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Abstract: One of the major advantages of homogenization is a possibility of the 

generalization of the obtained results. Namely, if a solution to the local problem is 

found, then without principal problems one may solve not only the analyzed problem, 

by also a series of related static and dynamic problems, including: linear, quasi-

linear, the eigenvalue problems, etc. The mentioned approach has been applied to the 

eigenvalue problems regarding the perforated structures and periodically non-

homogenous 2D constructions with a  square mesh of inclusions. In this work we have 

used theory of averaging to solve the vibrations problem regarding stiffly clamped 

rectangular membrane with periodically located circular inclusions creating a 

hexagonal mesh. The relations governing eigenvalues (frequencies) and 

eigenfunctions have been derived. The derivation of analytical formulas governing 

membrane eigenforms and frequencies consists of three parts. In the first part the 

local problem regarding a cell (inclusion) of the composite is studied. Second part is 

focused on finding main terms of the averaged problem. The third part is aimed at an 

estimation of the first improvement term with respect to the membrane fundamental 

frequency. 

1. Introduction

The problem of transition of waves in periodic structures consists of a wide spectrum of various

questions having roots in different fields of physics and mathematics including mechanics of 

deformable solids, theory of electromagnetic vibrations and waves, electrotechnics, theory of 

vibrations, mechanics of composites, theory of crystals, etc. 

The first background of the problem investigation has been introduced in 1686 by Newton [31], who 

studied 1D chain of oscillators while computing the second velocity. Beginning from 1727, a study of 

1D chains of oscillators has been carried out by J. Bernoulli and nest by his son D. Bernoulli, who in 

1753 formulated the superposition principle i.e. any motion of the vibrating system can be presented 

as a superposition of its eigenvibrations. 

Further development of 1 D models of the wave transition in periodic structures is associated with 

the works of Cauchy, Rayleigh [34] and Kelvin [25]. In the years 1835-1836 Hamilton obtained 

remarkable results regarding the light transition in crystals [24]. A review of the state of the art of the 

development of theory of wave distributions in 1 D chains of oscillators can be found in reference 

[16]. 
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Among the fundamental works published in the middle of the previous century we mention 

monographs of Brillouin [14, 15] and Brillouin and Parodi, where not only the mathematical theory of 

1 D chains is presented, but also systems with the cell of periodicity having a few degrees-of-freedom 

(DOFs) have been considered. In reference [16] the obtained results of investigations are generalized 

into 3D case and a solution to 3D wave equations is given. Chains of coupled particles have been 

considered by Ashcroft and Solid [8]. Born and Karman [12] have applied this concept of chains to 

model wave transitions in crystals from a point of view of solid mechanics. Idealization idea 

introduced through coupled chains of particles/masses has been also applied in other scientific 

disciplines like atomic and molecular dynamics in physics, in chemistry and biology as well as in 

mechanics for modeling rod and beam constructions with added particles, in quasi-periodic systems, 

etc. [see for, instance, 17, 19, 28, 29, 35]. 

In the series of publications [23, 30, 36, 37] the transition and localization of elastic waves in 

periodic composite materials have been studied. 

On the other hand it is well known that the theory of averaging belongs to one of the effective 

mathematical tools for modeling physical processes of different kind in periodic non-homogenous 

structures [9, 10, 27]. One of the major advantages of the homogenization is a possibility of the 

generalization of the obtained results. Namely, if a solution to the local problem is found, then 

without principal problems one may solve not only the analyzed problem, but also a series of related 

static and dynamic problems, including: linear, quasi-linear, the eigenvalue problems, etc. The 

mentioned approach has been applied to the eigenvalue problems regarding the perforated structures 

and periodically non-homogenous 2D constructions with the square mesh of inclusions in references 

[4-7]. 

Application of the asymptotic homogenization [2, 3] is based on the procedure of multi-scale 

series and yields reliable solutions regarding long waves for the low frequencies level [1, 13,21]. The 

discussed approach has been applied in the linear case in references [1, 18, 20]. On the other hand, in 

references [11,22,33] the method of asymptotic homogenization has been applied in the case of large 

deformations with a successive linear distribution of the elastic wave. 

In this work, based on the averaging theory and the multi-scale series, the analytical results 

regarding dynamic features of the membrane vibrations having periodically located circular 

inclusions in the form of a hexagonal mesh are obtained. In particular, relations yielding 

eigenfrequencies and the associated eigenfunctions including first improvement terms are derived. 
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2. Problem formulation in terms of averaging theory

We consider the eigenvalue problem of a vibrating rectangular membrane clamped along its

contour treated as a composite structure with periodically located circled inclusions forming the 

hexagonal mesh (Figure 1). 

Figure 1.    Composite material with hexagonal structure of inclusions  

In the general case, the membrane eigenvalue problem can be formulated in the following form: 
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where: u –transversal displacement of the membrane points; 
2 p

c 


, p –stress inside 

the membrane,  –surface density; n –external normal to the inclusion contour. 

Solution to the problem (1)-(5) is assumed to be as follows: 
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   , , , i tu x y t u x y e   , (6) 

where   –stands for a circular frequency. 

Then, owing to (6) problem (1)-( 3) can be transformed to the following form
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Following the theory of averaging [9, 10] and applying two-scale techniques [31] the solutions to 

the problem (7)-( 9), (4) in the form of asymptotic series regarding a small parameter characterizing 

the structural period are assumed in the following form 
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where: ,   stand for the fast variables, and 
x

 


, 
y

 


. 

The frequency is also presented in the form of the asymptotic series: 

2

0 1 2 ...      . (11) 

After splitting procedure regarding   being applied to relations (7), (8), the following infinite 

recursive set of equations is obtained 
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The compatibility relations (9) takes the form: 

1

1 1: u u   ; (15) 

2

2 2: u u   ; (16) 
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, (18) 

where 
n




, 

n




 are derivatives along the external normal to an inclusion contour regarding fast 

and slow variables, respectively: 

cos cos
n

  
  

  
, (19) 

cos cos
n x y

  
  

  
. (20) 

Therefore, the problem of finding a solution to the complex space governed by equations (7)–(9), (4) 

is split to a series of problems in the spaces of essentially simpler geometry in comparison to the input 

problem.  
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3. Derivation of analytical formulas governing membrane eigenforms and

frequencies

Owing to the general procedure of the homogenization method a solution to the problem (7)–(9), 

(4) can be divided into three parts:  

Figure 2.   Characteristic structure of the composite cell: i

 –matrix area; i

 –inclusion area. 

(i) In the first part a solution to the local problem is defined [9, 10], i.e. we study a periodically 

repeated cell of the composite (see Figure 2):  
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 
 in i
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1 0u   on 
*

i . (23) 

(ii) The second part is aimed at finding main parts of the eigenfunctions and frequencies of the 

averaged problems. The averaged equation is obtained through application of the following averaging 

operator  

     
*

1
, , , , , , ,

i

i i

x y x y d x y d 

 
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 
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 
 
  

  (24) 

to relations (2.13), and the input problem takes the following form: 
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 
  

 
(25) 

where 
*

i i i

    ; 
*

i i

i

q

   



–averaged parameter in the sense of Foight.

Taking into account the relations for 1u
, 1u

 which define the problem on the cell (21)–(23), the

averaged problem can be transformed to the following one: 
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0
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–smooth membrane space with the reduced characteristics; xq , yq –

averaged parameters of the following form: 
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  
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where:  1 i
u

  1, 2i  –are the solutions to the local problems (21)–(23), estimated with accuracy up

to constant multipliers corresponding to the slow solution component: 
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1 1 1 1 2
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u u
u u u

x y

   
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 
. 
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Solution to the eigenvalue problem (26), (27) in the smooth space of the rectangular membrane with 

reduced physical characteristics can be formulated in the following form 

0

1 1 1 2

sin sinmn

m n

m x n y
u S

 

 

 
 , (30) 

2 2
2

0

1 2

x y
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q q

q
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      
     

, (31) 

where constants  , 1, 2, ...mnS m n   are defined by the initial conditions (5).

(iii) The third part of our approach is focused on estimation of the first improvement term regarding 

the frequency 1 . This requires finding one more approximation to the function u
, i.e. we need to

find functions 2u
 as a solution to the following compatibility problem:
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2 2

u uu u u u
u

x yx y
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       
 in i
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u
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          
         

         
 in i

 ; (33) 

2 2u u  ,   102 2 1 11
uu u u u

n n n n n

      
     

    
 on i ; (34) 

2 0u   on 
*

i . (35) 

Observe that the structure of the problems regarding the first and second approximations of the cell is 

identical, and they differ only in the amount an even component, which does not play the principal 

role, i.e. it does not introduce an essential input to the averaging, and hence it can be omitted while 

estimating the frequency 1 [6,7].

Consequently, relations for the functions 2u
, yielded by solving the problems (32)–(35), can be

presented in the following general way: 

   2 1 0 10 2 ,u u u u U       , 

where    2 2, ,U U      . 
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Owing to the latter remark, the averaged problem of the second approximation is governed by the 

averaged equation obtained by application of the averaging operator (24) to relations (34):  

 
2 2

10 10

0 10 1 02 2
0x y

u u
q q q u u

x y

 
    

 
 in 

* , (36) 

with the following boundary condition 

10 1u u   on  , (37) 

where 1u  is the averaged part of the function  1 , , ,u x y   .

It should be emphasized that the relation (36) includes two unknown functions: 10u – slow 

solution of the 
1  order and the first improvement term to the frequency 1 . In order to find the

frequency 1 we need to transform (36) applying the known scheme (see [26]). Namely, we multiply

(30) by 0u  and next we integrate this equation by parts regarding the space 
* , which taking into 

account (26) and boundary condition (27) yields the following relation: 

1 2 2 1
1 2

2 0 0

1 0 10 10
0 0

0 0 0 0

0
x y

x y
x y

u u
q u dxdy q u dy q u dx

x y

 

 

 
   

     . (38) 

Therefore, if 

10 1 0u u    on  , 

then 1 0  , and the series responsible for eigenfrequency begins with 2 , i.e. the term of order

2 . 

In the case when 10u  does not satisfy the boundary conditions on the external membrane contour, i.e. 

10 0u   on  , we get non-zero first improvement term regarding the eigenfrequency, which taking 

into account (38) has the following form: 

   
2 1

1 2

0 0

1

2

0

0 0

x yq y dy q x dx

q u dxdy

  

 
 

 

, (39) 

where 
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 
1

0

10
0

x

x

u
y u

x






 


; 

 
2

0

10
0

y

y

u
x u

y






 


. (40) 

Subsequent term of the series (10), (11) can be found by analogous scheme and its estimation 

does not require principal difficulties. 

4. Conclusions

The theory of averaging has been applied in order to solve the problem of vibrations of the

rectangular membrane stiffly clamped along its contour, representing the composite structure with 

periodically located circular inclusions within the hexagonal mesh. 

In the general case, the fundamental analytical relations of smooth components of the 

eigenfunctions and the eigenfrequencies (30), (31) as well as of their first fast oscillating terms (21)-

(23), (39), (40) have been derived. 

Practical realization of the proposed approach depends strongly on finding a solution of the 

problem regarding the cell, i.e. in a correct estimation of the averaged characteristics of the non-

homogenous structure. 

Depending on the values of the physical and geometric characteristics of the composite a solution 

to the local problem can be obtained either by an asymptotic series or by combined analytical-

numerical approaches. 
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