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The object under consideration are thin plates, which structure is periodic 
in planes parallel to the midplane. Plates of this kind consist of many small, 
repetitive elements, called periodicity cells, that can be treated as thin plates. 
The microstructure size is characterized by the diameter of the cell, which is 
called the microstructure parameter l. It is assumed that mechanical properties 
(bending and membrane stiffness tensors’ components) of such plates are 
periodic, highly-oscillating, non-continuous functions. The main aim is to 
propose a mathematical model describing moderately large static deflections 
problem of considered plates, which is based on the tolerance modelling 
technique. A calculational example for a specific problem is included. The 
results are compared with results obtained within the linear model and with 
Finite Element Method. 

1. Introduction 

The objects of considerations are thin linear-elastic plates with a periodic 
structure in planes parallel to the plate midplane, cf. Fig. 1, subjected to large 
deflections. Governing equations of static problems of such plates have non-
continuous, highly oscillating, functional coefficients. Exact solutions to these 
equations are very difficult to obtain. Therefore, various simplified approaches, 
introducing effective plate properties, are proposed. Amongst them there have to 
be mentioned models based on the asymptotic homogenization, cf. Kohn and 
Vogelius [7]. Unfortunately, governing equations of these models usually neglect 
the effect of the microstructure size on the plate behaviour. 
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Fig. 1. Fragment of a thin periodic plate 

In this paper, in order to obtain a model that takes this effect into account, 
the tolerance modelling approach is applied, cf. the books edited by Woźniak, 
Michalak and Jędrysiak (eds.) [14] and by Woźniak et al. (eds.) [13]. 
Applications of this method to other problems of periodic plates are shown in a 
series of papers, e.g. for vibrations of periodic wavy-type plates by Michalak [9], 
for periodically stiffened plates by Nagórko and Woźniak [10], for the buckling 
of periodic thin plates by Jędrysiak [4], for plates with the inhomogeneity period 
of an order of the plate thickness by Baron [1], for stability and vibrations of 
periodic plates by Jędrysiak [5, 6], for some problems of bending of thin periodic 
plates by Domagalski and Jędrysiak [2, 3].  

The main aim of this note is to present the nonlinear tolerance model of 
elastostatic problems for thin periodic plates with large deflections. The paper 
contains also an illustrative example of a rectangular periodic plate. The results 
are calculated within proposed nonlinear model and the known linear tolerance 
model, and then compared with those obtained by a finite element program. 

2. Fundamental equations 

Let Ox1x2x3 be an orthogonal Cartesian coordinate system; subscripts i, j, k, l 
run over 1, 2, 3 and α, β, γ, ω run over 1, 2. Denote x = (x1,x2) and z = x3. The 
undeformed plate occupies the region Ω ≡ {(x,z):-δ(x)/2zδ(x)/2, x}, with 
midplane  and the plate thickness δ(). 

It is assumed that periodic plates under consideration consist of many small 
repetitive elements called periodicity cells. The cell is defined as a plane region 
≡ [-l1/2,l1/2][-l2/2,l2/2], where l1, l2 are the cell dimensions along the x1-, 
x2-axis. The size of the microstructure of the plate is described by the diameter of 
the periodicity cell, given by l=[(l1)2+(l2)2]1/2 and satisfying the condition 
max(δ)<<l<<min(L1,L2), (L1 and L2 are characteristic dimensions of the plate 
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along the x1- and x2-axis). This diameter is called the microstructure parameter. 
Hence, the cell can be treated as a thin plate. Let us denote the partial derivatives 
with respect to a space coordinate by α=/xα. 

Our considerations are based on the well-known nonlinear theory of thin 
plates (cf. Timoshenko and Woinowsky-Krieger [11], and Woźniak (ed.) [12]). 
Let w(x) be a plate midplane deflection, u0α(x) be the in-plane displacements 
along the xα-axes, F(x) be the stress function, and q(x) be the total loadings in the 
z-axis; x. Thickness δ() can be a periodic function in x and elastic moduli  
aijkl = aijkl(,z) can be also periodic functions in x and even functions in z. Let 
aαβγω, aαβ33, a3333 be the non-zero components of the elastic moduli tensor. Denote 
cαβγωaαβγω-aαβ33a33γω(a3333)-1. 

Define the mean plate properties, being periodic functions in x, i.e. shell 
stiffnesses bαβγω and bending stiffnesses dαβγω, in the form: 
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From the well-known assumptions of the nonlinear thin plate theory, e.g. the 
strains E0αβ of the plate midplane and curvatures καβ written as: 
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, ))(()( 2   , we obtain for periodic plates the 
following equations for the deflection w and the stress function F: 
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having highly oscillating, non-continuous, periodic in x functional coefficients. 

3. The tolerance modelling approach 

3.1. Introductory concepts 

In the course of modelling, some introductory concepts of the tolerance 
modelling technique, such as the averaging operation <>, the slowly-varying 
(SV) function, the fluctuation shape (FS) function, are used. These concepts are 
described in books edited by Woźniak, Michalak and Jędrysiak (eds.) [14] and by 
Woźniak et al. (eds.) [13]. 
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3.2. Fundamental assumptions 

Following books [13, 14] and using the previously mentioned introductory 
concepts, the fundamental modelling assumptions can be formulated. 

First of them is the micro-macro decomposition of the basic unknowns, 
where there is assumed: 

1) for the out-of-plane deflection: 

 ,,,1),()()()( NAVhWw AA  xxxx  (4) 

2) for the in-plane displacements: 
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3) for the stress function: 
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and A K 2 1
d dW( ), V ( ), ( ), ( ) SV ( , ), U ( ) SV ( , )              are basic 

unknowns; A K 2
dh ( ), g ( ) FS ( , )      are the known fluctuation shape functions. 

Functions W(), Φ(), VA() and ΨK() are called the macrodeflection, the 
macrostress function, the fluctuation amplitudes of the deflection and of the 
stress function, respectively; U0α() are the in-plane macrodisplacements. 

The additional assumption is the decomposition of the load q(x) in the form 
)(~)()( 0 xxx qqq  , where  qq0  is the slowly-varying averaged load, and q~  is 

the oscillating part, 0~  q . 

4. Model equations 

Applying the modelling procedure described in [13, 14], under denotations 
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we arrive at the following system of equations for the macrostress function Φ(), 
the fluctuation amplitudes of the stress function ΨK(), the macrodeflection W(), 
the fluctuation amplitudes of the deflection VA(): 
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Equations (8) together with micro-macro decompositions (4)-(6) constitute 
the nonlinear tolerance model of thin periodic plates. This model describes the 
effect of the microstructure size on the overall plate behaviour by the underlined 
terms. For considered plates there have to be formulated boundary conditions 
only for the macrodeflection W and the macrostress function Φ. Moreover, the 
basic unknowns of equations (8) have to satisfy the following conditions: 

A K 2
dW( ), V ( ), ( ), ( ) SV ( , )         . To evaluate obtained results we recall the 

governing equations of the linear tolerance model of thin periodic plates: 
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cf. Jędrysiak [4], Woźniak, Michalak and Jędrysiak (eds.) [14]. It can be 
observed that in this model the effect of the microstructure size is taken into 
account only by the term related to the oscillating part AQl2  of the load. 

5. Example of application 

5.1. Formulation of the problem 

The object under consideration is a simply supported rectangular plate with 
constant thickness δ and length dimensions L1 and L2=ηL1 along the x1- and 
x2-axis, respectively. It is also assumed that all edges of the plate are immovable. 
The plate is made of two isotropic materials (a matrix – M, a rib – R), having 
Young’s modulus EM and ER and Poisson’s ratio νM and νR, periodically 
distributed along the x1- and x2-axis.  

Solutions W(), Φ() to the model equations (8) have to satisfy boundary 
conditions for the simply supported plate, i.e. W=11W=0 for x1=0, L1; W=22W=0 
for x2=0, L2; 22Φ=N11 for x1=0, L1 and 11Φ=N22 for x2=0, L2. Therefore, denoting 
ξm=mπ/L1, ζn=nπ/L2, the above mentioned solutions can be assumed in the form 
of double sine or cosine trigonometric series ([8, 11]): 
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where constants p1 and p2 represent average edge membrane tensions in the x1- 
and x2-direction. The transversal average loads ),( 21 xxQ  and ),( 21 xxQ A  can be 
expanded into double sine series: 
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Application of the Galerkin method leads to the following set of nonlinear, 
coupled algebraic equations for coefficients of series (10): 
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where overlined terms represent dimensionless forms of unknown coefficients: 
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dimensionless load-dependent terms are as follows: 
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where λ is dimensionless microstructure parameter λ=l/L1. The other coefficients 
occurring in (12) are obtained as a result of applying the Galerkin method and,  
in order to limit the length of this paper, will not be presented here. 

Dropping the nonlinear terms appearing in equations (12) or applying the 
Galerkin method to equations (9), algebraic equations of the linear tolerance 
model are obtained: 
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In the next section, some numerical results calculated in the framework of 
the nonlinear and linear tolerance models are presented. These results are also 
compared with results obtained using a finite element program. 
 

5.2. Calculational results 

Numerical results are calculated for a square plate (η=1), made of two 
different isotropic materials. The periodicity cell is a square and is defined as 
≡[-l/2,l/2][-l/2,l/2], cf. Fig. 2. It is assumed that the Young’s modulus and 
Poisson’s ratio are given by 
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where α is a dimensionless parameter describing distribution of material 
properties in the periodicity cell, cf. Fig. 2.  

  
Fig. 2. A basic periodicity cell 

The fluctuation shape functions hA and gK are assumed in the similar form: 
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satisfying conditions < hA >=0. 
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In calculations we assume for the matrix: the Young’s modulus EM=69 GPa, 
the Poisson’s ratio νM=0.316. Moreover, assume the length L1=1.0 m, the 
thickness δ=110-3 m. For the rib it is assumed: the Young’s modulus ER=EM, 
the Poisson’s ratio νR=νM. Results presented here are obtained for following 
values of parameters: dimensionless width of the rib α=0.2; dimensionless 
microstructure parameter λ=0.05; Young’s modulus’ ratio =4.0, 3.0, 2.0. A case 
of uniformly distributed transversal load is considered, q(x)=q, with the 
maximum value applied 34.5 Pa.  

      

  
Fig. 3. Load-deflection curves 

Figure 3 shows magnitudes of central deflection calculated in the framework 
of the tolerance model (TAT) and the finite element method (FEM) with various 
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values of Young’s moduli ratio . The results are shown in their dimensionless 
form, cf. formulas (13), (14).  

Table 1. Deflections at maximum load computed –  
comparison of results 

 

Comparison of center deflection calculated within FEM and TAT models 
under maximum load applied is shown in table 1. It has to be mentioned that, 
both for nonlinear and linear model, differences between center deflection under 
maximum load computed are less than 0.1%. 

6. Remarks 

Using the tolerance modelling to the known differential equations of thin 
periodic plates with large deflections the averaged equations of the nonlinear 
tolerance model are derived. This technique makes it possible to replace the 
governing equations with non-continuous, periodic, highly oscillating coefficients by 
the system of differential equations with constant coefficients. 

Analysing results presented in the previous section it can be noted that: 
  differences between deflections calculated within the nonlinear tolerance 

model and FEM are, for computed load and Young’s moduli ratio, less 
than 10%; 

 these differences are less for the nonlinear than for linear analysis and 
decrease with decreasing parameter ; 

 the linear tolerance model seems to underestimate, while the nonlinear 
model tends to overestimate calculated deflections. 

 

Then, some general remarks can be formulated: 
 the derived equations of the nonlinear tolerance model involve terms, 

which take into account the effect of the microstructure size on the 
overall behaviour of periodic plates; 

e type of analysis FEM TAT D

nonlinear 1.869 1.989 6.41%
linear 12.28 11.34 -7.64%

nonlinear 1.954 2.030 3.87%
linear 14.11 13.35 -5.40%

nonlinear 2.064 2.097 1.58%
linear 16.86 16.41 -2.65%

4.00

3.00

2.00
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 the governing equations of the linear tolerance model take into account 
the effect of the microstructure size only by the term dependent of the 
oscillating part of the load. 
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O PEWNYM NIELINIOWYM MODELU  
CIENKICH PŁYT PERIODYCZNYCH 

Streszczenie 

Rozważane są cienkie płyty o strukturze periodycznej w płaszczyznach 
równoległych do płaszczyzny środkowej. Płyty tego rodzaju składają się z wielu 
małych, powtarzalnych elementów, zwanych komórkami periodyczności,  
z których każda może być traktowana jak cienka płyta. Wielkość mikrostruktury 
jest charakteryzowana poprzez średnicę (największy liniowy wymiar) komórki. 
Wymiar ten jest nazywany parametrem mikrostruktury i oznaczany przez l. 
Przyjęto, że własności mechaniczne płyty, reprezentowane przez składowe 
tensorów sztywności płytowych i tarczowych, są periodycznymi, nieciągłymi, 
silnie oscylującymi funkcjami. Głównym celem opracowania jest zapropono-
wanie matematycznego modelu opisującego zagadnienie umiarkowanie dużych 
ugięć rozważanych płyt, opartego na tzw. technice modelowania tolerancyjnego. 
Praca zawiera przykład obliczeniowy dla pewnego przypadku szczególnego. 
Dokonano porównania wyników uzyskanych w ramach proponowanego modelu 
nieliniowego, modelu liniowego oraz Metody Elementów Skończonych. 
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