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Abstract: The paper introduces a model of two identical coupled 4-DOF mechanical 

linear sliding systems with dry friction coupled with each other by a linear torsional 

spring. The appropriate components (bodies) of the coupled systems are riding on two 

separated driving belts, which are driven at constant velocities, and stick-slip 

vibrations can be observed. In this case the physical interpretation of the considered 

model could be two rows of carriages laying on the guideways and coupled by an 

elastic shaft, which are moving at constant velocity with respect to the guideways as a 

foundation. From a mathematical point of view the analyzed problem is governed by 

eight nonlinear ordinary second order differential equations of motion yielded by the 

second kind Lagrange equations. Numerical analysis is performed in Mathematica 

software using the qualitative and quantitative theories of differential equations. Some 

interesting non-linear system dynamics are detected and reported using the phase 

portraits and the Poincaré maps. Next, power spectra obtained by the FFT technique 

are reported. The presented results show periodic, quasi-periodic, chaotic and hyper-

chaotic orbits. Moreover, synchronization effects between the coupled systems are 

also detected and studied. 

1. Introduction

The question of stick-slip vibrations caused by dry friction is still opened. The fundamental laws of 

stick-slip phenomena based on dry friction dynamics have been promulgated in the pioneering 

experiments of Rabinovicz and in the works of Baumberger et al [7]. Firstly, a concept of nonlinear 

dry friction should be explained. The force, which is required to start the movement of an object, is 

called the static friction force, but the kinetic force is essential to maintain a constant velocity during 

the movement of the body. A sufficient condition for stick-slip is that the static coefficient of friction 

is higher than the kinetic coefficient of friction [10]. Stick-slip phenomena are expected during 

contact interaction at low-velocity friction. The considered stick-slip phenomenon depends on 

frequency of vibrations, a relative humidity and load. Stick-slip phenomena occur in everyday life, for 

instance, from earthquakes, through brake systems (when car is started to move from stationary state) 

[11], to nano-devices showing up in the scale above several microns. Examples of scientific literature 

devoted to sticks-slip vibrations in system can be found in the references [1, 3, 5, 6, 8, 9]. 

Different models in micro- and macro-scale are used for description of stick- slip phenomena. In this 

work an 8 degree-of-freedom model is used. The body consists of two identical subsystems coupled 
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by torsion spring. Every subsystem rides on two separated belts which are driven at constant velocity. 

Bearing in mind principles of relativity one can say that the bodies are moving because of  immovable 

belts. In this case the real interpretation of model may take place in a mine, where two rows of 

carriages fixed to guideways are moving at constant velocity. As a nonlinear (in stick–slip regime) 

system, the spring–slider model is very sensitive to weak external impacts, 

which on a large scale manifests itself in phenomena of induced seismicity, triggering and 

synchronization effects [2]. The considered in this work mechanical system can be treated as an 

extension of the mechanical model presented in the paper [4]. 

2. Mechanical Model 

The considered 8-DOF model (two coupled by torsional spring 4-DOF mechanical linear sliding 

systems with dry friction) is shown in Fig. 1. 
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Figure 1.   The 8-DOF model with dry friction. 
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The presented system can be considered  as a planar  system in the Cartesian coordinate system (in 

the Earth's gravitational field with the gravity coefficient g ) with horizontal axis x  and vertical axis 

y . Dynamics of the considered system can be described by the following variables: 1Ix , 11 II xv  , 

1Iy , 11 II yz  ,  I , II   , 2Ix , 22 II xv  , 1IIx , 11 IIII xv  , 1IIy , 11 IIII yz  ,  II , IIII   , 

2IIx , 22 IIII xv  . The masses 1Im , 1IIm  can rotate about the pivot axes S  (moments of inertia about 

the pivot point S  of the mentioned masses are II , III ). The entire system is characterized by lengths 

Iil , IIil  ( 6,...,2,1i ) and springs with stiffness coefficients Iixk , IIixk , Ijyk , IIjyk  

( 6,5,4,2,1i ; 6,5,4,3j ). Moreover, two additional masses 2Im , 2IIm  are laying on the appropriate 

belts as a foundation, which are moving with a constant velocities 0Iv  and 0IIv , respectively. 

Between the mentioned masses 2Im , 2IIm  and appropriate belts dry friction forces occur as a 

functions of the relative sliding velocities 20 II xv  , 20 IIII xv  , respectively. 

Equations of motion of the considered system have been derived using the Lagrangian method 

(the second kind Lagrange equations) [4] and they are as follows 
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where: q  - vector of generalized coordinates, nQ  - vector of generalized non-conservative force 

acting in the system, T  - total kinetic energy of the system,V  - total potential energy of the system, 

t  - time. 

In this case dot means differentiation with respect to time t . For presented previously 8-DOF model 

with dry friction, vector q  is reads: 

 TIIIIIIIIIIII xyxxyx 211211 ,,,,,,, q . (2) 

Simultaneously, nQ  can be described by the following vector 

 TfrIIfrI FF ,0,0,0,,0,0,0nQ . (3) 

The friction forces frIF  and frIIF  are equal to the product of nonlinear kinetic friction 

coefficients )( 20 IIk xv  , )( 20 IIIk xv   (associated with relative velocities of every subsystems) 

and the normal forces )( 33132 IIyIIyIII lkykgmN  , )( 33132 IIIIyIIIIyIIIIII lkykgmN  , 

which press the masses 2Im  and 2IIm  to the first belt and to the second one, respectively. It should 

also be noted that in numerical calculations the values of the normal forces IN  and IIN  can be less 
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than zero, greater than zero or equal to zero. In the case of 0, III NN , the friction contact between 

masses 2Im , 2IIm  and the appropriate belts moving with velocities 0Iv , 0IIv  occur. In turn, the 

case 0, III NN  means a loss of friction contact between the masses 2Im , 2IIm  and the appropriate 

belts. This is why in our mathematical model we use a discontinuous step functions describing these 

phenomena, and defined as follow 
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Finally, forces frIF  and frIIF  have the following form 
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Total kinetic energy T  of studied model has the following form: 
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Since small values of angles I and II  are taken into consideration, the total potential energy V  

has the following form 
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Computing the partial derivatives 
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3. Non-dimensional form 

We introduce non-dimensional time )/( 212 xIxII kkmt  , non-dimensional coordinates 

111 III lxX  , 111 III lyY  , 122 III lxX  , 111 IIIII lxX  , 111 IIIII lyY  , 122 IIIII lxX   and 

the following non-dimensional parameters: 
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In result, equations of motion in the counter part non-dimensional form are as follows 
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 (34) 

4. Numerical computations 

Our numerical computations have been performed via the fourth order Runge-Kutta method with 

constant time step 001.0h  and zero initial conditions. We consider symmetric system with the 
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values of non-dimensional parameters and non-dimensional functions taken from the previous paper 

[4], namely: 

07836,0111  aaa III , 03344,0222  aaa III , 04058,0333  aaa III , 

09375,0111  bbb III , 03314,0222  bbb III , 02689,0111  ccc III , 

02666,0222  ccc III , 06181,0333  ccc III , 03264,0344  ccc III , 

121  IIII dd , 00529,0gf , 37931,1111  eee III , 47237,0222  eee III . 

Kinetic friction functions )( 20 IIIk XVf   and )( 20 IIIIIIk XVf   in our model are described by 

the Stribeck functions. Because classical signum function is discontinuous, we decide to approximate 

the mentioned functions by hyperbolic function with numerical control parameter   and 

000 VVV III   in the form 

3
2020
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with  fixed 8,00  , 59,15 , 12,4252  and 0001,0 . 

Moreover, because functions ))(( 211 IIg eYef 1 , ))(( 211 IIIIg eYef 1  are also 

discontinuous, in our computations we use the following approximations 
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 1 . (38) 

In result, in our numerical simulation we consider the following equations of motion 
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(39) 

5. Numerical results 

Fig. 2 shows the phase trajecories of the system for the velocity of driving belt 002.00 V and zero 

initial conditions in time interval ]12000,10000[ . The time interval was chosen to avoid the 

transition state. 

Obtained results and detect an irregular dynamics of the considered 8 –DOF system. The phase 

trajectories, Poincaré maps (Fig. 3) as well as power spectral densities (Fig.4) indicate that the 

character of motion is chaotic. If we increase the value of 0V  then the character of motion changes. 

This situation is presented in the Fig. 5, Fig.6 and Fig.7. When the dimensionless velocity of driving 

belts reaches the value of 0.05, the motion exhibit a periodic character. 

 

Figure 2.   Phase trajectories of the system for 002.00 V  in the time interval ]12000,10000[ . 
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Figure 3.   Poincaré map of the system for 002.00 V  in the time interval ]12000,10000[ . 

 

Figure 4.   Power spectral of the system for 002.00 V  in the time interval ]12000,10000[ . 

336



 

 

 

Figure 5.   Phase trajectories of the system for 05.00 V  in the time interval ]12000,10000[ . 
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Figure 6.   Poincaré map of the system for 002.00 V  in the time interval ]12000,10000[ . 

 

Figure 7.   Power spectral of the system for 05.00 V  in the time interval ]12000,10000[  

6. Conclusions 

In the paper mathematical model of two coupled 4-DOF mechanical linear sliding systems with dry 

friction is considered. The considered system can be treated as a system of two identical 4-DOF 

systems presented earlier in [4] and coupled by torsional spring. In this case the physical 
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interpretation of the considered model could be two rows of carriages laying on the guideways and 

coupled by an elastic shaft, which moves at constant velocity with respect to the guideways as a 

foundation. From a mathematical viewpoint the mentioned system is presented as a nonlinear 

equations of motion, which are obtained using second kind Lagrange's equations. Dynamics of the 

analyzed system is carried out for one set of system parameters and various non-dimensional 0V . 

Interesting dynamics behaviors of the considered system are reported using time series and phase 

trajectories. The obtained results indicate, that the analyzed system possesses periodic, quasi-periodic 

or chaotic orbits, as well as fixed points. Moreover, the mentioned results show that synchronization 

effects between the coupled systems are possible. 
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