheroidal body.

In particular, in the special case K >>1 the dimensionless Egs. (30a), (30b) can be reduced to

the one dimensionless equation of the kind:
Kgrad(@?/2) + %=. L gty grad(divii) = sh- 4., (32)
v Re or
which corresponds the following equation:

grad(t%/ 2) + G(t) grad(divii) = %‘:. (33)

Excepting the antidiffusion solution, Eq. (33) has a wave solution when G, = const and \U\ <1:

= ao eiiEF—kZGst. (34)
i.e. in the quasi-equilibrium gravitational condensation state (when G(t) = G, = const) the wave

solutions (34) are generated.
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4. The derivation of the generalized nonlinear Schrodinger-like equation in the
statistical theory of spheroidal bodies

The considerations in the previous sections point to an initial quasi-equilibrium gravitational
condensation occurring in a forming spheroidal body. However, a sharp increase of the antidiffusion
velocity of particles inside a spheroidal body can lead to the coherent displacement of particles and,
as a consequence, a resonance increase of the parameter of gravitational condensation «(t) occurs
[2]. This means that nonlinear phenomena arise owing to self-organization processes [14] into a
spheroidal body under its formation. These nonlinear phenomena induce nonlinear soliton-type waves
[16] satisfying a nonlinear undulatory Schrodinger-like equation.

To obtain a nonlinear generalized Schrodinger equation, let us consider again Egs. (25), (27)
with regard to the simple formulas (21a, b). We intend to investigate some special solution of these
equations in the case that the acceleration (or gravitational field strength) comes from a gravitational
field potential [17]:

a=—grad ¢, (35)
under the assumption that the hydrodynamic velocity V is a gradient of a statistical action  which
reminds a potential of velocity [12, 15]:

V =2G(t) grad I = grad(2G(t) 3). (36)
In the special case of Gf(t)as hl2m, Eq. (36) becomes the Nelson’ formula [7]: v = (h/my)grad 3.
In this connection, rotv =0, i.e. V-V)v= grad(\72/ 2). Since U is also a gradient due to Eqg. (15) as

well as & and v according to Egs. (35), (36), so that Egs. (25), (27) become the following:

grad W — —G(t) grad(divV) — grad(v- U) +{d In G(t)/d}G(t) grad In ®; (372)
grad @ = —grad g, - grad(v/ 2) + grad(@?/ 2) + G(t) grad(divi) ~{d I Gt)/d}G(t) grad In .~ (370)

Integrating  these Egs. (37a, b) and taking into account a  simplification

{d InG(t)/dt}- G(t) = d G(t)/dt , We can find that

(Gt Ind) d G(t)

" =—G(t)divV—Vv- U+ In®; (38a)
~ o2 =2
W:_(p —V—+U—+G(t)diVU—Mln . (38b)
ot P2 2 dt

Let us carry out a change of dependent variable:
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%=L Ino; W= e, (39, b)
2
where 3 is defined by Eq. (36), j =./—1. Obviously, as follows from Egs. (39a, b) directly

lP:\/a.eiﬁ’ (40)

sothat ® =YY" = “P‘z as usually. According to the first change (39a) it is not difficult to see that

w _2GA()VPI— 4G (VR - v\s+2d§(t) : (413)
76(233)3) = —p, + 2G*(O)(VR)® - 2G> (O)(VI)? + 2G> ©)V?R - 2d§t(t) (41b)

Let us rewrite these two Eqs. (41a, b) as one. To this end, after multiplication of the second Eq.(41b) on
imaginary unit and then addition both of Egs. (41a, b), we can obtain the following:

%[ZG(t)(‘JHiS)] ——ig, +12GA (VR +iVED) +[2G OV i T+ 2(1—i)$‘ﬁ. (42)

Taking into account the second change (39b) we can see that

R+iI=In¥; 2R=¥+h¥" =
so that Eq. (42) takes the form:

VR+i3)=VIn¥=V¥/¥;, V (R+i3)=V¥/¥-(V¥) /¥,

—[ZG(t)In‘I’]——I%HZG (t) +(1 )d(j(t)m\qf\z. (43)

After some transformations and simplifications Eq. (43) can be represented as follows:

d G(t)

Winw|-2i S winw (44)

i2G(t)%f LGP (VAW + 2i(1— dg(t)

whence we can obtain a nonlinear time-dependent generalized Schrodinger-like equation of the kind:

|2G(t)— [-262 )V + ¢, 9+ 2 g’(t) [lnly —iln TJ‘P (45)

]

5. Concluding remarks on particular cases of the generalized nonlinear time-
dependent Schrodinger-like equation

Let us consider different dynamical states of a gravitating spheroidal body as well as the respective

forms of the generalized nonlinear time-dependent Schrédinger-like equation (45). Indeed, the

derived Eq. (45) describes not only the mentioned state of virial mechanical equilibrium [1-3] when

GCF G(t)=G,=consteRand ¥R or Y eC:
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ic, 2F ={— G,'V? +1(ng\11 (46)
ot 2

S

and the quasi-equilibrium gravitational condensation state (G(t) =G, = const) when G(t)eR and

YeR or YeC:

G0, - L— G (1)V? +%¢ng+ L2 n

but the initial equilibrium gravitational condensation state occurring in a forming gas-dust

protoplanetary cloud:

i%" -GV %)

as well as the soliton disturbances state taking place in a spheroidal body under formation (see Fig.1):

ia—lpz\‘—G(t)Vz +1M‘\P‘2Jq} (49)
ot 2 dt

-10 10 30 40 50 60

-05

Figure 1. Soliton solution of the generalized cubic time-dependent Schrédinger-like equation

and finally the gravitational instability states when GCF G(t) e C and ¥ = |¥|e™®* e C:

daw [In|¥| +argw ] (50)

) oY NN |
G)—=|-G*H)\V*+=¢, |¥
! ()6t [ ® +2%J " dt

including the increase of gravitational compression of spheroidal body providing a formation of core
of cosmogonical body if 0 < arg¥ < 2, and the case of unlimited gravitational compression leading

to a collapse if arg¥ — arg¥+ 27n, n e Z in Eq. (50).
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General theory of geometrically nonlinear size dependent shells taking into
account contact interaction.
Part 1. Chaotic dynamics of geometrically nonlinear axially symmetric one-
layer shells

Vadim A. Krysko - jr., Jan Awrejcewicz, Irina V. Papkova, Vadim A. Krysko

Abstract: A mathematical model of flexible flat rectangular in plan shells is proposed.
A special case for spherical axisymmetric shells taking into account nanoscale effects
has been studied. Shell structure material is homogeneous and isotropic, and the
nanoscale factors has been taken into account. Partial differential equations for
axisymmetric spherical shallow shells were reduced to the Cauchy problem by the
method of finite differences of the second order of accuracy. The Cauchy problem was
solved by the Runge-Kutta method of the 4th order. Convergence of the obtained results
in dependence of the number of partitions along the radius was investigated. The system
was studied as a system with an infinite number of degrees of freedom. The effect of
the size-dependent parameter, which significantly affects the nonlinear dynamics of the

shell, was taken into account.

Keywords: Mathematical model, rectangular shell, spherical axisymmetric shell, moment theory of
elasticity, loss of stability, chaos, numerical experiment, geometric nonlinearity, distributed mechanical
structure.

1. Introduction

In experimental studies of metals, polymers and metallic glass, a size dependent effect was observed
when the thickness of mechanical structures in the form of rods, plates, and full shells was compressed
to a micron [1, 2]. This effect plays an important role when taking into account the mechanics of the
mentioned structures [3].

Experimental studies of the real microstructures are extremely complex and expensive. Chong and
Lam [4] observed that the flexural rigidity increases by about 2.4 times with a decrease in thickness
from 115 to 20 pm when testing the micro-rod from epoxy polymers for bending. From the works of
these interesting experiments can be concluded that the size-caused behavior is an inherent property of

materials that can not be neglected when designing optimal dynamic devices using MEMS [5], [6].

289



Young et al. [7] developed couple stress based strain gradient theory for elasticity using the theory
of higher order of continuous media. The behavior of the pairs of forces was determined by an additional
symmetrical equilibrium relation, at which only one additional parameter of the scale of the length of
the material took place.

Based on the modified theory of moment stresses, static mechanical properties [2], elastic bending
[1], fluid transfer [8], dynamic characteristics [9-11], nonlinear vibration [12-13] of micro-rods were
studied.

Modified couple stress theory of moment stresses for computation the size dependent plates was
applied. The theory of moment stresses of microstructurally dependent pairs of forces applied to
functionally graded rods and the Timoshenko rod was investigated by Reddy et al. [14-15]. Ciata [6]
studied the static analysis of isotropic microplates using the Kirchhoff plate model. lain et al. [16]
analyzed the types of dynamic behavior of the Kirchhoff microplate, based on a modified theory of
moment stresses. Lazopoulos [17], adopting the Kirchhoff model for plates, investigated the stress
gradient in the bending of thin plates to determine the size effect. Ke et al. [5] performed studies using
the moment theory for plates of Mindlin plates. Reddy et al. [18] applied the theory of the third
approximation (model of Sheremetyev-Pelekh) [19] taking into account piezo effects. Stress-strain state
size dependence microstructures: plates, rods and shells take into account temperature effects for
homogeneous materials was studied in papers [19-32]. In conclusion, it is important to note that the
study of nonlinear dynamics of the size effect for rods, plates and shells is not done. The main goal of
this paper is the construction of a general theory and study of nonlinear dynamics of size dependent
plates and shells in a temperature field with account for couple of deformation fields and temperature.
Algorithms and software complexes for analysis of nonlinear dynamics of size dependent effects of the

flat in plan axisymmetric shells under the action of a transverse periodic load were created.

2. Mathematical background

In the classical theory of elasticity, the work of deformation and the strain energy depend on the stress
tensor and do not depend on the rotation vector due to material independence. However, the gradient
of the rotation vector can be an important factor in the equations of state. Based on the modified couple
stresses theory of moment stresses presented by Yang et al. [7], the strain energy density is a function
of both the couple stress tensor (conjugate to the strain tensor) and the curvature tensor (conjugate to
the tensor of moment stresses). In deformed isotropic linear elastic material, located in the region Q,

strain energy IT is expressed by the following equations

M= [, (o +mym)d2  (i,j =12,3) @)
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Here o;; is the Cauchy stress tensor, ¢;; is the stress tensor, m;; is a deviator component of the stress
tensor, a n;; - symmetric curvature tensor. The parameter of the material length scale related to the

microstructures of the material was developed for the purpose of interpreting the dimensional effect in

the non-classical Kirchhoff-Love model. These tensors are defined by formulas

Oij = ltr(sij)l + 2[181']', (2)
1
gy =5 [Vu+ (T, (3)
my; = 21y, (4)
1 T
Th‘j = E[V{p + (V(p) ], (5)
where: u - displacement vector; A = — ¥ and U= E_ _ constants of Lamé; E, v represent the
(1+v)(1-2v) 2(1+v)

Young's modulus and Poisson's ratio for the shell material, respectively; | — this parameter is a scale
of the length of the material, understood as a property of the material, characterizing the effect of the
moment stress [15]. The latter parameter describes mathematically the square of the ratio of the
curvature module to the shear modulus and it can be determined by experiments for thin torsion
cylinders [33] or for thin rods for bending [34] on a micron scale; ¢ — this rotation vector, represented
as @;= %rot(ui).

From the analysis of equations (3) and (5) it follows that the stress tensor &ij and the curvature tensor
nij are symmetric, and, consequently, equations (2) and (4) yields the stress tensor oij and deviator
component of the stress tensor mij also symmetric. In deriving the equations of flexible, dimensionally
dependent shallow shells, the following hypotheses are used:

e shell is homogeneous, isotropic, and elastic;
o shallow shells are defined by the Reissner [35] or by V.Z. Vlasov [36];
o shell is subjected to the hypothesis of Kirchhoff-Love;

e geometric nonlinearity is introduced by the Karman model [37].

Let a shallow shell be considered in rectangular system of coordinates (see Fig.1) introduced in
the following way: Q = {x,y,z|(x,y) € [0;a] X [0;b],z € [-h; h]},0 < t < co.

Fig. 1. Single-layer rectangular in plan shell
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According to the principle of Hamilton-Ostrogradsky;
t

f(&( — 8T+ &W)dt = 0, (6)

to
where: K, IT - kinetic and potential energy, respectively; §'W - work of external forces.

The system of nonlinear PDEs governing dynamics of the flexible rectangular shells on the basis of
couple stress theory has the following form:

(Do + DYV*w — AZF — L(w, F) + phew — 3 + phi = 0,

(7
2 1 A oap _ __ El*n _ ER®
Viw + ZL(W, w) + EhV F=0,tneD; = L Dy = Ay
2w 9%F a*w  9%F a*w 0%F
Lw ,F )= 2[ x2 0y? + dy? 0ox2 - dxdy 6x0y]’

208 — r 20 %0
Vk() - Ky 9x? +Kx dy? ’

where VZ(-) — 4th order Laplace operator; K, and K, - curvature of the shell or can be interpreted
small initial irregularities; t- time; ¢ - coefficient of resistance of the medium in which the shell moves;

F - stress function; w - deflection function; h - shell thickness; u - Poisson’s coefficient; q - external
load parameter; | — size-dependent parameter.

Fig. 2. Spherical axisymmetric shell.

To obtain the axial symmetric theory of size dependent shells, we employ the cylindrical coordinate
system. The second equation of the system is multiplied by r, integrated and a new resolving function
O = aair is introduced [1].

Equations for nano axisymmetric shells have the following form

o%w ow yn o*w 203w 1 9%w 1 ow
—z+8—=—( + ) Ty 93 Ytz 3 ®)
at at 2(1+pu )) or r or r? or r3 or

fL0) L 10w d L 0w .
+ar(+r6r)+r +ar2 taq.

We introduce the following dimensionless quantities:
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x oy B e J9R el Yot
tzwot;xzbz’yzbz,woz\/ﬁ,EZJEEE,anW'WzﬁE'T‘ZbE,
a=LEnn=120- 2y =55 b= (15

where: R, C - the main radius of curvature of the reference contour and the radius of the reference
contour in the circumferential direction, respectively; b - parameter of flatness; r - distance from the
axis of rotation to the point on the middle surface. In the given equations, the bars over dimensionless
quantities are omitted for simplicity. For an axisymmetric problem, the boundary conditions are written
in the following form.

1) Simple movable contour in the meridional direction:

ew=0""1 w0, for rer )
=W = '6r2 bW— , or r=r.
2) Rigidly clamed contour
oD CD_O _062 +v6w_0 ¢ o (10)
ar U W T UGty T N TEn
3) Sliding clamping of the contour:
0
<D=W=0,—W=0, for r=r. (11)
ar
4)  Simple nonmovable contour:
00 cD_O _Oaw_o ¢ . (12)
or Ub—,W—,ar—, orr=r.

and the following initial conditions: w = f,(r,0) = 0,w’ = f,(r,0) =0 0 < t < oo.

In addition, the following conditions in the vicinity of the shallow top are employed:

D= Ar; @ =~ A;wxB+Cr3w =2Cr;w” = 2C; w"' = 0.

In order to reduce the problem (8) - (12) governing dynamics of the considered continuous system
into a system with lumped parameters, the method of finite differences (FDM) with approximation
0(A?) is used. PDEs as well as the boundary and initial conditions (9) - (12) are recast to the following
finite difference formulas with respect to the spatial coordinate r and time:

_ Wig1 — Wiy ( 1 Dy — cDi—l) Wit — 2W; + Wiq (q). _I_l) +
L
i

Wt ew = 24 3 2nA T.AZ

L

+ Pipg =Py | P (1 L )Wi+2 — 4w + 6w + 4w +wi
2A 7 2(1+ ) A?
Wit2=2Wiy1+2Wi1—Wip
TiA3 + 4qi (13)
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1 1 2 1 1 1 Wiy — Wi_q Wipq — Wi_q
D, (____) O (—=+=|+d;,_ (—— ): s (1— >,
U A2 2rA + ’<A2 + r2> O\t 2r;A 2A 41;A

L

where A= b/n and n denotes the number of modes of the shell radius.
The counterpart difference forms of the boundary conditions are as follows: If small terms are

neglected and the differential operators are substituted by the central finite differences for r = A, the

following conditions are obtained in the shell top:

1 8 8 (14)
(Do = (DZ — Zq)l; Wy = §W1 _§W2; w_q1 = §W1 _§W2 +W3

The transverse load can be changed arbitrarily with respect to the spatial coordinate and time. In

this work the harmonic transverse load of the form q = qosin(w,t) where g, stands for an amplitude
and wy, = 2?" is a frequency of the excitation, is used.

After reduction of the problem (14) to the normal form, we solve the Cauchy problem by the Runge-
Kutta method of the fourth order of accuracy. The time step is chosen from the stability condition of
the solution (At = 2.441-107%).

3. Results and discussions

Investigate complex vibrations shallow spherical shell with the boundary conditions: simple movable
contour in the meridional direction (9), the parameter shallowness b = 4, y = 0; 0.3; 0.7. When
solving the problem by the method of finite differences r € [0; b] the interval of integration was divided
into 120 parts. This number of partitions of the integration interval made it possible to treat the shell
structure as with distributed parameters, rather than as a structure with lumped parameters, i.e.
considered it as a system with an infinite number of degrees of freedom. Figures 3, 4, 5 show the
dependence of the deflection at the center of the shell in dependence of the alternating transverse load
qo (load on the shell uniformly distributed, changing according to law q = gosin(w,t), where w, =
0.516 is a frequency of the excitation, which is close to the fundamental frequency of linear vibration).
Colored dots in Figures 3-5 denote the free vibrations (the dependence of the deflection at the top of
the shell in time W(0), phase portraits W(W”), Fourier frequency power spectra, S(w), and their
characteristics are given in Table 1.
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Table 1

Type of vibrations

Time history Phase portrait Power spectrum
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The analysis of the results shows that an increase in the value of the parameter y is simplifies the shell
vibrations and transition from chaotic vibrations to harmonic vibrations has been observed. Complex
vibrations with the effect of loss of stability are characteristic for the shells with y = 0. Increasing »
parameter does not yield loss of stability. In this case, the vibrations become periodic. The amplitude

gradually increases together with increase of the load ( » = 0.7). For MEMS devices, this effect is of

great importance, as no chaotic vibration MEMS devices results in greater system reliability and

Conclusion

durability.
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General theory of geometrically nonlinear size dependent shells taking into
account contact interaction.
Part 2. Contact interaction of two-layer axially symmetric shells

Vadim A. Krysko — jr., Jan Awrejcewicz, Irina V. Papkova, Vadim A. Krysko

Abstract: In this paper a mathematical model of the nonlinear dynamics of flexible
two-layer axisymmetric spherical shells of equal curvature is proposed. The geometric
nonlinearity is taken into account by the model of Theodore von Karman. The shell
material is isotropic and homogeneous. For each layer, the Kirchhoff-Love hypothesis
is applied. The contact interaction between them is taken into account according to the
Cantor model. The problems are considered as systems with an infinite number of
degrees of freedom. The method of finite differences of the second order of accuracy,
and the Runge-Kutta type methods are used. The impact of the size-dependent
parameter, amplitude and frequency of the forcing load on the contact interaction of
shells is studied.

Keywords: spherical shell, contact interaction, nonlinear dynamics, chaos, power spectra, phase

portrait, Poincaré map, wavelet analysis, phase synchronization.

1. Introduction

The study of the nonlinear dynamics of mechanical systems with contact interaction is a necessary
direction of research for many areas of life and human activity. Multi-layer systems are elements of
structures in engineering construction, consumer equipment, medical equipment, military and
aerospace engineering, and nuclear power engineering. Questions of studies of nonlinear vibrations of
mechanical systems are discussed in [1-4]. Method of solving a differential equation with a nonlinear
relationship between components, based on replacement of non-linear terms by integrals from their
derivatives is proposed in these works. The obtained solutions allowed to improve the accuracy of a
gyroscope by analytical error compensation. One-dimensional mathematical models of beams, panels
of infinite length and shells are constructed into account geometric, physical, constructive kinematic
nonlinearity and their different combinations. Many problems were solved by various methods: finite
differences method, Bubnov-Galerkin method, Rayleigh-Ritz method. Scenarios of transition of
mechanical systems from periodic vibrations to temporal and space-temporal chaos are obtained. By
analogy with the phenomenon of the universality of the onset of chaos in simple systems, the existence

of a certain universality of the turbulence transition in the spatial problems of the theory of one-
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dimensional mechanical structures is shown. Studies of nonlinear dynamics of multilayer structures are
devoted in references [5-10]. The features of analysis of complex vibrations of a two-layer mechanical
structures in the form of beams, rectangular plates supported by beams, cylindrical shells are
considered. An analysis of the modern literature shows that the problems considered in this paper have

not been investigated previously.

2. Problem statement

Mathematical model of nonlinear dynamics of flexible two-layer spherical round in plan hinged-
supported shells, taking into account their size properties has been built. The geometric nonlinearity is
taken into account by the von Karman model. Shells material is elastic, isotropic, and homogeneous
with constant density. The contact interaction between them is taken into account according to the
Cantor [11] model. For each layer the Kirchhoff-Love hypothesis is applied. Between the shells there
is a gap, and hence the shells are connected via boundary conditions.

According the modified couple stress theory we consider the two-layer flexible spherical shell on a
rectangular plane under the action of transverse dynamic loading. Load is evenly distributed on the
surface of the first shell g(t) = qosin(w,t) (Fig. 1). Each layer system satisfies the Kirchhoff
hypotheses.

Fig. 1. The construction of two axisymmetric spherical shells of equal curvature connected through

boundary conditions

The system of nonlinear PDEs control dynamics of a design from nano-axisymmetric shells has the

following form

Pwi | Owi _ ymi \'wi 20w | 107w 13w 99 19w

at2 te at ( 2(1+ui)) ar+ r ors r2 9r2 r3 or ar (1 + r or ) +

Cl)i azwi _ i _ _

21425 + 4g + (DK (wy —wy, — )W, M
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For the simple movable contour in the meridional direction we have:
—w=02w, v, -7 )
CD_W_O'ar2+bW_0' for r =7,
the following initial conditions are taken
w=fi(r,0)=0w =£f{0)=00<t<oo, ©)
and the following conditions in the vicinity of the shallow top are employed

O = Ar,®' = A;w = B+ Cr¥w’ = 2Cr,w” = 2C; w'' = 0.

The following nondimensional quantities (with bars) are introduced:

_ _ X y Eg _ ,g R _ F w
t=w0t;x=bz;y=bz;w0= W:SZ WEE'FZWW;W:‘/EE;

F=bl g =002 g =120 - y = b = 1o K =2,
where: t - time; e- coefficient of viscous-type external damping in which the shell moves; F- stress
function; w- displacement function; R, C - main radius of the shell curvature and the radius of the shell
contour, respectively; h - shell thickness; b- parameter of flatness; u- Poisson's ratio; r - distance from
the axis of rotation to the point on the middle surface; q - external load parameter; | - size-dependent
parameter; h; - casing gap; K - bulk modulus of elasticity.

In order to reduce the problem (1)-(3) governing dynamics of the considered continuous system
into a system with lumped parameters, the method of finite differences (FDM) with
approximation 0(A?) is used. PDEs as well as the boundary and initial conditions (2)-(3) are recast to

the following finite difference formulas with respect to the spatial coordinate r and time:

w' +ew' =

Wit1,i— Wj_1i ( 1 D — ij—1,i> Wjg1,i — 2w + Wi
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where: A= b/n; n - denotes the number of modes of the shell radius.

Boundary conditions for the shell is pivotally-movable in the meridian direction supporting contour:

Dy =0;wiyq = ﬁwi_l wy, =0 for n, =b ®)
and the following initial conditions are taken

wn = (17, 0), W' = fo(1i,, 0),(0 <k <7n),0 < t < co. (6)

If small terms are neglected and the differential operators are substituted by the central finite
differences for r = A, the conditions are obtained in the shell top. If we neglect the small terms and

replace the central differential operators with finite-difference we obtain the conditions at the vertex:
4 1 8 8
CDO—CDZ—Z(Dl; W0—§W1_§W2; W_1—§W1_§W2+W3. (7)
The transverse load can be changed arbitrarily with respect to the spatial coordinate and time. In
this work the harmonic transverse load of the form g = g,sin(wyt), where q, stands for an amplitude

and o, is a frequency of the excitation, is used.

After reducing the task (1) — (3) to the normal form, we solve the Cauchy problem by the Runge-
Kutta method of the fourth order of accuracy. The time step is chosen from the stability condition of
the solution(At = 1.2207 - 107%).

3. Numerical results

We study the vibrations of axisymmetric for the simple movable contour in the meridional direction (2)
construction consists of two nano shells (b = 4) under the action of an alternating load on the upper
shell. Signals, phase portraits, Poincaré section, autocorrelation function, Fourier spectrum, sign
changes the highest Lyapunov exponent in time was analyzed for each of the shells. Impact magnitudes
the size dependent parameter y between the shells was studied. Change the contact area in time has
also been studied.

The method of phase chaotic synchronization of mechanical dynamical systems on the basis of
wavelet analysis is used. To describe and analyze phase chaotic synchronization, the phase of the
chaotic signal is introduced. Phase chaotic synchronization means that the phase of chaotic signals is
captured. Time as the amplitudes of these signals remain unrelated together and look chaotic. The
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phase capture entails coincidence of frequencies signals. The dark zones of the wavelet spectrum
correspond to phase synchronization of the beam vibrations.

The influence of magnitude the size-dependent parameter y on the vibration character of a two-
layer packet shells has been studied. Particular attention is drawn on initial joint vibrations, i.e. from
the moment of contact of the shells. In Table 1 are given signals, phase portraits and power spectra for
the construction from shells with a small gap § =0.01and y = 0; 0.7. In both cases, before the
contact, the first shell experiences harmonic vibrations, and the second shell is on rest. Increase
parameter y yield the system more rigid and resistant to loads, and deflection at depending on ascending
loads increases slower. Contact for shells with the parameter y = 0 comes at an amplitude of the sign of
the variable load g, = 0.0002, and for shells with the parameter y = 0.7 , at the load amplitude q, =
0.0005. In Tables 2 and 3, the results are in the following way: a) the signal of joint vibrations of the
two shells; b) the phase portrait for the first shell; c) the phase portrait for the second shell; d) the power
spectrum based on the fast Fourier transform for the first shell; ) the power spectrum for the second

shell; e) the phase difference.

Table 1.

b=4, h, =0.01,y =00

Qo =2-107*%

b=4 h, =0.01,y=07

Qo =2-10"*
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Table 2.

b=4 h, =0.01,7y=00

qo = 5'10_4

s

025) R

2200 2220 2240 2260 2280 2300
t

qo=5-10"3

0.05+ e
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Table 3.

b=4, h, =0.01,y =07

qo = 5'10_4

2220 2240 2260 2280 2300
t

Qo =5-1073

0.05+ —— — — -
2200 2220 2240 | 2260 2280 2300
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Consider the vibrations of a two-layer package with a gap h;, = 0.01 between the shells and with
parameter y = 0. At increase amplitude of the load there is a contact of the shells. Both shells vibrate
chaotically. The phase portrait for the first envelope represents a thickened orbit. In the phase portrait
of the second shell three centers of attraction of phase trajectories are visible. On the power spectrum
of the first shell, chaos is observed at low frequencies, and for a second shell, on a solid pedestal. The
phase difference indicates that the frequencies present in the signal are not synchronized. Further
increase of the amplitudes of excitation also generates chaotic vibrations of the shells. Phase portraits
of shells have a similar shape. Power spectra have noisy components. On the graph, the phase difference
increased the number of dark spots, which means synchronization of some frequencies.

Now we will analyze the situation when the vibrations of a two-layered packet with a gap h;, =
0.01 and parameter y = 0.7 between shells are studied. At initial joint vibrations of a two-layer package
shells with an amplitude of the driving force g, = 0.0005 shell power spectrum of the first shell

. w w . . .
demonstrates frequencies wy, 7" and T" and in the signal of the second shell there are frequencies:

©p @ ©p

Wp, S5 Ty In the phase portrait of the first shell two orbits are visible, and the second shell has 12
thickened orbits. When increasing the amplitude excitation to g, = 0.005, the vibrations become

chaotic.

4. Concluding remarks

A mathematical model of the contact interaction of two spherical axisymmetric circular nano-shells has
been constructed. The nonlinear dynamics of the contact interaction of two axisymmetric nano-shells
has been investigated. Comparison vibrations depending on from increase the size-dependent parameter
has been carried out. It is revealed that with the increase in the dimension-dependent parameter, the

stability of the system increases. On the other hand, a contact between shells implies chaotic vibrations.
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Free vibration analysis of laminated functionally graded shallow
shells by the R-functions method

Lidiya Kurpa, Tetyana Shmatko, Jan Awrejcewicz

Abstract: The R-functions theory and Ritz approach are applied for analysis of free
vibration laminated shallow shells with different types of curvatures and complex
planform. Shallow shells are considered as sandwich ones of the different types: a)
face sheets of the shallow shells are made of functionally graded material (FGM) and
core is isotropic material; b) face sheets of the shallow shells are isotropic, but core is
made of FGM. It is assumed that FGM layers are made of a mixture of metal and
ceramics and effective material properties of layers are varied accordingly to Voight’s
rule. Formulation of the problem is carried out using the refined theory of shallow
shells of the first order (Timoshenko’s type). The different types of boundary
conditions including clamped, simply supported, free edge and their combinations are
studied. The proposed method and created computer code have been examined on test
problems for shallow shells with rectangular planforms. In order to demonstrate the
possibility of the developed approach, new results for laminated FGM shallow shells
with complex planform are presented. Effects of the different material distributions,
mechanical properties of the constituent materials, lamination scheme, boundary
conditions and geometrical parameters on natural frequencies are shown and
analyzed.

1. Introduction

Functionally graded materials (FGMs) can be considered as a new class of the composite materials
used extensively for manufacture of shell structural elements. The main advantages of these materials
in comparison with conventional composite materials are the smoothness and continuous change of
material properties along the thickness of the object. This avoids the appearance of stress
concentration that is found in laminated composites. Analysis of vibration of laminated and FGM
shallow shells has been carried out by numerous investigators [1-3]. Last decade analysis of nonlinear
free and force vibrations of the FG shells have been extensive studied in addition to the linear
vibration (see [4-6]). Joint application of the FGM and pure metallic and ceramic is widely used for
design of many elements of the modern constructions. However, the number of publications devoted
to the study of multilayered FGM shallow shells is rather small [2, 3].

The main goal of this paper is to present efficient and enough universal approach to analyze the

laminated functionally graded shallow shells with complex shape of their planforms and different
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boundary conditions. The proposed method is based on matching both the R-functions theory and
variational Ritz method [5-6]. Formulation of the problem is carried out using the refined theory of
shallow shells of the first order (FSDT). In the present study this approach is applied to three-layered
shallow shells like sandwich ones. Two types of lamination schemes are considered. Type 1-2
corresponds to sandwich shallow shells with FGM face sheets and isotropic core. Type 2-2 describes
sandwich shallow shells with isotropic face sheets (pure ceramics or metal), and core made of FGM.
It is assumed that FGM layers are made of a mixture of metal and ceramics and effective material
properties of layers are varied according to Voight’s rule. The proposed method is validated by
investigation of test problems for shallow shells with rectangular plan-form and different boundary
conditions. The current method is also employed to novel vibration problems for doubly- curved

shallow shells with complex form of the cut.

2.  Mathematical formulation

Consider three-layered functionally graded shallow shell with uniform thickness 4. It is assumed that
the FGM layers are made of a mixture of ceramics and metals. Double curved shallow shell can have
an arbitrary planform. The effective material properties of layers vary continuously and smoothly in

thickness direction and can be estimated by the Voight’s law:

£ (B0~ B+ 50, ) (0 ), o) (o) s ) (1)

where E,S’), V,S’),p,sr) and El(r ), vl("), pl(’ ) are Young modulus, Poisson’s ratio and mass density of
the upper and lower surfaces of the r -layer, respectively, and VL.(’) is the volume fraction of

ceramic. As example the value VC(’) is shown for the scheme lamination of types 1-2 and 2-2 in

Table 1.
Shallow shells of type 1-2 correspond to sandwich shallow shells with FGM face sheets and
isotropic (metal) core (Fig.1, Table 1). The shells of type 2-2 correspond to sandwich shallow shell

with FGM core and ceramics on top face sheet and metal on bottom face sheet (Fig. 2, Table 1). Let
us note that the values pj, p,, p; are the power-law FGM exponents of the corresponding layer. The

thickness of the layers may be varied. The ratio of thickness of layers from bottom to top is denoted

by the combination of three numbers. For example, “1-2-1” denotes that ratio of thickness of the
layers is defined as A" :n® ;A =1:2:1, where n) = h+h/2, n@ = hy —hy, nB) = h/2—hy
(see Fig.1, 2). According to the first order shear deformation theory of shallow shell (FSDT) , the

displacements components u,u,,uU3 at a point (x,y,z) are expressed as functions of the middle
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surface displacements u,v and w in the Ox,0y and Oz directions and the independent rotations

V¥, of the transverse normal to middle surface about the Oy and Ox axes, respectively [1-4]:

Up=u+zy,, Uy =v+zy,, uz=w. 2)

Table 1. Value of volume fraction #") for two types laminated FGM shallow shells

Figure 1. Type 1-2 Figure 2. Type 2-2
P v = o, zel-h/2,h],
ik zel[-h/2,h], 1
—h —h/2 cehy VP
:[ J B Ze[h]ahZ]a
2)_o, zelh,hy], hi2—h
3) -1, zelhy,h/2]
ol R e
hi/2—h

7 7
Strain components € = {EI 15 €225 512} , X = {11 b X225 ;(12} at an arbitrary point of the shallow

shell are:
€11 :u,x+w/Rx &Exp = V,y+W/Ry €12 :u,y+v,x, (3)
EI3 = WoxTWys E3 =Wy W, Y11 =Waoxs> X22=VWysy X122 =WxsytWyox . C)

In-plane force resultant vector N = (N 11>N2, N, lz)T , bending and twisting moments resultant vector

M =(M,,,M5y,M;,)" and transverse shear force resultant Q = (Qx, Qy)T are calculated by

integration along Oz -axes and defined as:

(V= [4fe}+ [Blx. [M]=[Ble}+ Dl . (5)
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Elements A4, B;;

ij» Bij» Dy of the matrices 4, B and D in relations (4) are calculated by formulas:

Zrl

Ql(lr zdz ,

Mw

Q{(fr)dz R

r=lz, r=l z,

|| Mw

T ol)z2d . ©)

Values ng»r) (i, j= 1,2,3) are defined by the following expressions

0 _ot) o £ () ) _
Q1 =0y = 1—(1/(’))2 , O = 1—(1/(’))2’ o6 —m o

Transverse shear force resultants 0,, O, are defined as follows
2 2
O, =K 433613, 0, =K; 433673, (3)

where K 52 denotes the shear correction factor. In this paper, it will be fixed to 5/6 .

Further, we consider materials with Poisson’s ratio independent of temperature and with the same

for ceramics and metal ie.V,, =V.. Then coefficients 4;, B;;, D;; can be calculated directly.

Analytical expressions of these coefficients for the shells of Types 1-2 and 2-2 are presented below

provided that the following designations have been inserted:

1 1
2asl’ 2as?2

asl = £+h1 , as2=h2—ﬁ, bsl =
2 2

E 1 2
By =—5| asl b __as —as2 a5 ,
1-v p+l p+2 3+l py+2

2 2
2asl 1
Dy, = 12 E, | asl| 2L st |
1-v p+l p+2 p+3
2 2
—as2| B2 g, 42 g N By
p3+3 p3+2  py+l 12

1 h h
Type2-2: A4, = E |2 —h E+E)|,
ype 11 1 2{ cm[p2+1 2] 2( c m)J

2
B, - Esz asl hy+ hy +l h——hzz ,
1-vipp+2 p+1l) 20 4

1 2
Typel2 A= lz[Em[ e +j+Emh],
14
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2 2Y 1) (E,+E
Dy =— S| E,,,| as] W, 2ast g, et | ;b yEntE) )
1-v p+l p+2 ' p+3) 3 24

Note that values Ay, A, B2, Beg» Din»Dsg, for all types of the lamination schemes, are defined as

follows

R, =VR,, Ryp=Ry, Re=—

3. Solution method
To solve the free vibration problem let us present the vector of unknown functions in the following
way
U(;(x,y,t),;(x,y,t),viv(x,y,t),l//ix(x,y,t),yTy(x,y,t)) = ©
=U(u(x,).v(x,9),w(x, ) .0, (%.3).0,(x, y))sin Az,
where A stands for vibration frequency. Applying the principle of Ostrogradskiy-Hamilton, we get
the variational equation in the form

8(Umax - /12Tmax)= 0, (10)

Expressions for strain U and kinetic energy T are defined by relations:

1
Unax :EH(Nugn + Nogéay + Nig&ig + My + My 200y + My + Q81 +Qy523)dxdy7 an
Q
1
T, ZEHJO(uZ w2 w2 (o, )+ D (w2 ) dxdy, (12)
Q

where 1, I},1, are defined by the following expressions:

asl as2
Type 1-2: Iy =pen| ——~
pl +1 p3 +1

h h
]1 :pcm asl 1 _Cl—Sl _asz —Z_Lz R
p+l p+2 p3+l p3+2

2 2 3
= pcm{asl[ hi . 2asl ot asl ]_h_zj+(pm+pc)h3
P

1
5 Pem =Pe ~Pm

+J+pmh
I-v

S+l py+2 ' p,+3] 3 24
hy —h h
Type 2-2: Io=pcm[ 2 l_h2j+_(pc+pm)’
P2 +1 2
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Minimization of the functional (10) will be performed using the Ritz’s method. Necessary

sequence of coordinate functions we will build employing the R-functions theory [7].

4. Numerical results

4.1. Validation of the presented results
To verify the accuracy of the present results obtained by the proposed approach, we consider the
solution of several test problems.

Case study 1. Natural frequencies of laminated FGM square shallow shells of Type 1-2 and 2-2
with various boundary conditions and geometrical parameters: #/a=0.1; b/a=1; a/R,=0.2

are analyzed. The material constituents M; and M, are assumed to be aluminum and alumina [1-4].

The material properties of the FG mixture used in the present study are
Al: E,=70GPA,v, =03, p,=270kg/m’
ALO;: E,.=380GPA,v,=03, p,= 3800kg/m>

The boundary conditions are defined as follows:

(i) CCCC- shell is clamped on sides x = i%, y= i%;
(i)  SSSS-shell is simply supported on sides x = i%, y= ig;

(iii) SFSF-shell is free on sides x = i% and simply-supported on sides y = i%;

iv) SCSC-shell is simply supported on sides x = +< and clamped on sides y = ié.
ply supp > p y >

Values of the fundamental linear frequency parameters QY = 4/./p, / E, of the cylindrical and

spherical shells of Types 1-2 and 2-2 for thickness scheme 1-2-1 are presented in Table 2.
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Table 2. Comparison of the fundamental frequency parameter Qg) =A4h{Jp./E,. ofcylindrical and

spherical shallow shells with square plan-form and various boundary conditions (Type of the shell 1-

2, thickness scheme 1-2-1).

P Methods Cylindrical shell Spherical shell
k;=0.2,k,=0 ki=k,=0.2

SFSF | SSSS | CCCC | SCSC | SFSF | SSSS | CCCC | SCSsC
0.6 [3] 0.833 | 1.686 | 2.800 | 2.299 | 0.838 | 1.733 | 2.846 | 2.345
RFM 0.834 | 1.692 | 2.829 | 2319 | 0.840 | 1.738 | 2.874 | 2.365
5 [3] 0.627 | 1.274 | 2.132 | 1.746 | 0.632 | 1.313 | 2.170 | 1.784
RFM 0.628 | 1.278 | 2.152 | 1.760 | 0.633 | 1.317 | 2.189 | 1.798
20 [3] 0.519 | 1.060 | 1.797 | 1.466 | 0.525 | 1.099 | 1.833 | 1.504
RFM 0.520 | 1.063 | 1.811 1.476 | 0.525 | 1.101 1.847 | 1.513

These results were obtained using 28 admissible functions to approximate each of the functions
UNATSR and 36 admissible functions in order to approximate deflection w.
Due to the doubly-symmetric nature of the shell, at numerical implementation of the developed

software the integration is performed above only on one-quarter domain. It can be observed that

presented results are in excellent agreement with those reported in reference [3].

4.2. Free vibration of the functionally graded shells with complex form of a plan
In order to present new results and to illustrate the versatility and efficiency of the proposed method
and the developed computer code let us consider the shallow shell with shape of the plan presented in

the Fig. 3. Its geometrical parameters are fixed: kj =R,/2a=0.2,k, =R, /2a=(0,0.2,-0.2),
b/a=1,1%/2a=0.125r/2a=0.25h/2a=0.1.

Suppose that shell is clamped at the internal border of the region. However, on the outer boundary
of the region the shell can be either clamped or simply supported or may have the mixed boundary
conditions like boundary conditions in Task 1 (CCCC, SSSS, SFSF and SCSC). Then the solution

structure for shells with complete clamped on inside and outside borders can be taken as:

w=a®, u=wb,, v=wd;, , y,=awDy, y/y:axl)5. (13)
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Figure. 3. Shape of the plan of the laminated FGM shallow shell

For another type of the boundary conditions we propose to take solution structure satisfying

kinematic boundary conditions in the following form:

w=a"0, u=0"D, v=oo, | y, =D, ¥, =0 D, (14)
where @;,i :I,_Sare indefinite components of the structure [6,7] presented as an expansion in a
series of some complete system (power polynomials, trigonometric polynomials, splines etc.), @ =0

is equation of the whole border of the shell plan-form. The functions a)("), w(v), w(w), a)("’x), a)( )

are constructed by the R-functions theory in such a way that they vanish on those parts of the

boundary where the functions u, v, w, v, v, are zero. To realize the solution structure (13) and

(14) we should construct the equation of whole border and functions a)(“), a)(v), a)(w), w(‘”v‘), a)(y/-") .
Using the R-operations [7], we build the equation of border in the form:

W = w;,

inside N0 @outside (15)

where
Oipside = (* ((((fl Ao f2)Vo (Z/\o 72)\/0 ((f3 Ao fa)Vo (73 Ao 174)))\/0 S5 )/\0 Je ))
Doyiside :f7 Ao f8 .

Functions f;, i =18 are defined as follows:

flz[y-i—%x >0, fzz[—y-i—%x]zo, f3:(y—\/§x)20, f4=(y+\/§x)20,

318



fs =(’”12 -x? —y2)2 0, fs =(”22 -x? —yz)Z 0, f7= (112 —XZ)Z 0, fs =(b2 _yz)z 0.
Below, we write down expressions for functions a)(“),a)("),w(w),a)(“’"),a)(%’) for different

boundary conditions on outside part of the region border provided that cut of the shell is clamped. We

have
CCCC: o™ = o) = o™ = W) = a)(%’) =w, (16)
() _ ™ ) — o) _ ) _
3SSS: o' =0 =" =0 =w =w, (17)
SFSF: a)(W) = a)(”) = a)('//x) = Oipside No f8’ a)(V) = a)('//}’) = Oipside> (1 8)
SCSC: o™ =0 =) =, ") = w(%’) = Oy No = Jo- (19)

Indefinite components ®,, i = 1,_5 in solution structures (13)-(14) were approximated by a system

of power polynomial taking into account the doubly—symmetric of the problem. As earlier, the

integration procedure is performed over one-quarter domain.

Table 3. Fundamental frequency parameters Qg) = ﬂlaz p.! E. /h for shells of Type 2-2 with

clamped cut and simply supported on outside contour of the domain (See Fig.1)

Thickness p k;=0.2,k,=0 | k;=0.2,k,=-0.2 | k;=0.2,k,=0.2
scheme
0.5 23.66 23.68 23.65
2-1-2 5 22.84 22.87 22.83
10 22.76 22.79 22.74
0.5 23.37 23.40 23.37
2-2-1 5 22.24 22.27 22.22
10 22.09 22.12 27.07

In Table 3 the fundamental frequency parameters Q(Ll) =lla2 Joe.E. /h for SSSS cylindrical,

spherical and hyperbolic paraboloidal shells of Type 2-2 and two thickness schemes (2-1-2) and (2-2-
1) are presented. Note that fundamental frequencies parameters for considered shells with general
thickness h/2a=0.1 are close for cylindrical, spherical and hyperbolic paraboloidal shells. Effects of

power — law  exponent p=p, P, p3 on  fundamental  frequency  parameter

Q(L') = Alaz,/pc / E, | h for cylindrical, spherical and hyperbolic paraboloidal shells of Type 1-2 and

2-2 with different boundary conditions are shown in Fig. 4, 5, 6.
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The different thickness schemes are taken for shallow shells under consideration. The obtained

results for cylindrical shells with thickness scheme (1-2-1) are presented in Fig.4.

Figure. 4. Variation of the fundamental frequency parameter Q(Ll) :ﬂlaz,l p.!E./h of cylindrical

shells with increasing power-law exponent p ('thickness scheme 1-2-1).

Figure. 5. Variation of the fundamental frequency parameter Q(Ll) = /11a2,l p.!E./h of the spherical

shells with increasing power-law exponent p (thickness scheme 2-1-2)

The effects of material types and power-law exponents on frequency parameter of spherical shells
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with (2-1-2) thickness scheme are presented in Fig. 5. Similar results for hyperbolic paraboloid shells
with (1-1-1) thickness scheme are shown in Fig. 6.

Figure. 6. Variation of the fundamental frequency parameter Q(Ll) = ﬂlaz,/ p. ! E. lh of Type 1-2

and 2-2 with thickness scheme (1-1-1) of hyperbolic paraboloidal shells with increasing p.

As follows from Fig. 4-6 the value of fundamental frequency parameters depends essentially on
the material type, thickness schemes, and boundary conditions. Obvious that the fundamental
frequencies parameters for all considered cases decrease with increasing power-law exponent. For

shells of type 1-2 the decrease is more essential than for shells of Type 2-2.

5. Conclusions

This paper proposes a method of investigation of free vibration of laminated functionally graded
shallow shells with complex shape of plan form. The method is based on the theory of R-functions
and Ritz variational method. Comparison of the obtained results for shallow shells of the doubly-
curved with square planform confirms the validation of the developed software. New solution
structures are proposed for shallow shells with clamped hole of the different form. In addition, the
novel results are obtained for cylindrical, spherical and hyperbolic paraboloidal shallow shells of
FGM sandwich FGM type with cutout of the complex shape. Effects of material types, power-law
exponents, thickness schemes and different boundary conditions are studied for shells with clamped

hole of the complex shape.
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Spectral approach for dynamic analysis of a composite structure
under random excitation

M.R. Machado, L. Khalij, A.T. Fabro

Abstract: The application of the composite materials in aeronautical and aerospace
industries has been increasing on the last several decades. Compared to metal-
lic material composites, they present better strength to weight and stiffness to
weight ratio. However, the high level of uncertainty in composite materials is
mainly associated with the manufacturing processes. The uncertainty in the
composite material parameters is reflected in the variability of stiffness and
strength descriptors affecting the overall performance, mainly on the struc-
tural dynamic response. Randomness can be present in geometry, mechanical
properties, and external sources like random excitation. This paper treats the
dynamic analysis of a composite plate under random excitation. The plate is
modelled by the Spectral Finite Element method, a wave propagation tech-
nique. A numerical example is used to study the influence of random source
on the dynamic composite structure behaviour.

1. Introduction

Wave based models at high-frequency analysis require a large number of elements to obtain an
accurate solution. An alternative to Finite Element Method (FEM), which can become too
expensive or even infeasible from a computational point of view is to use the Spectral Element
Method (SEM). As the SEM assumes the exact frequency-domain solution, it implies high
accuracy. Other advantages of the method are the reduction of the problem size and DOFs,
low computational cost, effectiveness in dealing with frequency-domain problems and with
the non-reflecting boundary conditions of the infinite or semi-infinite-domain problems [1, 2,
7]. SEM has been also applied to laminate composite (e.g. [13, 11, 5, 4] ).

The main dynamic excitations are typically arising from natural phenomena such as
impacts, gusty winds, earthquake ground motion, sea waves, etc. In some cases, harmonic
excitation is considered; however, it is easy the situations where devices are operating under
unknown or random excitations. For structural analysis purposes, random excitation is
commonly modelled as a Gaussian stochastic processes[12]. Several approaches have been
proposed to cope with the challenging problem of characterizing the random response of
a structural system under stochastic excitation, it is addressed in [9, 8, 6]. The random
excitation is usually specified in terms of its Power Spectral Density (PSD), which it is a

function that describes the power content distribution of a quantity over a frequency range.
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This paper presents a study of the dynamic response of a composite beam subjected
to random excitation. For a given configuration of ply-angle, random excitation is taken
into account to evaluate the affects of the randomness in the excitation into the structural
response. Three different random excitations, described by typicall PSDs, are used in the
analysis. Numerical tests show the influence of the random excitation on the dynamic com-

posite beam behaviour.

2. Wave motion in laminated composite beam

Wave based methods have been applied during last decades in laminated and delaminated
composites. It is a powerful tool to non-destructive damage detection. In order to obtain the
wave parameters (wave number and group velocity), we need to perform a spectral analysis
on the governing equation(s) of motion. In this paper, a multilayer composite beam, showed

in fig. 1, is treated.

Figure 1. Model of a composite beam.

It is considered the first order shear (FSDT) axial and transverse motion displacement
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field, given by

u(xa:%t) = *y(ﬁ({l}, t)7 (1)
v(z,y,t) = vo(;mt),

where, u and v are the axial and transverse displacements, ¢ and v° denotes independent
rotation and transverse displacement along the x — axis, respectively. The constitutive
relation for transversely orthotropic laminated composite is based on the laminated theory

[3], which is given by

Oxx Qll 0 Exx
- . )

Taxx 0 QGG Yz

The Hamilton’s principle along with eqgs. 1 and 2 was used to derive the governing wave

equation, expressed as
108" — Ass(vgs — ¢2) =0, ®3)
Id — Asa(vg — @) — D11¢zz =0,
where ()¢ ()2 are derivatives of the field variables with respect to z. The stiffness coefficients,

which are functions of the individual ply properties and orientation, and the coefficients

associated with the inertial terms are integrated over the beam cross-section, i.e.

241 _
[Ate, Bio, D] = 3 / Qull, 2, 2bdz, (4)
s 2

Zl+1
Lo, I, I2] = Z/ pl1, z, 2°bdz,
1 YA

coefficients b is the width of the beam, p is the density of composite, and z; and z;4+1 denotes
z-coordinate of the top and bottom surfaces of the [th layer. The spectral solution for the
primary displacement field variables can be obtained by using the Discrete Fourier Transform

(DFT) for the temporal field, it can be expressed as

u(z,t) = i = i Zu (5)
I - —~ - —~ et J I

where i = v/—1, w, is the circular frequency at nth sampling point, and N is the Nyquist
point in DFT. Assuming the solution for the displacements as uy, it is suitable to calculate the
wavenumbers k; associated with the jth wave mode. Since there are only two independent

variables v; and ¢,; from the FSDT assumption, Eq. 1, the following solutions are assumed

vj = vo e BT, (6)

¢; = doje T, (G=1,..,4)
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Substituting eqs. 6 into 3, it gives the characteristic equation

—Iow? + Asck?® —ikAge V0,5 _J 0 (7)
ik Age —Lw? + Ags + D11K? $0,; o

A non-trivial solution of the displacement field, Eq. 7, yields a fourth order characteristic

polynomial equation in k;
A66D11k4 — (A66[2w2)k2 —|— (Ing — A66)10w2 = 0 (8)

The characteristic equation is quadratic in k% and hence can be easily solved. There are four

roots, representing two sets of wave mode pairs, in the form

(D11lo + A6612)w2 - \/4A§6D11[0w2 + (D11lo — Aecl2)?w?
i Aes D11

\/ﬁ )

ki =

Ags D11
7 . (9)

This solution gives the dispersion relation, i.e. the wavenumber as a function of the

\/(Dufo + Assl2)w? + \/4AZ, D11 Iow? + (D111o — Assl2)2w?
ko =+

circular frequency and can be used to find the group velocity, by cg1,2(w) = dk1,2/0w. The

next section presents the spectral element formulation for a laminated beam.

3. Laminated multilayer composite beam spectral element

The spectral element model for analysis of flexural-shear coupled wave propagation ap-

proached in this paper was proposed by Palacz et al. [10].

Figure 2. Multilayer composite beam spectral element.

Figure 2 shows a laminated multilayer composite beam spectral element of two nodes
with transverse displacement and independent rotation per node. The beam is assumed to

have total length L , width b, and height h. The spectral element nodes are given by the
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displacement v and rotation ¢, from the FSDT assumption, such that
’U(ZE) — RlAlefiklz +R2A2672‘k21 o R1A3efik1(sz) 7 R2A4877ﬁk2([‘71¢)’
d)(x) :1418—1'1612_'_1426—1'1»321_|_1436—ikl(L—z)_|_144€—'Lk2(L—z)7 (10)

where ¢ = \/—1, k1 and ko are roots of the characteristic equation given in Eq.9, and

R, (n =1,2) is the amplitudes ratio as given by Doyle [2],

tkn Ass

Rn=—5—"5.
Aﬁﬁk% — Iow2

for (n=1,2). (11)

The coefficients Aj(j = 1 — 4) are calculated as a function of the nodal spectral dis-
placements, using the boundary conditions, having the form at the left end of the element

(z = 0)

v1 = q1, (12)
$1 = qo, (13)

and at the right end of the element (z = L)

V2 = (g3, (14)

¢2 = qa. (15)

The boundary conditions can then be used to write Eq. 10 in a matrix form as

R; Ry —Rie" "l _Ryeikel A ¢
1 1 e~ k1L e~ k2L Ay _ @ (16)
Rie~ 1l Roe~ik2l —R; —R» Az a3
e~ k1L e~ ik2L 1 1 Ay @
v

The element has two nodes and two degrees of freedom (DOF) per node, where the
unknown coefficients A;(j = 1,2,3,4) are calculated from Eq. 16 as a function of nodal
spectral displacements. The nodal spectral forces (shear force and bending moment) for the

left hand side of the beam (z = 0) can be determined as

_ 0%v1(x)
L O (17)
o° 0
T1 = —D11 g;g$) — IQ(,UQ%(:C) (18)
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and the nodal spectral forces for the right hand side of the beam (x = L) as follows

0%va(x)
My = D1y ————+ 19
2 152 (19)
BPva(x) 2 Ova ()
Ty =—Di1——= — 1 2
P 13 2w — (20)
Equation 11 can be applied to Eq. 16 leading to

n [ 4 d; diz Bz ][ A

q2 iD11ky 1D11k2 (iD11k1)z1 (iD11k2)ze A
= , (21

q3 diz dae’ dy da As

q4 | (iD1uik1)z1 (iD11k2)z2  —iDiik —iD11ks | As

r

where df = —D11k? + Lw?, d5 = —D11k? + Iw?, di = D11k? + Ihw?, do = D11k? + Iow?,

21 = e 1L and 2o = e k2l Taking into account relations of the Eqs. 16 and 21 the
frequency dependent dynamic stiffness matrix, which relate the nodal spectral forces with

the nodal spectral displacements, can be written as

{P} = [K(w){a}, (22)

where {P} is vector content the forces, {q} is the displacement vector, and the dynamic

stiffness matrix are obtained as [K(w)] = U 'T".

4. Random excitation

Composite structures are typically subjected to random dynamic loads, like earth-quakes and
wind loads, in civil, aeronautic and aerospace industry. This loads are usually modelled as
second order stationary Gaussian stochastic processes with a given autocorrelation funcion
R(7), describing the smoothness, ou roughness, of the time series. The WienerKhinchin
theorem relates R(7) to a frequency domain Power Spectral Density (PSD) S(w) by a Fourier
transform pair [9]. The time series can be numerically generated by a FFT-based algorithm,
by taking the inverse discrete Fourier transform (IDFT) of the discretized target PSD, being
its amplitude is estimated as the square root of the discretized PSD, v/Sk, and a random
phase is generated from a uniform distribution within the interval [0, 27].

A very common PSD model is the white noise, given by S(w) = Sp. It is a idealization
in which the signal frequency content is equally distributed over the frequency band (band-

limited white noise). This assumption is not physically sound and other PSD models can be

328



used, like a First Order Filter (FOF),

— SO
50) = w2 (23)
or Kanai-Tajimi model, a second order type of filter given by
1+ 4¢2 S

(1+ (w/wg)? + 465 (w/wg)?

where the constant v, £ and w, are adjusted according to specific features of the random
load. An important relations used in the analysis of the dynamic response of any system to
random excitation is that the PSD of the response of a system S,(w) to an input PSD S;(w)
is given by [9]

So(w) = [H(w)|* Si(w), (25)

where the function H(w) is the frequency response function (FRF) between the input and

the output.

5. Numerical simulations

For de numerical examples, a free-free multilayer composite beam modelled by a two nodes
spectral element, as showed in fig. 2, is made out of glass-epoxy with 10 layers orientated of
0°. Each layer’s thickness is 1 mm, the length of the beam is 2 m, and the width is 0.02 m.
The physical properties Young’s modulus, Poisson ration , Kirchhoff modulus and density of
the matrix-epoxy are: En = 3.43 GPa, vy = 0.35, Gy = 1.27 GPa, py = 1250 (km/m3);
for of the fibers-glass are: Er = 66.5 GPa, vr = 0.23, Gr = 27.0 GPa, pr = 2250 (km/mg).
The calculated FRF simulates the transfer receptance with force excitation at node 1 and
displacement response measured at node 1 and 2.

Random excitation includes a mixture of different levels of external forces or externally
imposed displacements that contain components of many different frequencies, according to
its corresponding PSD. It is verified the influence of three different random excitations and
a sinusoidal harmonic force in the dynamic response of the composite beam. The random
excitation signals were generated as specified in Section (4).

Figure 3 shows a sample of the time domain input for different PSD models which were
used to excite the composite beam, i.e. the white noise excitation, FOF and the Kanai-Tajimi
as well as the harmonic force. Additionally, The Power Spectral Density of tip excitation
force for each signal is also shown in fig. 4.

The PSD of the beam displacement in the frequency and time domain are shown in

figure 5 to figure 8. The dynamic response of the beam excited with a sinusoidal harmonic
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Figure 3. Time domain samples of excitation using (a) sine, (b) white noise, (¢) FOF and
(d) Kanai-Tajimi.

force also present a sinusoidal harmonic with same frequency in the time domain, such
response was expected once it is a linear system. Note that the response in frequency domain
presents a curve resembling the FRF. This is due to a windowing effect in the time domain
excitation. Moreover, when the beam is excited by a random force the response will be also
random, with PSD given by Eq. 25 behaviour.The knowledge about how the structure will
behave under specific excitation is crucial for example for the vibration control, structure
reliability, or fatigue analyses.

Note that the time domain displacement response is mainly due to the first mode in all
cases under random excitation. This is because the contribution of the others modes on the
response do not have great influence, as it can be observed from the frequency domain reponse
where the higher order resonance peaks a much smaller in magnitude. The beam response
in the frequency domain excited with a white Noise, FOF, and Kanai-Tajimi presented a

closer behaviour and amplitudes in both measured nodes. However, in time domain a visible
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Figure 4. Power Spectral Density of tip excitation force for white noise (blue), First Order

Filter (red) and Kanai-Tajimi (green).

0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ s
E? 2xl()
2
5e
e
29 1
&= g
400 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ =
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 E
§
g
-100 =
5= a,
2E 200
B
=@ -300
a= -2
0 02 04 0.6 038 1
4000500 1000 1500 2000 2500 3000 3500 4000 4300 5000 Time [s]
Frequency [Hz]
Figure 5. Frequency (left) and time (rigth) domain reponse of the composite beam at

nodes 1 and 2, excited by harmonic force.

difference is observed among the simulated cases. The responses derived using First Order
Filter (FOF) and Kanai-Tajimi excitation showed maximum displacement around 0.002 m,
while that the maximum displacement obtained with the white noise excitation was around
0.0005 m. It demonstrated how the change in the input force can affect the outcomes.
Next step of this work consists in add random properties in the beam and analyse how
the randomness in the structure combined with the random excitation can impact in the

dynamic response.
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Figure 6. Frequency (left) and time (rigth) domain reponse of the composite beam at

nodes 1 and 2, excited by white noise.
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Figure 7. Frequency (left) and time (rigth) domain reponse of the composite beam at

nodes 1 and 2, excited by FOF PSD.
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Figure 8. Frequency (left) and time (rigth) domain reponse of the composite beam at

nodes 1 and 2, excited by Kanai-Tajimi PSD.
6. Conclusions

The dynamic response of a composite beam subjected to three different random excitation

was addressed in this paper. The composite beam was excited with a deterministic harmonic
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force and random excitation given by white noise, FOF and Kanai-Tajimi PSD model. A

dynamic response of the beam excited with a harmonic force has a harmonic behaviour in

the time domain, as expected. When the random PSD model were approached an random

dynamic behaviour was expected. Evethough the FRFs obtained from the beam excited

with the random PSD model had close amplitudes, the time domain reponse presented a

visible difference during as well as different maximum displacement amplitude. It shows

that corretly representing the random excitation model is very important. This is a crucial

information in vibration control, structural reliability or fatigue analyses.
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Optimal auxiliary functions method for investigating a permanent
magnet synchronous generator

Vasile Marinca, Nicolae Herisanu

Abstract:In the present paper we investigate the transitory working regime of a
permanent magnet synchronous generator that works in actual wind power station.
For the nonlinear differential equations which describe this type of machines we apply
the Optimal Auxiliary Functions Method (OAFM) and an explicit analytical solution
is obtained.The governing equations are expressed in the non-dimensional form and
are solved by means of OAFM. Two stages of the generator’s dynamic behaviors are
known: the beginning of the transitory regime and the ending of this regime. The first
stage of the regime shows the electromagnetic fast transitory regime and the second
one generally emphasize the mechanical slow transitory regime, caused by inertia. In
each of these stages of the transitory regime, the solutions are built using different
functions, for example trigonometric functions in combination with exponential
functions for the first stage and polynomial functions in combination with exponential
functions in the case of the second stage. On the other hand, these functions depend
on several optimal-convergence-control parameters which ensure a fast convergence
of the approximate solution to the exact ones. Numerical examples analyzed in this
paper lead to the conclusion that the results obtained through the proposed procedure
are very accurate and the method is very efficient in practice.

1. Introduction

The permanent magnet synchronous generators (PMSQG) are rotating electrical machines having a
classic three-phase stator like that of an induction motor, and the rotor has surface-mounted
permanent magnets. They are widely used to convert the mechanical wind energy into electrical
energy, which is a hot topic nowadays [1-6]. That is why various aspects of design and functioning of
permanent magnet synchronous machines received an increased interest from scientists. Small signal
stability of permanent magnet synchronous generator (PMSG)-based wind turbines connected to the
power grid is properly studied in [7] in order to facilitate damping strategy design.Song et al. [8]
applied the Taguchi method to optimal design of permanent magnet synchronous motors to optimize
the thrust and thrust ripple, and using finite-element analysis, the relative importance of each design
parameter was estimated in detail. Based on a linearized model, the relation between the PMSG
electromagnetic torque and boost converter current is extracted, and then system's control-loops are

developed by Rahimi in [9].
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In this paper, the behavior of the PMSGis predicted using the classical d-q equivalent circuit
models. Starting from the equations of the smooth-air-gap synchronous machine, the D-Q axis
equations of PMSG in the rotor reference frame, lead to a system of three nonlinear differential
equations with unknowns instantaneous values of stator current components and electrical angular
speed. These equations are expressed in the non-dimensional form and the system is analyzed by
means of a novel method, namely the Optimal Auxiliary Functions Method. Analytical approximate
solutions which are obtained are of considerable importance for practical analysis of electrical power
system dynamic behavior with problems caused by possible perturbations generated by some short
circuits, sudden change of loads, disconnection of load and other switching transients in power station
or stability problem of such systems.

The proposed approach has been applied on a low-power generator and this work should be
continued with the case of high-power electrical generators, connected directly into a large electrical

power system.

2. Governing equations of PMSG

Using the classical D-Q equivalent circuit models, the equation of the smooth-air-gap synchronous

machine in the rotor reference frame are of the form:

up = Rgip + 22 — wgihy
ug = Rgig +%+w5¢,3 M
Yp = Leip + Ypu; Yo = Leig

where the instantaneous values of D and Q axis stator voltage components are up and ug; the stator
components are ip, ig; Rg and L are electrical resistance and synchronous inductance of the
generator phase windings; yp and yq are instantaneous values of D and Q axis stator flux
components; ypy is the permanent magnet flux and g is the electrical angular such that Qy=wg/P;,
where P, is the number of pole pairs of the generator and Qy, is the mechanical angular speed of the
turbine-generator system. If Ry is the electrical resistance of the external load connected to the output

of the generator, the PMSG output voltages are:

up = —Ryip
1y = —Ryig @
The motion equation of the generator is described by [1]:

Iud 3 .

ﬁ%: TM"‘EPﬂ/)PMlQ ©)

where Jy; is total axial moment of inertia and Ty, is the mechanical torque of the wind turbine:
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Ty = %prrrg’vz c(A) , A, =T )

Pyv

Within Eq.(4) p is the air density, r is the turbine radius, v is the wind speed, A, is the tip-speed

ratio and C, is the torque coefficient provided by the turbine manufacturer:
C:(1,) = 0.125 + 0.20921, — 0.120922 (5)

For the values p=1.225 Kg/m3 , P1=16, r=2.5 m, the torque becomes:

Ty = 3.758252931v2 + 0.982783141vw, — wg’mwg-s (©6)

Concerning the wind speed, different from other works, we consider the analytical model of the

speed as [6]:
v(t) =v, + AsinZt + BsinZt @)
Tg Tg

wherev,, is the mean wind speed of the base wind velocity that is a constant. The base wind velocity
Vi, is considered only in the case in which the generator is active and A and B are two different
amplitudes and Tg is the gust period.

Considering a practical case of a real wind turbine PMSG, the characteristics of the steady-state
regime are: Rg=0.9 Q, Ls=0.03 H, \|1PM=\/E Wb, P=16 pole pairs, J\=4.75 Kgmz. The nominal speed
of rotation id ny=70 rpm, which lead to Qx=7.330352856 rad/s or onx=117.2856457rad/s, where N
denotes the nominal values (or rated values). Corresponding to these values, from Eq.(6) one retrieves
Tyn=0684.192163461 Nm and for the steady-state regime one can get ign=-20.158204693. It follows
from Egs. (1) and (2) that ipy=-11.118492391 A, R;x=5.479285888 Q, upn=00.9213984503 V,

uon=110.45256648 V, V2= /igN +i2,=23.02116616 A, V2uy= /ugN + u2,=126.139550551 V.

In the nominal point of working, the wind turbine develops the mechanical power P;y = Tyy =
~ 5015 W and the electric generator develops the electrical powerP,y = 3Uyly = 4355.82W.

It is often convenient to express the generator’s parameters, variables and the governing equation
in dimensionless quantities. For this aim these terms are divided by base quantities. Usually, the
following set of base quantities is widely used: the base voltage Ug (peak stator phase nominal
voltage UB=\/§UN), the base current Iy (peak stator phase nominal current Iz=V2l), the base power
Sg (nominal apparent power Sp=3Uyly), the base angular speed wp (nominal electrical angular speed
op=oy. The additional quantities are the base torque Tp=P;Sp/@p, the base flux linkage yp=Up/wp,
the base impedance Zg=Up/Ig; the base time tg=1w®/p.

By means of the following transformations
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_Up, _Ug, . _Ip, . _lg, _¥p, _ Yo, _ ¥pum
U=y %=y b= = Yp = ‘Pa’l/)Q Ty, Ypy = v, ®
WE Ry Rg wplg n IMwE t

e r e r i = . T — = . = —=

W= =z, h =70 % zg ' M TB’k 3P12UNIN'T tp wgt
the governing Eqs.(1) can be written in dimensionless form as

dig . T
— —wi, + ig=0
dr q xg @
di T1+7,

q ; 1+7g - Yeu
— + wiyg + i, tw=—"=0 9
dr d xg 4 Xg ©®

d .
kd—f—rm—lpmlq =0

The initial conditions for Egs.(9) are obtained considering the steady-state regime characterized
by a constant angular speed at constant speed of the wind v,,=10 m/s and external electrical load

1=0.4528. One gets the initial conditions:
i4(0) = —438786995; i;(0) = —0.843879596; w(0) = 0.499239911 (10)

The governing Eqs.(9) can be retrieved in the form:

di . .
| 4 1 0.9601432255i, — wig = 0
%‘* +0.960143255i, + wiy +2.061756973w = 0 (11)
22 — 0.168386689, — 0.000808844v? — 0.024807429vw + =220 )25 = 0
where v is given by Eq.(7), considering A=10, B=4, v,=10 m/s and T5=20.5:
v(t) =10 + 105in§r+4sin37”r (12)

where 2=2407.
The dynamical system (11) with the initial conditions (10) and with the wind speed (12) will be

investigated in what follows using a new solution approach, namely the Optimal Auxiliary Functions
Method.

3. Basic ideas of the Optimal Auxiliary Functions Method

The most general form of a nonlinear differential equation is

LIF(t)] + N[F(z)]=0, T€D (13)
in which L is a linear operator, F(t) is an unknown function, N is a nonlinear operator and D is the
domain of interest. The corresponding initial/boundary conditions are known as:

B(F(1),£2) = 0 (14)
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For Egs.(13) and (14) we demand an approximate solution F(7)which contains only two

components [10]
F(t) =Fy() +F(7,C), i=12,..,n (15)
where C; are unknown parameters at this moment.
Substituting Eq.(15) into (13) we obtain
LIFo(@] + LIFy(z, C)] + N[Fo () + F1 (7, €)1 = 0 (16)
The initial approximation Fy(t) can be determined from the linear equation

dFy ()

LIFo ()] =0, B(Fy(1), "2

)=0 (17)

and the first approximation F,(t,C;) from the remaining equation

dF, (1)

L[F, (z, C)] + N[Fy (7) + F; (7, C)] = 0, B(Fy (1), at

) =0, (18)

but in general Eq.(18) is a nonlinear differential equation which is often very difficult to solve. Now,

the nonlinear term from Eq.(18) is expanded in the form:
- FE@CD (k)
N[Fy () + Fi (7, C)] = N[Fo (D] + o1 = N [Fo ()] (19)

k
where N = Z?IZ. In order to avoid the difficulties that appear in solving the nonlinear differential

equation (18) and to accelerate the convergenceof the first approximation and implicitly of the
approximate solution F(T,C;), instead of the last term arising in Eq. (18) we propose another

expression, such that Eq.(18) can be written in a new form
dF
L[Fy(z, €] + A(Fo (1), G;)[PIN(Fo ()] + B(Fo (1), C,) = 0, B(Fy, ) =0, (20)

where A and B are two arbitrary auxiliary functions depending on the initial approximationF, () and
several unknown parameters C; and Cy, j=1,2,...,p, k=p+1, p+2,...,n; i=j+k. P[N (Fo (T))] means a
part of the operator N (FO (T)). The auxiliary functions A and B called optimal auxiliary functions are
not unique and are of the same form as F;(t) or of the form of N (FO (T))or combinations of F,(t) and
N(F0 (‘[)). The unknown parameters C; and Cy (i=j+k) can be optimally identified by means of

different methods, such as for example by minimizing the square residual error by considering the

functional

](C]" Ck) = f(D) RZ(T’ Ci‘Ck)dT 21
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where R(7, C;, Cy ) = LIF (7, €)1 + N[F(z, €], i=j+k, j=1,2,....p, k=p+1,p+2,...,n. The conditions of

minimization of the residual are

o] _9o] _ .. _0] _
o —oc, - " Tac =0 (22)

By this novel approach the approximate solution (15) is well determined. It is to remark that the
optimal values of the parameters C; called convergence-control parameters may be obtained by means
of other procedures, such as the Ritz method, Galerkin method, collocation method, the Kantorovich
method and so on [11].

Our novel approach proves to be a powerful tool for solving nonlinear problems not depending
on small or large parameters. It should be emphasized that our method contains the optimalauxiliary
functions A and B which provides us with a simple way to adjust and control the convergence of the

approximate solution after only one iteration.

4. Approximate solution of Egs. (11) and (10) using OAFM

In order to apply our procedure to obtain an approximate solution of Eqs.(11) and (10), we

consider the linear operators for the system (11) in the following form:

Lylig ()] =S4+ 096014322551,
Lo[ig(0] = 52 +0.960143255i, (23)

dw
Ly[w(D)] = a
and the nonlinear operators

N; [id (®),iq (T),a)(r)] = —wig
Ny[ia(),iq (D), w(1)] = wig + 2.061756973w

N3[iq(0),iq (1), w(1)] = —0.168386689i, — 0.0008088442 — @4
—0.024807429vw + =220 2
where the wind velocity is given by Eq.(12).
The initial approximations idy, iqg, @ are determined from Egs.(17), which become
%"T(’) +0.9601432255id,(t) =0  id,(0) = —438786995 (25)
%‘f’) +0.960143255ig,(t) = 0 iqo(0) = —0.843879596 (26)
""”d—‘f’) =0 w,(0) = 0.499239911 @7

The solutions of Egs. (25)-(27) are
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idy(7) = —438786995exp(—0.96014322557)
iqo (1) = —0.843879596exp(—0.9601432557)
wo(T) = 0.499239911

The nonlinear operators (24)for the initial approximations (28)-(30) are:

N, [idy (7),iqo(7), wo (t)] = —0.421298371exp(—0.96014322557)
N, [idy (v), iqo (T), we ()] = 1.029311368 — 0.21905998exp(—0.9601432557)

N5lidy(7),iqo(T), we (7)] = 0.14209809 exp(—0.96014322557) —

—0.000808844(10 + 10sin’ 7 + 4sin > 1)? -
0.1980091808

10+105in§r+4sin37”1'

Taking into account the expressions (31)-(33) and (20), in the following we consider

A (1,C) = A1, C) = A3(1,C) =0

~0.012384789 (10 +10sin 7 + 4sin37nr) +

By(t.C)) =C, — (Czcos T+ 3C3cos T4 5C4cos—r + 7Cscos—r +9C,cosZ1) —

2
—-0. 960143255(Czsm T+ C3sm—r + C4sm T+ Cssm T+ CGSln—T)

By(t.C;) =C, — (Cgcos T+ 3C9cos T+ SClocos T+ 7C11005 T+ 9612005 N

—0. 960143255(Cgsm T+ Cgsm T+ Closm T+ Cllsm T+ Clzsm N 7)

By(t.C;) = C13cos T+ C14cos T+ Clscos T+ Clécos T+ Cyyco5 = T

The linear differential equations for the first approximations are

L9 4 0.9601432255id, (1) + €y — 5 (C,c05 5T + 3C;c05 27 + 5C,c05 T 7 +
+7C5c05—r + 9C6cos—r) - 0. 960143255(C25m21 + C3sm71 +

+C4sm LENS Cssm T+ C6sm T1)=0, id,(0)=0

"”q—l(’) +0. 960143255iq1(r) +c,-= (cgcosﬁr + 3Cgcos3—n‘r +5C;pc0s 20T +
+7Cllcos Tr+ 9C12c05 T+ 11C13cos LE 13C14cos T+ 15C;5cos j T+
+17(,‘16c05—r) 0. 960143255(C85m T+ Cgsm "1+ Closm Tr+ Cllsm rd

+Clzsm T+ C13sm LE CHsm LE Clssm Tr+ Cl6sm "1),iq;(0) = 0

dwl(r) +- (C17cos T+ 3C18COS T4 5Clgcos T+ 7620605 ") =0, w,(0)=0

and the solutions are
id,(t) = 0.438786995[exp(—0.9601432255) — 1] + Czsingr + C3sin37nr +
+C4sm7r + Cssm n TT+ C6sm7‘r
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iq; (1) = 0.843879596[exp(—0. 960143255) —1]+ Cssm T+ Cgsm T+ Cwsm S Tr4
(39)

17
+C115m T+ Clzsm "+ C13sm T+ CMsm T+ Cissm T+ CigSin— T

. T 5w . 7w
w4 (1) = —C17smi‘r Clssm P "7 — Cyosin= TT= CZOSLTLTT (40)

The approximate solutions of Egs.(11) and (10) are

id(t) = idy(t) + id; (7) 41)
iq(7) = iqo(7) + iq.(7) (42)
(1) = wo(7) + w1 (7) (43)

The optimal values of the convergence-control parameters C; are obtained by means of a

collocation approach as:

)
IN)
|

= —1.3089571472, C; = —0.4503649177,C, = —0.0961880721,
—0.0529407913, Cs = —0.0001149325,Cg = —0.1013914279,
Cy = —0.0111456049, C;, = —0.0738099321,C;; = —0.0471348271,
Cy, = —0.0324127981,C,3 = —0.0222245798, C;, = —0.0131280042,
Ci5 = —0.0077014973,C,¢ = —0.0034482411,C,, = —1.3204012731,
Cig = —0.5072910784, C;9 = —0.0225673217,C,, = —0.0141314789

a
(521
Il

(44

Finally, the approximate solution of Eq.(11) and (10) can be written as:

id(t) = —0.438786995 — 1. 30895714-725171—‘[ —0.4503649177sin—2-7 —
2407 (45)

—0.0961880721Sln—‘[ - 0.05294-07913SLn—T - 0.000114932551n—r

iq(r) = —0.843879596 — 0. 1013914-279SLn—T - 0. 0111456049smmr -

—0.07380993215171—‘[ - 0.047134-827SLn—T - 0.0324127981sm—or -

(46)
—0. 02222457985m“—”r —0. 01312800425m13—”r - 0. 0077014973517115—”1 -
—0.0034482411sin— =1
2407
w(T) = 0.499239911 + 1.3204012731sin ——1 + 0.5072910784sin ——1 +
2407 2407 (47)

+0.0225673217sin—" 1 + 0.0141314789sin——1
2407 2407

Figs.1-3 show the obtained approximate solutions of Eqgs.(11) and (10), which, for validation

purposes, are compared with numerical solutions obtained using a fourth-order Runge-Kutta method.
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Figure 1. Comparison between the analytical and numerical results for id.

Figure 2. Comparison between the analytical and numerical results for iq.

Figure 3. Comparison between the analytical and numerical results for ®.

5. Conclusions

A new technique is employed in this paper to obtain an analytic approximate solution for the
dynamical model of a wind power system. The proposed dynamical model which describes the
influence of a wind gust to a low-power PMSGallows analyzing both mechanical and electrical
phenomena and determining the characteristics of the dynamic regime produced by wind turbine. The
wind speed can be considered in the system of equations which describes the dynamic model to
predict the system response to specific changes in speed. For this purpose it is necessary to know the
wind profile as a function of time. The proposed procedure allows obtaining an analytical solution
which is very advantageous and useful for automatic control systems and protection systems used in
this kind of aero-elastic installations.

In the present paper we obtained an effective approximate solution to the governing equations.

The proposed method is very accurate comparing our analytical results with numerical results, which
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proves the validity of our approach. In the present construction of this simple iterative procedure are
involved some distinct concepts such as the linear operator, the auxiliary functions A and B and
several convergence-control parameters C;, which ensure a fast convergence of the approximate
solutions to the exact ones after only one iteration. The values of the convergence-control parameters
are optimally determined using rigorous procedures. It is to remark that this new proposed approach is

valid even if the nonlinear differential equation does not contain any small or large parameters.
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Nonlocal elasticity theory for solving dynamic problems via
peridynamics

Adam Martowicz, Wieslaw J. Staszewski, Massimo Ruzzene, Tadeusz Uhl

Abstract: The paper deals with the developed peridynamic numerical tools used for
solving various types of dynamic problems. The peridynamics makes use of nonlocal
formulation for computational mechanics and, therefore, offers unique properties in
terms of more realistic modeling different types of physical phenomena. The authors
briefly highlight the fundamentals of nonlocal elasticity theory to show capabilities of
the elaborated numerical approach. The theoretical part of the work is complemented
with the results obtained for various case studies taking into account elastic wave
propagation and analysis of crack propagation. Practical aspects regarding efficiency,
required computer resources and accuracy of the proposed numerical tools are
addressed. Finally, an analogy between peridynamics and Finite Difference
formulations is derived to show possibility of building equivalent model descriptions
when solving dynamic problems.

1. Introduction

Nonlocal modeling in the field of computational mechanics is known for over fifty years, introduced
in the early papers given by Kréner, Kunin, Eringen, Edelen, and others [1-3]. It is used as an
alternative approach, providing very specific advantages, compared to the classical local formulations
for statics and dynamics [4]. Following the mathematical description of physics present at nano and
microscale — where granularity of matter plays an important role with its all related consequences —
both local and long-range interactions between pieces of matter are taken into account. As a result,
integral based equations of motion are introduced. Consequently, the total resultant reactions (derived
from potential based formulations) are found by aggregating contributing interactions between locally
and nonlocally linked particles. The resultant reaction forces are determined based on the properties
of the connecting bonds established between modelled solid. The contributing reactions are summed
up over some region to determine the total force. The radius of the region of local and nonlocal
interactions can be found with a sensitivity analysis. The obtained data allows to decide on the
number of considered long-range contributors, found to be the influential ones in calculations.

In fact, spatial partial derivatives — present in classical locally formulated equations of motion —
aimed to be solved at geometric discontinuities, grain boundaries, interfaces exhibiting mechanical

impedance mismatches, or interconnection layers, may lead to numerical inconveniences.
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Discontinuities (i.e. step changes, discretizations, outliers) involved in the functions describing
geometry, material properties, and boundary requirements may lead to ambiguity in calculation of
derivatives. Nonlocality and integral based formulations aid to avoid this problem. Hence, due to the
above mentioned property, nonlocality is well recognized in damage modeling [5]. However, it
should be noted that a questionable issue arises, related to the computational costs of applied nonlocal
approach. Even though, more convenient analytical and numerical tools are found, there is a necessity
of introduction a significant number of additional interactions, which are required to determine
kinematic characteristics for each degree of freedom. It results in more populated global matrices of
the entire system, which are present in its equation of motion. Nowadays, however, this issue may be
successfully addressed with multithreaded algorithms, also employing GPU calculations.

Recently, the peridynamics is one of the most popular nonlocal approach [6]. There are known
its various applications addressing problems in many different physical domains [7-9]. Peridynamics
makes use of nonlocal, integral based formulation for computational mechanics and, therefore, also
offers unique properties in terms of more realistic modeling. The specificity of peridynamics, which is
worth to be mentioned, is its capability of direct use of macroscale material properties (i.e.
engineering properties, e.g. elastic moduli), irrespectively from what geometric scale is actually
referred to. It also means that multiscale studies may be easily performed employing peridynamics
[10]. Addressing the risk of possible higher computational effort, necessary to perform peridynamics,
the reader may also find the results of convergence analyses carried out to determine the most
efficient relationships between the particles distances and the radius of the region covering all
nonlocal interactions [11]. Taking into account the above mentioned properties of peridynamics, the
authors of the present paper provide the results of exemplary case studies devoted to the properties of
a cracked aluminum plate model. The advantages of peridynamics, offering more physical modelling
with respect to geometric discontinuities, are shown with numerical examples.

The paper covers the following: introductory Section 1 provides an overview on nonlocal
modeling and, specifically, introduces peridynamics as potential tool for solving dynamics. Next,
analytical fundamentals of peridynamics and characteristics of the elaborated numerical tools are
addressed in Section 2 and 3. Section 4 describes a numerical model of a cracked aluminum plated
and the obtained results. An analogy between peridynamics and Finite Difference (FD) Method is

discussed in Section 5. Final Section 6 summarizes the paper and presents the authors’ conclusions.

2. Peridynamics — analytical fundamentals

Integral based equation of motion for a peridynamic model of a solid body takes the following form

pii(x,t) = [, fu(® t) —ulxt),x —x)dV; + b(x,t) 1)
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where: p - mass densityu — displacement vector of an actual central particle (localized at the

position X, as shown in Fig. 1; the term “particle” refers to a single piece of the modelled solid
body), H - horizon, i.e. the region of local and nonlocal interactions, defined with respect to the
certral particle. The position of neighboring particle is definedkag is the pairwise function
chaacterizing the properties of the links between central and neighboring particles. The external

particle excitation is given as force volumetric denlsityector. dV; is a portion of volume attached

to the neighboring particle.

Figure 1. Nonlocality in peridynamics, definition of the area of horizon for nonlocal interactions
betveen particles.

The functionf introduces the material properties and is specified in terms of the expressions:
u(%,t)-u(x,t)=n 2
X-x=§ (3)
which stand for relative displacementand relative particle positio§. For a two-dimensional

(2-D) case,f is defined as

e(nglele)sif g <o
fing)= 4
("l &) { 0,othawise @
where the micromodulus functionfor isotropic and homogeneous material equals
c= L (5)
7153(1—1/)1'

0, s and e denote the horizon radius, strain and the unit vector defining the direction of the
reaction forces between particles, respectively. The material elastic propertie& areYoung’s

modulus, V - Poisson’s ratio. The thickness of the model is definefl #s found in Eq. (4)f is
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nonzero only for the neighboring particles, which are localized within the hotizomhe
peridynamics, by its nature constitutes nonlocal interactions, however, when decreasing the horizon
radius & one can easily find a convergence to the local formulations for dynamics. In the following, a

numerical formulation for a peridynamic 2-D model is briefly shown.

3. Peridynamics — numerical approach
Based on Eq. (1) and considering a 2-D case, a numerical formulation of the equation of motion may

be derived for théthe particle in the form

azuiz(t_) - Z((‘txu uj ) -y (t))F., (A, jT)+ b
o & (6)
2
S0 = 5 (e, v -v 0 00 )by
jOH;

where ;g (t) andvg(t) are the in-plane particle displacements. The indéxesl j denote the
actual central and neighboring particles (i.e. covered by the hdtizprespectively. The remaining

indexed parameters have the meaning explained in Section 2, taking into account their horizontal and

vertical components in the present numerical case. The auxiliary furﬁt’ijonakes the form

- = @)

JEx, +u0-u@P+I&, +v,0-voP

1
JOE
RGRL

A’J— defines the area theth (neighboring) particle covered by the horizdn The general

flowchart used to solve dynamic problems with peridynamics is shown in Fig. 2.

Model parametrization, setting the simulation parameters
e
Initial calculations (pairwise function, critical elongations, etc.)
L « —
Calculation of particle displacements and velocities '%
Model update (checking elongations, removing bonds) §
s
Postprocessing (data presentation, graphical visualization)

Figure 2. Flowchart for the numerical studies using a peridynamic model.
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During the first stage of calculations, model parameterization is performed to set geometric and
material properties. The boundary conditions (excitations and fixed displacement areas) are
introduced to determine the governing equations for each particle of the model. Moreover, initial
conditions regarding particle displacements and velocities are assumed. The simulation parameters
provide data on the time step, total simulation time, distances between particles, the radius of the
horizon and maximum displacement error (applied when an explicit formulation of the solver is
chosen). Next, within the initial calculations, based on the ultimate stress, critical elongations for the
bonds between particles are found. Micromodulus function and volumes of the neighboring particles
within the horizon are determined. Notches are introduced by removal chosen bonds between
particles. During iterative part of the numerical procedure, updated values of the particle
displacements and velocities are determined. Based on these values, additional bonds are searched
where critical elongations are exceeded. Moreover, already broken bonds between particles are
temporarily sustained to let the model undergo external compressing excitation for its compressed
regions. Final postprocessing and data presentation provide the results in a readable form.

Making use of the capabilities of the elaborated numerical tools for peridynamics, the results
obtained for selected case studies, taking into account elastic wave propagation and analysis of crack

propagation, are shown in the following.

4. Case studies for peridynamics

In the following, exemplary results for the application of the above introduced peridynamic numerical
code are briefly shown. Based on the elaborated 2-D model, two cases are considered, namely: (i)
longitudinal elastic wave propagation observed across the body of an aluminum plate due to the
clapping phenomenon (study on wave propagation in the transversal direction with respect to the
initial notch orientation), and (ii) the phenomenon of acoustic emission originated from growing
crack.

4.1. Numerical model

In the present work a 2-D peridynamic model is considered, as shown in Fig. 3. The model of an
aluminum plate with the overall dimensions: 4mm x 4.125mm x 1mm (length x width x thickness)
constitutes the subject of the study. The following material properties are assumed: Young’s modulus
E=70GPa, Poisson’s ratic=0.3, mass densitg=2100kg/ni, and ultimate stressy=40MPa. The
distance between particleAx equals 0.125mm, whereas the horizon radiugs 0.5mm. The total
simulation time is 2fis, and the time stef\t equals 1ns. For both numerical cases a single notch is

introduced as a 0.625mm-long centrally localized horizontal geometric discontinuity, where all

crossing modelled physical links between particles - present within the horizon - are broken.
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Figure 3. Peridynamic 2-D model of a rectangular aluminum plate used to study wave propagation
resulting from clapping and to track the crack growth based on acoustic emission.

Boundary conditions are defined with two spatially distributed sinusoidal forces. Their frequency
equals 200kHz. Due to different goals of the two executed simulations, various amplitudes of the
external forces are considered [12]. In case of the clapping phenomenon, the resultant force amplitude
equals 13.5N, which is achieved by a linear growth after the time periodust @ 2imited value of
the force amplitude prevents from further crack growth. Oppositely, the higher force amplitude is set,
i.e. the resultant amplitude of 33.75N (also achieved aft@s].2or the study on acoustic emission
to assure gradual evolution of the initial notch. Hence, in the second case, generation of additional
waves is observed due to breaking the links between particles in the peridynamic model.

As regard to the boundary conditions, it should be noted, that a spatial distribution for the
external force, over hypothetical clamping regions, must be taken into account to prevent from
nonphysical (concentrated) force application and sudden unexpected model break [8]. The other
solution to address the issue is locally increase the stiffness properties for the links between particles.
However, spread of the force over some area seems more physical, and was chosen by the authors of
the present work to set the boundary conditions.

4.2. Elastic wave propagation

In the literature, there are known studies on elastic waves (and stress waves) propagation using
peridynamics, utilized for both macroscale models (e.g. metallic and composite structures) [9,12,13],
and micro/nanoscale models (e.g. graphene) [14]. Irrespectively from the lengthscale used, a
peridynamic model provides both a straightforward way of introduction the material properties
(including reference to the commonly applied engineering characteristics, e.g. elastic moduli) and
reliable assessment and interpretation of the physical phenomena present in the modelled materials

and structures.
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In the present study, the phenomenon of wave generation and propagation due to clapping
mechanism is considered. As already mentioned, the amplitude of the external sinusoidal forces is
limited to prevent from further crack growth. While clapping, cyclic behavior of the modelled plate is
observed — when the opposite faces of the crack hit each other, a longitudinal wave is generated. It
propagates through the model. As reported in [12], making use of a similar numerical model, 5-MHz
transverse vibrations are identified at the crack’s edges. Presently, the displacements for the particles
lying perpendicularly the crack’s orientation are under investigation, at the localizations shown in

Fig. 4. The registered temporal plots for the vertical particle displacements are presented in Fig. 5.

Figure 4. Investigated particles in a peridynamic 2-D model of an aluminum plate (covered by a black
rectangular) used to track longitudinal elastic wave propagation originated from the

phenomena of clapping. The initial notch is marked in red.

As identified in Fig. 5, the propagating vertical disturbance (assessed with respect to the particle
positions) refers to the velocity of longitudinal elastic wave (bulk wave in aluminu®6695m/s.
The expected theoretical time for the wave to travel between the neighboring particles can be found as
Ax/c =18,67ns, whereas the average propagation time between all fifteen investigated particles equals

199ns. Hence, the application of a peridynamic model effectively aids to study elastic wave
propagation in a model with a notch.
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(@)

(b)
Figure 5. Vertical in-plane displacements of the investigated particles while propagation of the
longitudinal wave, generated at the crack’s upper edge: (a) plots registered for the longer
time period when a series of vibration cycles are seen after the crack’s edges hit each other,
(b) normalized plots shown for the limited time domain to indicate propagating wave.
Gradual increase of the particles vertical coordinates are marked with subsequent multiples

of their distance -Ax.

4.3. Crack propagation identification based on acoustic emission

The second case study for peridynamics deals with the phenomenon of acoustic emission, which is
present due to growing crack. Acoustic emission is observed in a model since its particles start
disconnecting due to exceedance of the assumed ultimate stress. The links (bonds) between particles
break, which, in turn, leads to its local vibrations. Finally, the generated disturbance travels through
the model from the area where the moving crack’s tip is localized. Fig. 6 shows the localization of a
“virtual sensor” used to register the generated wave — at the center of the selected particle lying at the
initial position of the crack’s tip. Generally, three phases may be observed in the studied case, as
shown in Fig 7.
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Figure 6. Localization of the measurement point (“virtual sensor”) used to identify the wave

generated due to acoustic emission.

Figure 7. Phases identified in simulation — illustrated with the particle vertical displacements:
(a) initial model stretching until ultimate stresses is exceeded, (b) wave generation due to
acoustic emission (accompanied by additional wave originating from the clapping

mechanism), (c) disconnected parts of the model move away.
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First, a gradual vertical displacement of the particle is shown (Fig. 7 (a)), as the model undergoes
deformation due to external forces. The crack does not evolve at this stage. After the ultimate stress is
exceeded at the crack’s tip, the phenomenon of acoustic emission is detected (Fig. 7 (b)). Critical
relative elongations are exceeded in the connecting links, which leads to the crack growth. The
connections between particles start to break and the path of growing crack may be tracked. Model
degradation (i.e. its stiffness reduction) proceeds, followed by particle oscillations originating from
their fast cyclic motion in vicinity of the moving crack’s tip. The highest amplitudes of the generated
wave measured in the model refer to the particles lying directly on the crack’s edges, principally in
the area of its tips. Since the model undergoes stretching and compression due to a sinusoidal
excitation, clapping mechanism is also observed — the crack's faces touch while model cyclic
compression. Clapping is identified based on additional wave generation (Section 4.2). Finally, when
all connecting links between the two parts of the plate are broken, the simulation enters its last stage.
The two pieces of the plate move away, which is characterized by the last part of the plot - marked in
Fig. 7 (c). Hence, integral based model dynamics description conveniently handles the physical

phenomena of acoustic emission, which is present at given geometric discontinuity (initial crack).

5. Analogy between peridynamics and nonlocal FD Method

This section shows an exemplary analogy between numerical codes for peridynamics and nonlocal
formulation of FD Method. In case of a one-dimensional (1-D) model, Eq. (1) takes the form

2 1 .
pa ui(t) _ Z uj () —u (t )c pox |+ ¢ )where {N=% for thetwdoundanparicles g,
at? 4 .

jOH; i n=1 otherwise

The micromodulus functiort can be found as:ZE/(JZA) [11]. The parameterd and Ax

denote the cross-sectional area of the modelled rod and the distance between particles. On the other
hand, a general form of the equation of motion based on a FD scheme (for spatial partial derivative)
for 1-D case can be transformed to the following form [15]

PLALTUI S S ©

2
ot jOH;

where k; is thej-the coefficient of the nonlocal scheme. Henkg,may be found as

21
K = 225 . jOH; where n =3 for thetwdooundary degreesffreedom (10)
J

n=1 otherwise

The analogy between peridynamics and nonlocal FD Method is derived to show possibility of

building equivalent model descriptions when solving dynamic problems. Having introduced the
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newly calculated coefficients of the FD schemes — which are in fact originally built based on
derivative based formulations) — one may conveniently use the exiting solvers (either implicit or

explicit) to apply the theory of peridynamics and check its capability in practice.

6. Summary and concluding remarks

The paper is devoted to practical aspects of applications of the nonlocal theory to solution of
dynamic problems. The capabilities of nonlocal formulations of governing equations are briefly
discussed, showing both advantages and drawbacks. The exemplary theory of peridynamics is
presented, illustrated with two numerical case studies related to elastic wave propagation and crack
tracking with the phenomenon of acoustic emission. Finally, an analogy between formulation of
peridynamics and nonlocal FD Method for a 1-D case is introduced.

The applications of nonlocal theories are very fruitful. The advantages of peridynamics are of
special concern. On one hand, lack of spatial partial derivatives allows to easily handle model
discontinuities (related to geometry, functions describing the material properties, and boundary),
which let the researcher analyze models of cracked structures, as well as helps to avoid numerical
problems while differentiating. As shown in the presented numerical cases, peridynamics enables
solving dynamic problems, especially those related to wave propagation in structures with introduced
notches. More physical description also promises more reliable analyses of the crack growth
direction, not governed by the structure of the model itself, as observed in locally formulated mesh
based approaches. On the other hand, peridynamics considers the macroscale elastic moduli ready to
be introduced irrespectively from the lengthscale used. Moreover long-range interactions allow van
der Waals forces to be taken into account when dealing with nano and microscale computations.
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Nonlocal numerical methods for solving second-order partial
differential equations

Adam Martowicz, Wieslaw J. Staszewski, Massimo Ruzzene, Tadeusz Uhl

Abstract: The work presents efficient numerical schemes dedicated for solving
dynamic problems governed by second-order partial differential equations. The
proposed approach makes use of a nonlocal formulation of the Finite Difference
method. Higher order components incorporated into the discretization schemes are
found, using the Fourier series based decomposition, to assure desired reduction of
numerical dispersion. Hence, the elaborated approach is primarily proposed to carry
out both vibration and wave propagation based analyses. Stability conditions and
mitigation rate of numerical dispersion for the proposed discretization schemes are
verified. The authors discuss the influence of the order of components used in
nonlocal formulations on performance of the proposed methods. Additionally, as
confirmed with exemplary numerical results, the proposed nonlocal numerical
schemes allow for more sparse spatial model discretization, keeping similar properties
regarding numerical dispersion, compared to the most commonly used finite
difference formulations. Effectively, less populated domain of spatially distributed
model’s degrees of freedom may be taken into account. This ability may be critical in
terms of available computer resources (both processing speed and memory) when
dealing with either complicated geometry, topology or long-term temporal analyses.

1. Introduction

Contrarily to the classical approaches, which are applied in the field of computational mechanics (or
computational physics in general), the nonlocal methods introduce integral based components to
substitute or develop the existing partial derivative based contributors of the equations of motion
(governing equations) [1,2]. A general attribute of nonlocality in statics and dynamics stands for
either (i) aggregation of some contributing quantities — which are used in governing equations — in the
region of both local and nonlocal interactions between pieces of modelled body or (ii) introduction
some nonlocally formulated operators into the existing partial derivatives. By doing so, the classical
problem descriptions extend their capabilities dramatically. It should be however noted, that the
nonlocal equations certainly converge to the local ones — by decreasing the radius of the region where
all nonlocal interactions are considered, or simply by removal any lengthscale parameter originally
taken into account. In such a case, a simplification (one may say degeneration or loss) of the initial

functionalities is carried out.
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The motivation for application of nonlocality in governing equations stems from physical
observations. It turns out that there are some physical phenomena that cannot be accurately described
employing classical locally formulated mathematical equations. Application of adequate lengthscales
into the governing equations is also an issue to address the physics at various geometric scales [3,4].
The two known examples of the above mentioned type of somewhat problematic phenomena, in the
field of mechanics, are wave dispersion are shear bands for stretching [4-6]. Hence, nonlocality helps
to solve the problem of the inconsistency identified between physical observations and the exiting
attempts at their descriptions.

Nonlocality, due to its extraordinary capabilities, has been applied to solve problems for various
physical domains [7]. Nonlocal approaches are well recognized in the following analytical and
numerical modeling fields: damage evolution [8], including a demand for its spontaneous growth not
governed by a structure of the model mesh [9], vibro-acoustic wave interactions [10], reduction of
numerical dispersion [11], boundary conditions [12], regularization of boundary value problems [13],
piezoelectricity [14], thermoelasticity [15-17] shape memory alloys [18], and graphene [19,20].

The present paper is devoted to efficient nonlocal numerical schemes dedicated for solving
specific dynamic problems — governed by second-order partial differential equations (PDE). The
proposed approach makes use of a nonlocal formulation of the Finite Difference (FD) method. The
idea of employing nonlocality to increase the quality of humerical models is not a new one. The
nonlocal approaches may be used to avoid high mesh density keeping acceptable quality of the results
[21,22]. Based on the previous authors’ works carried for solving wave equation, the recently
proposed numerical schemes, exhibiting reduced numerical dispersion, are now adapted to thermal
diffusion equation (thermal conductivity equation).

The paper is organized as follows. Section 1 serves as an introduction to the nonlocal theory in
the field of computational physics (computational mechanics in particular). Section 2 provides
examples of mathematical formulations incorporating nonlocality, complemented with more detailed
description on practical aspects of its applications. Next, the scope of potential applications of the
present work is shown in Section 3 to provide motivation for studies on the nonlocal schemes. Section
4 presents the elaborated schemes, followed by examples of their applications and discussion on the
results in Section 5. Final Section 6 summarizes the wok and draws the conclusions.

2. Nonlocality in computational mechanics

The specificity of the mathematical descriptions of nonlocal approaches originates from the
nature of matter, which is basically gradual. This fundamental fact leads to the key question: is it
possible to accurately model the physical behavior of a solid matter using spatial PDEs? The answer

is: yes, it is, however, to some extent. Local theories operate based on PDEs, which is convenient at
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macroscale, where, in general, we deal with continuum of matter. Hence, it is an acceptable
approximation of the material and structure properties due their averaging. Similarly, one may note,
that quantum effects are negligible as well, at the mentioned lengthscale. Engineering properties
(macroscale properties, e.g. elastic moduli) may be freely used to build a material model. The
resultant properties are found using homogenization techniques (averaging of the properties over a
specific region) to be able to use continuous physical domain [5]. This approach is valid for
sufficiently long waves propagating in a homogenized model with respect to the lengthscale at which
inherent anisotropy of material manifests its presents.

Generally, necessity of introduction the nonlocality into governing equations emerges when: (i)
computations directly concern the study of matter at nano and microscale, or (i) a macroscale
behavior of matter is strongly affected by the phenomena present at nano and microscale. In fact, if a
macroscale model (e.g. with size of tens of centimeters) is built to track the growth path of a fatigue
crack, the macroscale effects identified in the model, i.e. its break along some surface(s), originate
from nano and microscale phenomena. Indeed, we may have some successful attempts at averaging
the material properties, however, the macroscale effects may results from very chaotic and spatially
distributed phenomena at nano and microscale. Physically, crack growth means subsequent and
relatively fast breaks of the enormous number of links between atoms or grains. Potential based local
and nonlocal reactions between fundamental pieces of matter influence the model behavior at larger
geometric scales. Hence, the above-mentioned phenomena should be mathematical handled to
properly infer on the model behavior at macroscale. Finally, the use of nonlocality in governing
equations enables relatively easy determination of the dispersion properties of the applied material.
This is important, as it preserves desired relationships between the length of propagating waves and
their velocities, following the physical characteristics of the modelled medium.

Apart from pure physical reasons for using nonlocality, there are also numerical aspects. First of
all, nonlocal numerical schemes, used to substitute partial derivatives in governing equations, allow to
search and then apply very specific values of their coefficients to reduce numerical dispersion when
solving a problem. The key issue is to derive schemes, which would lead to more accurate solutions
without requirement of further increase of the number of degrees of freedom (DOF) used to cover the
entire modelled domain. This aspect is within the scope of the authors’ present work. New FD based
schemes are proposed to efficiently solve PDEs based on a limited nhumber of DOFs. Second, use of
nonlocal region of interactions between pieces of the modelled solid also inherently leads to more
physical behavior of a model as it seems to be more independent from its structure. The reactions are
spread over some region, and, actually, there is no a single specific distance in the model, i.e. the
distance between neighboring DOFs, which would imprint a peculiar stamp in the form of PDEs, as it
happens in case of local formulations. It is so since nonlocality assures that both integer and real
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numbered multiples (e.g. at diagonals) of the mentioned distance appear in the governing equation.
Moreover higher diversity regarding directions of nonlocal interactions is observed, which favors
more “spontaneous” behavior of the model, as in the case of a fatigue crack growth.

In the context of computational aspects of nonlocality, the following issues should be also briefly
marked. On one hand, accuracy and efficiency of the used scheme rely on the relationships between
distances between DOFs and the radius of the horizon of the region, where nonlocal interactions are
determined. However, in the literature there are already reported the results on the convergence
analysis carried out to find the proper dependencies [23]. On the other hand, nonlocality, by its nature,
suits for parallel processing (e.g. based on GPU), which would partially compensate the increased
computational effort necessary to consider all the required long-range interactions.

In the following, exemplary nonlocal formulations of equation of motion for dynamics are
provided to give reference. For sake of clarity only spatial components are of concern. There are
shown various nonlocal operators and integrals (the sum in case of numerical approach) to be used
with kernel functions, which define constitutive dependencies. Classically formulated local Cauchy
problem becomes a spatial integro-differential based relationship, e.qg.:

« integro-differential-based expression for one-dimensional (1-D) case [24]

o2u(x, ) _
ot?

with an integrable kernel function3(x—X). The quantity g(u(x,t)) denotes a nonlinear

2 [0y @

function of the displacemeni(x,t). x, X -actual central and neighboring localizations of DOFs;
« integro-differential expression for three-dimensional (3-D) case with nonlocal formulation

of the Cauchy problem [25]

=06 u(x,t) +b(x,t) (2

a2u(x,t)
p(X)6—2

where: ¢ - nonlocal stress tensop X (-)mass density ant x ¢ , ) external body force;

» integro-differential expression for a generic volume element, for 1-D case [26]

p(x)A(x)"“(”) "[Em(xwx)"’”‘“)hj A XEVI(XE, D AE= AX) T (x1) 3)

where g k ¢) is the kernel function, which depends on the distance-decaying function,
n(x,é&,t) is the relative displacement determined at coordinatesd & . f (x,t) - field of external

body force. Ak ), E,(X) - the cross-sectional area and Young's modulus;

360



« peridynamics based on integral formulation (3-D case) [16,27]

0%u X,t
P (x.t)

o2 = [fut.D-ue 0% -20aV +bix.) @
H

where the pairwise forcé is defined in the finite domaiti (called as horizon). It depends on:
relative displacement(X,t) —u(x,t) , the relative positiork — x ;

* nonlocal FD based expression for discretized 1-D case, fortthBOF [21]

N
m—azal:iz(t) +Z K [Zq (t)— U (t)_ui+j (t)]:O ©)
j=1

where: m - discretized mass attached to a single D®F,- the j -th coefficient of the FD

baed scheme (it actually represents — in the presented form of discretized wave equation — the

resultant stiffness coefficients of the two hypothetical springs linking-ttne DOF with thei — j -th
andi + j -th DOFs),N - number of nonlocal interactions;

e other discrete approaches [7]: cellular automata e.g. with a secondary von Neumann
neighborhood, molecular dynamics, the approaches based on the micropolar and Cosserat
theories, nonlocal Finite Element Method; and analytical ones based on: higher-order spatial
partial derivatives, domain decomposition and variational calculus.

Amongst all the above-mentioned approaches peridynamics and nonlocal FD are worth to be
mentioned because of their specific capabilities. Peridynamics is uniqgue amongst analytical methods
since it does not take into account spatial partial derivatives at all, which prevents from numerical
errors at geometric discontinuities. On the other hand, the FD based method stands for a
straightforward nonlocal description of the problem. Due to its clarity (detailed description is
presented in [21]), it may be relatively easily applied to various case studies, which is confirmed in
Section 4 and 5 of the paper. The intention of the authors is to adapt the elaborated FD scheme,
already used in case of wave equation to be able to solve thermal problems, specifically with the
application of thermal conductivity equation. In the following, group of exemplary specific types of

PDEs is presented, which may be handled by the elaborated nonlocal FD scheme.

3. Scope of application - motivation

The present work deals with solving a specific class of PDEs, using numerical approaches based on
nonlocal formulations of FD method. The case of second-order spatial PDFs is of special concern, as
it refers to the mathematical descriptions of many various physical phenomena. Amongst others, the
following equations take the desired form of PDFs (excluding physical constants for clarity) [28]:
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e Laplace’s equation — used to define source-free fields of scalar quantities (potentials), e.g. in
case of gravitational (electrostatic) field in the space devoid of mass (charge)
0%u 9%u 4%
Au=0 = —+—+—>=0, u=UuUxyz (6)
ox? ay2 0z° L( )

« Poisson equation — applied to potential fields with considered sources

°u 9%u %
¥+a_y2+¥: f = (jxyj, f= f(xy,z) (7)

« Helmholtz equation — used e.g. in acoustics to determine field of pressure
2 2 2
Au+iu=0 = a_l21+a_121+a_g+/1 =0, u= L(xy,z) (8)
ox= o0y° 0z
« diffusion equation — applied to solve thermal conductivity related problems
2 2 2
U —Au=0 = @:6_;11_6_1211_6_;1’ u=Ux y,zt) (9)
’ ot o9x* dy= oz
« Schrédinger equation — used to describe quantum states of a physical system
. Jou  9%u . 0%u 9%
iuy+AU=0 = Ii—+—+—5+—5=0, u=UuUxVyzt 10
t PV AR (x y.z1) (10)

e wave equation — solved to analyze wave propagation

Uy —Au=0 = @:6_224_6_2[;4_6_23’ u= L(xy,z,t) (11)
ot ox= ody° oz
As already mentioned, the physical phenomena, which are described using Eq. (9) and (11) are of
the authors’ special concern. However, further applications of the theory presented in [21] are already
scheduled as future work to show capabilities of the nonlocal FD based numerical scheme for solving
static and dynamic problems. Hereinafter, the theory of the elaborated FD scheme is concisely

introduced, followed by its adaptation to address the thermal conductivity equation (diffusion).

4. Nonlocal FD schemes with reduced numerical dispersion

The theory of numerical discretization, proposed in [21], was derived for wave equation. In case of 1-

D, the wave equation takes the form

azu(:,t) -2 azu(>2<,t) (12)
ot ox
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where c=,/E/p is the velocity of longitudinal wave propagation through modelled rod,

calculated with Young’s modulug and mass density . Introducing the plane wave solution

u(x,t)= u(x,O)ej("x_“‘) , j —imaginaryunit (13)

into Eq. (12), the relation between wavenumkemnd angular velocity. is found

@ =CK (14)
Next, based on the theory of Fourier series, the following stiffness coefficigntsi.e.

coefficients of the FD based numerical scheme) were found for Eq. (5) [21]

12 EA, . /i 1 EA
S =orj<N O ky=(-)tS =0

kj =(-12) 7 Jza,forij (15)

where a is the distance between subsequent DOFs in the modelled rot amthe number of
local and nonlocal interaction terms defined within the rod by each side with respect to an actual
central DOF localized at the coordinate=ia (N - order of nonlocality). Increase dfl leads to
lower numerical dispersion in the final solution, maintaining spatial distribution of DOFs [21].

Based on the above presented theory, a similar FD based scheme for 1-D case is proposed for the

following general form of the thermal conductivity equation

aT(x,t) _ aZT(x,t)
ot ax2

T temperturelongarod (16)

where the coefficient @ =k/(cc,) is specified in terms of: k= Qa/(AAT) - thermal
conductivity coefficient,p = m/(aA) - mass density, and;, = Q/(mAT) - specific heat capacity. A
discretized model for Eq. (16) consist of discretized massesuniformly distributed along the
axis, i.e. at each DOF of the model at coordinatesia , and the linking rods of the specifidd
andgeometry @ - length, i.e. the distance between DORscross-sectional area). The linking rods
transfer heat whereas the masses are heated up or cooled down depending on the direction of heat
energy flow between DOF€Q) and Q: 0Q/dt respectively denote heat energy and its temporal rate

(power). After parameter rearrangement, Eq. (16) may be rewritten to the respective semi-discretized
local form for thei-th DOF
oaTi(t) kA
me, ) K1) 1 (9 )0
a €Yy

which may be extended to the general nonlocal expression
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mcpaTai_t(t)Jrij:;H[ZTi(t)_Ti‘j ()-Ti.s0]=0 (18)

Eq. (18) fits the structure of Eq. (5). Next, a general solution of Eq. (16) may be found as [28]

—x2
TO T
T(X,t)zme 4 (19)
Hence, Eq. (19), at discrete localizations for both an actual central DOFig) and the

neighboring DOFs X + :(i + j)a) equal:

T()=ize 20
-a 2(j 2 +2ij
T ()=T(e = (1)

Based on the similarities between Eg. (5) and Eg. (18), and definition of the coeffikjents

given by Eq. (15), which are adapted to the case of diffusion equation, a convergence analysis for
analytical and numerical solutions is carried out in the following. The calculations are performed for

an exemplary explicit nonlocal FD scheme wherr  (W&h index q for discretized time domain)

T -1 a[ 1
At a?

~lragoraLrasora Jlga ] 22)
4 i-2 i-1 2 i i1 4 i+2

First, a theoretical spatial partial derivative for iHe DOFis calculated, which takes the form

62T(x,t)

2.2 _
X i“fa“ -2t 23)
1))

42

=Ti(t)

X=X; =ia

which, in turn, converges foa - @

2.2
. . \l ac -2t __ TO
;'TOT' (t’ 42 22 (24)

Then, the respective derivative for the numerical case may be found from the expression

2T, t) 1( 1
ox? a?

P AR U DR RS 0] @5)

After: (i) substitution the quantitieg, (t) in Eqg. (25) using Eq. (21) and (ii) application of the

21
Taylor series theory to the derived exponential expressions, the deriv '6T2(t) in Eq. (25)
X
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reaches the limit calculated in Eq. (23). This confirms the convergence of the proposed spatial
nonlocal FD scheme in diffusion equation. For the time domain a standard forward Euler method is
used, as shown in Eq. (22).

Finally, von Neumann stability analysis is carried out to derive stability condition for the

exemplary scheme (22), which considéts= . The condition is found to be

1+r(—§ cob25)+ 4009([3)-9

Condition (26) may by transformed to the final form

<1 with r=aA—; and 5 =ka (26)
a

aht/a’<1/4 27)

Hence, the scheme (22) is stable if the time &epmloes not exceed? /(40').

5. Applications — numerical cases for diffusion equation

A straightforward 1-D model is taken into account to show capabilities of the proposed FD schemes
for the diffusion equation — including the example defined by Eq. (23). Thermal conductivity
mechanism in a 30cm-long aluminum rod is under study. The material propertiesk are:

200W/(mK) , p =2100kg/n3, cp=900J/(kgK). Arbitrarily chosen temperature initial condition is

presented in Fig. 1(a). Fig. 1(b) shows temperature distributions captured in the modekafis.

@) (b)
Figure 1. Numerical simulations for thermal diffusion in a 1-D model of an aluminum rod: (a) initial
temperature distribution, (b) temperature distribution for various order of nonlodslity

including the referential plot.

The total errors (i.e. absolute errors summed for all DOFs) decrease as the order of nonlocality
N increases. These errors equal: 2.22deyG=(L), 1.56degC N =2) and 0.77degCN =4).
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Various meshes are also used for transient analyses. As confirmed by the obtained results, as an
example, a four-time denser mesh (i.e. with four times smallexqualed to 0.0025m), which is
applied with a local approach whe =1, may compete with a nonlocal scheme built for=4
(considering the model exhibiting a crude mesh - with the distance between ®EF01m), i.e. it
may provide more accurate results, i.e. of smaller total error - 0.0869degC. Similarly, the local case of
a =0.005m with the total error 1.1617degC corresponds to the nonlocal case characteri2ifgm
and N =2 (with total error - 1.56degC). This model behavior justifies the usage of rather crude mesh
corsidering nonlocal interactions. One may take an advantage of less memory occupation and faster
calculations due to considerable smaller number of DOFs in the model. Hence, less populated
domains of spatially distributed model's DOFs may be also taken into account.

6. Summary and concluding remarks

The work presents efficient FD based nonlocal schemes dedicated for solving dynamic problems
governed by second-order PDEs. Specifically, diffusion equation is of concern. The theory of the
elaborated approach is illustrated with exemplary results showing its capabilities.

The following conclusions should be highlighted regarding applicability of the present work.
First of all, as confirmed with the results, less dense meshes may be applied in numerical models -
accompanied by the proposed nonlocal problem statements - without any noticeable loss of quality.
This issue may be critical for the models with complicated geometry or topology, in case when
computer resources are limited. Second, within the same spatial discretization used, more accurate
results may be achieved by increasing the order of nonlocality. Mitigation rate for numerical
dispersion increases while introduction more and more long-range interaction terms into the FD
scheme.

The elaborated schemes present a general approach to the techniques of model discretization. In
the authors’ opinion, they are capable of solving other types of problems for various physical domains
described by PDEs. In fact, based on the presented theory, it seems possible to increase the scope of

possible applications for the investigated theory, which is considered by the authors as future work.
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On solutions of biharmonic problems

Hovik Matevossian, Michail Nikabadze, Armine Ulukhanian

Abstract: For solving biharmonic problems with application to radar imaging,
we need to solve boundary value problems for the Poisson equation using the
scattering model. In addition, no information about boundary values is avail-
able. In order to select suitable solutions, we solve the Poisson equation under
the side condition that some criterion function, usually a Sobolev norm, should
be minimized. Under appropriate smoothness assumptions these problems may
be reformulated as boundary value problems for the biharmonic equation.

1. Introduction

Let © C R™, n > 2, be a bounded Lipschitz domain with connected boundary 92, and

QUON = Q = is the closure of Q. We consider the following boundary value problems for

the biharmonic equation in Lipschitz domains:

z € Q

with the Navier boundary conditions

2
MuEaAu—!—(l—a)@ = hi,

u=4g, 902

or the Neumann boundary conditions

&*u

e =

Mu=ocAu+ (1-0)

0Au

Nu= - T (1 — o) divan(8°u - v)oa = ha,

on 09, (2)

on 09, (3)

where v is the outward unit normal to 02, and ﬁ < o < 1, o is a constant known as

the Poisson ratio. A unique solution u (modulo linear functions) is obtained in the class of

solutions with non-tangential maximal function of the second-order derivatives in LP(0€).

The corresponding Poisson problem is well-posed unless o = 1.
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Note that standard elliptic regularity results are available in [3]. This monograph
covers higher order linear and nonlinear elliptic boundary value problems, mainly with the
biharmonic or polyharmonic operator as leading principal part. Underlying models and, in
particular, the role of different boundary conditions are explained in detail. As for linear
problems, after a brief summary of the existence theory and L? and Schauder estimates, the
focus is on positivity. The required kernel estimates are also presented in detail.

Boundary value problems for a biharmonic (polyharmonic) equation in unbounded do-
mains are studied in [7]- [12], in which the condition of the boundedness of the following

weighted Dirichlet integral of solution is finite, namely

/ |z|*|0u|?® dz < 0o, a € R,
Q

where a € R is a fixed number and |du|*> denotes the Frobenius norm of the Hessian matrix
of u. The author in [7]- [12] investigates the dimension of the space of the solutions to
the boundary value problems for a biharmonic (polyharmonic) equation, providing explicit
formulas which depends on n and a.

Elliptic problems with parameters in the boundary conditions are called Steklov prob-
lems from their first appearance in [18]. In the case of the biharmonic operator, these
conditions were first considered in [1], [6] and [16], who studied the isoperimetric properties
of the first eigenvalue.

In [2] the boundary value problems for the biharmonic equation and the Stokes system
are studied in a half space, and, using the Schwartz reflection principle in weighted L? -space
the uniqueness of solutions of the Stokes system or the biharmonic equation is proved.

Notation: C§°(Q2) is the space of infinitely differentiable functions in 2 with compact
support in Q; H™(Q) is the Sobolev space obtained by the completion of C>(Q) with

respect to the norm

1/2
lu(z); H™(Q)]| = > 10%u(z)*da ,m=1,2,
Q lal<m
where 0% = % a = (a1,...,an) is a multi-index, a; > 0 are integers, and

Oz Loz
lal = a1 + - + an;

Jis (€) is the space obtained by the completion of C§°(Q2) with respect to the norm
[lu(z); H™(Q)|];
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Definition 1 A solution of the homogenous biharmonic equation (1) in Q is a function

u € H*(Q) such that for every function ¢ € C§°(Q), the following integral identity holds:

/AuAgpdx:/fgodx.
Q Q

In Section 2 we will derive the mathematical model used for describing the radar process.
In our parametrization the unknown is the height function H. As will be shown in Section 2
the height function is determined in two steps. In the first step £(H), with £ a certain second-
order differential operator, is determined. After retrieving H the equation £(H) = f must
be solved. To a good approximation the operator £ can be replaced by the Laplacian. So
the second step simply consists of solving the Poisson equation over some smooth bounded
domain, usually a rectangular region in the plane. The problem here is that no natural
boundary conditions are available.

In Section 3 we discuss different possibilities of defining a unique height function. Es-
sentially our approach consists in minimizing some norm of the solution provided that it also
satisfies the Poisson equation. In particular we consider the L?- and H'-norms. We also
show how these two optimization problems may be reformulated as boundary value problems
for the biharmonic equation.

As applications, in [14], the eigenvalue problems of the symmetric tensor-block matrix
of any even rank and sizes 2 X 2 is studied. Some definitions and theorems are formu-
lated concerning the tensor-block matrix. Formulas expressing the classical invariants of the
tensor-block matrix of any even rank and sizes 2 x 2 through the first invariants of the powers
of this tensor-block matrix are given. As a special case, we consider the tensor-block matrix
of the elastic modulus tensors. The canonical representation of the tensor-block matrix is
given. Using this representation, we get the canonical forms of the elastic strain energy and
the constitutive relations. Besides, a classification of the micropolar linear elastic anisotropic
bodies that do not have a center of symmetry is given. In [15], some questions about the
parametrization of three-dimensional thin body with one small size under an arbitrary base
surface and the changing of transverse coordinate from 1 to 1 are considered. The vector
parametric equation of the thin body domain is given. In particular, we have defined the

various families of bases and geometric characteristics generated by them.

2. A scattering model

Here we will briefly discuss the mathematical inverse problem to be resolved in order to
recover the ground topography height function from radar data. First cylindrical coordinates
(r, p, z) are introduced according to Fig. 1, where it is understood that the aircraft is flying

at a constant speed along the z-axis. Further r denotes the distance from a point on the
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Figure 1. The ground surface measured at a fixed aircraft position.

Figure 2. The measuring geometry as seen from above.

ground surface to the z-axis and ¢ is the angle between radius vector and a horizontal plane
through the z-axis. Then the ground surface may be described by a function H (r, z) through

the equation

H(r, z) _

- ~0. (4)

When r is large, —H(r, z) is approximately a Cartesian height function. Fig. 2 shows
a top view of the same scene. We have also indicated an aspect vector from the aircraft to
some point on the ground, forming an angle 6§ with a vertical plane through the aircraft.

Normalized to unit length, the aspect vector is denoted by 7.
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Accordingly
fi = cos 0 7(p) + sin 6 2. (5)

Here #(¢) denotes the cylindrical unit basis vector corresponding to the r-coordinate for
the ground point as shown in the Fig. 2. For a point on the ground surface with coordinates

(r, ¢, z) we obtain, from Eq. (4), the following expression for the ground surface normal m,

m = grad (M,SD) _ 3(H/r)$+%8H %85 (©)

or

Let m denote the normalized normal. Then

o= (reoso X0 g0 g () (017 o

Note that (r,¢,z) in Eq. (7) are related to the ground surface point and not to the

position of the aircraft.

Figure 3. The coordinate system used to describe an infinitesimal surface element, dS.

Let (z0,0) be a position of the aircraft and R the distance to some point on the surface.
According to Fig. 3 the coordinates (r, z) are then equal to (zo + Rsinf, Rcosf). Next, to
obtain a scattering model we will assume that the reflectivity from a ground surface element
(see Fig. 4) is

mon

dRdo. (8)
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Figure 4. The infinitesimal surface element, dS, as it is seen from the aircraft.

From Fig. 4, where a vertical plane through (zo,0) (the aircraft) and the ground point
(20 + Rsinf, Rcos®) is displayed, we conclude that the solid angle dQ? under which the
surface element dS is seen from the antenna is approximately

dR cosa Rddf _ﬁzOﬁ

= AR do.

In expression (8) we are consequently assuming that the local reflectivity is proportional to
the solid angle occupied by the infinitesimal surface element dS. The total reflected signal
G(R, z0)

from all points at a distance R from the antenna may now be obtained by integration

over the circle C(R, z0) = {(r,2) : (z — 20)® + r*> = R*} in Fig. 3.

™ 1hon(zo + Rcosf, Rsin6)

G(R,z0)dR =c R dfdR
ie.
RG(R,z0) =c mon(zo + Rcosf, Rsin 0)do. 9)
Assuming that 1 o 71 is small Eq. (7) may be replaced by
mon = 7“(:ost9M +sin98—H.
or 0z
By inserting this into Eq. (9) we get, after multiplying by R,
R’G(R, z) = c/ (chos@a(gr/T) + Rsin 9%—5)0!9.
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Using the parametrization

z = zp + Rsinf, r = Rcos0,

this may be rewritten as a curve integral over C(R,z0), with dz = Rcosfdf and dr =
—Rsin6do,
T(’)(H /) OH

2 _ _ 97
R°G(R,z0) = C/C(R,zo) o dz 5 dr). (10)

By applying Green’s formula we get
R’G(R, z0) = c// L(H)(r, z)dzdr, (11)
D(R,zp)

where D is the disc, D(R, z0) = {(r,2) : (z — 20)® + r* < R?} and

S(H) = 2 (r 2 (/) + o (H). (12)

The problem of finding the height function H from radar data G(r,z) may now be
divided into two parts.

(a) First solve the integral equation (11) for £(H)(r, z) = f(r, 2).

(b) Next solve the partial differential equation

L(H) = f (13)
for H. We note that if r is large and if mo7 is small it is reasonable to make the approximation

0°H  O0*H
S~ G+ g7 =

AH

so that Eq. (13) becomes Poisson’s equation. To consider the first problem (a), both members

in Eq. (11) are differentiated with respect to R. Then we get

.

iR (R°G(R, 20)) = ¢ L(H)(z0 + Rcosv, Rsinv)dy,

-

==

where the right-hand side is proportional to the average of £(H) over the circle C(R, z0). In
[2] an explicit solution is given for this problem of recovering the function £(H)(r, z) when
the average of £(H) is known for all circles C(R, z9) with center on the z-axis and with
arbitrary radius R. The solution formula is

S(H) TP (0,w) ~ |w] [% %{RQG(T, ) (0,12 + 02). (14)

Here the notation (F,F') means that we have taken the Fourier transform with respect to

both the variables and (F, Hy) means that we have taken Fourier transform with respect
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to the first variable and the Hankel-zero transform with respect to the second. After some

calculations Eq. (14) may be rewritten
S(H) T (0,0) ~ |w|Vw? + 0?[RG(r, 2)] T (0, /w2 + 02). (15)

Formula (15) may now be used in order to recover the function £(H) in spatial coordi-

nates. Of course, approximating £(H) by AH we could rewrite Eq. (15) as

HO(0,0) [l e [RG(r, 2] 1 (0, Vi 1 02), (16)

w?+o
where H; denotes that we have taken the Hankel-one transform with respect to the second
variable. Then we could obtain H directly by a two timensional Fourier transform. However,
our solution might be expected to have errors caused by, e.g. noisy radar data and errors
caused by the particular numerical implementation of the inversion formula (14) (or Eq. (15))
and therefore we would rather prefer to divide the solution procedure into the two steps
described above and to use the second step, the solution of Poisson’s equation, so that we
perform some kind of regularization of the final solution. Note also that by using Eq.(16) as
our solution formula we have tacitly assumed periodic boundary conditions for the Poisson

equation.

3. Solution concepts for the Poisson equation

In the domain 2 we consider the following boundary value problems for the Poisson equation
Au= f(z), z€Q (17)
with the boundary conditions
u=g on O0f, (18)
and
u=g, Vu-v=h on 09 (19)
Finally for Q a rectangular region in, e.g., the plane
Q={(z,y):a<z<bec<y<d} (20)
there may be the following boundary conditions

u(a,y) = u(b,y), wu(z,c)=u(z,d), (21)
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and

u(av y) = u(bv y)7 u(x,c) = u(:c,d), (22)

ur(azy) = ux(ba y)7 uy(xv C) = uy(x: d)

Lemma 1 Letu and w be solutions of Eq. (17) satisfying the Dirichlet boundary conditions
(18) with g = g1 abd g = g2, respectively. Assume f € C(Q), g1, g2 € C(9Q) and that O is
Lipschitz. Then

[[u = wl[oo,2 < [lg1 — g2|[00,00-

Hence the Dirichlet problem is well posed in the sence that small pertutbations in the
boundary values result in small perturbations in the solution.

We now consider a different way to select a solution to Eq. (17). Here we use a criterion
function and optimize this criterion over the set of solutions to the Poisson equation. As
discussed in Section 2 the physical interpretation of u(z, y) is a surface function. A possibility
is to pick out the smoothest surface (in some sense) that fulfills Eq. (17). We propose to use

Sobolev space norms as criterion functions. Denote by V; the following set:
Vie={ue H(Q): Au=f, feL*Q)}, i=0,1,2, (23)

where H°(Q) = L*(Q).

The equality Au = f is to be interpreted in the sense of distributions. i.e.,
/ ulApdr = / feodz, Yo e Co(Q).
Q Q
Lemma 2 V;; is a closed, convex and nonempty set of H'(Q).

Let a be a multiindex and 81 > 0 a given parameter. We consider the following opti-

mization problems:
minuevs o|ull3, (24)
and

minuev,, [ull3 + 81 Y 10%ull3. (25)

la|=1

Theorem 1 Problems (24) and (25) have unique solutions uo and ui respectively.

We conclude this section by a theorem relating the solution of problems (24) and (25).

First we recall the following definition.
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Definition 2 Q2 C R" is called star-shapet if there exists xo € 0 such that for all x € Q the
set {t eR: o+ t(x—xo) € Q} is an interval.

Remark 1 All convex sets are star-shaped. Rectangles Q) appearing in our applications are

thus star-shaped.

Theorem 2 Assume that Q C R™ is open, bounded and star-shaped. If uig, € H'(Q)
denotes the solution of problem (25) with the parameter f1 > 0 and if uo € L*(Q) denotes
the solution of problem (24), then

U1,8, — U0 mn LQ(Q) as Bl —0+.
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Computer model of ground under vehicle’s wheels

Tomasz Mirostaw

Abstract: In this paper author presents new approach to modeling ground behavior
under pressure of a vehicle’s wheel. The ground under the wheel is deformed by
compression and displacement in vertical and horizontal direction. Some layer direct
under tire is abraded, torn and transported by the wheel. The pressure of the tire
causes deformation which grows with increasing of rolling resistance. The model of
ground behavior, especially for multi-axle off road vehicle, is very important for
traction calculation. This model is nonlinear. The running process of ground
transformation depends on forces, acceleration and time and frequencies repeating
stresses. In the presented model the ground is divided into cubes/cells which are
deformed and transform their density and features. Deformed cubic effects its
neighbors and cause their deformation and forces inside them. The pressed cube in
first stage is displaced, if it’s movement is blocked cube is deformed and if it is still
pressed it is transformed to another form of its substance changing its physical
properties and features. The presented model can also be applied to crushing stones
and calculating swimming resistance in the water.

1. Introduction

The biggest invention in transport — the wheel is known for more than 5000 years. But we still
are looking for ideal model which can describe all cases of its behaviour on the road surface. These
models are necessary for transport means designing. They concern the railways, road and off-road
transportation or vehicles and mobile machineries. We all know how important wheel is for efficiency
and safety of transport. We spend billions of Euro for tires, hard (asphalt or concrete) roads to make
the human and goods transport faster and safer.

But the great part of human activity is off-road. It refers to the construction machinery working
on the pristine ground or agriculture machinery passing fields. For terrain vehicles generally two
kinds of propelling systems can be mentioned as the main types: wheeled and track.

Both have some advantages and disadvantages but for them both, the cooperation with ground is
the most important thing. For both drives we need to know how to describe processes which are going
between tire and ground.

Currently for propelling vehicles we use classical models. Most of these models reflect the
empirical experiments and observations effects not the process.

[

Many authors of models for force calculation use slip “s” parameter defined as:

s=1-2 1)

Vi
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where: V' — real velocity of a vehicle,

V: — theoretical velocity (circumferential speed of wheel)

Slip does not have any physical representation — it is not possible to measure it and is defined as
a result of a mathematical operation, and it is defined in different ways by various authors depending
on wheel action if it is propelled (rotated) by vehicle engine, or it is a braked wheel pushed by the
vehicle.

Generally the force between tire and road is calculated with (eq.2.) [1, 2, 3, 4, 6,7, 10, 12,13].

F(s) = Nu(s) @
where: F — propelling force,

N — load (weight of a vehicle),
u(s) — friction coefficient depending on slip

In literature we can find various relations pu(s) as well as the definitions of slip.

Figure 1. Diagram of the wheel’s slip as a function of the propelling force coefficient [18].
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Figure 2. Gross traction T/r, circumferential force T/r-Fri and net traction Fp in dependence on the
slip o. [17]

On of commonly used model was developed by Schreiber, Kutzbach [7] who based on other
authors like Grecenko, Schuring and others. They noticed the difficulties with the slip definition and
introduced different models for pulled and driven wheel like presented in the paper [16]. Different
movement possibilities can be seen in diagram depicted in figure 2.

Such models are very difficult to use in a computer simulation. Referring to the Steinkamof’s
measurement data, Schreiber and Kutzbach proposed the standardization of tire characteristics [4].

The standardized curve was proposed in the form presented in figure 3. [5].
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Figure 3. k-curve with four characterizing values pe, oo, kmax and cpull.
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To find out the right curve some coefficients need to be calculated.

The most popular examples of propelling force relation to slip is the “Pacejka” magic formula
commonly used for vehicle behaviour [11]

It is written in form:

F(s) = d e sin{c earctan[b « (1 — e) e k + e o arctan(b « k)]}: (3)

Where: F(s) is the propelling force that depends on s (slip),
b, ¢, d and e that represent fitting parameters.

Each tire can be characterized by ten to twenty coefficients that are mostly determined in an
experimental way. This formula does not have any logical explanation. It is an experimentally
obtained engineering tool, but very easy to use especially in computer simulations and we can find it
in computer games, simulators etc. But the force or slip is found not by physical phenomena analyses
but by computer solver which suits the output value to equation. The main discomfort situation comes
from the fact that we can get the same slip for different vehicle speed.

2.  The model

In paper “The Vehicle Tire Model based on energy flow” [16] it was proved, that the eq. 2 can be
derived based on energy (power) flow and propelling force depend on the difference between wheel
circumferential speed and vehicle speed. Shortly if we take the power which is needed to propel the
vehicle as the:

P=FeV 4)
Where: F — propelling force, (produced in the tire-ground contact area) speed of vehicle,.

The power which is going to the road as the effect of Viscous friction force depends on the
mutual speed of the two rubbing against each other surfaces, in case of the wheel moving on a

pavement, where V¥ is the velocity of a vehicle and V% is the velocity of the tire-ground contact area, it

equals:
P=TelV-V) ()
After comparing both equations following is obtained:
FeV=TelV-V) (6)
Hence:
F=TeH 0

Taking into account that for the zero slip value the static friction occurs with its maximum value
(Fmax) proportional to the weight:

F=Fpagx=Nep 8
where: N — vehicle load,

u - traction coefficient (determines grip between the tire and the ground).
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Coherent notation of above mentioned relationships needs to be done:
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Figure 4. Model of a wheel-ground cooperation for a vehicle.
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So the energy flow model can be used to vehicle propelling force evaluation. Normally we can
expect that some additional layers between tire and solid ground are present and take part in this
energy flow. So the multilayer (cascade) model of a wheel-ground cooperation was developed [11]. It
is based on energy flow and forces acting between individual layers.

Model depicted in figure 4. consists of four similar layers: a wheel, thread blocks, a movable
intermediate layer and an immovable (solid) ground. The vehicle is modelled by a mass and an
acceleration integrating system that outputs the velocity. All the layers consist of “friction” block
which inputs are: the force (from moment) propelling given layer and the mutual velocity of two
cooperating layers. This block’s outputs are: the resultant force that propels an element of a given
layer, the amplifying system that represents inertia of a given element and the integrating elements
that are connected in series.

Between a wheel and a thread block occurs a conversion of moments into forces by dividing
moments by dynamic radius Rq. In the model multiplication by a reciprocal of a dynamic radius
(1/Rd) was used.

Depending on a layer type the driving force is decreased by the motion resistance of the inner
layer. Friction block is depicted in figure 5. Input signals are: the driving force and the velocity and
output signals are: the friction force and the propelling force. Friction force acts between the adjacent
layers and propelling force causes the acceleration of an element of the layer. Friction force value
depends on the velocity.

Friction block has a maximum value limit. That corresponds to the force when wearing off of an
element appears — once the grip loss (friction loss) appears. Presented friction model describes well
the rolling resistance that appears in the part of the model describing the vehicle.

In the model depicted in figure 4. Mutually moving elements can act on each other with elastic
forces likewise between a tire and thread blocks. Stopped thread blocks twist and act on the tire with
the force dependent on the position difference between the block end and the block origin (base, that
is joined with a tire).

Presented model shows basic types of interactions i.e. friction and elastic force of mutual
deflection. This model can be extended with more layers.

Simulations tested behaviour of the system. Between the thread blocks and the pavement appears
the moving layer and the limitation of the maximum friction value between layers influences the

motion.
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Testing the model showed a very good consistence of appearing phenomena during simulation
with the observations of reality [19] for some types of thin layers like water or sand. This model does
not work properly when we take account thicker and deformable layers of sand or mud.

3.  Ground model problem

When we are talking about an off-road vehicle we are thinking about wading of sand, mud and
rocky roads. The vehicle sinking in the wet sand etc. But the ground effects on vehicle. We all
experienced that the ground reaction depends on the movement speed. We can pass a muddy ground
if we start with high speed and we can stay in it if this speed is too low. When we move on the sand it
is beeing deformed, replaced and changes the structure and its properties. So the rear wheel moving in
the trace of tha front wheel is in fact riding on the different surface than the front one. This effect

have great influence on vehicle’s behaviour.

Figure 6. An example of wheel trace on the sand
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The modeling of ground which can move, change the shape and structure, is a very attractive
problem.

The assumption for the model is that it should reflect process of deformation and soil
compacting.

Figure 7 presents taken model of ground behavior. Under increasing pressure the ground is
deformed. For small pressure which doesn’t overcome the solid bearing capacity, the ground comes
back to previous shape after the load releases. If the pressure is bigger than critical load, the process
of condensation is started, and the density of ground increases. So after the load releases ground
comes back to other shape. The condensation of ground needs time and runs with inertia. The critical
bearing of ground and the constant time of condensation inertia depends on density which is changing
under load. The example of compaction process is presented on figure 7. In figure 7a load F is
increasing from 0 to Fip1 . If the F doesn’t reach Fip1 and it is realized , the px density comes back to
the initial value poon curve 1 if F overcomes the Fip1 the density comes back to value p1 on curve 2.
And so on. The process of compaction is running in time as it is presented in Figure 7b. Of course in
normal ground there critical values of force and time are not so quantized. It is pointed out only for
concept presentation.

b) Y
a) 4 )
Pk
Pk
AV(F) AV(t)
L
F=const
po F >t
> t iy tpa
Fipr} Fid  Fuos Fipa bl 1 Uy 3 ”

Figure 7. The ground characteristic a) density in relation to load b) density in time for constant load.

Ground under load is:
— moved in two dimensions
o orthogonally in deep as effect of pressure and effects on layers bellow
o vertically being pushed by rotating tire and effects on ground ahead and back of
rotating
— deformed in 3 dimension: it is oblate under wheel and pushed on sides effecting on adjacent

ground, causing its deformation, like uplift etc.
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— compacting increases the density.

The ground is modeled as the net of cells with 3D elasticity and damping features. A concept of
the ground model in 2D version is presented in figure 8a. It is a system of springs and dampers of

varying parameters. When the cell is compressed the internal pressure Pp is balanced by force of

springs and dampers in all dimensions.

a)

o] l W_ L]
Pp <l Pp Eﬁk Pp ‘Egjk

b)

Figure 8. a) The 2D cellular model of ground. B) 3D cellular model of ground

If the ground is loaded the movement and deformation process starts. In figure 9 some cases of
deformation are presented. Figure 9a presents the model when the wheel is put on the ground and the
cell under it is compressed and the neighboring one is uplifted. I case on figure 9b wheel is pushed
and effects on the cell ahead. When wheel starts to rotate under friction force, the cell pushes the cell
ahead with lower force. If wheel is propelled with motor (moves slower than its circumferential

speed) it pushes ground under itself to the back and compresses the cell ahead.
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Figure 9. The model of wheel cellular ground cooperation

The model of 2D ground cell is presented in figure 10. The input is the speed of movement of the
adjacent cell or the wheel. If the end of cell in moving with different speed the cell is being deformed
in this dimension. It causes the resistance force proportional to speed of shape to change and the
volume of the cell too. The internal pressure increases and gives the forces propelling the wall of cell
in all directions and reaction force. This pressure changes the shape of the cell, for instance when X
dimension is decreasing the Y dimension would increase. The coefficients of volume elasticity Kv

and directional dampers kvx, kvy depend on density which is changing under internal pressure pin.
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Figure 10. The model of ground compaction process p(t)

The pin is given to the dead zone block which limits depending on cell density. If pressure pin
overcomes the limit which represents the limit of elasticity, the process of compaction starts as the
inertial changing of density and the value of coefficients. The function coefficients value can be
stored in matrix or written as the function. Normally with the rising pressure the density increases, but
if it overcomes the limit value the ground can be broken (crashed) for instance when sample of

ground is pressed without side supporting-reacting bodies.
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When we resign from structure transformation and keep the elasticity in whole range we get such
environment of movement like air or water. The model of water acting on vehicle is presented on

figure 12. The water buoyant and dynamic resistance forces act on the vehicle.

Figure 11. The model of water reaction based on cellular concept
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Figure 12. The example of cellular net model made in Matlab/Simulink
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Figure 13. Examples of simulation results. The answer of ground for compactor hit. The
direction of hit reaction is force direction and causes increase of internal pressure and
density increase.

4. Conclusions

The presented modelling concept reflects quite good ground behaviour under wheel of moving

vehicle. It shows the deformation, replacing and compaction of the ground. Simulation results are

qualitatively consistent with the observations.

This is a modular model, so it can be adjusted to various types of materials.
This is a dynamic model therefore it cannot be used to determine the forces values or
the slip values in a specific time moment without continuous analysis.
This model can be used for environment resistance and bearing force calculation like
ground, mud, water.
This nonlinear method (relations between elasticity, damping and conversion limit
forces) can be used for simulations of the rock crashing or other materials feature
simulation.

Together with layer model method can be used for vehicle behaviour simulations.
This model can be easily readjusted to the dimensions what would allow modelling
a tire-ground cooperation during making a turn.
While changing model parameters of the individual layers behaviour of the system can

by modified.
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Existence conditions for fractional order PI/PD controllers

Cristina I. Muresan, Isabela R. Birs, Clara M. lonescu, Robin De Keyser

Abstract: Fractional order Proportional Integral (FO-PI) and Proportional Derivative
(FO-PD) controllers are increasingly used in controlling various types of processes,
with several papers demonstrating their advantage over the traditional PI/PD
controllers. Quite frequently the design of these FO-PI/FO-PD controllers is based on
a set of performance specifications that refer to the open loop gain crossover
frequency, phase margin and the iso-damping property. These three performance
specifications lead to a system of three nonlinear equations that need to be solved in
order to determine the three tuning parameters of the controllers. However, it might
occur that for a certain process and with some specific gain crossover frequency and
phase margin values, the computed parameters of the FO-P1/FO-PD controllers do not
fall into a range of values with correct physical meaning. In this paper, a study
regarding this limitation, as well as the existence conditions for the FO-PI/FO-PD
parameters are presented. The paper shows that given a specific process and open
loop modulus and phase specifications, the gain crossover frequency (or in general, a
certain test frequency used in the design) must be selected such that the process phase
fulfills an important condition. Once this is met, the proposed approach ensures that
the tuning parameters of the fractional order controller will have a physical meaning.
Illustrative examples are included.

1. Introduction

Fractional calculus represents the generalization of the integration and differentiation to an arbitrary
order. Its application to control theory has been postponed due to its inherent complexity [1].
However, recent advances in computation made possible its use in control engineering, with an
increasing popularity in modeling and controller design [2-4].

The fractional order PI*D* controller, first described by Podlubny [5] is a generalization of the
classical integer order PID controller. Several papers and researchers have shown that the fractional
order controllers are generally able to meet more performance specifications and to behave more
robustly than the traditional PID controller [6-7]. This is due to the supplementary tuning parameters,
the fractional order of integration, p, and of differentiation, L. Special cases of this fractional order
PI*D* controller include the fractional order PI* controller and the fractional order PD* controller.

Several approaches to tuning fractional order PI* (FO-PI) or PD* (FO-PD) controllers have been
proposed so far [6], [8-9]. Quite frequently the design of these FO-PI/FO-PD controllers is based on a
set of performance specifications. Since both the FO-PI and the FO-PD controller have three tuning
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parameters, three performance specifications are usually considered in their design. Also, since
frequency domain is more appealing to control engineers and the description of fractional order
elements is more straightforward than in the time domain, these three performance specifications
usually refer to the open loop gain crossover frequency, phase margin and the iso-damping property.
To generalize this approach, the performance specifications refer to a certain modulus and phase of
the loop transfer function at a specific frequency defined as the test frequency. To tune the FO-PI and
FO-PD controllers based on these performance specifications, the resulting set of nonlinear equations
needs to be solved. Several techniques to find the solution exist, ranging from simple optimization
routines to more complex genetic algorithms or graphical methods [2], [6-7], [10-11].

Problems in finding a solution exist, since solving the system of nonlinear equations needs to be
done by meeting design constraints that refer to a certain range for the fractional order of
integration/differentiation, as well as for the proportional gain and the integral or derivative time
constant. These problems, however, can be avoided with a proper choice of the performance
specifications, namely of the test frequency used in the design. To the best of our knowledge, such a
study regarding the adequate choice for the test frequency has not been reported so far. In this paper, a
study regarding the existence conditions for FO-P1/FO-PD parameters is presented. The paper shows
that given a certain open loop modulus and phase specification, the test frequency must be selected
such that the process phase fulfills an important condition. Choosing the performance specifications
such that this condition is met ensures that the tuning parameters of the fractional order controller will
have a physical meaning. Also, the study shows that given a test frequency and the corre