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Abstract. This paper presents a novel extension of the case-based reason-
ing (CBR) technique. In the proposed method, a case is defined using the
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1. Introduction

Case-based reasoning (CBR) is a problem-solving approach that can be applied
in a wide variety of domains. It consists in retrieving previously solved problems,
which are memorized and stored as cases in a case library. The retrieved solution
(case) is then adapted and reused to solve a new, similar problem. After the solu-
tion has been positively revised, such a case is included in the case library of the
CBR system. This experience-based problem solving technique, and its variant
called case-based classification (CBC), can be successfully applied to a range of
problems, including pattern recognition.

On the other hand, contextual classifiers can be realized by sophisticated active
contour methods, which can operate in multidimensional spaces. The high-level
information is incorporated in an objective function, called energy. It is used for
the evaluation of the quality of a hypercontour generated by the method. The
search is performed in an evolution process (optimisation).

The present study endeavours to combine case-based reasoning and active hy-
percontours to exploit the full potential of both approaches. To achieve this goal,
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the case needs to be defined using the results of the active hypercontour-based
method. The potential active hypercontour approach has been chosen due to its
flexibility. However, this property may turn out an obstacle to correct definition
of the similarity measure, which together with the definition of case constitute the
two key elements of CBR (CBC). In this work, the hypercontour is applied as me-
thod of information granulation, and the information granule constitutes the case.
In the literature, the concept of information granularity is considered in the context
of intelligent analysis of numerical data — the discussion is usually related to the
task of proximity-based fuzzy clustering. The term “granular computing” encom-
passes all theories, methodologies and techniques that deal with the processing of
information granules.

The literature relevant to the topic of this work is given in the subsequent sec-
tions. The paper is organised as follows. First, in Section 2, the principle of
case-based reasoning is presented. In Section 3, parametrized multidimensional
clustering and classification realized using the potential active contour approach is
described. Next, the new hypercontour-based case specification is introduced, and
the role of justifiable granularity is stressed. Finally, the last section gives a brief
summary of the findings.

2. CBR for Pattern Recognition

Pattern recognition is the automated discovery of regularities in data or in in-
formation granules. A pattern recognition system typically relies on three oper-
ations [1]: data or information acquisition, feature selection or extraction, and
classification or clustering [2]. The first operation involves data gathering with a
set of sensors. Then, the dimensionality is reduced by feature selection and extrac-
tion of information granules. This second operation significantly influences the
recognition process and the quality of the results. The decision about the method
is crucial, and here the use of active hypercontours is proposed because they make
beneficial use of both the analysed data and the knowledge of the user (cf. Section
3). Finally, the third phase involves the processes of classification or clustering,
which are performed by the subsystem that makes the decision — here, the CBR
system. The more general the representation of granular information, the more
sense it makes to apply case-based reasoning [3, 4].

The case-based problem solving technique, commonly referred to as case-
based reasoning (CBR), is based on using previous experiences to understand and
solve new problems. The main idea of CBR is to use a collection of past problem
solutions and adapt them to address latest problems (cases) — Fig. 1.

Notation:

— § —the universe of all objects;
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Figure 1. A model of CBR system

— Sc - the case base;

c; —the i-th case, i € I,

sim — similarity (formal definition is the appropriate approach);
— dis — distance;

— p —problem;
— sol — solution;
— eff — effect.

A base of previously solved cases (Sc) is given, where a case is considered as an
ordered pair:

ci = (p,sol); (D

The CBR process starts with the retrieval of the case which is most similar to
the current one (according to the selection criterion). This reflects the idea that a
solution of a similar problem may be reused to solve a new problem.

The following situations are possible: (a) the features of both entire cases —
the new (query) and the candidate ones — are compared, or (b) relevant, significant
portions of cases are considered.

The retrieved solution is either accepted as it is or adapted to the new problem.
This process is called case adaptation (Fig. 1). The candidate solution undergoes
validation, which comprises two steps: internal assessment and external valida-
tion, called revision. The latter provides definitive evidence for the correctness or
practical usefulness of the candidate solution — confirmed solution. A case is added
to the case library if it is recognized as a new and solved one.

The application domain, the users’ needs, the available data, knowledge about
the domain and methods, all these and many more factors determine how the CBR
system will be developed, implemented and used.
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The key concept in the CBR approach is case. As stated in Section 2, case is
an ordered pair of problem description p and the related solution sol.

There are four main types of CBR that differ from one another in the manner
of case representation [5]: numerical (vectors of numbers), textual, conversational,
and structural.

In the pure numerical representation, the CBR system is often reduced to
the Case-Based Classifier (CBC) [6], and information granules take the form of
attribute-value vectors which include relevant information about objects, problems
and solutions.

In the textual CBR, cases take the form of words, sentences, or even full text
documents. From a practical point of view, it is reasonable to apply a well-defined,
restricted vocabulary set involving synonyms (cf.: [5, 6]).

A CBR system is referred to as conversational when the cases are represented
as lists of questions and possible answers. These cases can be organized into
groups, and in this way the information granules of higher level are created.

In the structural CBR approach, the structured set of features is called a domain
model. Such a representation defines the maximum complexity that a case can
have.

Note that the case-based classification (CBC) is a kind of CBR task. A clas-
sifier is a function which transforms § into K, where K denotes the number of
subsets S identified in S, i.e. Sy € S, k € K. Thus, K can be understood as the
number of labels which can be assigned to objects in §'.

For a case-based classifier the following notation is used

(Sc, sim)

where Sc ¢ S while sim is defined on S X Sc.

Assuming that the other objects used for comparison are already labelled, the
class of a new object c; is determined using the defined form of sim. Usually, the
nearest labelled neighbour is considered. A similar approach consists in finding
k most similar cases and voting for choice of a proper neighbour. A new case in
CBS is given by the description of an object (problem), with the aim of assigning
the correct label (solution) to this object. In CBC, the case ¢; = (p, sol); as de-
fined in (1) is completely determined by the problem, because the label (class) is
uniquely assigned to the object (we assume that multi-label classification is out of
consideration). In other words, if & is identified as the label (class) of case c;, then
C; € S k-

If for two cases ¢; = (p,sol); and ¢; = (p, sol); their problems’ descriptions
pi and p; are similar then to both cases ¢; and c; the same class or similar classes
can be assigned. However, it is necessary to define what similarity of the classes
means.
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As aresult of learning, which is a key part of a CBR (CBC) system, an initially
approximate classifier function can be adjusted. The learning can be performed by
modification of the similarity (or distance) measure, or by supplementing the case
base with new instances.

The CBR system typically involves the process of case adaptation. In CBC,
the situation is usually much simpler. For example, if the similar case found is the
nearest labelled neighbour, then its solution is the best known one, and only by
performing an external validation, called revision, a new solution can be proposed.
Sometimes this can lead to an introduction of a new label k, and consequently —
the extension of the set K.

A good illustrative example is the Wisconsin Breast Cancer data [7, 8] — a
popular and broadly examined dataset. This repository consists of breast cancer
patients records (in terms of CBC — cases ci). Each sample is described by nine
attributes (valued from 1 to 10) and an additional attribute that represents the di-
agnosis (two possible values — benign or malignant). The attributes describing
the disease are: clump thickness, uniformity of cell size, uniformity of cell shape,
marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal
nucleoli and mitoses [7]. In terms of the notions used in definition (1), the nine
attributes mentioned constitute p, and the diagnosis — the solution sol.

Since the records in a database are not always complete (like in the Wisconsin
Breast Cancer data base) sometimes the processing must rely on portions of cases.

In domains such as medicine, it makes sense to extend the case description (1)
to the triple

Ci = (p’ SOZ’ eﬁ)i (2)

where:

— p — set of observations (symptoms, images, signals, etc.);
— sol — diagnosis, or diagnosis with treatment;
— eff — prognosis.

The information to be recorded as a case can involve various types of data:
numbers, textual records, signals, and images. For effective use, from more com-
plex information sources like textual records, signals, and images, some represen-
tation of the relevant information needs to be extracted. For example, in the case
of textual documents a sophisticated parsing is performed. In the case of images —
features of detected objects are extracted. This information provides the basis for
case description.

As stated above, the process of pattern recognition (PR) comprises three main
mechanisms: data or information acquisition, feature selection or extraction, and
classification or clustering. The natural parallel between PR and CBR leads us to
implementation of the PR requirements and tasks within the CBR system. The
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parallel representation is as follows. Data or information acquisition is realized by
creating the base of previously solved cases (Sc). At this stage, feature selection or
extraction is performed, as well as at the moment of query formulation (description
of a new case to be evaluated). Finally, the CBR cycle is performed to achieve the
expected PR result.

3. Parametrized Multidimensional Clustering and Classifi-
cation

3.1. Active hypercontours

First introduced in [9], the idea of active hypercontours (AH) was developed
as a generalization of the traditional AC techniques. The hypercontour can be
used to separate any set of objects described by features in metric space X into an
arbitrarily chosen number of classes (regions) L. The formal definition is given
below; see also [9, 10, 11]:

Definition 1. Let p denote any metric in X, L = {1, ..., L} denote the set of labels
and let K(xg,€) = {x € X : p(x9, x) < €} denote the sphere with centre xy € X and
radius € > 0. The set h C X with information about labels of regions it surrounds,
is called a hypercontour if and only if there exists a function f : X — R and
po=—00,p1 €R,...,pr-1 € R, pp = o such that:

h={x€ X : 3, nernznYe>03x; pekxeo@W(x1, 1) A w(xz, )}, 3)

where condition w(x, 1) is true only when p;—y < f(x) < p; and region {x € X :
w(x, )} represents class | € L.

As demonstrated in [9], a hypercontour is equivalent to a classifier if X = R"
and n € N. This statement holds for any other metric space X (the proof is almost
identical). It follows from the above that each classifier generates a hypercontour
in each metric space X which has a sufficient discriminative power to distinguish
classified objects, and conversely, each hypercontour unambiguously generates the
corresponding classification function. The term hypercontour is used to highlight
the relationship of the proposed technique with active contour methods. The con-
cept of active hypercontour defined above, although is it convenient for theoreti-
cal considerations, for practical use, however, requires a specific implementation
approach. A possible solution is to use the potential active hypercontour (PAH)
proposed in [12]. Its generalization for any metric space is presented below.

Definition 2. Let feature space X be a metric space with a metricp : X X X — R
The potential hypercontour is defined by means of a set of labeled control points:
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D¢ = {(Pi,li),...,(pfvc,lﬁ]y)} where pf € XandI{ € L fori =1,...,N°. Each
point is a source of potential the value of which decreases with increase of dis-
tance from the source point. The classifier k (and consequently the corresponding
hypercontour h which it generates) is defined in the following way:

NC
Vexk(x) = argmaxier, ) P,y (pS, )6, D), @)
i=1

where 6 : LX L — {0,1}, l] * lz = 5(11,12) =0, l] = lz = 5(11,12) =1 and
P : X X X — R is potential function e.g. exponential potential function:

Py ‘P,,u(xo,x) = l{!e—ﬂpz(xo,x) )

or inverse potential function:

b4

1+ pp*(x9, X) (©)

Py u(x9,x) =
In both cases ¥ € R and p € R are parameters characterizing the potential
field. Those parameters and the distribution of control points fully describe the
classifier. As mentioned above, the chief advantage of the active hypercontour
method is the fact that it is capable of defining energy (the objective function) in
an almost arbitrary way. Each classifier assigns labels to vectors from the feature
space and divides it into L regions of different topology. The boundaries of those
regions represent visually the hypercontour. In the special case determined by
n =2 and L = 2, an image can be divided into two regions, and the boundary of
the part interpreted as the object is in fact a visual representation of the contour.
In Figure 2, a sample result of the potential active hypercontour applied to
the IRIS database [13] using the first and the second feature is presented. For the
sake of simplicity of binary classification, one of the classes (iris setosa, crosses)
was classified as the object, while the other two were assumed as the background
(dashes). The energy function used in optimization is described below (8). The
first study to describe the relationship between active contour methods and the
classifier construction techniques was [14]. The relationship is quite obvious since
both groups of methods apply the same scheme: they define a parametrized model
of the object to be tracked, choose an appropriate function to evaluate the objects
within that model and, finally, define the optimization method to establish an opti-
mal parameter setting to delineate the contour that best matches the desired object
outline. The present study focuses on the C"°¢¢/ i.e. the adaptive potential active
contour [15]. The adaptive potential active contour may be applied as a binary or
multiclass classifier. The energy function used in contour evaluation can be chosen
to fit in supervised or unsupervised learning optimization process. In feature space
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Figure 2. Sample hypercontour, L = 2 classes (the values of parameters W and u
are 1.0 and 10.0, respectively)

X, it sets an arbitrary number of potential source points that define a potential field
comparable to an electric field in physics. Each point is a source of potential as-
signed to one of labels L. In the case of a binary classifier, it divides the feature
space into two subspaces, one with a positive and one with a negative potential. In
Figure 2 the subspace with a positive potential (top left) is called the object while
the rest are defined as background. To be more formal, classification in adaptive
potential active contour method can be described as follows:

N
k(x) = sgnl ) Py, (x, pi)l, (7)
i=1
where p; € X is a source of potential (potential point) in feature space X, P :
X X X — R is the potential function of distance from point p; with additional
parameters ¥, y and with given metric function p : X X X — R in feature space X.
In the performed experiments, the inverse potential function (6) and the Euclidean
distance are used. The energy function used to evaluate the contour in supervised
learning is commonly defined as:

N¢

E(k) = Z(l — 6(li, k(x))), ®)
i=1

where k is the adaptive potential active contour being evaluated, x; and /; are the
data point and the corresponding label, respectively, and ¢ is an indicator function.
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The most common methods used for minimizing the energy function and, conse-
quently, selecting the optimal solution, are the simulated annealing optimization
and the genetic algorithms.

A major challenge associated with the use of potential active contours is the
choice of proper values of number N of objects sources and N’ of background
sources. If those numbers are too small, some of the shapes may turn out to be
unreachable, e.g. if only one object source or one background source is chosen,
only simple circular shapes can be found if the whole contour lies inside the image.
Too large values, on the other hand, can slow down significantly the optimization
process and result in the global optimum being difficult to reach as the dimension
of the search space grows. One solution is to set it arbitrarily or after a series of
initial experiments, which is an approach adopted in this study. An alternative me-
thod, presented in [16], consists in using the adaptation algorithm, with an initially
small number of sources and additional sources introduced after each optimization
phase until the satisfactory energy value is reached.

3.2. Optimisation of the contour

The contours generated by a given method (snake [17], potential [9], or oth-
ers) are subject to quality assessment, which takes into account three elements
(features):

(a) current contour shape features — represented and evaluated by the value of
E;y, called internal energy; attribution;

(b) features of the background (image) and position of the contour on the image
—image energy Eiy,; evidence;

(c) external knowledge or (user) demands related to the contour — constraint
energy E..,; specification.

The general objective function E (called energy) used for the evaluation of the
contour is usually of the form:

E=Ej+ Eimg + Econ = Eint + Eext (9)

where external energy Ecyy = Ejmg + Econ. The classic internal energy is of the
form:

(10)

1 ’ 2 77 2
Eint:f a(s)V'(s)| ;ﬁ(S)IV (s)| s
0

where:

— s € [0, 1] - position of the point on the contour,
— v(s) = (x(s), y(s) - coordinates of the considered point,
— a € [0, 1] - elasticity parameter, [
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— B €[0,1] - rigidity parameter.

Thus, the search for an optimal hypercontour is performed by optimisation of
performance index E called energy

E : H — R* U {0} with H being the space of all available hypercontours.

As demonstrated in [9] every hypercontour generates a corresponding classifica-
tion function. This holds true if the space X is metric. In E almost any type of in-
formation can be used provided that it can be implemented in a computer- oriented
form, such as a mathematical formula, an output of a neural network, an output of
a fuzzy system, etc. The classification can be supervised or unsupervised, with the
former being more intuitive.

A hypercontour has a limited discrimination capability, which depends on the
number of control points (assuming that the other parameters are fixed). The flex-
ibility of the potential active hypercontours (PAH) can be enhanced if the optimi-
sation procedure allows a change in the number of control points. This process is
referred to as adaptation. A high misclassification rate in some areas of space X
can be the reason for introducing a number of new control points (local tuning in
certain regions is also possible).

The form of energy should be such that in the form of its minima the concept
of the shape to be recognized is reflected. In other words, the external domain
expert knowledge or user expectation should be implemented. Operation on ele-
ments of high granularity in a natural way leads to the use of linguistic descriptions
of desired shapes, which allows one to express the domain knowledge in a way re-
sembling a natural language. At least three approaches can be applied:

e concepts are transformed into mathematical formulae;

e knowledge is encapsulated in rules formulated in a natural language; the
reasoning process is implemented in fuzzy controller based on those rules;

e graphs represent knowledge about the image and concept; vertices repre-
sent (semantically defined) objects; edges — linguistic relations between the
objects detected.

The idea of using expert opinion was proposed earlier in the unsupervised classifi-
cation problem where an expert estimated the proximity between pairs of objects
from the training set. The search for the optimal hypercontour may be conducted
in many ways, e.g. by the use of simulated annealing or genetic algorithm, both of
which perform a global search without using gradient.
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4. Justifiable Granularity and Hypercontour-Based Case
Specification

The basic item subject to information processing in CBR was defined as fol-
lows [6]:

Definition 3. An information entity (/E) is an atomic knowledge item in the do-
main. It represents the lowest granularity of knowledge representation.

For instance, an IE may be represented by a particular attribute-value pair.

A case is considered as a set of information entities [6]. Given Def. 3, a case
is a collection of information items of lowest granularity.

The concept of information granule has been widely used in recent years. In-
formation granules are intuitively appealing constructs, which play a vital role in
human cognitive and decision-making activities [3, 4, 18]. The higher the granu-
larity (the number of elements embraced by the information granule), the higher
the abstraction of this granule and the lower its specificity.

However, to develop and implement a system working with information gran-
ules we need some more precise definition.

Definition 4. Information granule: a collection of elements (e.g. data) that are
arranged in such a way as to carry the semantics relevant to the intended level of
abstraction and the goal for which it has been created.

The granularity increases as the number of such entities decreases; it is a non-
increasing or decreasing continuous function of this number of entities [3, 4, 18].
Two examples:

(a) In computer image analysis, the following information granules can be con-
sidered and used for image content interpretation: pixels (basic granule of
lowest level), superpixels (i.e. groups of pixels), image segments, objects
detected, objects with neighbourhood creating context, whole image.

(b) In textual document analysis, the following information granules are con-
sidered: single letters, characters, syllables, words, synonyms, sentences,
paraphrases, full text documents.

The construction of information granules is based on certain criteria, such as
spatial neighbourhood (e.g. superpixels), similarity or functionality. For example:

¢ an information granule can be simply an attribute-value vector over a finite
set of attributes;

¢ an information granule can explicitly reflect a particular structure, like rela-
tion » between two objects 01 and 0;: (r, 01, 02).
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The principle of justifiable granularity [19, 20] describes the intuitively moti-
vated requirements that must be fulfilled for an information granule to be consid-
ered meaningful. The requirements are as follows:

(a) Experimental evidence. The numeric evidence accumulated within the bounds
of the granule considered has to be as high as possible. It should reflect as
big amount of data as possible to make the data set legitimate.

(b) Well-articulated semantics. At the same time, the granule should be as spe-
cific as possible. It should carry a well-defined semantics (meaning). The
agreement with human-user perception of knowledge about the problem is
desired.

As these two requirements are in conflict, finding a compromise is of great practi-
cal importance.

Note that information granularity can have a hierarchical structure. Two kinds
of constructs were introduced: higher-type information granule — where the de-
scription of information granules is provided in the form of information granules
themselves, and higher-order information granule — a universe of discourse com-
posed of information granules. The use of such constructs can be legitimated by
the practical need of solving the problem at hand. For example, it is easy to see that
an information granule can be composed of information granules of lower level,
which represent more detailed information, or simple data.

The area of research that deals with the representation, construction and pro-
cessing of information granules is called granular computing [22,23]. The use of
granular computing enables human-centric information processing.

In Section 2, the case has been defined as an ordered pair ¢ = (p, sol) with p
and sol representing the problem’s description and solution, respectively.

We assume that both p and sol are composed of information granules or con-
stitute by themselves information granules that fulfil the requirements of CBR jus-
tifiable granularity. For example, the information granule p (or sol) includes a
number of elements (also granules of lower type) that are justified as legitimate
descriptors of the problem under consideration.

Note that the number of elements in p (or sol) forms a simple descriptor of
information granularity. Moreover, the number of information granules in a case
may be variable. For example, to find the correct solution of a new case, only a
part of the information available may be sufficient. However, as it often happens
in the medical domain, new information may be required if the currently available
data do not allow a physician to make a definite diagnosis.
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According to Def. 2 given in Section 3, the potential hypercontour is defined
by a set of labelled control points x{ and parameters of the applied potential func-
tions P{ characterizing the potential field where each point x{ is a source of poten-
tial P;. In other words, those parameters as well as the distribution and number of
control points (adaptation and local tuning) fully describe the hypercontour.

The combination of the CBR and the hypercontour approach requires proper
definition of the case ¢; = (p, sol);, cf. (1). This involves the following elements:

1. labelled control points x{;
2. determined parameters of the source of potential P7;
3. number of control points N°.

Working with the imposed constant number of control points, one can simply
state that
ci = ([x¢, PS1T, sol); (11)

where sol is the result of recognition within all the admissible potential sets (i)
representing possible recognition results.

A crucial task of the CBR system is to determine the similarity between query
new [xf,Pl.C]T and each of the old cases collected in Sc (cf. Fig. 1.) Thus, the
similarity measure must be defined properly. The definition (11) enables the appli-
cation of well-known standard vector similarity measures.

The case base Sc collects cases (hypercontours) obtained by diverse number
of control points N¢. The cases have diverse representations because of diverse
dimensions of vectors x{. This situation requires the application of non-standard
measures and approaches. The possible solutions include:

(a) Reduction of the dimension of one of the vectors. However, the problem is
to motivate deeply the decision about the removed elements.

(b) Application of correlation measure defined for vectors of diverse dimensions
[21]. However, this solution lacks a persuasive interpretation concerning the
shape of the hypercontour and, consequently, about the classification label.

Fortunately, one has the final value of the energy (9) obtained after the optimi-
sation has been performed. The value of E can be alternatively used as a decision
factor if the compared cases are “similar”.

The active and adaptive hypercontours approach can be formally interpreted
using the following statements:

e Each data element (in images: pixel, line segment, superpixel, etc.) can be
described by its features (for pixel — coordinates and colour components).

e Hypercontour acting on the elements of j-th level of granularity (j = 0,1,
2,...) determines potential sets ¥}(i) representing possible recognition re-
sults.
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e Each set 1(i) is evaluated by the energy. As a result, the energy function can
be regarded as a concept recogniser.

e The optimisation of the energy function leads to making the decision. Thus,
one may speak of decision function d that is able to find a proper set ¥(i).

e The energy function can model any arbitrary concepts and relations. The
high-level knowledge is usually obtained from domain experts or by the use
of a machine learning approach.

In the case of graph representation, the optimal prototype matching is performed
[22].

The existence and successful applicability of recognition methods on diverse
levels of information granularity is of key importance for performing complex data
analysis. Nevertheless, all the elements should be composed wisely, i.e. the way
of justifiable granulation, representation of granules and their relations, represen-
tation of concepts, consideration of context, detection and treatment of outliers,
and recognition method. These remarks apply to all kinds of data.

5. Summary

The granular approach is related to intelligent analysis of all kinds of data in
each metric space which has a sufficient discriminative power to distinguish clas-
sified objects. It has been shown that active hypercontours can work on the level
of information granules and they can be used for the purpose of intelligent and
task-oriented parametrized representation of multidimensional data. The paper has
demonstrated that active contours can be incorporated into the case-based reason-
ing and case-based classification processes. In this way, a novel pattern recognition
method has been developed. The study has also proposed ways to handle diverse
representations of collected cases. The universality of the method allows it to be
applied in any multidimensional metric space where the hypercontour can be used
to separate any set of objects described by features in this space into an arbitrarily
chosen number of classes (regions).
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