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The object under consideration are thin plates, which structure is periodic
in planes parallel to the midplane. Plates of this kind consist of many small,
repetitive elements, called periodicity cells, that can be treated as thin plates.
The microstructure size is characterized by the diameter of the cell, which is
called the microstructure parameter l. It is assumed that mechanical properties
(bending and membrane stiffness tensors’ components) of such plates are
periodic, highly-oscillating, non-continuous functions. The main aim is to
propose a mathematical model describing moderately large static deflections
problem of considered plates, which is based on the tolerance modelling
technique. A calculational example for a specific problem is included. The
results are compared with results obtained within the linear model and with
Finite Element Method.

1. Introduction

The objects of considerations are thin linear-elastic plates with a periodic
structure in planes parallel to the plate midplane, cf. Fig. 1, subjected to large
deflections. Governing equations of static problems of such plates have non-
continuous, highly oscillating, functional coefficients. Exact solutions to these
equations are very difficult to obtain. Therefore, various simplified approaches,
introducing effective plate properties, are proposed. Amongst them there have to
be mentioned models based on the asymptotic homogenization, cf. Kohn and
Vogelius [7]. Unfortunately, governing equations of these models usually neglect
the effect of the microstructure size on the plate behaviour.
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Fig. 1. Fragment of a thin periodic plate

In this paper, in order to obtain a model that takes this effect into account,
the tolerance modelling approach is applied, cf. the books edited by Wozniak,
Michalak and Jedrysiak (eds.) [14] and by Wozniak et al. (eds.) [13].
Applications of this method to other problems of periodic plates are shown in a
series of papers, e.g. for vibrations of periodic wavy-type plates by Michalak [9],
for periodically stiffened plates by Nagorko and Wozniak [10], for the buckling
of periodic thin plates by Jedrysiak [4], for plates with the inhomogeneity period
of an order of the plate thickness by Baron [1], for stability and vibrations of
periodic plates by Jedrysiak [5, 6], for some problems of bending of thin periodic
plates by Domagalski and Jedrysiak [2, 3].

The main aim of this note is to present the nonlinear tolerance model of
elastostatic problems for thin periodic plates with large deflections. The paper
contains also an illustrative example of a rectangular periodic plate. The results
are calculated within proposed nonlinear model and the known linear tolerance
model, and then compared with those obtained by a finite element program.

2. Fundamental equations

Let Oxx,x; be an orthogonal Cartesian coordinate system; subscripts i, j, k, [
run over 1, 2, 3 and o, B, v, @ run over 1, 2. Denote x = (x;,x;) and z = x3. The
undeformed plate occupies the region Q = {(x,z):-0(x)/2<z<6(x)/2, xell}, with
midplane IT and the plate thickness &(-).

It is assumed that periodic plates under consideration consist of many small
repetitive elements called periodicity cells. The cell is defined as a plane region
Q= [-L/2,L/2)1x[-1/2,1,/2], where [, [, are the cell dimensions along the x-,
x;-axis. The size of the microstructure of the plate is described by the diameter of
the periodicity cell, given by [=[(/)*+(l.)’]"* and satisfying the condition
max(0)<</<<min(L,,L,), (L, and L, are characteristic dimensions of the plate
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along the x;- and x,-axis). This diameter is called the microstructure parameter.
Hence, the cell can be treated as a thin plate. Let us denote the partial derivatives
with respect to a space coordinate by 0,=0/0x,.

Our considerations are based on the well-known nonlinear theory of thin
plates (cf. Timoshenko and Woinowsky-Krieger [11], and Wozniak (ed.) [12]).
Let w(x) be a plate midplane deflection, uy(x) be the in-plane displacements
along the x,-axes, F(x) be the stress function, and ¢(x) be the total loadings in the
z-axis; xell. Thickness &(-) can be a periodic function in x and elastic moduli
a;u = azu(-,z) can be also periodic functions in x and even functions in z. Let
Aapyes dap33, A3333 bE the non-zero components of the elastic moduli tensor. Denote
CaBymEaaBym'aaB33a33ym(a3333)-1-

Define the mean plate properties, being periodic functions in X, i.e. shell
stiffnesses bqpy, and bending stiftnesses dypy0, in the form:

3(x)/2 3(x)/2
b aByo (x)= Icocﬁyoo (x,2)dz, docﬁyoo (x)= Icaﬁym (x,2)z2dz. (1)
—3(x)/2 -3(x)/2

From the well-known assumptions of the nonlinear thin plate theory, e.g. the
strains Ep of the plate midplane and curvatures k,p written as:

Epop = %(%um +0qtop + 0 WORW),  Egop =By, R Fs o

Kop =—0OgpW,

where b,pe, D40 =0y Opew » Rap()=(V20,5—04p)() , We obtain for periodic plates the
following equations for the deflection w and the stress function F:
R BogsyoR ) =1 (0 W0 WOy WO W),

| ®
aa[} (daﬁymaymw) - ‘RQBFaaBW =q,

having highly oscillating, non-continuous, periodic in x functional coefficients.

3. The tolerance modelling approach
3.1. Introductory concepts

In the course of modelling, some introductory concepts of the tolerance
modelling technique, such as the averaging operation <->, the slowly-varying
(SV) function, the fluctuation shape (£S) function, are used. These concepts are
described in books edited by Wozniak, Michalak and Jedrysiak (eds.) [14] and by
Wozniak et al. (eds.) [13].
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3.2. Fundamental assumptions

Following books [13, 14] and using the previously mentioned introductory
concepts, the fundamental modelling assumptions can be formulated.

First of them is the micro-macro decomposition of the basic unknowns,
where there is assumed:

1) for the out-of-plane deflection:

wx)=W(x)+h4(x)V4(x), A=1,...,N, 4)
2) for the in-plane displacements:
Upg, (X) = Uch (X)’ (5)

3) for the stress function:
F(x)=0(x)+gkx)PX(x), K=1,...,M, (6)

and  W(), V), ®(), ¥*()eSV,;(11,Q), U ()eSV,(I1,Q) are basic
unknowns; h*(-), g*(-) e FS;(I1,Q) are the known fluctuation shape functions.
Functions W(:), ®(-), V() and WX(-) are called the macrodeflection, the
macrostress function, the fluctuation amplitudes of the deflection and of the
stress function, respectively; Uy, (-) are the in-plane macrodisplacements.

The additional assumption is the decomposition of the load ¢(x) in the form
q(x)=¢°(x)+q(x), where ¢q0=<q> is the slowly-varying averaged load, and g is
the oscillating part, <g >=0.

4. Model equations

Applying the modelling procedure described in [13, 14], under denotations

B gve =<bypye > B =<byp,oRopg” >, BKL =<b,g,,RopgXR, 8L >,

afyo afyo 7
Dopyo =<dopyo > Dl =<dp,,0,0h" >, DB =<d g ,0,,h"0ogh® >, (7)
0=<q°>, O4=<qht>[-2, G =<0, hA0ghB > 172,

we arrive at the following system of equations for the macrostress function @(:),
the fluctuation amplitudes of the stress function W*(-), the macrodeflection W(-),
the fluctuation amplitudes of the deflection V(-):
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Wop B,

FoRoo®) =2 R (0 WO ) + S PGAFR (s (V BV 4),

Bop(Dupyo0sV + DBV B) =R g0 oW =0, ®
DD, WV + DABVE + 12GABV BR y = 1204,

WK = (BLK)Y1BLR @ aBy,0=12 A4,B=1..,N; K,L=1..M,

where BY =

afyo _BéB(BKL)_IBng) .

apyo
Equations (8) together with micro-macro decompositions (4)-(6) constitute
the nonlinear tolerance model of thin periodic plates. This model describes the
effect of the microstructure size on the overall plate behaviour by the underlined
terms. For considered plates there have to be formulated boundary conditions
only for the macrodeflection W and the macrostress function ®. Moreover, the
basic unknowns of equations (8) have to satisfy the following conditions:
W), VA, ®(), P () e SV, (I1,Q) . To evaluate obtained results we recall the
governing equations of the linear tolerance model of thin periodic plates:

DaﬁvwaaBYwW + D(:IBGGBVA =0, )

D0 gl +DABY B =204,

cf. Jedrysiak [4], Wozniak, Michalak and Jedrysiak (eds.) [14]. It can be
observed that in this model the effect of the microstructure size is taken into
account only by the term related to the oscillating part /204 of the load.

5. Example of application
5.1. Formulation of the problem

The object under consideration is a simply supported rectangular plate with
constant thickness 6 and length dimensions L, and L,=nl, along the x;- and
Xp-axis, respectively. It is also assumed that all edges of the plate are immovable.
The plate is made of two isotropic materials (a matrix — M, a rib — R), having
Young’s modulus E,, and Er and Poisson’s ratio v, and vg, periodically
distributed along the x;- and x,-axis.

Solutions W(-), ®(:) to the model equations (8) have to satisfy boundary
conditions for the simply supported plate, i.e. W=0,1W=0 for x,=0, L,; W=0,W=0
for x,=0, Ly; 0,,®=Ny; for x,=0, L, and 0,;®=N, for x,=0, L,. Therefore, denoting
En=mn/L,, {,=nm/L,, the above mentioned solutions can be assumed in the form
of double sine or cosine trigonometric series ([8, 11]):
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W(x15x2) ZZ mn SIHE.’mxl SinCnXZJ

n m

v (x15x2) ZZ mn Sln&.’mXISinCnXZS
n o m

(10)
2 2
cD(XIJXZ) = qu)mn CoS E.’mxl CoS Cnx2 +%p1x2 +%P2x1 s

n m

K (x15x2) ZZ mn COSE.’mxl COSCnXZJ
n m
where constants p; and p, represent average edge membrane tensions in the x;-
and x,-direction. The transversal average loads QO(x,x,) and Q4(x;,x,) can be
expanded into double sine series:

O(x,x,) = ZZansmﬁ X 8ing, %,

11
04(x,x) = 22 ,SInE, xsing,x,. (h
Application of the Galerkin method leads to the following set of nonlinear,
coupled algebraic equations for coefficients of series (10):

bl Oy = S QW W, 422 S By y

pq’"rs pq’rs>
2R A,Bp,q.r,s

dmnw_/mn + 7-[:2(”1251 + nznZEZ)W_/mn - ZMZZVVI/(DI{I +nzdmn mn ~ Qmn = 0’
i)k,
nZdABVB + diﬁnWmn _1’]7\‘22 ZN;;I'E’?/HV?/B(DH +
B B i,j,kl

(12)

+ k2nZ[G11 nt GzAéBﬁz]IZn% -22q;1, =0,

where overlined terms represent dimensionless forms of unknown coefficients:

V7mn = Wmn ’ Vﬂ{ll’l = Lle an;ln’ (Dkl = (Dkl H (13)
5 8 £, 83
dimensionless load-dependent terms are as follows:
4 2
_ L
A 1= L 47 =1 R 14
[qﬂﬂ’l’qﬂﬂ’l] EM84 [Qﬂﬂ’l’Qﬂﬂ’l] p(l EM83 p(l ( )

where A is dimensionless microstructure parameter A=//L,. The other coefficients
occurring in (12) are obtained as a result of applying the Galerkin method and,
in order to limit the length of this paper, will not be presented here.

Dropping the nonlinear terms appearing in equations (12) or applying the
Galerkin method to equations (9), algebraic equations of the linear tolerance
model are obtained:
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dmnVan + nz dlgf’l I71111.::1 ~Ywn = 05
B

B (15)
nZdABVmEL +drﬁnWmn _}quiﬁn =0.
B

In the next section, some numerical results calculated in the framework of
the nonlinear and linear tolerance models are presented. These results are also
compared with results obtained using a finite element program.

5.2. Calculational results

Numerical results are calculated for a square plate (n=1), made of two
different isotropic materials. The periodicity cell is a square and is defined as
Q=[-1/2,112]x[-1/2,1/2], cf. Fig. 2. It is assumed that the Young’s modulus and
Poisson’s ratio are given by

Ey,vir if xe[/2,—al/2)x[-1/2~al/2)u
U[-/2,—al/2)x(al/2,]/2]w
w(al/2,1/2]x[-1/2,—al/2) U

E(x),v(x)= U(od/2,0/2]x(ad/2,1/2], (16)

Ep,vp if xe[/2,—al/2)x[—al/2,0l /2]

Ul—al /2,0l /2]x[-1/2,1/2]w
(ol /2,0/2]x[—al/2,0l/2],

where o is a dimensionless parameter describing distribution of material
properties in the periodicity cell, cf. Fig. 2.

. =
e - <
— ?al/ -
.
'8 /// ///.x - 1/
o

i
la—(1-a)l2—atw— o] —tu— (l-a)la——/

Fig. 2. A basic periodicity cell
The fluctuation shape functions /4 and g are assumed in the similar form:

B = g = L1[(1 - cos Ay (1 - cos 2AM2y 1y 4=, N,
! ! (17)

satisfying conditions < /* >=0.
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In calculations we assume for the matrix: the Young’s modulus £,~69 GPa,
the Poisson’s ratio v,~0.316. Moreover, assume the length L,=1.0 m, the
thickness 8=1x10" m. For the rib it is assumed: the Young’s modulus Ex=€E),,
the Poisson’s ratio vg=v,. Results presented here are obtained for following
values of parameters: dimensionless width of the rib a=0.2; dimensionless
microstructure parameter A=0.05; Young’s modulus’ ratio €=4.0, 3.0, 2.0. A case
of uniformly distributed transversal load is considered, ¢(x)=¢q, with the
maximum value applied 34.5 Pa.

2.5 ’, a) c=4.0 2.5
20 F---fto-mmdooode b ! 20 +
1.5 1 15 1
S S
1.0 T 1.0 1
' £
05 + 's FEM 05 + FEM
————— TAT-LIN ----- TAT-LIN
FEM-LIN FEM-LIN
00 ——+H—+—4+—+—+—+—+— 0.0 +—————+— —
0 100 200 300 400 500 0 100 200 300 400
23 c)e=2.0
20 T
1.5
S
1.0 +
0.5 1
————— TAT-LIN
FEM-LIN
0.0 } ——t——t—
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Fig. 3. Load-deflection curves

Figure 3 shows magnitudes of central deflection calculated in the framework
of the tolerance model (TAT) and the finite element method (FEM) with various
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values of Young’s moduli ratio €. The results are shown in their dimensionless
form, cf. formulas (13), (14).

Table 1. Deflections at maximum load computed —
comparison of results

€ type of analysis FEM TAT A
400 nonlinear 1.869 1.989 6.41%
linear 12.28 11.34 -7.64%
3.00 nonlinear 1.954 2.030 3.87%
linear 14.11 13.35 -5.40%
500 nonlinear 2.064 2.097 1.58%
linear 16.86 16.41 -2.65%

Comparison of center deflection calculated within FEM and TAT models
under maximum load applied is shown in table 1. It has to be mentioned that,
both for nonlinear and linear model, differences between center deflection under
maximum load computed are less than 0.1%.

6. Remarks

Using the tolerance modelling to the known differential equations of thin
periodic plates with large deflections the averaged equations of the nonlinear
tolerance model are derived. This technique makes it possible to replace the
governing equations with non-continuous, periodic, highly oscillating coefficients by
the system of differential equations with constant coefficients.

Analysing results presented in the previous section it can be noted that:

— differences between deflections calculated within the nonlinear tolerance

model and FEM are, for computed load and Young’s moduli ratio, less
than 10%;

— these differences are less for the nonlinear than for linear analysis and

decrease with decreasing parameter &;

— the linear tolerance model seems to underestimate, while the nonlinear

model tends to overestimate calculated deflections.

Then, some general remarks can be formulated:
— the derived equations of the nonlinear tolerance model involve terms,
which take into account the effect of the microstructure size on the
overall behaviour of periodic plates;
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— the governing equations of the linear tolerance model take into account
the effect of the microstructure size only by the term dependent of the
oscillating part of the load.
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O PEWNYM NIELINIOWYM MODELU
CIENKICH PLYT PERIODYCZNYCH

Streszczenie

Rozwazane sg cienkie ptyty o strukturze periodycznej w plaszczyznach
rownolegtych do ptaszczyzny srodkowej. Plyty tego rodzaju sktadaja si¢ z wielu
malych, powtarzalnych elementéw, zwanych komoérkami periodycznosci,
z ktorych kazda moze by¢ traktowana jak cienka ptyta. Wielko$¢ mikrostruktury
jest charakteryzowana poprzez $rednice (najwigkszy liniowy wymiar) komorki.
Wymiar ten jest nazywany parametrem mikrostruktury i oznaczany przez /.
Przyj¢to, ze wlasnosci mechaniczne plyty, reprezentowane przez skladowe
tensoréw sztywnosci ptytowych i tarczowych, sg periodycznymi, nieciggltymi,
silnie oscylujacymi funkcjami. Gtownym celem opracowania jest zapropono-
wanie matematycznego modelu opisujacego zagadnienie umiarkowanie duzych
ugie¢ rozwazanych ptyt, opartego na tzw. technice modelowania tolerancyjnego.
Praca zawiera przyktad obliczeniowy dla pewnego przypadku szczegolnego.
Dokonano poréwnania wynikow uzyskanych w ramach proponowanego modelu
nieliniowego, modelu liniowego oraz Metody Elementéw Skonczonych.
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