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Abstract. Automatic heart ventricle segmentation in CT heart images can
be an element of system supporting pulmonary embolism diagnosis. To solve
that problem in this paper an application of two classical active contour
models, snakes and geometric active contours, is proposed. The prepared im-
plementation uses the unified model of those techniques which allows to de-
fine forces acting upon a contour only once. The nature of the images causes
that the process of force construction requires additional expert knowledge
since using only the information visible in the image satisfactory results can-
not be obtained.
Keywords: active contours, snakes, geometric active contours, expert knowl-
edge.

1. Introduction

Image segmentation is a crucial element of almost any system automatically
analysing image content. There are many segmentation techniques such as: thresh-
olding, edge based techniques or region based techniques. Their shortcoming is
that decision how a single pixel should be treated depends only on local character-
istic of the image in the neighborhood around. The alternative approach are active
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contour techniques. In the literature there many different variants of active con-
tours starting from snakes ([1, 2, 3, 4, 5, 6]), from which that group of methods
originates, through geometric active contours, ([8, 9, 10, 11, 12, 13]), active shape
models ([14, 15, 16]), up to Brownian Strings ([17]) and others ([18, 19, 20]). All
of them share, however, the common scheme which requires three elements to be
defined:

• contour model - it determines the space of regions that can be segmented

• energy function - it contains a domain knowledge and evaluates contours

• evolution process - it allows to find an optimal contour within contour model
and with respect to a given contour energy

The most commonly used techniques are snakes and geometric active contours
which, as it was shown in [7], are closely related. That relationship allows to define
domain specific contour energy (or directly contour forces in the evolution process)
only once and use them with both those approaches. These are the main reasons
why those methods were selected for implementation. Moreover, the described
experiments allow to compare them with a new method proposed by the author of
this work in [22].

This paper is organized as follows: in section 2 the theoretical background of
chosen active contour methods and their unified model are presented, section 3
describes the problem to be solved, the requiered expert knowledge, evaluation
methodology and obtained results, finally section 4 contains a summary of the
research.

2. Active contours

2.1. Snakes

Snakes are representatives of parametric active contours and were firsly de-
scribed in [1]. Contour, in this method, is defined as a function c : [a, b] → R2

for a ∈ R, b ∈ R and a < b. It means that for each value of parameter s ∈ [a, b]
that function defines a point in the image plane c(s) =

(
x(s), y(s)

)
∈ R2. The basic

energy function proposed in [1] is defined as follows:

E(c) =

∫ b

a

α(s) ‖c′(s)‖2

2
+
β(s) ‖c′′(s)‖2

2
+ V(c(s)) ds (1)
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(a) (b)

Figure 1. Sample CT heart images.

The first two components of that energy (respectively elasticity and rigidity com-
ponents) depend only on the shape of the contour and therefore represent an in-
ternal energy, the third evaluates the position of the contour in the image and is
called an external energy. It is worth noticing, which is not a rule, the value of
the internal energy for a given contour point depends only on the characteristic of
parametrization c. It is important since two contours that are visually the same can
have different parameterizations and consequently different energy. The external
energy needs not to consider only the information in the form of potential field
V : R2 → R defined by some image characteristic. It can use any other available
information.

To find an optimal contour Euler-Lagrange method must be applied which
leads to the following contour evolution scheme:

∂c
∂t

= (αc′)′ + (βc′′)′′ + F (2)

where F : R2 → R2 is a force that corresponds to potential V and F = ∇V.
This equation has an intuitive interpretation. One can consider the search for an
optimal contour as an iterative process in which optimal trade-off between energy
components must be found or equivalently in which the corresponding forces are
balanced.

There are numerous modifications of the presented basic approach. In [2, 3]
the additional pressure force was proposed which acts in a direction N normal to
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the contour:
F = FN (3)

where F : R2 → R. That pressure can be constant or depend on the characteristic
of image regions which leads to the concept of region energy and region force.

The evolution scheme presented above requires solving of system of two par-
tial differential equations in one dimension which can be effectively solved using
numerical schemes presented in [1].

2.2. Geometric active contours

In parametric active contours the resultant energy forces can act not only in
direction N normal to the contour but also in a direction tangent to the contour and
have an influence on contour parametrization. In geometric active contours dur-
ing evolution force can be only normal to the contour. Consequently, the contour
evolution can be described as:

∂c
∂t

= FN (4)

Since parametrization is not important, contour can be described in an implicit
form as a set of points c = (x, y) ∈ R2 such that C(x, y) = 0 for some C : R2 → R

and contour evolution can be expressed then as:

∂C
∂t

= F ‖∇C‖ (5)

Here, it is a surface C that evolves and not contour parametrization c. Such an
implicit representation is called a level set representation and allows to describe
contours of different topology which without any additional modifications was not
possible in explicit snakes approach.

The basic variant of geometric active contours was proposed in [8, 9] where
the equation of evolution had the following form:

∂C
∂t

= V(F + f (κ)) ‖∇C‖ (6)

The force having an influence on the contour is a sum of constant component F ∈ R
and component f : R2 → R depending on contour curvature κ. The potential field
V was used to stop the contour close to the desired image features.
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The above formulation does not specify the energy function explicitly. In [10]
that inconvenience was overcome by geodesic active contours where the energy
function was defined as:

E(c) =

∫ b

a
V(c(s))

∥∥∥c′(s)
∥∥∥ ds (7)

which leads to the following evolution equation:

∂c
∂t

= (Vκ − 〈∇V,N〉) N (8)

and which, using level set approach, can be expressed as:

∂C
∂t

= Vκ ‖∇C‖ + 〈∇V,∇C〉 (9)

Adding additional constant force and generalizing the curvature force the follow-
ing equation, similar to geometric active contours, can be derived:

∂C
∂t

= V(F + f (κ)) ‖∇C‖ + 〈∇V,∇C〉 (10)

The evolution scheme presented above requires solving of a partial differen-
tial equation in two dimensions which can be effectively solved using numerical
schemes presented in [7].

2.3. Unified model

The results presented further in this paper were obtained using a model pro-
posed in [7] where the relationship between the above methods was described.
Within that model contour evolution can be expressed for snakes as:

γ
∂c
∂t

= (αc′)′ + FN + F (11)

and for geometric active contours as:

γ
∂C
∂t

= (ακ) ‖∇C‖ + F ‖∇C‖ + 〈F,∇C〉 (12)

Assuming that α : R2 → R, F : R2 → R and F : R2 → R2 change in the
image plane, this model, which was proved in [7], can be transformed to many
of the existing variants of the discussed methods. The γ > 0 parameter controls
the speed of contour evolution and is crucial for numerical stablity of the used
algorithms. In the presetnted work the rigidity component β was not considered
and consequently was omitted in the above equations.
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(a) (b)

Figure 2. Sample mask images representing ground truth information provided by
a radiologist (white pixels - left ventricle interior, black pixels - background).

3. Application

3.1. Problem

The discussed active contour methods within the implemented unified model
were used for heart ventricle segmentation. Heart images were obtained using CT
scanner connected with ECG device which allowed to acquire 3D video sequences
of working heart. From each sequence 8 slices perpendicular to long heart axis
at 10 different moments during one heart cycle were selected. Having 7 video
sequences this procedure allowed to prepare 560 image set that was later divided
into training set with 28 examples and testing set with 532 examples. The low
number of training examples was motivated by a time consuming training process
described further in this paper.

Heart ventricle segmentation can be of use during diagnostic process of pul-
monary embolism which is a frequent cause of death in developed countries. The
presence of emboli in the arteries can be indirecly detected while observing the
changes of heart ventricle shape during heart contraction cycle. So far the process
of heart shape detection was performed manually which, taking into account the
number of images for one patient, was a very tiring process. Automatic detection
of heart ventricle contours could be a significant convenience in this procedure.
Of course, the automatic detection will not eliminate radiologists. It should be
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(a) (b)

Figure 3. Sample masks M representing blood inside left ventricle (black pixels -
blood, white pixels - backround).

considere only as an assitance - there should be a possiblity to manually correct
automatically located contours.

This paper focuses on detection of contours describing the interior of left heart
ventricle. Sample regions that were drawn by a radiologist are presented in Fig. 2.
The similar procedure can be used to detect contours for right ventricles.

3.2. Knowledge

To automatically find a proper contour an additional expert knowledge about
image content must be incorporated in segmentation process. The interior of a
heart ventricle can be easily distinguished from the rest of heart tissues since be-
feore patient examination the contrast was injected into the blood vessel which
results in very bright pixels representing blood in CT image. There are, however,
two problems with direct exploitation of that information. Firstly, in the considered
images the blood is visible in both ventricles as well as in other veins and arteries.
Morevoer, bone tissue results also in pixels with the similar brightness which can
constitute a problem if there are some ribs visible after image reconstruction. Sec-
ondly, heart muscle can grow into the ventricle interior which causes that there is
no difference between pixels representing heart interior and hart wall. Both those
problems are evident in Fig. 1.

In the unified model described above that knowledge can be encoded in α, F
and F parameters. To overcome first of the mentioned problems the preprocessing
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procedure described in [21] can be used. The proposed solution in a first phase is
able to remove additional bright pixels (vessels, bone tissue) analysing the whole
video sequence and detecting those regions that change during heart contraction.
The second phase locates a parabola that approximates the shape and localization
of interventricular septum. Finally, in a third phase the mask M : R2 → {0, 1}
containing only pixels representing blood inside a selected ventricle is generated.
Sample results of that approach are presented in Fig. 3. That mask can be used to
define the first force component F having an influance on contour evolution:

F = w(1 − M) (13)

where w ∈ R determines the strength of this component. That force represents a
constraint preventing contour from crossing the interrior of the sought ventricle.
The second problem can be overcome using elasticity component controlled by
α ∈ R parameter. In experiments described further this pareameter had a constant
value in the image plane. This component should guarantee that during evolution
the contour will shrink (it will be always initialized outside the searched ventricle)
and that it will not try to penetrate the ventricle interior even if heart muscle grows
inside. To sum up, the proposed approach should assure that optimal contours will
contain the whole blood inside the ventricle and it will be smooth as well. To find
a proper trade-off betwee parameters w and α a training procedure was used as
described below.

3.3. Evaluation

To perform training as well as to assess the final results a method of segmen-
tation evaluation is required. In this work for each analysed image there existed
ground truth information about ventricle localization which was provided by a ra-
diologist. It allowed to prepare an objective measure of the results. The proposed
measure bases on the observation, described among others in [22], that contour can
be treated as binary a classifier of pixels. In consequence measures used for clas-
sifier evaluation can be of use also in case of image segmentation. The measures
used in this work are precision:

P =
T P

T P + FP
(14)

and racall:
R =

T P
T P + FN

(15)
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(a) average F = 0.935 (b) average F = 0.901

Figure 4. Optimal parameter selection results - 28 images (horizontal axis - P,
vertical axis - R): (a) - snakes - α = 1.5, w = 0.5, n = 24, , (b) - geometric active
contours - α = 1.4, w = 0.4.

where:

• T P - true positive - the number of pixels that should be inside the contour
and in fact they are there

• FP - false positive - the number of pixels that should not be inside the con-
tour but they are there

• FN - false negative - the number of pixels that should be inside the contour
but they are not there

Both those measures give values in the interval [0, 1] and their interpretation is
quite obvious. Precision is equal to 1 if nothing that is outside a heart ventricle is
inside a contour. Recall is equall to 1 if the whole ventricle is inside the contour.
It can happen that one of those measures has the best value while the other has the
worst one. That is why during optimal parameter selection both of them should be
maximized. To not consider a multi-objective optimization task a measure combin-
ing precsision and recall must be chosen. The most popular is F-measure defined
in the following way:

F = 2
PR

P + R
(16)
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(a) average F = 0.918 (b) average F = 0.881

Figure 5. Test results - 532 images (horizontal axis - P, vertical axis - R): (a) -
snakes, (b) - geometric active contours.

The last thing worth mentioning is a fact that the above approach should be
used carefully in case of geometric active contours since the resulting contour can
have different topology. In this paper only the most outer contour is considered
during evaluation which means that if there are any holes in the object that are
detected by the contour they will be omitted.

3.4. Training

As it was mentioned above to select optimal parameters w and α a training
set containing 28 images was selected. Using those images the search for optimal
combination of parameters was performed separately for snakes and geometric ac-
tive contours. For snakes the additional paremeter n ∈ N was considered. This pa-
rameter controlled the number of contour vertices which is required by numerical
implementation of contour evolution. In geometric active contours the discratiza-
tion parameter was constant - its value was limited by the efficiency of the im-
plementation. The optimal parameters were sought in a brute force process where
for a combination of parameters for each training image the contour evolution was
performed and an average F-measure was calculated. The analysed combinations
were chosen from a regular grid in parameter space. In Fig. 4 the best selected
parameters are presented as well as the distribution of precision and recall values
for images in a training set.



A. Tomczyk 191

(a) (b)

(c) (d)

Figure 6. Sample results: (a), (b) - snakes, (c), (d) - geometric active contours.

3.5. Results

Using the selected perameter values the method was evaluated using 532 im-
ages. In Fig. 5 the distribuition of precision and recall values for those images is
presented and in Fig. 6. sample segmentation results are depicted.

The analysis of the obtained results reveals that the proposed approach can
be of use for radiologists since in most of the cases the contours require only a
slight manual modification. The second observation is fact that geometric active
contours ususally give results with very high precision and lower value of recall.
In this case it means that contour describes precisely blood inside a ventricle but
has problems with that part of heart muscle that grows into the heart interior. The
reason of that can be the implementation which allows to use only limited precsion
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of contour approximation and which consequently may cause problems with taking
into account the sufficient influance of elasticity force component. To overcome
that problem a better implementation, using for example a narrow band, approach
should be used.

4. Summary

In this paper two classical variants of active contour models were used to au-
tomatically localize left heart ventricle in CT images. The results allow to draw a
conclusion that the proposed approach can be useful in diagnostic practice since
it can speed up the process of contour delineation. Those results can be also com-
pared with potential active contour approach proposed by the author of this work in
[22]. Such a comparison reveals that a potential contour model seems to give bet-
ter results because its natural ability to describe smooth shapes of medical organs.
In case of snakes and geometric active contours to achieve contour smoothness
additional operations were required (elasticity force). Of course it does not mean
that described methods are useless. Perhaps additional paremeter tuninhg, for ex-
ample depending on heart contraction phase or patient-specific morphology, could
improve results. Also taking into additional expert knowledge about the width of
heart wall could be of use here. These ideas will be the objective of further re-
search.
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