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5. 

Elastic-plastic stability of FML panel 
and columns of open and closed cross-section 

5.1. Introduction 

In the last few decades of the past century a rapid development of research 
on post-buckling behaviour of thin-walled structures in the elastic and elastic-
plastic range until fracture took place. There are numerous publications 
concerning mainly singular isolated plates of different isotropic material 
properties. There are relatively few works dedicated to plate structures made of 
composite and/or laminate materials [5.2÷5.4, 5.7, 5.16]. In the last years, due to 
widespread of professional Finite Element Method software application, several 
publications appeared where full force-shortening curves of structures were 
determined. It concerns structures with a complex cross section made of different 
materials - also including orthotropic material [5.9, 5.14, 5.15]. 

In few works [5.6, 5.7, 5.13] the authors show the solution to the stability 
problem of thin-walled columns made of isotropic and orthotropic materials in 
elastic-plastic range. In the current study analogous issue for multi-layered 
materials of Fiber Metal Laminate type is considered. 

Fiber Metal Laminates (FMLs) are hybrid materials, built of thin layers of 
metal alloy divided by layers of fiber reinforced epoxy resin. These materials are 
manufactured by bonding composite plies to metal ones mostly in an autoclave 
process. FMLs, when refers to metal layers, can be divided into FMLs based on 
aluminium alloys (ARALL - laminated with aramid fibers, GLARE - glass fibers, 
CARALL - carbon fibers) and others. Nowadays materials such as GLARE 
grades (glass fiber/aluminium) due to their very good fatigue and strength 
properties combined with the low density have been finding increasing 
application in an aircraft industry [5.17]. 

GLARE consists of alternate aluminium sheets and unidirectional high-
strength glass fiber layers pre-impregnated with adhesive. Usually each glass 
composite layer is composed of a certain number of unidirectional (UD) plies 
which are stacked either unidirectionally, in a cross-ply or angle-ply 
arrangement. The number of layers, plies orientation and the stacking sequence 
of the UD plies in the entire FML panel depend on the GLARE grade. For 
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example, a GLARE 2 has two UD plies in a particular composite layer with the 
same 0-degree orientation, while a GLARE 3 has two mutually perpendicular UD 
plies (cross-ply arrangement). The most common type of aluminium applied in 
GLARE is 2024-T3 Alloy. 

In current investigation it is assumed that the material of particular structure 
is GLARE 3 [5.10, 5.11] with an even number of glass reinforced layers, whereas 
the outer layers are always of aluminium. Thus the number of glass prepreg 
layers is always one less than the number of metallic ones. The overall laminate 
is symmetric with reference to the midplane. The thickness of each UD GFRP 
ply is 0.125 mm, so that the doubled prepreg layers of both Glare 2 and 3 grades 
have a total thickness of 0.25 mm.  

The orthotropic glass fiber prepreg properties of a 0/90 degree (cross-ply) 
combination allow in the conducted here analysis to consider the composite 
doubled layer as one isotropic layer. Furthermore, the small anisotropy of the 
rolled aluminium sheet observed only for yield limits is not taken into account. 

The overall dimensions of considered structures are chosen in such a way 
that the stability loss occurs in the elastic-plastic range for aluminium layers. 
Elastic-plastic moduli are used for the aluminium layers in combination with the 
Ramberg-Osgood (RO) curve fitting method for the stress-strain behaviour [5.7, 
5.14]. 

When the plate structure made of GLARE is subjected to in-plane uniform 
compression in the elastic-plastic range of stresses, the buckling occurs in such a 
way that the aluminium layers become plastic but the glass fiber layers remain 
elastic. Therefore the behaviour of such structures differs significantly from the 
behaviour of pure aluminium ones. 

5.2. Method of solution 

The problem of buckling in the elastic-plastic range of thin-walled FML 
columns, axially uniformly compressed, is examined using the analytical-
numerical method (ANM) elaborated for the analysis of the elastic stability of 
multi-layered thin-walled columns [5.8]. The constitutive relationships between 
stress and strain for a singular elastic-plastic component layer is derived on the 
basis of the J2-deformation theory of plasticity (i.e. DT) or the J2-flow theory 
(incremental theory of plasticity i.e. IT) for Ramberg-Osgood formula. 

An assumed for consideration material of FML metallic layers in the elastic 
range is simply defined as: 

 εσ E=     for   0σσ ≤  (5.1) 
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whereas the elastic-plastic stress-strain behaviour of FML aluminium layer is 
described by a Ramberg-Osgood representation of the following type: 

ε

σ
ε

εσ Y
NN

Y

Y

Y E
EE

EE
+



















 −
+

−
= 1

)(1

)(
    for   0σσ ≥  (5.2)

where: σ  - stress, ε  - strain, E  - Young’s modulus, 0σ  - proportional limit, 

Yσ  - conventional yield limit, yE  - tangent modulus corresponding to the yield 
limit Yσ , N  - exponent in the Ramberg-Osgood formula. The orthotropic 
composite layers are assumed to have elastic properties due to linear stress-strain 
characteristic up to fracture. 

For any orthotropic plate the constitutive relationships for the elastic range 
and the elastic-plastic range have very similar or even identical form (Eq. 5.3): 
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(5.3) 

Comparing the appropriate coefficients in both relations the instantaneous 
conventional parameters of ‘elastic composite’ for particular layers of entire 
FML structure can be found out. Thus the problem of inelastic stability of FML 
structures can be investigated in the analogous way as the problem of elastic 
composite structures. The coefficients 3311 AA −  (Eq. 5.3) determined on the basis 
of the J2- deformation or J2- flow theory of plasticity depend on the appropriate 
Young’s modulus, secant and tangent moduli for the considered material layer 
characteristics in the inelastic range. 

The analysed problem is solved in a numerical way. The elastic problem is 
solved by the asymptotic Koiter’s theory [5.5], formulated by Byskov and 
Hutchinson [5.1]. The solution of the first order approximation enables one to 
determine the values of buckling global and local loads and the corresponding 
buckling modes. This analytical-numerical method [5.7, 5.8, 5.12] created to 
solve the elastic problem is applied here to calculate critical load values and 
buckling modes for inelastic thin-walled FML columns and panels. For a given 
geometrical parameters, material data constants of particular FML layer and for 
the assumed number of buckling half-waves, the elastic buckling stress for the 



Elastic-plastic stability of FML panel… 

 
131 

considered composite structure is calculated. The most important advantage of 
this method is that it enables one to describe a complete range of a buckling 
behaviour of thin-walled structures from a global (i.e. flexural, flexural-torsional, 
lateral, distortional buckling and their combinations) to a local stability, including 
a mixed buckling modes [5.7, 5.8, 5.12]. 

Furthermore, a zero value of the function )( eff σσ −=  is searched to apply 
the method of secants, where eσ  is the value of the critical stress of the “elastic 
orthotropic” structure. During the computations it is assumed that eσσ ≈ , when 

%01.0/%100)( ≤⋅− σσσ e . 

The proposed method allows to consider the transition of buckling mode 
together with the increase of loading as distinct from the usual assumption that 
the elastic-plastic buckling mode is analogical to the elastic one. 

For a given geometrical parameters, material constants of each FML layer 
and for the assumed number of buckling half-waves the elastic buckling stress for 
the considered composite structure is then calculated. 

b
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Fig. 5.1. Cylindrical shallow panel geometry 

 
Fig. 5.2. Closed cross-sections analysed columns 
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Fig. 5.3. Open cross-sections analysed columns 

5.3. Some results of calculations 

As some examples of proposed method of solution to the elastic-plastic 
problem of thin-walled FML hybrid composite structure a shallow cylindrical 
panel and a complex plate structure has been considered (Fig. 5.1÷5.3). It was 
assumed that the loaded edges of considered structure are simply supported at 
both ends. In order to account for all modes of global, local and coupled 
buckling, a plate model of thin-walled structure has been employed. As it was 
mentioned previously the overall dimensions of selected structures are chosen in 
such a way that the stability loss occurs in the elastic-plastic range for aluminium 
layers. 

In presented work the detailed analysis was performed for the four chosen 
FML members which overall and cross-section parameters were as follows: 

− a cylindrical panel simply supported along all edges subjected to axial 
compression (Fig. 5.1): =R 430 mm, =L 860 mm, =b 430 mm, 

− a beam/column profile with a square cross-section (Fig. 5.2a) and 
=L 1300 mm, =b 130 mm, 

− a beam/column profile with a trapezoidal cross-section (Fig. 5.2b) and 
=L 1300 mm, =1b 100 mm, =2b 140 mm, =3b 140 mm, 

− a beam/column profile with a top-hat (Fig. 5.3a) and a lip channel 
cross section (Fig. 5.3b); =L 1300 mm, =1b 130 mm, =2b 65 mm, 

=3b 15 mm. 

In all cases L  indicates the column length. Constructions under investigation 
are built of alternate aluminium sheets and unidirectional high strength glass 
fiber layers so this stacking corresponds to GLARE 3 grade with 2024-T3 sheets 
[5.11, 5.18]. The total number of layers in considered material equals 13 what 
leads to the total wall thickness of column/panel wall equal to =t 4.3 mm where 
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the thickness of singular aluminium sheets equals 0.4 mm and particular doubled 
fiber layer 0.25 mm. Mechanical properties of both isotropic layers are presented 
below in Table 5.1 [5.10, 5.18]. 

Table 5.1. Material data of GLARE 3-7/6-0.4 (13 layers) [5.18] 

Material 
data of 

GLARE 
3-7/6-0.4 

Elastic properties Plastic properties 
Young’s 
modulus 

Poisson’
s ratio 

Proportio
nal limit 

Yield 
limit 

Tangent 
modulus 

Exponent 
in Eq. (3) 

E  ν  0σ  Yσ  YE  N  
[GPa] [-] [MPa] [MPa] [MPa] [-] 

Al 
 2024-T3 700 0.3 170 290 12.1 1.8 

Prepreg 30.75 0.144 - - - - 

Obtained results of the critical stress crσ  calculations for the considered thin-
walled FML structures (Figs. 5.1÷5.3) are shown in Figs. 5.4,5.7,5.10,5.13,5.17, 
respectively. Applied into the analysis three plasticity theories are distinguished 
in these figures as: elastic theory EL, J2-deformation theory DT and J2-
incremental theory IT. For considered FML's cross-sections a stability loss can 
occur under symmetry (S) and anti-symmetry (A) conditions along symmetry 
axis of the cross-section. In the plots determined critical stress values are 
presented as a function of the number of half-waves m  formed in the 
longitudinal direction. The lowest values of crσ  are summarized in Tables 
5.2÷5.6. The buckling modes of analysed FML structures are also presented in 
Figs. 5.5,5.6,5.8,5.9,5.11,5.12,5.14÷5.16,5.18÷5.20. 

5.3.1. Cylindrical panel 

In Figs. 5.4÷5.6 and Table 5.2 computation results for the cylindrical 
shallow panel are presented. According to defined above geometrical data 
analysed panels were of a short type because 2/ =RL  and 1/ =bR , 
respectively. 

The lowest values of critical stresses crσ were obtained for 1=m  in the case 
when the symmetry conditions at symmetry axis (i.e. S) were assumed, while for 
the assumption of asymmetry conditions (A) the number of half-waves was 

2=m . Determined values of critical stresses crσ  for elastic-plastic range are 
lower than for elastic material behaviour. For deformation theory (DT) lower 
values of critical stresses were obtained in comparison to incremental theory (IT). 
This is a general, well-known from the literature relationship of results for both 
theories of elastic-plastic formulation. 
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Fig. 5.4. Buckling stress crσ  versus number of half-waves m for symmetry and 
antisymmetry conditions imposed along cross-section symmetry axis 

for shallow panel ( Yσ  - aluminum yield limit, 0σ  - proportional limit) 

Fig. 5.5. Shapes of local antisymmetric (A) buckling modes for elastic (EL) 
and inelastic range (DT, IT) for panel 

Fig. 5.6. Shapes of local symmetric (S) buckling modes for elastic (EL) 
and inelastic range (DT, IT) for panel 
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Revealed local buckling modes (Figs. 5.5, 5.6) of all three considered 
plasticity theories are very similar for each other for both assumed symmetry 
conditions at symmetry axis. 

Table 5.2. Panel buckling stress and modes 

Elastic range 
EL 

Elastic-plastic range 
Conditions along 
symmetry axis of 

cross-section 

DT IT 

crσ  [MPa] m  crσ  [MPa] m  crσ  [MPa] m
 

244 1 184 1 188 1 S 
233 2 190 2 205 2 A 

0 5 10 15 20
0

100

200

300

400

500

600

σy

σ 
cr
   

[ M
Pa

 ]

m

 EL_A
 EL_S
 DT_A
 DT_S
 IT_A
 IT_S

σo

 
Fig. 5.7. Plots of buckling stress crσ  versus number of half-waves m  

for a column of square cross-section 

5.3.2. Closed cross-sections 

In the following analysis the length of considered columns was assumed as 
=L 1300 mm. Thus for these overall dimensions (Fig. 5.2) only local buckling 

modes should be considered due to significantly higher values of global buckling 
critical stresses in comparison to the yield limit Yσ  (see Table 5.1). 

Square cross-section 

The plots in Fig. 5.7 present critical stress values crσ  for the square cross-
section from Fig. 5.2a. Particular curve corresponds to particular plasticity theory 
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and gives the crσ  value as a function of half-waves number in longitudinal 
direction of the compressed column. In Table 5.3 the lowest values of critical 
stresses for considered symmetry conditions on symmetry axis are shown for 
comparison. Critical stress values crσ  for symmetry conditions (S) are lower than 
for anti-symmetry conditions, as it was expected. The lowest value of critical 
stress crσ  was obtained with deformation theory (DT) application. From Table 
5.3 it is clearly visible that the number of half-waves corresponding to the lowest 
value of crσ  is different for elastic theory (i.e. 14=m ) from those of 
deformation theory (i.e. 13=m ). Both local buckling modes determined for 
considered theories are very similar for assumed boundary conditions (Figs. 5.8, 
5.9). 

Table 5.3. Square cross-section 

Elastic range EL 
Elastic-plastic range Conditions along 

symmetry axis  
of cross-section 

DT IT 

crσ  [MPa] m crσ  [MPa] m crσ  [MPa] m
232 10 195 10 219 11 S 
315 13 239 13 280 14 A 

Fig. 5.8. Shapes of local antisymmetric (A) buckling modes for elastic (EL) 
and inelastic range (DT, IT) for square cross-section 



Elastic-plastic stability of FML panel… 

 
137 

 
Fig. 5.9. Shapes of local symmetric (S) buckling modes for elastic (EL)  

and inelastic range (DT, IT) for square cross-section 
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Fig. 5.10. Buckling stresses crσ  versus number of axial half-waves m  

for trapezoidal cross-section  

Trapezoidal cross-section 

For the trapezoidal cross-section from Fig. 5.2b, there are critical stress 
values crσ  as a function of half-waves number in longitudinal direction presented 
in Fig. 5.10 for all considered plasticity theories. Further, in Table 5.4 the lowest 
values of critical stresses for considered boundary conditions on symmetry axis 
are given. The local buckling modes for assumed boundary conditions are shown 
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in Fig. 5.11 and 5.12. The conclusions from the elastic-plastic analysis of FML 
columns of the trapezoidal cross-section are very similar to the previous 
comments formulated for the square cross-section FML column. When the final 
results of square and trapezoidal cross-section columns are compared one can 
observed that the critical stress values are lower for a trapezoidal-cross section 
column. 

Fig. 5.11. Shapes of local antisymmetric (A) buckling modes for elastic 
and inelastic range for trapezoidal cross-section 

Fig. 5.12. Shapes of local symmetric (S) buckling modes for elastic 
and inelastic range for trapezoidal cross-section 
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Table 5.4. Trapezoidal cross-section results 

Elastic range EL 
Elastic-plastic range Conditions along 

symmetry axis  
of cross-section 

DT IT 

crσ  [MPa] m  crσ  [MPa] m  crσ  [MPa] m  

214 10 183 10 203 11 S 
276 12 219 12 249 13 A 

5.3.3. Open cross-sections 

In the case of investigated open cross-section columns/profiles (presented in 
Fig. 5.3) i.e. top hat and lipped channel, for assumed overall dimensions all 
global buckling modes should be examined during the analysis. Thus flexural 
mode (S), distortional-flexural mode (S), flexural-torsional mode (A), distortion-
flexural-distortional mode (A)) and local buckling mode including distortional-
local modes, should be taken into account. Therefore additional indication is 
introduced for open cross-section profiles - global buckling mode (i. e. 1=m ) 
is denoted by G and local buckling mode (i.e. 1≥m ) by L. 
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Fig. 5.13. Buckling stresses crσ  versus number of axial half-waves m for top hat 

Top hat 

For the top hat cross-section columns/profiles (Fig. 5.3a) results of critical 
stresses as a function of half-waves number m are presented in Fig. 5.13. The 
lowest values of global and local critical stresses crσ  are shown also in Table 5.5. 
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As it can be seen in this case a flexural-torsional global buckling mode 
(i.e. 1=m , A) took place in the elastic range because the following relationship 
is fulfilled MPaMPacr 17097 0 =<= σσ . While a flexural buckling is observed 
in the elastic-plastic range (i.e. 1=m , S). Following this observation the flexural 
global buckling modes could be named as "pure bending" (Fig. 5.14) while anti-
symmetry mode for elastic range is a distortional-flexural-torsional mode 
because the lips are not perpendicular to the flanges (see EL_A_G curve in 
Fig. 5.14). 

Fig. 5.14. Shapes of global buckling modes for top hat 

Fig. 5.15. Shapes of local anti-symmetric (A) buckling modes for a top hat profile 
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Fig. 5.16. Shapes of local symmetric (S) buckling modes for top hat profile 

It can be seen in Table 5.5 that the value of the local critical stress crσ  of 
symmetric mode (i.e. 4=m , S) for elastic range is lower in comparison to a local 
anti-symmetric mode buckling stress (i.e. 2=m , A) for elastic range. However, 
values of crσ  for both elastic-plastic formulations and antisymmetrical modes are 
lower than the symmetric ones. For 1≥m  buckling modes are distortional-local 
modes for both boundary conditions (Figs. 5.15, 5.16). Buckling modes are 
practically the same for each of applied theories. 

Table 5.5 Top hat results 

Elastic range EL 
Elastic-plastic range Conditions along 

symmetry axis of 
cross-section 

DT IT 

crσ  [MPa] m crσ  [MPa] m crσ  [MPa] m
201 1 177 1 178 1 S 
257 4 201 4 220 4 S 
97 1 - - - - A 

267 2 196 2 202 2 A 

Lipped channel 

In Fig. 5.17 critical stress values crσ  as a function of half-waves number m 
are presented for the FML column of lipped channel cross-section. Table 5.6 
shows as well the lowest values of global and local crσ  for both considered 
boundary conditions while corresponding to them buckling modes are given in 
Figs. 5.18÷5.20. 
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Fig. 5.17. Buckling stresses crσ  versus number of axial half-waves m 
for lip channel column 

The lowest value of critical stresses =crσ 128 MPa corresponds to a global 
flexural-torsional mode (i.e. 1=m , A) in elastic range (see EL_A_G line in 
Fig. 5.18). The global buckling stress value =crσ 198 MPa ( 1=m , S) 
corresponds to a distortional-flexural buckling mode for elastic range (Fig. 5.18). 
Symmetric global buckling modes are similar for considered constitutive 
theories. Local buckling stress values are lower for symmetric modes in 
comparison to anti-symmetry ones. 

Fig. 5.18. Shapes of global buckling modes for lip channel 
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Presented in Figs. 5.19 and 5.20 buckling modes are of distortional-local 
symmetric and anti-symmetric type. It should be emphasized that local 
symmetric buckling modes (Fig. 5.20) differ slightly between themselves at the 
junction of flanges with the lips. In works [5.6, 5.11] for one-layered isotropic 
and orthotropic structures there was a lot of variety local and global buckling 
modes obtained which differed significantly between themselves for elastic and 
elastic-plastic range. 

 
Fig. 5.19. Shapes of local anti-symmetric (A) buckling modes for lip channel 

 
Fig. 5.20. Shapes of local symmetric (S) buckling modes for lip channel  

As it can be seen from presented in current work buckling modes for FML 
multi-layered structures determined buckling modes differ at least slightly 
between themselves because particular elastic glass fibre layers work within 
elastic range. Thus mechanical properties of glass fibre layer remain unchanged 
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in elastic-plastic range of entire FML wall, when aluminium layer changes own 
properties from isotropic to orthotropic. It makes that multi-layered structures are 
not as sensitive to changes of buckling modes as one-layered structures. The 
latter change their mechanical properties across whole thickness in the elastic-
plastic range [5.6, 5.13]. 

Table 5.6. Lipped channel results 

Elastic range EL 
Elastic-plastic range Conditions along 

symmetry axis  
of cross-section 

DT IT 

crσ  [MPa] m crσ  [MPa] m crσ  [MPa] m
198 1 176 1 177 1 S 
232 4 187 4 203 4 S 
128 1 - - - - A 
383 5 256 5 291 5 A 

5.4. Conclusions 

In work the comparison of critical stresses for thin-walled FML structures in 
elastic and elastic-plastic range is presented. Two plasticity theories were 
considered i.e. J2-deformation theory and J2-incremental theory. The lowest 
values of critical stresses for all analysed structures were obtained in elastic-
plastic range for the deformation theory. It is fully consistent with results 
presented in literature survey. Moreover it ought to be pointed out that: 

− the solutions given here are valid in the cases of the uniform 
compression of the thin-walled FML structure. Other types of loadings 
would need further investigation, 

− the usual assumption, made in many works in the field, that the 
buckling modes in the elastic and elastic-plastic range are identical 
cannot be true in some cases, 

− it should be noted that the buckling modes in elastic and elastic-plastic 
range can be not always cover-up. 
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