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Abstract: The article presents influence of pH and glucose concentration 
on phenylboronic acid (PBA) fluorescence studied by steady-state and 
time-resolved measurements. Fluorescence of PBA decreases with growing 
pH. These changes reflected acid-base equilibrium of PBA and allowed to 
estimate value of pKd as 9.2, which is comparable with literature data. 
Fluorescence intensity of phenylboronic acid is quenched in presence of 
glucose. The effect of quenching is more pronounced with increasing pH. 
At pH 7 quenching can be described by Stern-Volmer equation, at pH 8 
and 9 by modified one. The obtained quenching constants are growing with 
pH increase. The quenching of phenylboronic acid fluorescence by glucose 
is a static one, which is confirmed by time-resolved measurements. Two 
lifetimes were found for fluorescence decay of phenylboronic acid. The 
lifetimes are practically independent on pH and glucose concentration and 
also fraction of both lifetimes are nearly the same. The obtained Stern-
Volmer constants can be interpreted as apparent equilibrium constants of 
ester formation between acid and glucose. 

Keywords: boronic acid derivatives, glucose sensor, optical sensor, 
fluorescence quenching. 

Introduction 
Glucose sensors and biosensors are the most popular ones because of their 

very broad application area. Most of them are optical or electrochemical ones. 
Compared to traditional methods of analysis they show a number of advantages: 
short time and simplicity of measurement, high stability and ability of continuous 
measurement. Depending on their purpose and construction, they consist of one 
or several components and can exist as electrodes [1,2] or chips [3]. Due to these 
advantages, they are used in many areas, especially in medicine. In diabetes care, 
they are used for the determination of glucose concentration in blood [4,5] as 
well as in other body fluids [6,7]. 

Boronic acid derivatives are the subject of interest of many research centers 
because of their characteristic property - binding diols with high affinity through 
reversible ester formation with boronic group. Phenylboronic acid and its 
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derivatives show fluorescence which can be attenuated by sugar binding giving 
as the result chemical sensor for glucose or other saccharides [8-12]. Such system 
can be composed from one or several components [8,13,14] and can be 
characterized by the increase or decrease of fluorescence emission intensity. For 
example, boronic acid electrostatically bound to cysteine modified gold surface 
showed a decrease of fluorescence emission at the presence of glucose [15]. 
Another derivative – 8-quinolineboronic acid at the presence of sugars (fructose, 
galactose, and arabinose) showed a significant increase of fluorescence emission 
intensity [16]. Application of boronic acid derivatives as a sensing element could 
allow constructing a non-invasive sensor, which could be included in contact lens 
to measure glucose level in tears [17]. Generally, many attempts were done to 
synthesize sophisticated phenylboronic acid derivatives with increased sensitivity 
for sugars and improved selectivity for glucose [17-19] but there is little or no 
data in literature about fluorescence properties of the simple phenylboronic acid 
and its esters with saccharides. 

The aim of this paper is characterization of interactions of the simplest 
fluorescent boronic acid derivative – phenylboronic acid with glucose at different 
pHs in aspect of further application in glucose sensing. 

Experimental 
Phenylboronic acid – (C6H4B(OH)2·H2O, 95%) was purchased from SIGMA-

ALDRICH (Germany). Glucose (anhydrous pure p.a.) was purchased from 
Chempur (Poland). All other reagents used were of most possible purity. 
Distilled water was used throughout. 

Absorbance spectra were collected using a Nicolet Evolution 300 
spectrophotometer (Thermo Scientific, USA).  

Steady-state fluorescence measurements were performed using a Fluoromax-4 
spectrofluorometer (Jobin Yvon-Spex Instruments S.A., Edison, New Jersey, 
USA). Fluorescence spectra were measured with 10 mm path-length closed 
quartz cells. The excitation and emission slits were set at 5 nm each. The 
increment was set at 1 nm and integration time at 0.5 second. The measurements 
were carried out at room temperature.  

Fluorescence emission decays were measured with a time-correlated single 
photon counting apparatus from Edinburgh Instruments Co (UK), equipped with 
hydrogen lamp (nF900 Nanosecond Flashlamp) as an excitation light source. The 
instrument profile was obtained by replacing the sample with Ludox as a scatter. 
Data were collected in 1023 channels to 1000 counts in the peak, and the 
calibration time was 53 ps per channel. The data were analyzed by a least-squares 
reconvolution procedure using the software package provided by the Edinburgh 
Instruments.  

For basic optical characteristics, PBA was dissolved in 0.01 mol/L phosphate 
buffer, pH 7. The pH profile of PBA fluorescence was studied at pH ranging 
from 4 to 10. At pH from 4 to 5 acetate buffers were used, at higher pHs 
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– phosphate ones. For fluorimetric titration of PBA with glucose 3 mL of  
5·10-4 mol/L PBA solution was poured into quartz cuvette and 3 µL of 1 mol/L 
glucose solution was added. The cuvette was shaken for 1 minute and after that, 
fluorescence emission spectrum was measured at excitation wavelength 260 nm. 
Such procedure was repeated 10 times to obtain final concentration of glucose in 
sample 10-2 mol/L. Time-resolved measurements were made for PBA concentration 
10-3 mol/L. Glucose concentration was varying from 0 to 2·10-2 mol/L. All experi-
ments were done at room temperature. 

Results and discussion 

Optical characteristics of phenylboronic acid 
Phenylboronic acid shows absorbance in UV range with characteristic 

vibrational structure [20]. The absorbance spectra differ slightly with 
concentration of PBA (results not shown). For low concentrations (5·10-3 mol/L 
and below) the last maximum is settled at 266 nm, for higher at 260 nm. The 
obtained result is consistent with data found in literature [20]. 

Fluorescence emission spectra were measured at excitation wavelength  
266 nm in concentration range from 10-6 to 5·10-2 mol/L to find the limiting 
concentration for auto-quenching effect. PBA in phosphate buffer shows one 
sharp and smooth emission band with maximum located at 296 nm, which is 
similar to results reported in literature [21]. Maximum emission was observed for 
PBA concentration 10-3 mol/L; for higher concentrations, the auto-quenching 
effect was observed. 

The influence of pH on PBA optical properties is shown on Figure 1. The 
absorbance of PBA measured at 266 nm practically does not depend on pH up to 
7.5; for higher pHs is decreasing gradually (Fig. 1C). Springsteen and Wang [22] 
obtained similar results. They estimated the pKd of phenylboronic acid as 8.8 
[22,23]. Other boronic acid derivatives like 8–quinolineboronic acid showed 
similar absorbance dependence on pH [16]. Fluorescence pH profile for PBA is 
similar for that obtained for absorbance (Fig. 1B) but more expressed. Rough 
estimation of obtained fluorescence results gave value about 9.2, which is 
similar. To obtain more accurate results more measurements must be done (in 
broader pH range). Examples from literature [16,22,23] indicate that absorbance 
of various derivatives of boronic acid have similar pH profile connected with 
acid-base dissociation equilibrium of borate group (Fig. 2). As it can be seen 
from scheme shown on Figure 2, there are two forms of phenylboronic acid 
(neutral and anionic) in the solution. At higher pH (above neutral) the anionic 
form is predominant. Boronic acid derivatives are the Lewis acids and therefore, 
they can connect OH- ion from the solution. In neutral form, the boron atom is in 
trigonal sp2 hybridization and is electron-deficient Lewis acid. At alkaline pH 
electron-rich Lewis base is formed and boron atom is in tetrahedral sp3 
hybridization [7,13]. The equilibrium between these two forms depends on pH. 
The neutral form is more fluorescent than anionic one. The trigonal form of 
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boronic acid binds diols (among them glucose) much less than tetrahedral one 
[24]. Binding of diols is shifting apparent acid-base dissociation constant to 
lower pH [22]. For glucose ester of phenylboronic acid pKd is 6.8 [22]. 

 
Figure 1. A – Fluorescence emission spectra of phenylboronic acid (5·10-4 mol/L) 

at different pHs; λexc = 266 nm; B – Fluorescence intensity at 
maximum (λem = 303 nm) of phenylboronic acid (5·10-4 mol/L) as  
a function of pH ; C – Absorbance at 266 nm of phenylboronic acid 
(10-3 mol/L) as a function of pH 

 
Figure 2. Acid-base and glucose binding equilibria of phenylboronic acid 

Interaction of PBA with glucose 
Boronic acids are known to bind diols with high affinity. Between acid and 

diol (like saccharides) an ester bond is formed. Formation of ester bond is 
reversible (Fig. 2). This reaction is characteristic for all boronic acid derivatives, 
and makes them the object of study on construction of an optical glucose sensor, 
because formation of ester causes the changes of phenyl boronic acid derivatives 
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fluorescence [7,17-19]. Boronic acid derivatives anion in sp3 hybridization better 
binds sugar molecules as compared with neutral form [24]. Binding of sugar is 
causing the decrease of fluorescence intensity of phenylboronic acid [21]. As the 
apparent binding constant of sugars with PBA is growing with increasing pH, the 
quenching effect should also be more expressed [23].  

Quenching of PBA fluorescence intensity by glucose was studied by 
fluorimetric titration at pH 7, 8 and 9 as described in experimental part. Results 
for pH 7 are shown on Figure 3A. One can see that with increasing concentration 
of glucose emission of fluorescence is decreasing. The effect is more pronounced 
with increasing pH. In the presence of glucose, the emission maximum is shifted 
by 2-4 nm to lower wavelengths and the shape of emission spectrum is changed 
(Fig. 3B).  
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Figure 3. A – Fluorescence titration traces of PBA solution (5·10-4 mol/L)  

at pH 7 by glucose; λexc = 260 nm; B – normalized fluorescence emission 
spectra of PBA in the absence and presence of glucose at pH 7 

 
Because of the quenching effect of glucose on PBA emission intensity, it was 

tried to check if the obtained data fit to Stern-Volmer equation: 

[ ]o
SV

F
1 K Q

F
= +                                                   (1) 

where:   Fo –  initial fluorescence intensity at the absence of a quencher, 
 F – fluorescence intensity at the presence of a quencher,  
KSV  – Stern-Volmer constant,  
[Q] – quencher concentration. 

Stern-Volmer equation is describing dynamic (collisional) quenching. In case 
of static quenching, when fluorophore and quencher form non-fluorescent 
complex in ground state, derivation is leading to the same form of equation but 
the constant denoted as KS has the meaning of equilibrium constant of complex 
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formation [25]. One can suspect that as PBA and glucose form ester less 
fluorescent than free acid the results of quenching experiments could be 
presented in Stern-Volmer coordinates [25]. 

Because binding of glucose caused changes of shape PBA emission spectrum 
for presentation data in Stern-Volmer coordinates integrated (in range 280 – 350 nm) 
fluorescence intensities were taken into account. As it is shown on Figure 4A the 
obtained results did not fit to Stern-Volmer coordinates. The plots of Fo/F against 
glucose concentration are underlinear. Therefore, a modified Stern-Volmer 
equation was applied. This equation is describing the case when only a part of 
fluorophore molecules is accessible for quenching. There is an assumption that in 
the solution there are two populations of fluorophore. One of them is available 
(a) for the quencher while the other is unavailable or buried (b) [25]. 

[ ]
o

aa a

F 1 1
F ff K Q

= +
∆                                                     

(2) 

oF F F∆ = −                                                       (3) 
where: Ka is the Stern-Volmer quenching constant of the accessible fraction  

fa is the fraction of initial fluorescence which is accessible to quencher 
oa

a
oa ob

F
f

F F
=

+
                                                    (4) 

Foa and Fob are the initial fluorescence intensities of the fraction a and b. 
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Figure 4. Application of two models of quenching to results of fluorimetric 

titration of BPA by glucose: A – Stern-Volmer coordinates (1);  
B – modified Stern-Volmer equation (2) 

 
On Figure 4B, one can see that the results of fluorimetric titration of PBA 

with glucose can be fitted to the modified Stern-Volmer equation. The obtained 
Ka constants values are 117 [L/mol], 320 [L/mol] and 488 [L/mol] at pH 7, 8 and 
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9 respectively and fa is about 0.23, 0.26 and 0.27. In this case, Ka can be interpreted 
as apparent equilibrium constant of ester formation and fa as the fraction of anionic 
form. The obtained results are quite reasonable as with increasing pH the amount of 
anionic form is increasing. The scheme of PBA acid –base equilibrium shown on 
Figure 2 indicates that in the solution there are two forms (fractions) of PBA, and that 
in the alkaline solution the anion, in which boron atom is in sp3 form, is predominant. 
This form binds diol much stronger than neutral form of acid [24]. The obtained 
constants are quite reasonable and can be compared with equilibrium constant for 
ester formation between glucose and PBA anion [24].  

Time-resolved measurements 
There is no data in the literature about fluorescence decay of phenylboronic 

acid therefore it was interesting to make time-resolved measurements for free 
acid and for its ester with glucose. Example of obtained results is shown at 
Figure 9. One can see that there is very little difference between decay at the 
absence and presence of glucose. Due to apparatus limitation, the measurements 
could be done up to 1000 counts in a peak. As the result, calculated lifetimes are 
not very precise and the statistics is quite poor.  

The best fit to obtained fluorescence decays was double exponential in case of 
all studied pHs and glucose concentrations. The obtained lifetimes are collected 
in Tables 1, 2 and 3. In all tables, τi is lifetime, fi is fraction of given lifetime and 
<τ> - mean lifetime calculated according to the formula: 

i if< >= Σ ⋅τ τ                                                  (5) 
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Figure 5. Example of fluorescence decay of phenylboronic acid; pH 7; PBA 

concentration 10-3 mol/L; λexc = 275 nm 
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Table 1. Parameters describing fluorescence decay for PBA at pH 7 
cglu, mol/L τ1, ns f1 τ2, ns f2 χ2 <τ>, ns 

0.000 0.81 ± 0.02 0.57 5.52 ± 0.07 0.43 1.26 2.84 ± 0.07 
0.002 0.81 ± 0.02 0.57 5.50 ± 0.06 0.43 1.23 2.84 ± 0.07 
0.005 0.87 ± 0.02 0.57 5.46 ± 0.07 0.43 1.17 2.85 ± 0.07 
0.009 0.97 ± 0.02 0.55 5.34 ± 0.06 0.45 1.22 2.95 ± 0.07 
0.012 1.13 ± 0.03 0.55 5.26 ± 0.07 0.45 1.05 3.00 ± 0.07 
0.015 1.18 ± 0.03 0.52 5.08 ± 0.07 0.48 1.08 3.06 ± 0.07 
0.018 1.14 ± 0.03 0.50 4.97 ± 0.06 0.50 1.03 3.05 ± 0.07 
0.022 1.14 ± 0.03 0.49 4.80 ± 0.06 0.51 1.07 3.00 ± 0.07 

Table 2. Parameters describing fluorescence decay for PBA at pH 8 
cglu, mol/L τ1, ns f1 τ2, ns f2 χ2 <τ>, ns 

0.000 0.60 ± 0.02 0.51 5.58 ± 0.05 0.49 1.68 3.06 ± 0,06 
0.002 0.62 ± 0.02 0.51 5.54 ± 0.05 0.49 1.74 3.05 ± 0,06 
0.005 0.67 ± 0.02 0.52 5.64 ± 0.06 0.48 1.53 3.03 ± 0,06 
0.009 0.64 ± 0.02 0.50 5.60 ± 0.05 0.50 1.57 3.11 ± 0,06 
0.012 0.62 ± 0.02 0.50 5.50 ± 0.05 0.50 1.66 3.04 ± 0,06 
0.015 0.64 ± 0.02 0.50 5.49 ± 0.05 0.50 1.52 3.05 ± 0,06 
0.018 0.64 ± 0.02 0.51 5.45 ± 0.05 0.49 1.51 2.99 ± 0,06 
0.022 0.65 ± 0.02 0.51 5.49 ± 0.05 0.49 1.61 3.04 ± 0,06 

Table 3. Parameters describing fluorescence decay for PBA at pH 9 
cglu, mol/L τ1, ns f1 τ2, ns f2 χ2 <τ>, ns 

0.000 0.64 ± 0.02 0.52 5.64 ± 0.06 0.48 1.53 3.06 ± 0.06 
0.002 0.64 ± 0.02 0.51 5.61 ± 0.06 0.49 1.49 3.07 ± 0.06 
0.005 0.70 ± 0.02 0.50 5.33 ± 0.05 0.50 1.38 3.01 ± 0.06 
0.009 0.74 ± 0.02 0.48 5.12 ± 0.05 0.52 1.42 3.02 ± 0.06 
0.012 0.85 ± 0.03 0.47 5.10 ± 0.05 0.53 1.28 3.09 ± 0.06 
0.015 0.82 ± 0.03 0.45 4.79 ± 0.05 0.55 1.20 2.99 ± 0.06 
0.018 0.89 ± 0.03 0.44 4.63 ± 0.05 0.56 1.11 2.97 ± 0.06 
0.022 0.93 ± 0.03 0.42 4.47 ± 0.05 0.58 1.24 2.99 ± 0.06 

Phenyl boronic acid shows two fluorescence lifetimes, the first τ1 less or equal 
about 1 ns and second τ2 longer varying in range from 4.6 to 5.6 ns. The fraction 
of each time is near to 0.5. The influence of pH and glucose concentration on 
fluorescence lifetimes is weak. At pH 7 one can observe that τ1 at the absence of 
glucose is a bit greater as at pH 8 and 9, and τ2 nearly the same at all pHs. At pH 
7 the first lifetime is increasing with increase of glucose concentration and the 
second one is decreasing. Simultaneously the fraction of τ1 is decreasing. As the 
result, the mean lifetime calculated from equation (5) is slightly increasing. At 
pH 9, the direction of changes of individual lifetimes is the same as at pH 7 but 
the mean time is practically the same. At pH 8, no influence of glucose 
concentration on PBA fluorescence decay is observed. The changes of τ1 and τ2 
are so weak that they suggest that pH and presence of glucose at studied range of 
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concentration has no influence on PBA fluorescence decay. This is rational 
suggestion from the point of view that PBA quenching by glucose is caused by 
ester formation so it is a static one.  

Conclusions 
Phenylboronic acid is a weakly fluorescing compound. With the increase of 

pH its fluorescence decreases. These changes are connected with acid-base 
equilibrium. From fluorescence-pH profile value of pKd was estimated as 9.2 
which is comparable with values obtained by different methods [22,23]. 
Fluorescence intensity of phenylboronic acid is quenched by the presence of 
glucose. The effect of quenching is more pronounced with increasing pH. 
Quenching in this case can be described by modified Stern-Volmer equation and 
obtained quenching constants are interpreted as apparent equilibrium constants of 
estrification. Quenching of phenylboronic acid by glucose is caused by ester 
formation between boronic moiety and diol (glucose). This reaction is more 
effective at higher pH when boronic anion is formed and boron is in sp3 
hybridization. Due to steric fit, the ester formation equilibrium constant for sp3 
form is much greater than for sp2. Therefore, the apparent equilibrium constant 
would increase with growing pH, which was confirmed by experiment. The 
obtained results indicate that acid-base and estrification equilibria can be studied 
by fluorescence measurements giving results comparable with those obtained by 
absorbance measurements. Time-resolved measurements allowed to find 
lifetimes of PBA. Two lifetimes were found for fluorescence decay of 
phenylboronic acid. The lifetimes are practically independent on pH and glucose 
concentration and also fraction of both times are nearly the same.  
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