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The aim of the paper is to show certain justification of the new non­
asymptotic model of thin periodic plates, derived using the tolerance 
averaging (Woiniak and Wierzbicki, 2000). The model describes the ef­
fect of periodicity cell size on overall plate behaviour, on the contrary 
to known homogenised models. Results obtained from those models will 
be compared to solution to and from the "exact" discrete model. It is 
shown that for long-wave propagation problems, results obtained for a 
special case of a periodic plate strip (weightless but covered by a perio­
dically distributed system of two concentrated masses) within the non­
asymptotic model arc close results calculated from the known "exact" 
solutions based on the method used to analyse longitudinal vibrations of 
one-dimensional diatomic lattice (Brillouin, 1953). Similar conformity, 
taking place in special cases of short waves, is also presented. 
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1. Introduction 

In order to show conformity of results by the proposed averaged model 
and the "exact" model, the problem of a travelling wave, propagating in a 
homogeneous weightless and unbounded thin plate strip along the x1 -axis, 
with a periodically distributed system of two concentrated masse::; M 1 , M2 
(M1 > M2) (Fig. 1; j = 0, ± 1, ± 2, .. . ) will be analysed in this contribution. 
The strip is assumed to have constant thickness h and to be made of a material 
with constant Young's modulus E and Poisson's ratio 11. In the plate strip, 
a small repeated element can be distinguished, which is called the cell. The 
cell is treated as a thin plate strip with a span l along the x 1 -direction. Thus, 
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the plate strip under consideration can be analysed as a plate with an internal 
periodic structure. 
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Fig. 1. Plate strip with periodically distributed system of two concentrated mru>se:o 
M1,M2 

To analyse periodic plates, many 2D averaged plate models were formula­
ted. Models based on the asymptotic homogenisation can be mentioned, e. g. 
those using the effective plate stiffnesses, Kohn and Vogelius (1984). However, 
these models neglect the effect of element length (called the length-scale ef­
fect or the effect of periods lengths) on the overall plate behaviour in the first 
approximation which is usually employed. 

In this note, an alternative treatment of dynamic phenomena for periodic 
structures, called the tolerance averaging technique, is applied. This approach, 
presented for periodic composites and structures by Woiniak and Wierzbicki 
(2000), leads to models taking into account the effect of periods lengths on 
dynamic response of a plate. Those averaged models, called the length-scale 
models, were applied to analyse certain dynamic problems of periodic structu­
res, e. g. for Hencky-Bolle periodic plates by Baron and Wozniak (1995), for 
Kirchhoff's periodic plates by J~drysiak (200la,b), for periodic wavy-plates by 
Michalak (2000, 2001). A list of papers related to investigations of periodic 
composites was shown in the book Woiniak and Wierzbicki (2000). Using the 
tolerance averaging to partial differential equations of periodic structures, the 
governing equations with constant coefficients are obtained. They describe the 
effect of period lengths by means of certain extra unknowns. 

The main aim of this contribution is to show that re8ults obtained by the 
new non-asymptotic model are very close to re8ults found from the "exact" 
solution (the discrete model - Brillouin (1953)) for long-wave propagation 
problems. Moreover, similar results of both models will also be presented for 
special short-wave problems. In order to show the justification of the non­
asymptotic model, frequencies of the travelling wave in the considered plate 
strip with an internal periodic structure calculated within the new model, 
J~drysiak (2001b), a certain homogenised model and the one obtained from 
the "exact" solution, Brillouin (1953), will be compared. 



SOME REMARKS ON DYNAMIC RESUJ:rs ... 407 

2. The mode lling approach 

In our considerations, the governing equations of the non-asymptotic model 
of periodic plates derived and applied in J~drysiak (2001b) are used. These 
equations and an outline of the procedure leading to them will be recalled in 
this section. 

2.1. Foundations 

Denote an orthogonal Cartesian co-ordinate system by Ox1x2x3 and defi­
ne t as the time co-ordinate. The plate midplane is denoted by ll and the 
plate thickness by h. The mesostructure parameter is defined by l, which 
describes the size of the periodicicity cell, and is large compared to the plate 
thickness and small compared to the minimum characteristic length dimension 
of the plate midplane. For the plate strip under consideration the mesostruc­
ture parameter l is the length of the cell (L1 = IO, l] x {O}) along the xi-axis. 
Moreover, denote by aijkl, p, p components of the elastic moduli tensor, mass 
density, loading in the x3-a.xis direction acting on the plate, respectively. The 
hor izontal planes (x3 = const) are assumed to be the planes of elastic sym­
metry. Denote by x = (x1, x2) a point on II and by w(x , t) a plate midplane 
deflection at the point x Ell. Throughout the paper , the subscripts a,(3, . .. 
run over 1, 2 and indices A, B , ... run over 1, .. . , N. The summation conven­
tion holds for all aforementioned indices. 

The considerations are based on the well-known Kirchhoff plate theory 
assumptions: kinematic constraints, strain-displacement relations, stress-strain 
relations, equations of motion. We use the following notations for periodic 
functions 

h/2 

µ = ./ p dz 

- h/2 

h/2 

daf3'yo = ./ Caf3-yo z
2 

dz 

- h/2 

(2.1) 

describing plate properties as the mass density per unit area, bending stiffnes­
ses, respectively; where Caf3-ro = aa/3-yo - a0 ,e33a-yo33 ( a3333 ) -

1
. The assumptions 

of the Kirchhoff plate theory for periodic plates lead to t he known differen­
tial equation of the fourth order for the plate midplane deflection w(- , t) with 
highly oscillating periodic coefficients 

(da/3-yoW,-yo),a,B + µw = p (2.2) 

The governing equations with constant coefficients can be derived using the 
tolerance averaging technique, Woiniak and Wierzbicki (2000). This procedu­
re for thin periodic plates was shown in JEtdrysiak {2001b) and for periodic 
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wavy-plates in Michalak (2001). In the new modelling method, we use some 
additional concepts as: an averaging operator given by 

(cp) = (cp)(x) = l-1 
/ cp(y ) dy 

Li(x) 

x E flLi 

y E Ll(x) 

for the one-dimensional cell (Ll = [O,l] x {O}) along the x 1-axis and for 
a.n arhitrary integrable function cp defined on n, where Ll(x) :::: x + Ll, 
lltl = {x : x E fl, Ll(x) C fl}; tolerance system, slowly varying function, 
periodic-like function and oscillating function, which were defined in the book 
by Wozniak and Wierzbicki (2000). Below, they will be reminded. Let F, G be 
functions defined on n and f be a Ll-periodic function. If the approximation 

(! F)(x) 2:! (f)F(x) (2.3) 

holds for every J (with the required accuracy. which depends on /) then Fis 
called a slowly-varying function. If for every x E llLl there exists a Ll-periodic 
function Gx such that the approximation 

(JG)(x) ~ (JG'1:)(x) x E flLi (2.4) 

holds as above, then G is referred to as a periodic-like function. In this case 
Gx is termed a Ll-periodic approximation of G at x. 

Formulae (2.3)-(2.4) were called the tolerance averaging approximations 
in the aforementioned book. The dependency of these formulae on Ll and 
on a certain tolerance system T was shown. We shall write F E SV(T) 
for the function F, which is slowly-varying together with its derivatives and 
r. E P L(T) for a periodic-like function G. 

The periodic-like function G with the condition (µG)(x) 2:! 0 for every 
x E llLl, where µ(-)is a positive-valued Ll-periodic function defined by (2.1)1, 
is called an oscillating periodic-like function. The set of oscillating periodic-like 
functions with the weight µis denoted by P JJ'(T). 

Bearing in mind the assertions given in the book by Woiniak and Wierz­
bicki (2000), we recall that if G E P L(T) and f is a Ll-periodic function then 
(G/}(·) E SV(T). 

Detailed discussion of the above concepts was shown in the aforesaid book, 
in which the assertions of the tolerance averaging were formulated and proved. 

2.2. Outline of t he modelling procedure 

An additional assumption called the Conformability Assumption (CA), cf. 
Wozniak and Wierzbicki (2000), J~drysiak (200Ib), is formulated. It states 
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that the midplane deflection w(-, t) of the periodic plate has to conform 
to a plate structure, i.e. it can be represented by a periodic-like function, 
w(·, t) E PL(T). This condition may be violated only near the plate boun­
dary. 

The modelling procedure of the tolerance averaging can be divided into 
four steps. 

1) The deflection w is a periodic-like function, w(-, t) E PL(T) , thus, the 
decomposition can be obtained 

w(-, t) = W(·, t) + f(-, t) (2.5) 

where W is the averaged part of the deflection defined by 
W(·,t) ::::: (µ)- 1 (µw)(-,t) (µistheplatemassdensity); f(-,t) E PLµ(T) 
is fluctuation of the deflection and holds the condition (µf(-, t)) = 0. 
Because w(·, t) E P L(T) we have that W(·, t) E SV(T). Hence, it is 
called macrodeflection. 

2) The periodic problem is formulated on a cell Ll(x) for fx, which is a 
Ll-periodic approximation of the fluctuation f on Ll(x) at x E Il,tJ. 
This problem is described by the condition (µfx) = 0 and variational 
equation (cf. Woiniak and Wierzbicki, 2000; J~drysiak, 200lb) 

U,;0daf3-yofx,af3)(x,t) + (µf*fx)(x,t) = (f*p) - U,;0da13'·yo)W,af3 (2.6) 

which has to hold for every test function f*, (µf*) = 0. 

3) A solution fx(-, t) to Eq. (2.6) is looked for . For every x E IJd, Eq. 
(2.6) describes vibrations fx(x, t) of the cell Ll(x) with the periodic 
boundary conditions on the cell edges. The right-hand side of (2.6) can 
be interpreted as certain time dependent loadings on the cell Ll(x). 
Hence, general solutions to periodic problem (2.6) can be obtained using 
the method applied to dynamics of structures with an arbitrary time 
dependent loading. After neglecting the loadings in (2.6), we have a 
periodic problem on Ll(x) given by 

(2.7) 

Assuming fx(Y, t) = g(y) cos(wt), y E Ll(x), from (2.7) we obtain pe­
riodic eigenvalue problems of finding Ll-periodic functions g satisfying 
in Ll( x) the following equation 

[daf3-yo(Y )9,a,8(Y )l,-yo - µ(y)>.2g(y) = 0 
y E Ll(x) 

x E I!Ll 
(2.8) 
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where .A are eigenvalues. From averaging (2.8) on Ll(x ) we have 
(µg) = 0. The functions g have to satisfy the periodic boundary con­
ditions on the edges of Ll(x ) and the same regularity conditions as the 
deflection. An approximate solution fx( y , t) to problem (2.7), which 
may be obtained by the orthogonalisation method, will be assumed in 
the form gA(y )QA(x, t), where gA(-), A = 1, 2, ... , is a sequence of 
eigenfunctions defined on Ll(x ) for the above eigenvalue problem and 
related to the sequence of eigenvalues AA. The fluctuation of the deflec­
tion f C t), being a solution to the periodic problem on Ll(x) given by 
variational condition {2.6), as every function can be written in the form 
of Fourier series. The infinite series can be approximated by a trunca­
ted series (cf. Woiniak and Wierzbicki, 2000; J~drysiak, 2001b) in the 
following form 

(2.9) 

where y E Ll(x), x E IJLl; A = 1, ... , N and N determines different 
degrees of the approximation; gA stands for the system of N linear­
independent Ll-periodic functions, such that (µgA) = 0 and l-1 gA (-), 
g;t(-), lg~13 (-) E O(l); QA(·, t) E SV(T) are new kinematic unknowns. 
Functions gA are called mode-shape functions. These functions approxi­
mate the expected form of the oscillating part of free vibration modes 
of the Ll-periodic structure of the plate, cf. (Woiniak and Wierzbicki, 
2000; J~drysiak, 2001b). 

4) After some Lrarn;formaLiuns, using Lhe Lukram;e averaging aµµruxima­
tions, we obtain equations for the macrodeflection W and equations for 
the kinematic unknowns QA. These equations are written in the subse­
quent Section. 

2.3. Governing equations of the non-asymptotic model 

The aforementioned modelling procedure leads to the following equations 
of the non-asymptotic model of plates with an internal periodic structure (J~­
drysiak, 2001b) 

(2.10) 

(daf31'89~o)W,of3 + (dof31'89~(39~o)Q8 + (µgAg 8 )Q8 = (pgA) 

where the underlined terms depend on the mesostructure parameter l . All co­
efficients in brackets ( ·) are constant. The functions W, QA, A = 1, ... , N, are 
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basic unknowns which have to be slowly varying functions. The function W is 
called the plate macrodefiection; functions QA are called the internal variables. 

Summarizing, the non-asymptotic model is defined by: 

1° Equations (2.10) for N+l unknowns, W(· , t) and QA(-. t), A= 1, ... , N 

2° Conditions of applicability of the model, i.e. Eqs. (2.10) have physical 
sense for the unknowns W, QA being slowly varying functions for every t 
(it is a certain a posteriori criterion of physical reliability for this model 
of periodic plates) 

3° The plate deflection can be approximated by means of the formula 

w(., t) '.:::'. W(., t) + gA(-)QA(., t) 

where the approximation " '.:::'. " is related to the assumption that the 
fluctuation of the deflection is defined in the form of the truncated series 
gA(-)QA(·, t), A= 1, ... , N. 

It is easy to see that in order to obtain the above equations, we must pre­
viously derive the mode-shape functions gA, A = 1, ... , N, for every periodic 
plate under consideration as solutions to a certain eigenvalue problem on the 
periodicity cell, given by Eq. (2.8). In practice, derivation of these exact solu­
tions is possible only for celts with a structure which is not too complicated. 
In papers by J~drysiak (2001a,b), such solutions were shown for a plate strip 
with periodically varied but piece-wise constant thickness, Young's modulus 
and mass density of the plate. But in most cases we have to look for an ap­
proximate form of these solutions, which is sufficient from the computational 
point of view. However, in order to obtain exact solutions to that problem 
for cells with a more complicated structure, the finite clement method can be 
applied. We also restrict our considerations to a small number N of mode sha­
pes. For the analysed structure, which will be presented in Section 3.1.l(b), 
we have only one mode-shape function, and hence N = 1 and g = g1 . In 
the subsequent Sections both solutions to the eigenvalue problem, Eq. {2.8), 
i.e. exact and approximate, will be shown and applied. Equations (2.10) are 
derived in the paper by J~drysiak (2001b). 

At the end of this Section, let us observe that neglecting the underlined 
terms in Eqs. (2.10), we obtain governing equations of the homogenised model 
in the form 

.. A A 
{da,B-y.S) W,a,8-y6 + {µ) W + {da,B-y69,"(6)Q,a.B = IJ>) 

(2.11) 

(da,8"(69:1ap9,~6)Q8 = -(dalh69~6) W ,a/3 

where the effect of mesostructure parameter l is not taken into account. 
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3. A travelling wave in a weightless unbounded plate strip with a 
periodically distributed system of two concentrated masses 

3.1. Aver aged mode ls 

3.1.1. Non-asymptotic model 

(a ) Frequencies of travelling wave 

Let us consider a homogeneous unbounded plate strip along the x = x 1 

axis, whose periodicity is related to a periodically distributed system of two 
concentrated masses Mi and M2 (Fig. 2) . The distance between masses Mi 
and M2 is denoted by ai and the distance between masses M2 and Mi by a2 
(hence a2 = l - a1 ). It is assumed that Young's modulus E, Poisson's ratio 11 

and also thickness h of the plate are constant. Moreover, the plate mass is 
negligibly small compared with the concentrated masses M 1 and M2. Loads 
p are neglected. In our considerations, only one mode-shape function g is 
assumed. Denote Q = Q1 as well as 

Eh3 

B = (d1111) = 12(1 - v2) 

m = (µ) 

D = (duu (g,11 )2) 

mll = z-4(µg2) 

-~· /~r·t-1.f~- ~=====-~Ot::::=:::T~~·~ 
3 I 2 4 

·~ x, .r •1=r1 · ~ 
: , Xz I : 

Fig. 2. Periodicity cell of plate strip under consideration 

(3.1) 

Moreover, for the homogeneous plate is (duu9,11) = 0. For A = N = 1 
from (2.1) we arrive at 

B W ,i11 i +mW= O (3.2) 

It can be observed that we obtain two independent differential equations of 
the plate strip under consideration. The first of them describes vibrations of 
the plate strip for the "macro" scale, and the second equation determines 
"micro" vibrations related to the periodic system of two concentrated masses. 
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Introduce now a wave number k (e. g. k = 27r / L). Solutions to equations (3.2) 
will be assumed as 

W(x, t) = Aw exp[i(kx - wt)] Q(x, t) = AQ exp[i(kx - wt)] (3.3) 

where Aw, AQ are amplitudes, w is a frequency. After some transforma­
tions we arrive at formulae for the lower w_ and higher w+ frequency of the 
travelling wave within the non-asymptotic model for the plate strip under con­
sideration 

(w_)2 = B~4 
m 

2 D 
(w+) = L4m11 (3.4) 

In this case, only the higher frequency w+ explicitly depends on the mesostruc­
ture parameter l. This frequency is related to the internal periodic structure 
of the plate strip. 

(b) Eigenvalue problem of the periodicity cell 

Denote by x a coordinate on a certain axis of the cell; x E [O, l]; and 
the derivative by (-)' = 0,1· Eigenfunctions for the periodicity cell will be 
obtained by solving eigenvalue problem (2.8), which takes the form 

Bgrv (x) - µ(x)..\2g(x) = 0 (3.5) 

with periodic boundary conditions on the cell edges; B is the stiffness defined 
by {3.1)1; g are l-periodic functions related to eigenvalues ,\ = al (a is the 
wave number); and (µg) = 0. In the case uu<ler consideration, after neglecting 
the plate mass when compared with the concentrated masses, the exact form of 
eigenfunctions g(x) can be found. Functions g describe forms of free vibrations 
of the cell. From structural dynamics, it is known that for the considered cell 
(with two degrees of freedom) we have two eigenfunctions satisfying Eq. (3.5). 
Under the condition (µg) = 0, we obtain only one eigenfunction g. 

In the following considerations, the deflection of the cell can be described 
similarly to deflections of the beam with the stiffness B defined by {3.1)1. In 
order to find the function g, methods of structural mechanics will be applied. 
Introduce the following functions 

r(~) = 1 - 3(2 + 2e 

u(~) = ~ - 2(2 + ~3 
r(~) = 3(2 - 2~3 

u(~)=e-e 
(3.6) 

where { E [O, lJ. Joints of masses M1 and M2 are described by 1 and 2, 
respectively; and joints of the left and right ends of the cell by 3 and 4 (see 
Fig. 2). Deflections and rotations of the joints with masses M 1, M2 (at points 
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x 1, x2) are denoted by v1, <p1, v2, <p2, respectively, and of the joints of the left 
and right ends by: v3, <p3, and V4, <p'1· Deflections of parts 3-1, 1-2, 2-4 will be 
described by 

v31 (~) = r(Ov3 + u(~)<p3l31 + r(~)v1 - u(O<p1 l31 

1112(~) = r(~)v1 + u(~)<p1li2 + r(~)v2 - u(~)<p2l12 (3.7) 

v24(~) = r(~)v2 + u(()<p2l24 + r(Ov4 - u(O<p4l24 

where lik = Xk - Xi is the length of the part i - k (i = 3, 1, 2, 4; k = 1, 2, 4); 
Xi, Xk are coordinates of the joints i, k; x E [xi,xk]; ~ = (x - xi)(lik)- 1. The 
function g has to satisfy periodic boundary conditions on the cell ends, i.e. 

g(O) = g(l) = V3 = V4 

g"(O) = g"(l) 

g'(O) = g'(l) = <p3 = <p4 

9111 (0) = 9111 
( l) 

(3.8) 

From the equilibrium equations of known from structural mechanics formulae 
for transversal forces and moments and inertia forces and moments related to 
the concentrated masses, which are depended on the aforesaid displa<:ements of 
the joints, and from boundary conditions (3.8) and the normalizing condition 
(µg) = 0, we arrive at the characteristic equation for eigenvalues ), =al (a is 
the wave number) in the form of a determinant equaled to zero 

detLpr = O 

where 

p,r = l, ... ,4 

2l 
L24 = --­

x2 - X1 

(3.9) 

(3.10) 
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) 3 3 4 
£ 31 = -(>.4 + 12(1 + ( l + l2l + (>. . 

(x2 - x1)3 (l - x2)3 2(l - x2)2 

{
2 3 3 2 2 } · y[(x2 - l) - (x1 - l) ] + 3[(x2 - l) - (x1 - l) J + (xz - xi)l 

12l3 6l2 

L32 = L33 = ---.,.. 
(l - x2)3 (x2 - x1)2 

L34 = -6l2 ( 
1 

-
1 

) 
(l - x2)2 (x2 - xi)2 

6(1 + ()l2 6l2 (>.4 
{ 2 3 3 

L41 = (x2 - xi)2 - (l - Xz)2 + 6(l - x2) z2 [(x1 - l) - (x2 - l) l + 

3[ 2 2 } +y (x1-l) - (x2-l) ]+x1-x2 

6l2 2l 
L42 = - (l - x2)2 L43 = x2 - x1 

L44 = 4l(-
1

- + 1 
) 

l -x2 x2-x1 

and ( ~ 0 is defined by 

(3.11) 

From Eq. (3.9), we can derive one eigenvalue A (hence A= N = 1) dependent 
of the quotient (. Introduce notations 

Yi1 = L22(L33L44 - L43L34) + L32(L43L24 - L23L44) + L42(L23L34 - L33L24) 

Yi2 = L22(L41L34 - L31L44) + L32(L21L44 - L41L24) + L42(L31L24 - L21L34) 

Yi3 = L22(L31L43 - L41L33) + L32(L41L23 - L21L43) + L42(L21L33 - L31L23) 

E = L21 (L43L34 - £33£44) + L31 (L23L44 - L43L24) + L41 (L33L24 - L23L34) 

Formulae for needed deflections and rotations of joints 1, 2, 3, 4 take the 
following form 

l ,T, --1 
V1 = ~l.:; 

,7, --1 
<,01 = !1'2.::: 

(3.12) 
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Bearing in mind formulae (3.12) , (3.10) , (3.6)-(3.7), the exact form of the 
mode-shape function g, related to the eigenvalue >. obtained from (3.9), can 
be written as 

g(x) = { 

Al2Bo if x E [O,xi] 

Al2B1 if xE(x1,x2] (3.13) 

Al2B2 if x E (x2,l] 

where A is a constant and 

Bo= r(~) v3 + u(~)<p3 x1 + r(~) v1 - u(~)<p1 x1 
X1 l X1 l X1 l X1 l 

B ( 
X - XJ ) VJ ( X - X1 ) X2 - XJ -( X - X1 ) Vz 1 = r - + u <p1 + r - + 

X2 - X1 l X2 - X1 l X2 - XJ l 
-( X - X1 ) X2 - X1 - u <p2 

x2 - ::i;1 l 

B (
X - X2)V2 (X - X2) l - x2 -(X-X2) -(X-X2) l-x2 2=r -- -+u -- <p2--+r -- - u -- <p3--
l - X2 l l - X2 l l - X2 l - X2 l 

.'1.1.2. Homogenised model 

In order to compare the calculated results, the homogenised model will also 
be applied. Equations (2.11) of the considered plate strip, under assumption 
A = N = 1, take the form 

BW1111+mW=O 
' 

(3.14) 

Assuming the solution to Eq. (3.14) in the form of (3.3) 1 , after some trans­
formations we arrive at the following formula of only one frequency of the 
travelling wave within the homogenised model 

Bk4 

w2 = --.:::­
m 

(3.15) 

The above formula is identical with the lower frequency, (3.4)1 for the non­
asymptotic model. 

3.2. "Exact" solution - discrete model 

To verify the obtained results, the above problem of the plate strip will be 
analysed within the discrete model, which is similar to that applied by Brillouin 
(1953) to investigate longitudinal vibrations of a one-dimensional structure in 
which a repeatable element was related to a system of two concentrated masses 



SOME REMARKS ON DYNAMIC RESULTS ... 417 

M1 and M2 (Fig. 1). In the aforementioned paper, this model was treated as 
the "exact" solution to the problem under consideration. 

Let us now consider cells of the periodic structure numbered by j - 1, j, 
j + 1. Denote by w:11 , ip:11 and w:12 , <p:12 deflections and rotations of the 
concentrated masses M1 and M2, respectively, at cell s = j - 1,j,j + 1. 
Using the known formulae from structural mechanics for forces and moments 
of the weightless unbounded plate strip (treated as a beam with stiffness B -· 
( 3.1) 1 ) and taking into account inertia forces and moments for the concentrated 
masses, the equilibrium equations could be written for both masses. After some 
transformations, we arrive at the following system of equations for deflections 
and rotations 

MrwJ'11 + 6B[2(a}3 + a23)wj11 
- 2(a}3wf2 + a23w~21 ) + 

+(a}2 - a22)ipf I + (a}2<pr2 - a22<p~2l)J = 0 

M2wj - 6B[2(a}3wf' + a23wj'~:\) - 2(aj3 + a23 )wj12 + 

( - 2 M 1 -2 M 1 ) ( - 2 - 2) M2j Q + a1 'Pj - a2 'Pj+l + al - a2 <pj = (3.16) 

2B[3(a}2 - a22)wj11 - 3(a}2wf2 - a22w~21) + 2(a}I + a21 )cpf1 + 

+(a11'Pf2 + a21'P~1)J = 0 

2B[3(a}2wf1 - a22w_j':!\) - 3(a}2 - a22)wJ'12 + (a}1cpf 1 + a21cp_j':!\) + 

+2(a}l + a21)cpf2J = 0 

where a1 and a2 are distances between the masses M1, M2 and M2, M 1. 
Solutions to the above equations will be found in the form 

wJ'11 = AwM
1 

exp[i(kjl - wt)J 

cpf1 = A'PMi exp[i(kjl - wt)J 

wJ'12 = AwM2 exp{ i [ k(j + ~1 )t - wt]} 

cpf12 = A'PM2 exp{i[k(j + ~1 )z - wt]} 

(3.17) 

where AwM
1

, AwM
2

, A'PMi , A'PM
2 

are amplitudes, k is the wave number (e.g. 
k = 2rr / L, and L is the wave length), l is the mesostructure parameter (cell 
length), w is a frequency. Substituting the right-hand sides of (3.17) to Eqs. 
(3.16), we obtain a system of four algebraic homogeneous equations for ampli­
tudes which has non-trivial solutions under the condition that its determinant 
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is equal to zero. From this condition, we obtain a characteristic equation for 
the frequency w in the form 

with coefficients defined by 

a= ((M2)
2!'2(1 - !')2{3 + 2!'[1 - cos(kl)](l - !')} 

(3 = 12BM2 (( + 1)[2 + cos(kl)] 

6 = 72B2 [3 + cos(2kl) - 4cos(kl)] 

(3.18) 

(3.19) 

where B is stiffness of the plate strip (3.l)i; I'= aifl. Solutions to (3.18), 
being the "exact" formulae for frequencies of the travelling wave in the frame­
work of the exact discrete model, have the following forms 

tvi = 2~l3 ((3 + J f32 - 4ao) {3.20) 

where tv1 and tv2 are the lower and higher frequencies, respectively. 
It can be observed that only the exact discrete and the new length-scale 

model make it possible to investigate higher frequencies related to the periodic 
structure of the plate strip. The homogenised model is not able to describe 
higher vibrations. 

4 . Special case - short-wave propagation problem 

Applications of the new length-scale model (and also the homogenised 
mo<lcl) are related to long-wave propagation problems (in which kl « 1). 
This re:;triction is caused by conditions of applicability of the proposed model, 
i.e. unknowns W, QA which have to be slowly varying function:;. However, 
the "exact" solution (the discrete model) can be used to analyse not only long 
"'I.I.Yes but also short waves (kl > 1). 

In this Section, it will be presented that special cases of short-wave pro­
blems can be investigated also in the framework of the non-asymptotic model. 
In order to show such application, we will consider a travelling wave propaga­
ting in the plate strip, in which the periodicity cell has two pairs of concen­
trated masses M1, M2 and span 2l. To analyse that problem, the mode-shape 
function in the exact form, derived as in Subsection 3.1.lb, can be used, but 
this procedure leads to determinant {3.9) in which p, r = 1, ... , 8. Hence, 
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simplifying our investigations, we will apply only approximate forms of mode­
shape functions. 

Let us consider a special plate strip with equal distances between the mas­
ses Mi, M2, ai = a2 = l/2, where l is the mesostructure parameter (cf. Fig. 2). 
For the long-wave propagation problem, it will be shown that the application 
of approximate forms of mode-shape functions is sufficient from the calcula­
tional point of view. Analysing free vibrations of that plate strip (the cell with 
span l), we will apply the exact form, (3.13), of the mode-shape function g 
and also the following approximate form 

x E [O,l] 

where the constant c derived from (µg) = 0 is 

1 ( 2nx1 . 2nx2) 
c = -

1 
+ ( (sin -l - + sm -l -

( 4.1) 

and x 1, x2 are coordinates of the masses M1, M2; ( is defined by (3.11). 
Function (4.1) stands for an approximate solution to eigenvalue problem (3.5) 
for the cell with periodic boundary conditions. Assuming x 1 = l/4, x2 = 3l/4, 
we have 

1-( 
C=--

1+( 
(4.2) 

Correctness of applications of the approximate forms of mode-shape func­
tions for cells with a simple structure was shown in J~drysiak (200la,b) for 
plate strips, whose masses were not negligibly small compared to concentrated 
masses. 

For the short-wave propagation problem, i.e. in analysis of free vibrations 
of the plate strip in which a cell has two pairs of concentrated masses M 1, 

M2 and span 2l, the mode-shape function g, satisfying equation (3.5), will be 
assumed only in an approximate form given by 

x E [O, 2l] (4.3) 

where d is a constant; the constant c = 0 from the condition (µg) = 0 for 
every d. Consider two cases of function ( 4.3): 
- the first for d = l/4 

g(x) = l2 sin[7T(y + ~)] (4.4) 
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which has roots at the joints with masses M2, i.e. at x2 = 3l/4, :i:2 = 7l/4 -­
the second for d = - l/4 

(4.5) 

which has roots at the joints with masses M1 , i.e. at x 1 = l/4, x 1 = 5l/4. 
Analysing the travelling wave, the following formulae for frequencies will be 

used: (3.4) for the non- asymptotic model, (3.15) for the homogenised model 
and {3.20) for the discrete ("exact") model. 

Now, certain coefficients will be calculated. For the discrete model, for 
ai = a2 = l/2 {hence / = aifl = 1/2) the coefficients defined by {3.19) 1,2 take 
the form 

a = 1
1

6 ((M2)2 {3+~[1-cos(kl)J} 

{3 = 12BM2(( + 1)[2 + cos{kl)] 

(4.6) 

Moreover, we can calculate from {3.1) coefficients for each of the three above 
approximate forms of mode-shape functions. Hence, we obtain for these three 
cases that 

Eh3 
B=----

12{1 - v 2) 
(4.7) 

where by applying ( 4.6)2 the concentrated masses M1 , M2 will be equally 
"scattered" equally along the cell length l. Using {4.1) from {3.1)2 and (3.1)4, 
we have 

m,11=mu=4M2_(_ 
l ( + 1 

(4.8) 

However, using the mode-shape functions (4.4) or (4.5), the coefficient in (3.1)2 
takes the form 

~ 1 4 
D = D = -71' B 

2 

and coefficient (3.1)4 for function (4.4) is 

and for function ( 4.5) 

m,11 = m11 - M2~ - - l 

~11 11 1 
m = m =Mr[ 

(4.9) 

(4.10) 

(4.11) 

In the subsequent Section, some calculation results of the above problems will 
be presented. 
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5. Calculation results 

In this Section, comparison between the frequencies of the travelling wa­
ve obtained for three models: non-asymptotic model, homogenised model and 
exact discrete model in the above Sections, will be shown. Introduce a di­
mensionless wave number: q = kl, and dimensionless frequency parameters 
describing frequencies of the travelling wave 

fL = JX.w­

A1 = JX.w1 

f2+ = JX.w+ 

A2::: JX.w2 

il =JX.w 

where x = 12{1 - v2)M2/E; Eis Young's modulus; vis Poisson 's ratio; w_, 
w+ arc frequencies {3.4) of the non-asymptotic model; w is frequency (3.15) of 
the homogenised model; w 1, w2 are frequencies (3.20) of the discrete model; 
k is the wave number; l is the mesostructure parameter {the cell length). 

In calculations, we assume that the thickness of the plate strip is equal 
h = 0.ll , the ratio between masses M1 and M2 is given by the parameter 
( = 2 {defined by {3.11)), i.e. M1 = 2M2. 

Results are shown in Fig. 3 and Fig. 4. In Fig. 3 dispersion curves of para­
meters n_, f2+, f2, Ai , A2 {describing frequencies) versus the dimensionless 
wave number q E [-7r, 7r] are presented (for both the cases: long-wave and 
short-wave propagation problems). These plots are made, using exact form 
(3.13) of the mode-shape function g, for the concentrated masses M1, M2 
located at points: x 1 = 0.ll, x 2 = 0.9l - lines l; x 1 = 0.25l, x2 = 0.75l -
lines 2. In this Figure, a part between the vertical dashed lines is related to 
long waves, q E [- 0.l7r, 0.b]. 

The results illustrating the short-wave propagation problem are presented 
~ 

in Fig. 4. Dispersion curves of f2_, il+, f2, ii+, fl+, f2 +, A 1, A2 versus the 
dimensionless wave number q E [-7r, 7r} for the plate strip with equal distances 
between the masses M 1, M2, i.e. a 1 = a2 = l/2 are shown. By higher frequen-

cies are denoted il+, ii+, fl+ , f2+. They are obtained, respectively, for exact 
mode-shape function g {3.13), for approximate form {4.1) of the mode-shape 
function g, for approximate form (4.4) and for approximate form (4.5). 

By analysing the obtained calculation results, one can conclude that: 

• lower frequencies of the travelling wave of the considered plate strip 
calculated within the non-asymptotic model are identical with the fre­
quencies from the homogenised model and also with the frequencies 
from the discrete model not only for long-wave propagation problems 
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1.0~--....---~--~--~--~-~ 

il,A 

-2 -1 0 2 q 31Z' 

Fig. 3. Dispen;ion curves of parameters [L, ft+, ft, A1 , A2; (lines A1 , A2 - discrete 
("exact") model, lines ft_, ft+ - non-asymptotic model, lines ft - for homogenised 

model); (h = O.ll; M1 = 2M2; x1, x2 - coordinates of masses M 1 , M 2) 

(q E [-0.br, O.br]) but also in a wider range of the dimensionless wave 
number q (Fig. 3 and Fig. 4); 

• higher frequencies of the travelling wave from the non-asymptotic model 
stand for the upper limit of higher frequencies calculated within the 
discrete model (Fig. 3 and Fig. 4); the differences between frequencies 
for both models are less than 2% (for long waves: q E [-0.br, 0.br], i.e. 
k = 27r/L, l/L E [-0.05,0.05]); 

• differences between higher frequencies for long-wave propagation pro­
blems, q E [-O.l7r,O.l7r], obtained from the non-asymptotic model with 
exact (3.13) or approximate (4.1) form of the mode-shape function g, 
are less than 23 (Fig. 4); 

• frequencies of the travelling wave can be investigated in the framework 
of the proposed length-scale model also for special cases of short-wave 
propagation problems by using special approximate forms of mode-shape 
functions, e.g. (4.4) and (4.5); higher frequencies calculated from the non­
asymptotic model stand for lower limits of higher frequencies from the 
discrete model (for mode-shape function (4.4)) or upper limits of lower 
frequencies from the discrete model (for mode-shape function (4.5)). 
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Fig. 4. Dispersion curves of parameters SL, D+, D, D+, n+, D+, Ai, A2; (discrete 
("exact") model - lines A1 , A2; non-asymptotic model: for exact (3.13) mode-shape 
function g - lines D_, D+, and approximate (4.1) mode-shape function g - fl+; 

non-asymptotic model for approximate mode-shape function g: (4.4) - fl+, 
(4.5) - D+; homogenised model - D); (h = O.ll, M 1 = 2M2) 

6. Final remarks 

The applied length-scale model of periodic plates, taking into account the 
effect of period lengths on the overall plate behaviour, makes it possible to 
analyse higher frequencies of the travelling wave related to the internal periodic 
plate structure. Frequencies of this kind can be investigated only for special 
structures such as one-dimensional diatomic lattice, Brillouin (1953). 

Here, the non-asymptotic model has been applied to investigate frequencies 
of the travelling wave propagating in a thin weightless unbounded plate strip 
with a system of two concentrated masses M 1 , M2 periodically distributed in 
the plate. For structures of this kind, we can obtain '1 exact1

' formulae for two 
frequencies of the travelling wave - the lower and higher, using the discrete 
model similar to that applied by Brillouin (1953) who analysed longitudinal 
vibrations of one-dimensional diatomic lattice. In the paper, comparison of the 
results obtained within the new length-scale model, the homogenised model 
and the discrete model has been presented. 

Summarizing all considerations, one can formulate the following conclu­
sions regarding periodic plates, in particular a weightless unbounded plate 
strip with a periodically distributed system of two concentrated masses: 
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• The presented examples confirm that the effect of period lengths plays 
a crucial role in vibrations of periodic plates, and can also be analysed 
within the new length-scale model. In the paper it has been that the 
non-asymptotic model can be applied in under to obtain frequencies of 
higher order vibrations, similarly as in the exact models. 

• The non-asymptotic model can be applied, first of all, to long-wave pro­
blems (compared with t!he mesostructure parameter l describing the cell 
size), leading to results conformable with those found from "exact" so­
lutions to special problems. 

• Some special short waves, whose lengths arc of the order of the cell size, 
can also be investigated within the framework of the non-asymptotic 
model by using proper forms of mode-shape functions. 

• Higher frequencies, calculated within the non-asymptotic model using 
those mode-shape functions, define so called passing and stopping bands 

of lower and higher order vibrations of periodic plates, i.e. ranges of 
frequencies in which vibrations of plates take place. 

• In special cases of periodic plates, approximate forms of mode-shape 
functions can be used instead of the exact forms of those functions, 
yielding sufficiently precise results from the calculational point of view. 
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