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This paper presents selected cases of inapplicability of theory based methods of deter-
mining critical loads in thin — walled, composite tubes. 8" layered composite tubes with
square cross-section were being subjected to static compression and in order to register
experimental data two measuring equipment were employed: strain-gauges and Digital
Image Correlation system ARAMIS ®. When measurement data were collected five
different theory based methods were applied in order to determine critical loads. Cases
where it was impossible to apply certain methods or some doubts about correctness of
the results occurred were presented and analyzed. Moreover in cases where it was possi-
ble, the theory was equivalently transformed, in such a way to fit experimental data and
calculate the critical loads.

Keywords: buckling experiments, critical load determinations, stability investigations,
strain—gauges, Digital Image Correlation.

1. Introduction

Problems of structural stability are commonly known since more than two ages.
The first scientist who described problem of buckling was Swiss mathematician
Leonard Euler [12] in XVIII*" century. However this research field had to wait
almost two centuries for expansion of analytical, numerical and experimental meth-
ods. Investigations of buckling phenomena, especially experimental, started to be
very important with the growth of industry where the need for new designs and
materials is very visible. This problem refers to many branches of mechanics such
as automotive, aircraft or medical industries [4], [21], [22], [25]. Design in these
fields requires to produce very light and high strength structures in order to pro-
vide appropriate maintenance. Metals usually provide high strength but are very
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heavy and cannot be used in form of solid blocks. The response to this requirements
is to design thin — walled structures [19], [27], using alternative materials such as
composites [13] or combining both [17]. The main advantage of applying thin —
walled structures in the different types of designs is reduced weight of the whole
system. However designing in such a way must be done very carefully, especially in
terms of the structural analysis. In case of compression or bending the phenomenon
of buckling can be very dangerous. This forces engineers to conduct appropriate cal-
culations using numerical methods [18] or Finite Element Method [11]. The second
method of decreasing the weight of the structures is applying innovative materials
such as composites. The main advantage of using this types of materials is huge
adjustability of material properties only by means of proper layer arrangements [7].
The disadvantages are very high costs of manufacturing processes which will pro-
vide high quality and predictability of future material properties [3], [5]. Designing
thin — walled composites combines all advantages and disadvantages of compos-
ites and constructions with thin walls what provides big amount of possibilities for
potential, future applications. High adjustability of pre- and post-critical stiffness
causes that composites can be used as carrying elements (high stiffness) or energy
absorbers (low stiffness) [7], [15], [29]. Thin — walled composites are also commonly
used as stiffeners in different aerospace structures — especially Fibered Metal Lami-
nates (FMLs) [2], [15] are commonly used for stiffening wings or body in aeroplanes.
But before the elements will be mounted in the place of proper usage they have to
be tested by means of verification of the appropriate numerical models with series
of proper experiments [8], [11]. Experimental buckling analysis, especially for the
structures with stable post-critical states, it is always challenging task [9],[10]. This
comes from the fact that there is no standard algorithm for determining critical
loads but there exist certain amount of theory—based methods [24],[26], which may
give different results or in some cases of experimental data sets are not applicable.
This paper presents how to deal with some cases of inapplicability of theory based
methods for determining critical loads for stable post—critical states. The literature
survey indicates some papers dealing with problems with experimental data such
as Paszkiewicz & Kubiak [23] for compressed and bent C—shaped composite profiles
but certain problems are still not emphasized which authors had to deal with [8].

2. Experimental investigations and measuring equipment

Experimental tests have been performed to determine buckling load and postbuck-
ling behavior of thin—walled composite tubes with square cross — section. The exact
numerical and experimental results were presented in the paper of the authors [8].
However this paper is focused on some problems with buckling load determinations
and it has been decided to explain how the experimental test were performed. The
tubes were produced from eight layers of pre-impregnated tape consisting of E—type
unidirectional oriented glass fibers and thermosetting epoxy resin (SE70 Gurit) and
subjected to autoclaving process. The length of the column was equal to 250 mm.
The dimensions of the cross—section (width x height x thickness of the wall) were:
82 x 82 x 2 mm (see Fig. 1 a) and b)).
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Figure 1 a) nominal dimensions of the tube b) photo of real tubes
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Figure 2 Scheme of applied load and placement of strain — gauges on the tubes

Tubes were subjected to static compression using universal test stand machine IN-
STRON after Zwick Roel modernization. In order to determine the critical loads
and equilibrium paths two measuring systems were employed. The first measuring
equipment were strain—gauges glued back to back on one of the walls of the tube
(see Fig. 2) at the level of 1/6 of length of the tube — the place was chosen on
the basis of the numerical calculations where maximal amplitude of the deflection
should appear. The second measuring equipment used for investigations was Digital
Image Corellation System ARAMIS ® produced by GOM company. Two neigh-
bouring walls of the specimens were painted and during measurements the photos
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with frequency of 1 Hz were captured by two cameras what afterwards, thanks to
stereographic transformations [14], [20], enabled to create the map of deflections
and create the equilibrium path plot for any point of the mapped area.

The tubes were placed in the test machine between two parallel plates — the lower
plate was on the spherical bearing in order to provide uniform load distribution on
the edges. The traverse beam of the machine was moving with constant velocity
of 2 mm/min what was treated as quasi-static compression. In total 24 specimens
were investigated — 4 specimens in 6 layer groups [8].

3. Theory based methods of determining buckling load for stable post—
buckling states
The structure of thin — walled composite tube with square cross — section had
always stable post — equilibrium behavior so in order to calculate the critical loads
the criteria for this type of behavior have to be applied. Buckling loads in case of
these investigations were determined using five methods which operating principles
will be briefly reminded in the subchapters. For the data coming from strain—gauges
glued back to back it is assumed that difference in strains is proportional to the
deflection of the wall.

3.1. Inflection point method (IPM)

The inflection point method had been firstly proposed by Coan [6] and bases on the
fact that structure with not excessive geometric imperfections (in comparison with
thickness of the wall) should be similar to this as in the Fig. 3. The inflection point
corresponds to the critical load.

Ep=E&1-E2
>

Figure 3 Plot representing ideal (continuous line) and real (dotted line) behavior of the structure
and applicability of inflection point method [24]
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3.2. P-w or Koiter’s method

According to the theory of plates and shells [27], [28] and energy approach, for
the compressed plate, force is a quadratic function of deflection of the wall hence
post—buckling state can be approximated by second order polynomial. For the ideal
structure, without initial imperfections, the minimum of the parabola should be
placed on the load—axis (b — coefficient equal to 0) and correspond to the buckling
load. For non — ideal structure the minimum of the parabola should be taken as

the critical load (see Fig. 4).

Figure 4 Determining critical load using Koiter’s method [24] — the behavior of ideal structure is
represented by continuous line, the real by dotted one

3.3. P-w’ method

As it was mentioned in the previous chapter the post-buckling state can be ap-
proximated by second order polynomial on the load — deflection diagram. This
means that if deflection will be transformed into quantity of squared deflection post
— buckling state should become the straight line (see Fig. 5). The intersection of
the linear approximation of post — buckling range with load axis is treated as the

critical load.

3.4. Averaged strain method (AVS)

Averaged strain method can be only applied to the strain — gauges measuring data.
The operating principle in this method is to present averaged strain curve on the
load strain — diagram and therefore to divide it into the pre- and post — buckling
state, linearly approximate it and find intersection of these two lines (see Fig. 6).
The intersection of this two lines corresponds to the critical load.
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Figure 5 a) load - deflection diagram b) load - squared deflection diagram for ideal (continuous
lines) and real (dotted lines) structure and applicability of P — w? method [24]
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Figure 6 Strains (e1 and e2), averaged strain (g4v) curves and methodology of finding critical
load using averaged strain method (lines L1 and L2) and vertical tangent method (line L3) [24]

3.5. Vertical tangent method (VTM)

Vertical tangent method, similarly to the averaged strain method, can be only
applied to the strain — gauges measurement data. The averaged strain curve is
plotted on the load — strain diagram. Therefore the vertical tangent, if exists, is
searched (see Fig. 6).

4. Robustness and selected limitations of applicability

In this chapter selected cases of inapplicability of methods presented in chapter 3 will
be presented. Experimentally obtained equilibrium paths, where it was impossible
to determine critical load using these methods directly or it was impossible are
presented. In the first case — direct inapplicability of methods, the suggestions
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how to equivalently transform the theory in order to fit the experimental data are
presented.

4.1. Inflection point method
4.1.1.  Order of polynomial

The author experience in this field had shown, that order of polynomial used to ap-
proximate the region where inflection point should be found can strongly affect the
determined critical load. Although the elastic energy of the plate can be expressed
by fourth order polynomial equation with deflection as variable, what implies that
force can be expressed as third order equation with respect to the deflection, ap-
proximating of the experimental curve can be done using higher order polynomials.
Using higher order polynomials is explainable due to the fact that the researcher
want to have the best mathematical description of the curve fitting to all experi-
mental data what explains correctness of this approach. According to the theory,
the lowest order of polynomial, at the same time allowing to find inflection point,
is equal three. At the same time, this region can be approximated by higher order
polynomials — in this case authors were considering orders of polynomials from three
to six (see Fig. 7).
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Figure 7 Determining critical load from strain—gauge data using inflection point method by ap-
proximating fragment of the curve using different order polynomials

For all cases the value of determination coefficient R? was higher than 0.99 what,
according to the theory, indicates very good fitting of polynomial approximation
to the experimental data. It can be also noticed that for higher order polynomial
approximations the value of determination coefficient grows.
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Third order polynomial:

y = 8.2029x3 — 24.877x% + 27.2152 + 11.635 (1)

gives one inflection point:
(z;y) = (1.010; 22.194) (2)

Fourth order polynomial:
y = —11.13z% + 45.112% — 65.632% + 44.27x + 9.441 (3)

has two inflection points:
(x1;91) = (0.803; 21.403) @)
(z2;y2) = (1.222; 23.036)
Fifth order polynomial:
y = 13.82° — 68.652" + 132.92% — 125.72% + 62.17z + 7.619 (5)
has three inflection points:
(z1;y1) = (0.762; 21.207)
(z2;y2) = (0.912; 21.794) (6)
(z3;y3) = (1.311; 23.187)
Sixth order polynomial:
y = —15.042°% 4+ 89.272% — 215.82% 4 273.923 — 194.42? + 78.04x + 6.279  (7)

has two inflection points (but it could have up to four):

(z1;91) = (1.044; 22.418) )
(z2;y2) = (1.429; 24.093)

The author decided to consider always the minimal value of inflection point (being
inside the investigated interval) coming from different polynomial approximation
and present this values in the Tab. 1.

Table 1 a) nominal dimensions of the tube b) photo of real tubes

Order of polynomial | III I\Y v VI
Min. result [kN] 22.194 | 21.403 | 21.207 | 22.418

Although the value of determination coefficient R? is in all cases very close to 1
for all orders of polynomials (higher than 0.9926) the minimal inflection points are
different - for the final value of critical load, the lowest value is taken (5" order of
polynomial). Moreover, mean, standard deviation and absolute difference between
highest and lowest results are equal, respectively:

z = 21.806
o = 0.590 9)
|xmax - xmin| =1.211

The ratio of absolute difference and mean is equal to 5.55% what indicates that
using different order polynomials does not have significant influence on the results.
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4.1.2.  Inflection point does not exist

The authors experience had shown that inflection point is very robust method of
finding the critical load. But, in some cases, it does not work. An example of such
a situation, which author had met was lack of existence of inflection point (see Fig.
8). In such a form the inflection point methodology cannot be directly applied.
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Figure 8 Data series where inflection point method is not applicable

The origin of such a behavior as presented in the Fig. 8 can come from the changing
buckling mode during the experiment. For example, initial buckling mode was cor-
responding to appearance of two halfwaves but under increasing load the jump into
three halfwaves occurred. This transition from one buckling mode to another can
be treated as a loss of stability. The suggestion of the authors is to approximate the
post-buckling state by best fitting to the curve polynomial and find the intersection
with the load axis. This point can be treated as the critical load (20.822 kN in the
Fig. 8).

4.2. P-w or Koiter’s method
4.2.1.  Too high flatness of the parabola

One of the problems connected with applying Koiter’s method can be concave
parabola with too high flatness which results in the placement of the parabola
minimum in other quarter of the coordinate system then equilibrium path is placed
(see example in the Fig. 9).
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Figure 9 Parabola with very high flatness resulting in the placement of minimum in the third
quarter of coordinate system

The polynomial:
y = 0.01712% + 3.0596x + 16.394 (10)

has got minimum at:
(x;y) = (—89.462; —120.465) (11)

The pair of numbers being a minimum of the parabola does not make physical
sense. The point defined by these coordinates is placed in the third quarter of the
coordinate system while equilibrium path is in the first one. Hence the value of
-120.465 kN cannot be treated as critical load. The suggestion of the authors is to
consider as critical load the value of the function at = 0. Therefore searched value
of the critical load is equal to ¢ — coefficient of the polynomial. The correctness of
this approach can be explained by the fact that for ideal plate structure minimum
is placed on the load axis (b — coefficient of the polynomial equal to zero). For any
other parabola having the minimum located elsewhere than first quarter it must be
noticed that point of intersection with load axis is the lower bound for the point
laying on the curve in the first quarter, where critical load should be placed. For
presented case the critical load is equal to 16.394 kN.

4.2.2.  Conwverity of parabola

Author’s experience in dealing with the experimental data and using Koiter’s method
had shown that the main problem which occurs is convexity of parabola in post-
buckling state. In such a case (see an example presented in the Fig. 10) it is
impossible to apply this method. The reason of inapplicability is lack of physical
sense of such a behavior. Convex parabola suggests unstable postbuckling behavior
while in case of plate structures stable should be considered.
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Figure 10 Example of inapplicability of Koiter’s method — convex parabola

4.3. P-w’ method
4.3.1. Different ranges of linear approximation in post-buckling state

P — w? method turned out to be very robust method and worked in all cases which
author had to deal with. However, the method is very researcher sensitive and
result may be affected by the researcher. The problem comes from the fact that in
the assumptions of the method it is not clearly said which part of post—buckling
state should be approximated and taken under inspection. Such a case is presented
in the Fig. 11 a) and b).

According to the first approximation the critical load is equal to 17.399 kN,
while according to the second one 14.741 kN. This proves high impact of the human
to the result. However, it is worth to discuss, what was an origin of such a behavior.
In first analyzed case presented in the Fig. 11 a) under inspection was taken whole
post—buckling state, which is a big averaging of whole interval. In the second case,
the beginning of the post-buckling state was taken and, indeed lower critical force
was obtained. The correctness of choosing second result for further considerations
can be explained by means of taking the lower value as a lower bound for critical
force.
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Figure 11 a) and b) Plots representing the same equilibrium path on the load - squared difference
in strains diagram with different linear approximations of post—buckling ranges

4.4. Averaged strain method

4.4.1.  Impossibility of dividing averaged strain curve into pre— and post—buckling
state

Averaged strain method bases on dividing averaged strain curve into pre— and post—
buckling state, making linear approximation of this regions and finding the inter-
section of this lines. However, sometimes it is impossible to do so as e.g. in the case
presented in the Fig. 12. The origins of such a problems may be very different — the
investigations could be interrupted in order to avoid destruction of the specimens
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resulting in post—critical interval being too short to approximate or either strain —
gauges could be glued in a place where very high deflections appeared and strain —
gauges stopped to register data.

When applying averaged strain method it is always good to plot data series
from two strain — gauges. This creates new opportunities. If strain — gauges are
glued at the same point of the wall but back to back to each other it means, that
during buckling one strain gauge will be under tension and the second one — under
compression. Such a situation takes indeed place in the Fig. 12. Up to certain
moment both strain gauges (SG-1 and SG-2) are being under compression but when
buckling appears SG-1 is under tension and SG-2 under higher compression. This
fact is enough to propose the equivalent solution of finding the critical load using
averaged strain method. Instead of analyzing one average strain — curve two strain
curves can be analyzed separately and afterwards mean value can be calculated.
The methodology is presented in the Fig. 13.
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Figure 12 Example of situation when averaged strain curve cannot be divided into pre- and
post—buckling state

First strain curve can be divided into pre— and post—buckling state. The equa-
tions of linear approximation of these two intervals are:

{ y = 5.1189x + 32.293 (12)

y = —8.567x + 3.3414
and the solution of this set of equations:

(z1;91) = (2.115; 21.464) (13)
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The second strain curve gives following set of equations:

y = —2.4706 + 13.932
y = —6.1153 + 3.8471

and solutions are:
(z1;91) = (2.767; 20.768)

Therefore, an average value can be calculated:

Y1 t+y2  21.464 + 20.768

Yav = Fer = = =21.116

2 2

Hence, this value can be treated as a critical load.
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Figure 13 Determining critical load from two strain curves instead of one averaged strain curve

4.5. Vertical tangent method

4.5.1.  Vertical tangent line does not exist

Due to many similarities in two methods — averaged strain and vertical tangent
one they can be compared to each other. Under inspection the same case as in the
Fig. 12 will be taken. From presented chart it is purely visible that averaged strain
curve does not have the vertical tangent line and method is not applicable. The
only curve for which vertical tangent can be determined is SG-1, but data from one

strain—gauge does not provide small uncertainty level.
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5. Comparison of exemplary critical loads obtained from measurement
data sets

Under inspection will be taken data series coming from the same measurement but
two measuring devices. This allows to evaluate the real critical load.

Table 2 Scheme of applied load and placement of strain—gauges on the tubes

Name of the | AVS | VIM| IPM | IPM | P—w | P—w? | Mean| SD
method 3rd | 6th
or- or-
der der
Strain-gauges | 14.58| 16.69| 16.79| 15.85| 12.42 15.89 15.27| 1.82
(11.43)*
DIC system - - 18.98 | 17.27| 14.87 19.77 17.30| 2.45
(1.97)*
Strain gauges and DIC system 16.04 | 2.17

*the value in the bracket is calculated from the minimum of parabola laying else where than first

quarter of coordinate system

According to the results presented in the Table 2 some conclusions can be drawn.
Critical loads obtained from strain—gauges are giving comparable results using dif-
ferent methods. The ratio of standard deviation to the mean is equal to c.a. 12%
what can be treated as satisfactory result. For DIC system results the ratio of
standard deviation to the mean was equal to c.a. 14% what means higher disper-
sion of the results coming from different critical load determination methods. For
this particular case it can be also noticed that results coming from DIC system
are higher than those from strain-gauges, however it is not a rule that DIC gives
higher results than strain-gauges. Moreover the absolute difference between means
obtained from two measuring devices is equal 2.03 kN what proves good agreement
between critical loads determined from two different measuring devices data. For
the P —w method it can be noticed that for both — strain—gauges and DIC system
data, critical loads determined using this method are the lowest in comparison with
other methods. This considerations can be concluded by stating that it is a mistake
to rely only on one method.

6. Conclusions

Investigations of nature of buckling phenomena are very important in the indus-
try. Although the research conducted by the authors was on composites, it can be
applied to any other materials and had shown that critical loads in stability inves-
tigations should be always determined using different methods and, if it is possible,
using different measuring equipment. On that basis the researcher can evaluate the
interval where searched critical force should be found and the precision of calcula-
tions. The authors had an opportunity to work with many experimental data and
can share with some observations concerning the methods themselves. The most
robust method — applicable in almost all cases turned out to be P — w? method,
however high impact of the human on the final result is observed. Inflection point
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method provides also very good robustness except for cases where change of the
buckling mode can be observed. P —w method is also very precise however in some
cases it cannot be directly applied but after small, equivalent modifications in the
methodology it becomes robust. This three methods refer to both: strain-gauges
and DIC system data. In case of the strictly applied only to strain — gauges methods
averaged strain and vertical tangent ones it can be said that averaged strain one
can be used almost always — directly or by considering two strain curves and finding
the mean value. When vertical tangent line does not exist the method cannot be
applied and data about critical load cannot be determined.

Determining critical loads from experimental data is always challenging task and
should be done very carefully. The main problem seems to be a fact that universal
algorithm for finding critical loads does not exist. It is a researcher task to evaluate
experimental data. This includes estimating the applicability of the method, setting
proper ranges of intervals and finally verifying the results. In cases where researcher
has got doubts, proper literature with different cases and problems should be read
and analyzed. After analysis of many cases the researcher can decide which results
is robust or not and evaluate the interval where real buckling load is placed.
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