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The aim of this contribution is to propose a new averaged nonasymptotic
model of stationary stability problems for thin linear-elastic cylindrical
shells reinforced by stiffeners which are periodically, densely spaced along
one direction tangent to the shell midsurface. As a tool of modelling we
shall apply the tolerance averaging technigue. The resulting equations
have constant coefficients in the periodicity direction. Moreover, in con-
trast with models obtained by the asymptotic homogenization technique,
the proposed one makes it possible to describe the effect of the perio-
dicity cell size on the global shell stability (a length-scale effect). It will
be shown that this effect plays an important role in the shell stability
analysis and cannot be neglected.
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1. Introduction

In this paper, a new model of stability analysis for cylindrical shells ha-~
ving periodic structure (a periodically varying thickness and/or periodically
varying elastic properties) along one direction tangent to the undeformed shell
midsurface M is presented. This situation is mainly oriented towards cylin-
drical shells reinforced by periodically spaced dense system of ribs as shown
in Fig.1. Shells with a periodic structure along one direction tangent to M
are termed uniperiodic.

We restrict our considerations to those uniperiodic cylindrical shells, which
are composed of a large number of identical elements. Moreover, every such
element is treated as a shallow shell. It means that the period of inhomo-
geneity is very large compared with the maximum shell thickness and very
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small as compared to the midsurface curvature radius, as well as the smal-
lest characteristic length dimension of the shell midsurface in the periodicity
direction.

It should be noted that in the general case, on the shell midsurface we
deal with not periodic but with what is called a ”locally periodic structure”
in directions tangent to M. Following Wozniak (1999), by a locally periodic
shell we mean a shell which, in subregions of the shell midsurface M much
smaller than M can be approximately regarded as periodic. Hence, a locally
periodic shell is made of a large number of not identical but similar elements.
However, for cylindrical shells the Gaussian curvature is equal to zero and
hence on the developable cylindrical surface we can separate a cell which can
be referred to as representative cell for the whole shell midsurface. It means
that on cylindrical surface we deal not with locally periodic but with a periodic
structure.

Problems of periodic (or locally periodic) structures are investigated by
means of different methods. The exact analysis of shells and plates of this
kind within solid mechanics can be carried out only for a few special pro-
blems. In the most cases, exact equations of the shell (plate) theory are too
complicated to constitute the basis for investigations of most of the engine-
ering problems because they involve highly oscillating and often discontinuous
coefficients. Thus many different approximate modelling methods for periodic
(locally periodic) shells and plates have been formulated.

Structures of this kind are usually described using homogenized models
derived by means of asymptotic methods. These models from a formal point
of view represent certain equivalent structures with constant or slowly vary-
ing stiffnesses and averaged mass densities. Unfortunately, in most cases, the
asymptotic procedures are restriced to the first approximation, which leads to
averaged models neglecting the effect of the periodicity cell length dimensions
on the global structure behavior, called the length-scale effect, cf. Caillerie
(1984), Kohn and Vogelius (1984), Lutoborski (1985), Lewinski and Telega
(1988, 2000), Kolpakov (2000).

The periodically ribbed plates and shells are also modelled as homogene-
ous orthotropic structures, cf. Ambartsumyan (1974), Grigolyuk and Kabanow
(1978). These orthotropic models are not able to describe the length-scale ef-
fect on the overall shell stability, being independent of the period of inhomo-
geneity.

The nonasymptotic modelling procedure based on the notion of toleran-
ce and leading to the so-called length-scale (or tolerance) models of dynamic
and stationary problems for micro-periodic (or locally periodic) structures
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was proposed by Wozniak in a series of papers, e.g. Wozniak (1993, 1999),
Wierzbicki and Wozniak (2002), Wozniak and Wierzbicki (2000). These tole-
rance models have constant or slowly varying coefficients and take into account
the effect of inhomogeneity period lengths on the global body behavior (the
length-scale effect). This effect is described by means of certain extra unk-
nowns called internal or fluctuation variables and by known functions which
represent oscillations inside the periodicity cell, and are obtained either as
approximate solutions to special eigenvalue problems for free vibrations on
the separated cell with periodic boundary conditions or by using the finite
element discretization of the cell. The averaged models of this kind have been
applied to analyze certain dynamic and stability problems of periodic struc-
tures, e.g. for Hencky-Reissner periodic plates (Baron, 2003), for Kirchhoff
periodic plates (Jedrysiak, 2000), for periodic beams (Mazur-Sniady, 1993),
for periodic wavy-plates (Michalak, 1998), for thin periodically ribbed plates
(Nagérko and Wozniak, 2002), for periodic cylindrical shells (Tomezyk, 1999,
2003) and others.

The mentioned above tolerance model for cylindrical shells with a periodic
structure in both directions tangent to the shell midsurface M (Tomczyk,
1999) and that for cylindrical shells having periodic structure in only one
direction tangent to M (Tomezyk, 2003), can be applied to investigations of
dynamic problems but they cannot be used to analyze stability problems of
the shells under consideration. That is why, in this paper the tolerance model
of stationary stability problems for uniperiodically (i.e. periodically along one
direction tangent to M) densely stiffened cylindrical shells will be derived and
discussed.

It has to be mentioned that an extremely extensive literature deals with
elastic stability of thin cylindrical shells reinforced by widely spaced stiffeners.
Contrary to the shells with densely spaced ribs, which are objects of consi-
derations in this paper, those having widely spaced stiffeners are analyzed
with allowance for the discreteness in the arrangement of the ribs. It means
that the stability problems of such shells are considered within the framework
of discrete models, while the stability analysis of periodically, densely ribbed
cylindrical shells investigated in this paper is carried out within continuum
models. The discrete approach is in detail discussed in monographs by Amiro
and Zarutsky (1980) and Gavrylenko (1989). Moreover, in the mentioned mo-
nographs can be found an extensive review of papers and books dealing with
stability problems of widely ribbed shells, as well as of densely stiffened shells
treated as homogeneous orthotropic structures.
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It is well known that stability problems of thin cylindrical shells being
homogeneous or weekly heterogeneous have to be investigated by using the
geometrically nonlinear shell theory, cf. Kdrmén and Tsien (1941), Volmir
(1967), Brush and Almroth (1975), Pietraszkiewicz (1989). However, in the
case of the highly heterogeneous structures considered here (i.e. densely ribbed
shells) which are described by using continuum models, we are interested in
the upper state of critical forces and hence we can use the geometrically linear
stability theory for thin linear-elastic cylindrical Kirchhoff-Love type shells.

The aim of this contribution is three-fold:

e First, to formulate an averaged model of a uniperiodically densely stif-
fened cylindrical shell which has constant coefficients in the direction of
periodicity and describes the effect of the cell size on the global shell
stability. This model will be derived by using the tolerance averaging
procedure proposed by Wozniak and Wierzbicki, (2000) and hence will
be called the tolerance fluctuation variable model of stability problems
for uniperiodically densely stiffened cylindrical shells.

e Second, to derive a simplified (homogenized) model in which the length-
scale effect is neglected.

e Third, to show that the length-scale effect plays a crucial role in the
shell stability problems and cannot be neglected. In order to illustrate
this thesis, the critical forces of a special case of cylindrical shell will be
determined and investigated by using both the tolerance and homogeni-
zed models.

Basic denotations, preliminary concepts and starting equations will be pre-
sented in Section 2. The general line of the tolerance averaging approach will
be shown in Section 3. The tolerance model for stationary stability problems in
linear-elastic thin cylindrical shells with a periodic structure (i.e. with perio-
dically densely spaced stiffeners) along one direction tangent to M and slowly
varying or constant structure along the perpendicular direction tangent to M
will be proposed and discussed in Section 4. For comparison, the governing
equations of a certain homogenized model will be given in Section 5. In the
subsequent section, in order to evaluate the length-scale effect in stability pro-
blems, both the obtained tolerance and homogenized models will be applied
to investigations of critical forces in open circular cylindrical shells reinforced
by ribs, which are densely and periodically spaced along the lines of principal
curvature of the shell midsurface. Final remarks will be formulated in the last
section.
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2. Preliminaries

In this paper we will investigate thin linear-elastic cylindrical shells perio-
dically, densely ribbed along one direction tangent to M. Cylindrical shells of
this kind will be termed uniperiodic or uniperiodically stiffened. At the same
time, the stiffened shells under consideration have slowly varying or constant
structure (i.e. slowly varying or constant geometrical and /or material proper-
ties) along the direction tangent to M and perpendicular to the direction of
periodicity. Examples of such shells are presented in Fig. 1.

5067

Fig. 1. Examples of uniperiodically stiffened shells

Denote by 2 C R? aregular region of points @ = (8!,6?) on the 00'62-
plane, ©!, ©? being the Cartesian orthogonal coordinates on this plane and
let E3 be the physical space parametrized by the Cartesian orthogonal coor-
dinate system Oz'z%z3. Let us introduce the orthogonal parametric represen-
tation of the undeformed smooth cylindrical shell midsurface M by means of
M= {z = (z',2%,2%) € B3 : = = z(6',6?), O € 2}, where =(0!,6?) is
the position vector of a point on M having coordinates 6!, 62

Throughout the paper indices a,/,... run over 1,2 and are related to the
midsurface parameters @', ©?; indices A, B,... runover 1,2,...,N, summa-
tion convention holds for all aforesaid indices.

To every point z = x(@), @ € {2 we assign a covariant base vectors
a, = x,, and covariant midsurface first and second metric tensors denoted by
B, bap, respectively, which are given as follows: a,g = ao-ag, bog = n-ay g,
where m is a unit vector normal to M.

Let 6(@) stand for the shell thickness.

Taking into account that coordinate lines ©% = const are parallel on
the 00'62%-plane and that ©? is an arc coordinate on M, we define [ as
the period of shell structure in ©2-direction. The period [ is assumed to be
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sufficiently large compared with the maximum shell thickness and sufficiently
small as compared with the midsurface curvature radius R as well as the
characteristic length dimension L of the shell midsurface along the direction
of shell periodicity, i.e. supd(-) < | < min{R,L}. Under the given above
assumptions for period [, the shell under consideration will be referred to as
a mesostructured shell, cf. Wozniak (1999), and the period [ will be called the
mesostructure length parameter.

We shall denote by A = {0} x (—1/2,1/2) the straight line segment on
the 0O'O?-plane along the OB2-axis direction, which can be taken as a
representative cell of the periodic shell structure (the periodicity cell). To
every © € §2 an arbitrary cell on 0O8'©2%-plane will be defined by means of:
AO) =0+ A, O € 024, 24 :={O € 2: AO) C 2}, where the point
@ € {2, is the center of a cell A(@) and {24 is a set of all the cell centers
which are inside (2.

A function f(@) defined on 24 will be called A-periodic if for arbitrary
but fixed @! and arbitrary 62, ©% & [ it satisfies the condition: f(©!,6?) =
f(©',6% £ 1) in the whole domain of its definition and it is not constant.

It is assumed that the cylindrical shell thickness as well as its material
properties are A-periodic functions of ©% and slowly varying functions of ©!.
Shells like that are called uniperiodic, moreover under the given above assump-
tions for period [ they are referred to as the mesostructured shells.

The above periodic heterogeneities can be also interpreted as those caused
by a periodically spaced dense system of ribs, as shown in Fig. 1.

For an arbitrary integrable function ¢(-) defined on 2, following WozZniak
and Wierzbicki (2000), we define the averaging operation, given by

W=7 [ e var  e=@Eehem (21
A(©)

For a function ¢, which is A-periodic in ©?, formula (2.1) leads to
(p)(O"). If the functions ¢ is A-periodic in ©? and is independent of O,
its averaged value obtained from (2.1) is constant.

Our considerations will be based on the simplified linear Kirchhoff-Love
second-order theory of thin elastic shells in which terms depending on the
second metric tensor of M are neglected in the formulae for curvature changes.
Below, we quote the general formulations of the theory under consideration.

2.1. The Kirchhoff-Love shell equations

Let uo(@), w(@) stand for the midsurface shell displacements in direc-
tions tangent and normal to M, respectively. We denote by €,3(0), kag(®)
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the membrane and curvature strain tensors and by n®?(@), m®?(@) the stress
resultants and stress couples, respectively. The properties of the shell are de-
scribed by 2D-shell stiffness tensors D*?7%(@), B*#7%(@). Let f.(®), f(O)
be external force components per midsurface unit area, respectively tangent
and normal to M.

Functions D*?7%(@), B*#7%(@) and §(@) are A-periodic functions of &2
and are assumed to be slowly varying functions of ©!.

We denote by N the constant compressive membrane forces in the shell
midsurface, which satisfy the following equations of equilibrium: Wiﬁ-i— P =0,
bagrﬁuﬁ +f=0.

The simplified linear Kirchhoff-Love second-order theory of thin elastic
cylindrical shells is governed by:

— the strain-displacement equations

Ens = U(y,8) — bysw Ky = —~W,yys (2.2)
— the stress-strain relations
n = phroe_; m®® = B s (2.3)

— the equations of equilibrium

—af

nf‘f =0 N = const

(2.4)
mf:,% + baﬁna‘s — Nﬂﬁw‘a'@ =0

These equations take also into account the dense system of ribs.

In the above equations the displacements u, = u,(@) and w = w(O),
@ € (2, are the basic unknowns.

For uniperiodically densely ribbed shells, D*$7(@) and B(@),
© € {2, are non-continuous highly oscillating A-periodic functions; that is
why equations (2.2)-(2.4) cannot be directly applied to the numerical analysis
of special problems. From (2.2)-(2.4) an averaged model of uniperiodic cylin-
drical shells under consideration having coefficients, which are independent of
the ©@2-midsurface parameter and are slowly varying functions of ©! as well
as describing the cell size effect on critical forces, will be derived. In order to
derive it, the tolerance averaging procedure given by Wozniak and Wierzbicki
(2000) will be applied. To make the analysis more clear, in the next section we
shall outline the basic concepts and the main assumptions of this approach,
following the monograph by Wozniak and Wierzbicki (2000).
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3. Modelling concepts and assumptions

Following the monograph by Wozniak and Wierzbicki (2000), we outline
below the basic concepts and assumptions which will be used in the course of
modelling procedure.

3.1. Basic concepts

The fundamental concepts of the tolerance averaging approach are tho-
se of a certain tolerance system, locally slowly varying functions, periodic-like
functions and periodic-like oscillating functions. These functions will be de-
fined with respect to the A-periodic shell structure defined in the foregoing
section.

By a tolerance system we shall mean a pair T = (F,&(:)), where F is a
set of real-valued bounded functions F(-) defined on 2 and their derivatives
(including also time derivatives), which represent the unknowns in the problem
under consideration (such as unknown shell displacements tangent and normal
to M) and for which the tolerance parameters ¢r being positive real numbers
and determining the admissible accuracy related to computations of values of
F(-) are given; by ¢ is denoted the mapping F 3 F — ¢p.

A continuous bounded differentiable function F(@,t) defined on {2 is cal-
led locally slowly varying (or A-slowly varying) with respect to the cell A
and the tolerance system T, F' € SV,(T) if, roughly speaking, it can be tre-
ated (together with its derivatives) as constant on an arbitrary periodicity
cell A.

The continuous function ¢(-) defined on 2 will be termed a A-periodic-
like function, ¢(-) € PLA(T), with respect to the cell A and the tolerance
system T, if for every © = (O',6?%) € £2, there exists a continuous A-periodic
function pg(-) such that (V& = (61,%2))[|@ — ¥| < | = ¢(¥) = po(¥)],
¥ € A(@), and if similar conditions are also fulfilled by all its derivatives. It
means that the values of a periodic-like function ¢(-) in an arbitrary cell A(@),
© € (24, can be approximated, with sufficient accuracy, by the corresponding
values of a certain A-periodic function @g(-). The function pe(-) will be
referred to as a A-periodic approximation of () on A(©).

Let u(-) be a positive A-periodic function. The periodic-like function ¢ is
called A-oscillating (with the weight u), ¢(-) € PL%(T), provided that the
condition (up)(@) = 0 holds for every © € 2, in the special case p = const
the oscillating periodic-like function satisfies condition (p)(©) = 0, @ € §2,;
in this case we shall write ¢ € PLY(T).
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3.2. Modelling assumptions

The tolerance averaging technique is based on two modelling assumptions.
The first of them is strictly related to the concept of locally slowly varying
and periodic-like functions.

Tolerance Averaging Assumption. If F € SV4(T), ¢(-) € PLA(T) and
ve(:) is a A-periodic approzimation of p(-) on A(®) then, for every
A-periodic bounded function f(-) and every continuous A-periodic dif-
ferentiable function h(-) such that sup{|h(¥!,¥2)|, (¥!,¥?) e A} <,
the follounng tolerance averaging relations determined by the pertinent
tolerance parameters hold for every © € 2,:

(T1)  (fF)(©) = (f)(O)F(O)

(T2)  (f(hF),2)(@) = (fFh2)(O)
(T3)  (fe)(@) = (fre)(©)

(T4)  (h(f¢)2)(©) = —(fph,2)(O)

It means that in the course of averaging, the left-hand sides of formulae
(T1)-(T4) can be approximated by their right-hand sides, respectively.
The second modelling assumption is based on heuristic premises.

Conformability Assumption. In every periodic solid the displacement
fields have to conform to the periodic structure of this solid. It means
that the displacement fields are periodic-like functions and hence can be
represented by a sum of averaged displacements, which are locally slowly
varying, and by highly oscillating periodic-like disturbances, caused by
the periodic structure of the solid.

The aforementioned Conformability Assumption together with the To-
lerance Averaging Assumption constitute the foundations of the tolerance
averaging technique. Using this technique, the tolerance model of stationary
stability problems for uniperiodically densely stiffened cylindrical shells will
be derived in the subsequent section. It can be mentioned that this tole-
rance averaging method has been used to derive a tolerance model of dy-
namtc problems for uniperiodic cylindrical shells in the paper by Tomczyk
(2003). However, this model cannot be applied to the investigation of stability
problems.
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4. The tolerance model of stability problems for uniperiodically
densely stiffened cylindrical shells

4.1. Modelling procedure

Let us assume that there is a certain tolerance system T' = (F,&(-)), where
the set F consists of the unknown shell displacements tangent and normal
to M and their derivatives.

The tolerance averaging approach to Eqgs. (2.2)-(2.4) will be realized in five
steps.

Step 1. From the Conformability Assumption it follows that the unknown
shell displacements u, (@), w(@) in Egs. (2.2)-(2.4) have to satisfy the condi-
tions: ua(@) € PLA(T), w(®) € PLA(T). It means that in every cell A(O),
® € (24, the displacement fields can be represented, within a tolerance, by
their periodic approximations. A simple consequence of the Conformability
Assumption is co called the modelling decomposition

ua(@) = Ua(O) + dua(O) w(®) = W(O) + p(O)

4.1
Ua(@),W(O) € SVi(T) da(@),p(®) € PL(T) -
which appears under the normalizing condition (d,(@)) = (p(@)) = 0.

It can be shown, cf. Wozniak and Wierzbicki (2000), that the unk-
nown locally slowly varying functions U,(@), W(@) in (4.1) are given by:
Ua(O) = (ua)(@), W(O) = (w)(O). Functions U, (@), W(O) represent the
averaged parts of displacements uo(@), w(@), respectively and are called
macrodisplacements.

The unknown displacement disturbances d, (@), p(@) in (4.1) being oscil-
lating periodic-like functions are caused by the highly oscillating character of
the shell mesostructure.

Step 2. Substituting the right-hand side of (4.1) into (2.4) and after the
tolerance averaging of the resulting equations, we arrive at the equations

[(D70)(6")(Uy 5 — bysW) + (D*°d, 5)(©) — by (D*’p)(O)] 0 = 0( 42)
[(B) (@) Wons +(B D5 )(O)] s —bagl(D*8)(O1) (Uns — bys W) +

+(Daﬁ75d«1,6)(@) _ bﬁ(Daﬁ‘Y‘sp)] + Naﬁw,aﬁ -0

which must hold for every @ € 24.
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Step 3. Multiplying Eqgs. (2.4); and (2.4)2 by arbitrary A-periodic test
functions d*, p*, respectively, such that (d*) = (p*) = 0, integrating these
equations over A(@), @ € 24, and using the Tolerance Averaging Assump-
tion, as well as denoting by d,, p the A-periodic approximations of dg, p,
respectively, on A(@), we obtain the periodic problem on A(@) for functions
do (0, W2), B, W2), (61, ¥2) € A(®) = A(B!,6?), given by the following
variational conditions

~(d3 D 5) + (d*(D°d, 5),1 ) = bys[—(d,3 D) + (d*(DPVp),1 )] =
= (d,5, D*P)(U, 5 — bysW) — [(d* D) (U, 5 — bysW)],1 W
(Py32 B5s ) — 2(p,3 (B 5,06 )01 ) + (0" (B Hrs )11 >

b ﬁ[@*D‘*ﬁ*“d 8) = bys (DB + N (0*Po1 ) + 2N (0" P2 ) +

+N"(p*B22) = bag(p* DP1) Uy — bysW) +

—(p59 B )W,5 +2[((p3 B*),1 = (p,51 B*°))Woys +(p3 BX) W1 ] +
—{[((p"B"),1 =2(p,; B")),1 +(p.11 BN W,ps +2((p* B) 1 +
—(p,} B W1 +(p* BY W11 }

Conditions (4.3); and (4.3)2 must hold for every A-periodic test function d*
and for every A-periodic test function p*, respectively.

Equations (4.2), (4.3) represent the basis for obtaining the tolerance model
for analyzing stationary stability problems of linear elastic cylindrical shells
reinforced by ribs periodically densely spaced in one direction tangent to M .

Step 4. In order to obtain solutions to the periodic problems on A(@),
given by the variational equations (4.3), we can apply the known orthogonali-
zation method. Hence, for arbitrary ©! and (01,¥?) € A(©), 0 = (6!,6?%) €
24 we can look for solutions to the periodic problem (4.3) in the form of the
finite series

do (61, 9%) = K6, ¥%)QA(61,67) w

e, %) = g(e',v?*) VA6, 6?%) A=1,2,...,N

in which the choice of the number N of terms in the finite sums determi-
nes different degrees of approximations and where Q4(6',6?%), VA(6',6?)
are new unknowns called fluctuation variables, being locally slowly varying
functions in @2, i.e. Q4,VA € SV4(T). Moreover, hA(O',w?), ¢4 (6!, ¥?),
A = 1,...,N, are known in every problem under consideration, linear-
mdependent l-periodic functions such that h% Jhg 1 gA,g,f;‘ ,19,512 € O(l),
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max ||h4 (6, ¥?)| < I, max|g? (O, ¥?)| < 12, (h*)(O!) = (¢")(O') = 0 for
every A, (hWAhB)(O) = (¢g2¢P)(6') = 0 for every A # B.

Functions h,A(Ql,!I’?), g2 (O, ¥?), A=1,2,...,N,in (4.4) can be derived
from the periodic Finite Element Method discretization of the cell and hence
will be referred to as the shape functions. It can be observed that in many
cases this discretization of the cell requires a large number of finite elements
and consequently, the number N of extra unknowns QQ, VA in (4.4) is also
large.

The functions h?4(0',¥?), g4(©',¥?), A = 1,...,N, can also be obta-
ined as exact or approximate solutions to certain periodic eigenvalue pro-
blems on the cell describing free periodic vibrations of the stiffened shell. It
means that the functions h?, g” represent the expected forms of free periodic
vibration modes of an arbitrary cell and hence are referred to as the mode-
shape functions. Following Tomezyk (2003), this periodic eigenvalue problem
of finding A-periodic eigenfunctions ha(0',¥?), g(6',¥?), (6',¥?) € A(O),
O = (O',6?) € 2, is given by the equations

[D¥2(O",0%)hy 2(6",9%)],2 +1(0", ¥?) (6" a™ha(67, ¥7) =35

(BZ2(6",0)g,22 (6", %)) .22 ~ (€' W) w(6")9(6", ¥?) = 0

and by the periodic boundary conditions on the cell A(@) together with the
continuity conditions inside A(@); by u(0!,¥?), a®® and w we have denoted
the shell mass density per midsurface unit area, the contravariant midsurface
first metric tensor and the free vibration frequency, respectively. By averaging
the above equations over A(@) we obtain (uh,)(O') = (ug)(0') = 0.

Thus, [hl(6,¥2), g1 (O, ¥2)], [R2(O,¥?),g%(O',¥?)],... is a sequence of
eigenfunctions related to the sequence of eigenvalues [w2,w?];, [w2,w?]s,....
In the modelling procedure this sequence is restricted to the N > 1 eigen-
functions. Moreover, in most problems the analysis will be restricted to the
simplest case N = 1 in which we take into account only the lowest natural vi-
bration modes (in directions tangent and normal to M) related to Eqs. (4.5).
In this paper it is assumed that h{' = h4' and hence we denote h* = h{' = h4.

Step 5. Substituting the right-hand sides of (4.4) into (4.2) and (4.3) and
setting d* = hA(61,¥?), p* = ¢4(6},¥?), A =1,2,...,N, in (4.3), on the
basis of the Tolerance Averaging Assumption we arrive at the tolerance fluctu-
ation variable model of stability problems for uniperiodically densely stiffened
cylindrical shells. In the next subsection the equations of this model will be
given and discussed.
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4.2. Governing equations

In the previous subsection, applying the tolerance averaging of Kirchhoff-
Love second-order shell equations we have arrived at the tolerance fluctuation
variable model of stationary stability problems for uniperiodically densely stif-

fened cylindrical shells.
Under extra denotations

fjaﬁ'yé = ( Daﬁ'yé>
5140437 = l__l {Daﬁ'ylhz‘l>
éaﬁ“r& = ( Bnﬁ'y& )

—Aaf . a
K™ = 171(B#1g )
CAPY = (D hg b7 )
FABB = |=2p,_s(DP1Sp, 4 gB)

FAPP = =3, 5(D189 pAgB)

TP = 17, 5b, 5 (DP9 gA g B)
RAB = 5_2(8“7691:?5 gB)

R = £—4<BllllgAgB>

TP =194 9.7)

T =1"Yg497)
TAP = 17%(g,{ g)

this model is represented by:
~ the constitutive equations

DAeBY = (Daﬂwéhjs‘l)
LAO:,@ - l_2b.75<Da‘67‘§gA}
KA = (Bosrig A

K = l——2<BaﬁllgA>
—=ABBy __ ,_ o

CAPOY = |- (padrip A B
("ffABﬁ‘y = £-2<Dlﬁ'rlhAhB)

SAB = (Baﬁ?{sgsﬁﬁ Q’,.‘% )

5AB 1/R18Y6 , A , B
R =I1""(B 79’69’76)

—AB 4
RA =1 J(Blﬁllg’g gB)

(4.6)

S4B =17(B19g 19 )
—AB )

T =194 ¢")
~AB

T =1"(gfh¢"

T" = 174(g%¢P)

N8 = BBy, 5 — b sW) + DBPQE 4 D QB | — 2LBPV B

- —Ba — Baf}
MO = BoBvW, s+ KBoBYB | KPPy B 2K v B
HA,@ — DA;@'}'&(U‘Y!‘; _ b‘yéW) + CAB'GTQ,? + lﬁABﬁTQ-El _ l2FABﬁVB

HY = DU, 5 — b,sW) + TP QB + 2CABAQB, — PFAEPyB

(4.7)
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GA = —PLA (U, 5 — bysW) + KAPW, 5 ~PFABPIQE — PFAPQB, 4

—AB
+(S4B + "TABYyYB L 9R VB +2RABY B

— Aaf
GA=1PK _ Was+2RPVE 4+ 23Ry B +E4R V,ll

—AB
G = IK "W, o5 +IR__ VB + 212548y, B 1 pRAPy B

- the system of three averaged partial differential equations of equilibrium for
macrodisplacements U, (@), W(O)
N =0
“ (4.8)

,35 —_ aﬁNo‘ﬁ .+ -N-aﬁw,aﬁ — 0

-~ the system of 3N partial differential equations for the fluctuation variables
QBe),vB®),B=12,...,N

HY _H ¥ =0
(4.9)

— — ~AB - _
GA+GA —2GA+N" (12T VB 4+ 22T4By B TPy B ) 4
_ AB —~ .
+2N2 (T V. {TVP) - NPPTABYE = ¢ AB=1,2.. N

where some terms depend explicitly on the mesostructure length parameter [.

The above model has a physical sense provided that the basic unknowns
Un(®), W(O), QA(@) VAO) € SV4(T), A=1,2,...,N,i.e. they are locally
slowly varying functlons of ©2-midsurface pa.rameter

It can be observed that in the tolerance model equations (4.8), (4.9) we
deal with N > 0 if N are compressive forces.

Taking into account (4.1) and (4.4), the shell displacement fields can be
approximated by means of the formulae

ua(0) = Ua(©) + (61, 9%)Q4(©)
(4.10)

w(®) ~ W(O) + g4 (6", ¥?)V4(O) A=1,2... N

where the approximation ~ depends on the number of terms h*(-)Q2(-),
gAVA).
The characteristic features of the derived model are:
e The model takes into account the effect of the cell size on the overall
shell stability; this effect is described by coefficients dependent on the
mesostructure length parameter [.
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e The model equations involve averaged coefficients which are independent
of @*-midsurface parameter (i.e. they are constant in the direction of
periodicity) and are slowly varying functions of ©1!.

e The number and form of boundary conditions for macrodisplacements
Uy(@), W(O) are the same as in the classical shell theory governed
by equations (2.2)-(2.4). The boundary conditions for the fluctuation
variables Q4(@), VA(©) should be defined only on the boundaries
B! = const .

e It is easy to see that in order to derive the governing equations (4.7)-
(4.9), we have to postulate a priori periodic shape functions hA (6!, ¥?),
g2 (O, ¥%), A = 1,2,...,N, which can be derived from the periodic
finite element method discretization of the cell or obtained as solutions
to the periodic eigenvalue problem describing free vibrations of the shell,
given by (4.5). Moreover, for uniperiodic shells the shape (mode- shape)
functions are periodic in only one direction; in this work they are I-
periodic functions only of ©*-midsurface parameter.

Assuming that the cylindrical shell under consideration has material and
geometrical properties independent of @! we obtain the governing equations
(4.7)-(4.9) with constant averaged coefficients. Moreover, in this case the shape
functions h4, gA, A = 1,2,... N, are also independent of ©@'-midsurface
parameter.

For a homogeneous shell D*7¢(@) and B**%(@), © € 12, are constant
and because (h?) = (g*) = 0, we obtain (h,2) = (9,4 ) = (9,45) = 0. In this
case equations (4.8) reduce to the well-known linear-elastic shell equations
of equilibrium for macrodisplacements U, (@), W(@) and independently for
QA®), VA(O), we arrive at a system of N differential equations, which has
only trivial solution Q7 = V4 = 0. Hence the constitutive equations (4.7) and
equations of equilibrium (4.8) reduce to the starting equations (2.3) and (2.4),
respectively. However, it has to be emphasized that the starting equations
(2.2)-(2.4) governed by the geometrically linear Kirchhoff-Love second-order
shell theory cannot be used for investigations of stability problems for homoge-
neous shells; it is well known that the stability analysis of homogeneous shells
has to be carried out within the framework of geometrically nonlinear shell
theory, cf. the references in the Introduction.

In the next section the homogenized model of uniperiodic cylindrical shells
under consideration will be derived as a special case of Eqgs. (4.7)-(4.9).
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5. Homogenized model

The simplified model of uniperiodically densely ribbed cylindrical shells
can be derived directly from the tolerance model (4.7)-(4.9) by a limit passage
[ — 0, i.e. by neglecting the underlined terms which depend on the mesostruc-
ture length parameter [. Hence, we arrive at the homogenized shell model
governed by:

— equilibrium equations

aﬁ ) _
ef;z (Uqr da T 'ytSWsa) =0 (5-1)

7ol
B Wiapys —bapDef7 (Uys = bysW) + N Wia =0
~— constitutive equations

af _ 0,616 _
N eff (U'T 4 b’]"aw) (5'2)

Mcxﬁ — Baﬁ"(é Ws'}’é

eff
where
Dgf;ffs = DBy _ DAaﬁnG;;’%B DB
B:.gya — BB _ pAaB pAB B

with Gég’ and E4B defined by
GABCBCBY = §154C EABRBC _ 5AC
[ a3

The homogenized model obtained above governed by Egs. (5.1), (5.2) is
not able to describe the length-scale effect on the overall shell behavior being
independent of the mesostructure length parameter [.

In order to show differences between the results obtained from the tolerance
uniperiodic shell model (4.7)-(4.9) and from the homogenized model (5.1),
(5.2), critical forces of a special case of uniperiodic cylindrical shell will be
analyzed in the next section.

6. Applications

The objective of this Section is to determine and investigate the critical
forces of an open circular cylindrical shell with L,, Lo as its axial length and
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arc length along the lines of principal curvature of the shell midsurface, respec-
tively, and with §, R as its constant thickness and its midsurface curvature
radius, respectively. The shell is reinforced by two families of densely spaced
ribs, which are parallel to the generatrix of cylindrical surface and are periodi-
cally distributed along the lines of the shell midsurface principal curvature, cf.
Fig. 2. The stiffeners of both kinds are assumed to have constant rectangular
cross-sections with A, As as their areas and with I;, I> as their moments of
inertia. Moreover, the gravity centers of the stiffener cross-sections are situ-
ated on the shell midsurface. It is assumed that both the shell and stiffeners
are made of homogeneous isotropic materials and let us denote by E, v the
Young’s modulus and Poisson’s ratio of the shell material, respectively, and
by Ei, Es the Young's moduli of the rib materials, cf. Fig. 3.

Fig. 3. A fragment of the stiffened shell cross-section

Let @', ©2 be the axial and arc coordinates on the shell midsurface M,
respectively, and let ©@2-coordinate lines coincide with the lines of principal
curvature of this surface.

It is assumed that the edges of the shell lie on the coordinate lines ©! =0,
O' = L; and 6% =0, ©? = L, and that all four edges are simply supported.
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In agreement with the considerations in Section 2, on OG'62-plane we de-
fine | as the period of the stiffened shell structure in the ©2-direction, which
represents the distance (i.e. the arc length measured along the lines of mid-
surface principal curvature) between axes of two neighboring ribs belonging
to the same family, cf. Fig.2 and Fig. 3. It means that the axes of undefor-
med stiffeners are situated on the lines ©% = nyl, n; = 0,1,2,..., M, and
6% =nol +1/2,np = 0,1,2,...,(M — 1), Ly = (M — 1), where (2M —1) is
the number of stiffeners, cf. Fig. 2.

The period [ has to satisfy the conditions § < | < Lo. It means that the
number of stiffeners has to be very large. We also assume that L, > Log; it
follows that [ satisfies the condition | < L.

Denoting by aj, as the widths of the ribs (cf. Fig.3) we assume that
ay,a9 < | and hence the torsional rigidity of stiffeners can be neglected.

We define the periodicity cell A on the OO'©2%-plane by means of
A = (=1/2,1/2), A(6',0?) = (6',0% —1/2,0',6% +1/2), (6,6?%) € 2,
2y = {® € 2,A(@) € 2}. The cell A is shown in Fig.4. Setting
w2 € (~1/2,1/2), we assume that the cell A has a symmetry axis for ¥ = 0.

Ithe symmetry axis

J'of the cell

1 !PZ

==

i wle<|)2,12>
HI)’2 as (31.1"2
i RR f o

% i =
=t -
Loz o

Fig. 4. A periodicity cell along the O@?-axis direction on the O@!'&?-plane,
ay, s < l

The periodically ribbed shell under consideration will be treated as a non-
stiffened shell with constant thickness §, made of a certain non-homogeneous
and orthotropic material. The shell’s tensile and bending stiffnesses in the
axial direction are [-periodic functions in @2, being independent of @' and
are different from tensile and bending rigidities in circumferential direction,
being constant functions.

Denote D = E&/(1 — v?), B = E&/[12(1 — v?)], D,B = const,
HPY = 0.5[a®a + a®aP + v(e27e? 4 €*9eP7)] with a7, €7 as con-
travariant first midsurface tensor and Ricci bivector, respectively. After so-
me manipulations we obtain the following expressions for the nonzero com-
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ponents of tensor H®AY. HU — {222 — 1 HU2Z2 _— 211 —
HI212 = {1221 - 221 202 - 202 (1 ) /2,

Under the assumption that the torsional rigidity of stiffeners is neglec-
ted, the components of the shell stiffness tensors D*, B except for
D1 B are constant and given by: D70 — DA Babrd — BHA,
The tensile rigidity D!'''!(¥?) and bending rigidity B''!!(¥?) are Il-periodic
functions in ¥? and take the following form

( DH111 = D for w%e(-1/2,1/2) — {0}
D" %) = EA,/2 for W?=-1/2 and ¥ =1/2 (6.1)
E2A2 for @2 =0

(BH"M' =B for ¥ e(-1/2,1/2) - {0}
B\ ={ EL/2 for W2=—1/2 and U=1/2 (6.2)

| By, for w2=0

Taking into account definition (2.1) we obtain for functions D! (¥?),
B1(@2) given above the following averaged values

pll = (pily —p 4 %(EIAI + EyAy)
(6.3)

. 1
B = (B = B+ S(EiLy + Eala)

Let the shell be compressed in axial direction by the constant forces N
and at the same time let it be extended in direction of @? by the constant
forces N2> = —€N'", € > 0. Moreover it is assumed that N> = N~ = 0.

For the sake of simplicity, we restrict our considerations to the first terms
in series h(-)QA(-,t), g2 ()VA(,,t), A=1,2,...,N,ie. A= N = 1. Hence,
we introduce only two [-periodic shape functions h(¥?) = hl(¥?), g(¥?) =
g'(¥?), % € (—=1/2,1/2), which have to satisfy condition (h) = (g) = 0 and
the values of which are of order O(l) and O(I?), respectively. Functions h(¥?),
g(¥?) can be derived from the periodic finite element method discretization
of the cell or obtained as solutions to the periodic eigenvalue problem on the
cell given by equation (4.5).

Taking into account the symmetric form of the cell, cf. Fig. 4, we assume
that the shape function h(¥?) is antisymmetric on the cell A while the shape
function g(¥?) is symmetric.
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Taking into account the fact that, except for D1 B the components
of the shell stiffness tensors D% BB are constant and that the functions
h(¥?), g(¥?) are independent of @' as well as bearing in mind the symmetric
form of the cell and the symmetric form of function g(¥?) as well as anti-
symmetric form of function h(¥?), it can be shown that only the following

- N — All
averages in (4.6) are different from zero: DY BoAY | CABIl CAB22

~ = : +AB 3 —=AB

CAB”, CABZ2’ I_;AB2, SAB, L7, RAB, R SAB, TAB, T°7, A,B =1. Un-
der the assumption A = B = N = 1 we introduce the following denotations
for these non-zero averages

— 11 — All

K =K Ol = oAB11 02 = CAB22

Gl — GAB1L 02 — (AB22 F2 = pAB2

S = 5AB L=1"" R = RAB (6.4)
~  ~AB -

R=R S = 548 T =T48

T=7" AB=1

We also denote Q1(@) = Q1(0), Q2(0) = Q4(©), V(O®) = V(©),
e = (61,6?).

Bearing in mind the conditions and notations given above we will derive
below the formulae for critical forces of the considered uniperiodic shell by
using both the tolerance model given by Egs. (4.7)-(4.9) and the homogenized
model presented by Egs. (5.1),(5.2).

6.1. The tolerance model

Now, the governing equations (4.8), (4.9) of the tolerance model is sepa-
rated into the independent equation for Q,(@): C''Q; — iQéHQL“ = 0,
which yields ©, = 0, and the system of five equations for macrodisplacements
U1(©), Uy(®), W(®) and fluctuation variables Qo(0), V(©), @ = (6',6?),
being locally slowly-varying functions of ©2

DMy, 11+ D[(1 = v)27 W20 + (1 4+ v)2 Wa 19 + vR™W,1 ] = 0
D1+ )27 Ui12 + (1 = »)2 ' Ua11 + Us 22 + R'W2] =0
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DR Uy + R_lUQ,Q +R*W) + B"M'W, i +B(2W, 1122 +W,2222 ) +

— 11
AN (Wit W22 ) + 2K Vi =0, (6.5)
C#Qy — I’C*Qon - P’F*V =0

—11 _ —_
2K Wi —12F2Qq + (S + 'L + N e2T)V + [212(R - 25) +
+F] 11T]V11 +f RV,1111 = E>0

where some terms depend explicitly on the mesostructure length parameter /;
the averages D!, B!l are defined by (6.3) and the remaining ones are
given by (6.4) and (4.6).

It is easy to see that all coefficients of the above equations are constant.

Solutions to Egs. (6.5) satisfying the boundary conditions for a simply
supported shell can be assumed in the form (see Ambartsumyan, 1974)

U, = i iAmn cos(a,, 0') sin(8,6%)

m=1n=1

i Si(y ©1) cos(3,602)

||
(e
M

m=1n=1
o0 o0
W = Z z ' Sin(am©') sin(3,60?) (6.6)
m=1n=1
=> Z Dy sin(0, 0 sin(3,6%)
m=1n=1
o0 o0
V=Y 3" Ennsin(a,0")sin(3,6?)
m=1n=1
where oy, = mn/Ly, Bp = nm/Ly, m,n = 1,2,...; m, n represent the numbers

of buckling half-waves in directions of ©'- and ©2-coordinate lines, respecti-
vely.

Substituting the right-hand sides of Egs. (6.6) into Egs. (6.5) we obtain the
system of five linear homogeneous algebraic equations for Amn, Bmn, Cmn,
Dpiny Epn. For a nontrivial solution, the determinant of the coefficients of
these equations must equal zero. In this manner we arrive at the characteristic
equation for the critical force N . Setting (N.,)'™ = N'' and introducing
the following notations
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~— 11 ~
mm = (K )21+ ap l2C%(C)7Y)

o = H(EO) - [ G EOHCN NS 0D

1= 222 12(R - 25)(S + 'T)™! + 1%ad R(S + 1T)™Y]
M3m = PT[1 + 122 T(—€T) 7Y

and

D*H{(1 =v)2 Yk + BY) + 02 B2(1 +v) + DY E A + B3 Ag)l ™!
o, (1= v)27" + o, 5]

I

X1

(6.8)
xz = [B"ag, + BB (205, + B7)lx1 + D*R™*[205,6; +
+ ol (1 -v)?2(1+v)27 + DTYE A 4+ B2 A)l Yad (1 —v)271]

this equation has the following form

(Ner) ™2 (a2, — €82)x1 + (Nop)™[(a2, — £62)x1 (—2m) (Em3m) ™ — x% |

+Thm(§ﬂ3m)_]X1 + Wzm(§??3m)-1X2 =0 ‘E >0

It should be noted that the right-hand sides in (6.8) are always positive,
Le. x1 >0 and x2 > 0.

Because the shell under consideration satisfies the condition I/L; < 1,
ie. ayl < 1, in the sequel the simplified form of equation (6.9) will be
applied, in which the terms (aynl)?C2(C%2)7L, (aml)?(R — 25)(S + L),
(ml)*R(S +1*L)™! and (a,1)*T(—€T)~! can be neglected as small in com-
parison with unity and then

—11
hm ~m =K )? Nam = 3 = 12T
(6.10)
Nom 1y = L[(F2*(C®)™' - L] - §
Taking into account (6.10) and using the notations
by = mi(éns) by = ma(éns) ™! (6.11)

we obtain from Eq. (6.9), for each pair of values of m and n, m,n =1,2,...,
the following formulae for fundamental lower critical force ("N‘}jl)*m and for the



ON STABILITY OF THIN PERIODICALLY... 449

tm

additional higher critical force (ﬁijz) , caused by the uniperiodic structure

of the shell under consideration
—11 1~ _ _
(Ncrl)tm = 5[57- + X2X; l(a?zn - Eﬁg) l] +

*% \/[32 +xox7 (@2, — €82)71)2 — 4[bix1 + Xaba] (@2, — €62)~xi
(6.12)

11 1 _ _
(W)™ = 3l + xoxt (0, — 660) 7] +

+%\/[32 + x2x7 (a2, — €62)71)2 — 4[b1x1 + xa2b2] (a2, — €62)1x; !

In (6.12) the period length [ is contained in terms 31, 52.

The pairs of values of m and n corresponding to the smallest values of
the lower (Vo)™ and higher (N ..)!™ critical forces will be determined and
discussed in a separate paper.

6.2. The homogenized model

In order to evaluate the obtained results, let us consider the above problem
within the homogenized (i.e. asymptotic) model. From Egs. (6.5), after neglec-
ting the terms of orders O(1%) and O(I*), we obtain the following governing
relations of the homogenized model

D"y 4y + D[(1 = v)2 Whge + (1 + )2 Wana + vRTIW, ] = 0
D[(1+v)27 112+ (1 = )27 Wy + Usgo + RT'W,2] =0 (6.13)
DR W1 + R Uz + R72W) + BMIW,1; +

+B(2W,1122 +W,2002 ) + Nll(lel —EW,22) =0

The model obtained above is not able to describe the length-scale effect
on the overall shell stability being independent of the period length I.

It is easy to see that there are not fluctuation variables in the asymptotic
model (6.13) derived here. It means that U; = uy, Uy = ug, W = w and
hence the governing equations (6.13) coincide with the well-known equations of
stability problems for stringer-stiffened cylindrical shells; see Brush, Almroth
(1975).

The solutions to Egs. (6.13) can be assumed in the form (6.6); 2 3. Substitu-
ting the solutions to (6.13) we obtain the system of three linear homogeneous
algebraic equations in A, Bmn, Cmn. For App # 0, By # 0, Crpn # 0
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we arrive at the formula for critical values of compressive forces N Setting
(N:hywm = W' this formula has the form

11 - -

(Nep)™™ = xaxi (o — €62)7" £>0 (6.14)
where xj, x2 are given by (6.8), a,, = mn/L,, B, = nw/Ly, myn =1,2,...,
and & represents the relation between the tensile forces N*? and compressive
forces N'".

It is easy to see that in the above formula the cell size is neglected and that
in the framework of the asymptotic model it is not possible to determine the
additional higher critical force, caused by the periodic structure of the shell.

In the next subsection a comparison of the results obtained in Sections 6.1
and 6.2 will be presented.

6.3. Comparison of results

Let us compare the lower critical force given by (6.12);, which has been
derived from the tolerance model with that given by (6.14) obtained from the
homogenized model.

Setting N = (uN—;,I.l)tm / (Ni_i)hm and using notations (6.11) we obtain from
(6.12); and (6.14) the following expression

1 IR e
N= EXQ l[b2(a?n - Eﬂg))ﬂ + x2] +
(6.15)
1

— x5 V202, — €62)x1 + xal? — 4Bix1 + xebel (02, — €62)x1

From (6.15) it is seen that if the parameter & representing the relation
between tensile forces N>2 and compressive forces N is close to (om /Bn)? =
(mLy/nL;)? then N suddenly decreases. It means that the differences between
the values of critical forces obtained from both the models under consideration
are very large; the lower critical force (6.12), derived from the tolerance model
is much smaller than the critical force (6.14) obtained from the homogenized
one.

Now, let us assume that £ is not close to (am,/B,)%. It is easy to show that
treating every average value in (6.12);, which is of order O(I?), as a small
parameter € and then representing the square root in (6.12); in the form of
the power series with respect to & € O(I?), we arrive at the interrelation

(Nep)'™ = (Ng)™ + O(1) (6.16)
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between the values of critical forces (W;l)tm and (T\ﬂ,l )A™ obtained within the
framework of the tolerance and homogenized models, respectively. It means
that the differences between lower value of the critical force derived from
the tolerance model and critical force obtained from the asymptotic one are
negligibly small. Thus, in this case, the effect of the period length [ on the
values of critical forces can be neglected and we can use the asymptotic model
represented by Egs. (5.1), (5.2) instead of the non-asymptotic tolerance model
given by Eqs. (4.7)-(4.9).

6.4. Conclusions

Summarizing the results obtained in this section it can be concluded that:

e Contrary to the homogenized (asymptotic) model, the proposed nona-
symptotic one describes the effect of the period length [ on the shell
stability.

e In the framework of the non-asymptotic tolerance model proposed in this
contribution, the fundamental lower and additional higher critical forces
can be derived. The higher critical force, caused by a periodic structure
of the stiffened shell, cannot be determined using the homogenized (i.e.
asymptotic) model.

e The differences between the values of lower critical forces obtained from
the proposed tolerance model and those from the asymptotic one are
negligibly small; the critical force (W_;:)hm calculated from the asymp-

totic model is an approximation of order (O(I*) of the lower criti-

cal force (Vo)™ derived from the tolerance model, ie. (Vo)™ =

(J_V(];)"m + O(1*). Thus the effect of the period length [ on the shell
stability can be neglected and hence, the homogenized model given by
(5.1), (5.2) is sufficient from the point of view of calculation for the
problem of determining the critical forces in uniperiodically densely stif-
fened cylindrical shells under consideration. However, for certain values
of the &-parameter representing the relation between tensile forces N2
and compressive forces W“, these differences are very large; critical for-
ces related to the tolerance model are much smaller than those derived
from homogenized one. It means that in this case, the length-scale ef-
fect plays an important role and cannot be neglected and hence only the
non-asymptotic tolerance model represented by Egs. (4.7)-(4.9) has to be
used to analyze the critical forces of the ribbed shell under consideration.
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7. Final remarks

The subject matter of this contribution is a thin linear-elastic cylindri-
cal shell having a periodic structure (a periodically varying thickness and/or
periodically varying elastic and inertial properties) in one direction, tangent
to the undeformed shell midsurface M. Shells of this kind are termed unipe-
riodic. Moreover, it is assumed that the uniperiodic cylindrical shells, being
objects of our considerations, are composed of a very large number of identical
elements and every such element is treated as a shallow shell. It means that
the period of inhomogeneity is very large compared with the maximum shell
thickness and very small as compared to the midsurface curvature radius as
well as the smallest characteristic length dimension of the shell midsurface in
the periodicity direction. This uniperiodic structure of the cylindrical shells
considered here is related to the periodically spaced dense system of ribs as
shown in Fig. 1.

For the uniperiodically densely stiffened cylindrical shells the known gover-
ning equations of the Kirchhoff-Love shell theory involve periodic highly oscil-
lating and noncontinuous coefficients. Hence, in most cases direct application
of these equations to analyze engineering problems in periodic shells is very
complicated, particularly from the computational viewpoint. That is why the
aim of this contribution was to propose a new nonasymptotic model of stabili-
ty problems for uniperiodically, densely stiffened cylindrical shells, which has
constant coefficients in the direction of periodicity and hence can be applied
as a proper analytical tool for investigations of stability problems in the shell
under considerations. Moreover, the proposed model takes into account the ef-
fect of periodicity cell size on the global shell stability (the length-scale effect),
which is neglected in the known homogenized models derived by asymptotic
methods.

In order to derive the model equations, the tolerance averaging procedure
given by Wozniak and Wierzbicki (2000) has been applied to governing equ-
ations of the Kirchhoff-Love second-order shell theory for thin linear-elastic
cylindrical shells, i.e. to Eqs. (2.2)-(2.4). The proposed averaged model called
the tolerance model of stability problems for uniperiodically densely stiffened
cylindrical shells is represented by a system of partial differential equations
(4.8), (4.9) with coefficients which are constant in the direction of periodicity.
The basic unknowns are: the macrodisplacements U,, W and the fluctuation
variables Q4, VA, A = 1,2,..., N, which have to be locally slowly-varying
functions with respect to the cell and certain tolerance system. This require-
ment imposes certain restrictions on the class of problems described by the
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model under consideration. In order to obtain the governing equations, the
shape functions h?, g%, A = 1,2,...,N, should be derived from the perio-
dic finite element method discretization of the cell or obtained as solutions to
periodic eigenvalue problem on the cell given by equation (4.5).

In contrast with the homogenized (asymptotic) models, the proposed one
makes it possible to describe the effect of a periodicity cell size on the cri-
tical forces (the length-scale effect). From the illustrative example it follows
that this effect plays an important role in stability problems and cannot be
neglected.

In the framework of the non-asymptotic model proposed in this contribu-
tion, not only the fundamental, lower, but also the additional, higher critical
forces can be determined and analyzed.

Problems related to various applications of the proposed Egs. (4.7)-(4.9)
to stability of uniperiodically, densely stiffened cylindrical shells and determi-
nation of the mode-shape functions from periodic eigenvalue problem given by
(4.5) are reserved for a separate paper.
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Statecznoéé cienkich periodycznie gesto uzebrowanych powlok walcowych

Streszczenie

W pracy zaproponowano nowy usredniony niecasymptotyczny model stuzacy do
analizy statecznos$ci cienkich liniowo-sprezystych powlok walcowych, periodycznie,
gesto uzebrowanych w jednym kierunku stycznym do powierzchni srodkowej. Przy
wyprowadzaniu réwnan modelu wykorzystano znang metodg tolerancyjnego usred-
niania, zaproponowana przez Wozniaka i Wierzbickiego (2000). Zastosowanie tej me-
tody do znanych réwnan teorii powlok Kirchhoffa-Love’a doprowadzilo do modelu
reprezentowanego przez réwnania rézniczkowe czgstkowe o stalych wspdlczynnikach
w kierunku periodycznosci, zaleznych od dlugosci okresu periodycznosci. Oznacza to,
ze proponowany model, w przeciwieiistwie do znanych modeli zhomogenizowanych,
umozliwia badanie wplywu wielkosci komérki periodycznosci na wartosci sit krytycz-
nych w powloce walcowej (wplyw ten zwany jest efektem skali). Wyprowadzony model
poréwnano z modelem bez efcktu skali i pokazano, ze wplyw dlugosci okresu perio-
dycznosci odgrywa znaczgca role w zagadnieniach statecznosci periodycznie, gesto
uzebrowanych powlok walcowych.
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