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The main purpose of this text is to present application of the Largest Lyapunov Exponent 
(LLE) as a criterion for optimization of the new type of simple controller parameters. In­
vestigated controller is the part of numerically simulated control system. The calculation 
of LLE was done with a new method [2]. 

Introduction contains reference to previous publications on inverted pendulum con­
trol and Lyapunov stability. Application of the new simple formula for LLE estimation 
in control systems is discussed. In the next part simulated dynamical system is de­
scribed and new type of simple controller allowing to control multidimensional system is 
introduced. In the last part results of the simulation are shown along with conclusions 
to whole dynamics analysis. Comparison of the proposed regulator with the linear­
quadratic regulator (LQR) was verified and its better effectiveness with respect to LQR 
was proved. 
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1. Introduction 

Typical criteria of control performance assessment (CPA) are widely described in 
variety of publications.In this text application of LLE as CPA criterion will be 
investigated. Definitions form [1] will be used and calculation of LLE will be done 
by means of simple numerical method [2]. 

There are few main multidimensional control methods widely used in control 
systems. One of them , linear quadratic control provides linear-quadratic regulator 
(LQR) [20]. The best results for such a regulator can be achieved for linear or lin­
earized systems with small regulation errors. This method gives decent results but 
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is uneasy to compute, especially without professional programs. The whole proce­
dure of constructing such a controller for inverted pendulum and acrobot (system 
researched in this paper) is described by Russ Tedrake [17]. There were also de­
veloped intelligent controllers for this system using Direct Fuzzy Control [20] and 
spiking neural network [21]. Another interesting type of controllers is Energy Shap­
ing [17] that is commonly used in swing-up actions. The main assumption in this 
approach is to move the actuator in this direction so that Lagrangian would have 
lower value than if the actuator would move in the opposite direction. However this 
method is very effective in swing-up actions but it leads to very high overshoots in 
the control systems. 

In this paper simplification of a multidimensional control will by described. 

Control system parameters optimization process was carried out using Lyapunov 
exponents. There have been developed few types of invariants characterizing dy­
namical systems. Depending on what kind of information is useful in investigations 
of the system one can use for instance Kolmogorov entropy [3] or correlation di­
mensions [4] to evaluate complexity or chaotic level of the system, but the most 
commonly used are Lyapunov exponents, because allow to predict behavior of the 
real systems,especially regulated one. This is because its value tells how the state 
vector should behave in long term action for example determines exponential con­
vergence or divergence of trajectories that start form close initial conditions. There 
have been developed many algorithms for calculation of Lyapunov exponents by 
Benettin et al. [5] and Shimada and Nagashima [6], later improved by Benettin et 
al. [7] and Wolf [8]. All those methods are correct for continuous systems. N umer­
ical algorithms have been developed by Wolf et al. [9], Sano and Sawada [10], and 
later improved by Eckmann et al. [11], Rosenstein et al. [12] and Parlitz [13]. 

In the long term behavior only the largest Lyapunov exponent plays significant 
role in determination of the predictability of the dynamical system. It is especially 
frequently referred to as a most important evidence of chaos[14], because by defini­
tion at least one positive Lyapunov exponent is a confirmation of existence of chaos 
the system. Methods of calculation of LLE have been propsed by Rosentein et al. 
[12] and Kantz [15] and later on it has been improved by Kim and Choe [16]. 

In this paper method that allow calculation of instantaneous values of estimated 
Lyapunov exponents [18-19] is used in control system parameters optimization pro­
cess: 

Z. dz 
>. * = ___!}J:._ 

lzl2 (1) 

where z(t) is a perturbation vector that can be defined as difference between ref­
erence vector and state vector. An averaged value of (>.*) of ,\* in time is an 
approximation of LLE. 
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2. Control systems 

2.1. Dynamics and control of the acrobot 

There are many types of the controllers the most basic one is PID controller that 
is described with an equation: 

(2) 

where kp, T,,, Tv are constant coefficients, e(t) is an error of regulation and u(t) is 
an output signal. A drawback of this regulator is that in multidimensional control 
systems one would have to construct n equations for the controller, where n is 
a dimension of the controlled phase space. That would give up to 3n constant 
coefficients to optimize. On the other hand linear-quadratic regulator allowing 
for multidimensional control needs the system to be linear or linearized with small 
regulation errors. In the presented article we propose a new type of simple controller 
for multidimensional control of the nonlinear system. 

An application for system simulations has been written in C++ programming 
language in order to test LLE as CPA criterion. The goal of the program is to 
simulate behavior of inverted double-link pendulum called acrobat controlled with 
the new type of simple controller. Name of the system came from combination 
of two words "acrobat" and "robot" due to its similarities with an acrobat trying 
to maintain his stability on a rope. Scheme of the control system is presented on 
Fig. 1. 

yo e(t)_ 
controller 

u(t) DC v(t) 
acrobat 

y(t) 
·~ 

---t -
+ - motor -

' -

Figure 1 Scheme of the control system 

Fig. 2 shows schematic representation of the acrobat with motor allowing stabiliza­
tion of the system. 

System parameters: 
li - lengths of the links, 
lei - length form the base of the link to its center of mass, length to the center 

of mass of the motor is equal to li, 
mi - masses, 
qi - angular position of the links, 
T - torque of the motor. 
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y 

Figure 2 Scheme of the acrobat - control object 

As presented in the Fig. 2 the base of the first link m 1 is placed in a bearing and 
at the end of this link is attached a motor m3 that moves second link m2 relative 
to the first. 

The equations of motion of the system are as follows: 

duqi + d12<i2 + h1 + c/>1 = 0 

d21<ii + d22<i2 + h2 + c/>2 = 7 

(3) 

(4) 



where: 
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du = m1l~1 + m3li + m2(li + l~1 + 2lilc2 cos(q2)) +Ii+ 12 + h 
d22 = m2l~2 + h 
d12 = d21 = m2(l~2 + 2lilc2 cos(q2)) + 12 

h1 = -m2lilc2 sin(q2)(<h2 - 2<h<i.1) 

h2 = -m2lilc2 sin(q2)<i./ 

c/>1 = (m1lc1 + m2li + m3fi)gcos(q1) + m2lc2gcos(q1 + q2) 

c/>2 = m2lc29 cos( q1 + q2) 
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Ii, h is the moment of inertia of the links, h is the moment of inertia of the motor 
with respect to the base of the first link, <ii is the second derivative of q1. 

2.2. Dynamics of the motor 

The motor provides torque that moves the second link. Such a motor should be as 
small as possible so that it would not disturb the whole system and that the system 
as whole could be controllable. This constraint significantly limits the torque that 
the motor has at its disposal. For simulations a simple DC motor was taken. Torque 
of the motor was modeled as linearly dependent on the angular velocity of the rotor. 
The torque has been calculated form the equation: 

( 
nmax) 

T=Tmax l--n- (5) 

where nmax is a maximal angular velocity of the motor, n is angular velocity at 
time t and T max is a maximal torque of the motor. 

2.3. Controller 

The goal of the controller is to keep both links vertically upward. It indicates that 
the reference signal is four dimensional: 

ql 7r 

2 

Yo= 
ql 0 
q2 0 
q2 0 

Regarding the fact that the system is described by two second order differential 
equations (3, 4) the reference signal can be reduced to just two dimensions: 

Yo= [ :~ l [ ! l 
For the well optimized control system achieving Yo values would cause that values 
of the velocities <i.1 and <i.2 tend to converge to zero. Single PID equation is able to 
control only one variable. In case of the acrobot it is not viable to use simple PID 
controller, because one would get a set of two equations describing the controller 
that have to be somehow combined to give single output that controls the motor. 
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Even if this approach would work, one would have to optimize values of up to six 
constants in the controller. 

In this article a different approach is presented. One can notice that the stability 
of acrobat can be described by the torque of gravity forces with respect to the base 
of the first link. This torque is given by equation: 

where q2stab is a required position of the second link in a stable position. For the 
stable position of the links To = 0. Based on this condition for actual value q1 the 
position of the second link can be calculated as follows: 

(

lei cos(q1)g(m1 + 2m3) + m2gli cos(q1)) 
q2stab = arccos l - q1 

m2g c2 
(6) 

The value of q2 could now be taken as a reference signal for the controller but what 
can be noticed is that equation ( 6) does not take into account angular velocity q1 . 

Assuming that the kinetic energy associated with q1 is equal to: 

K = Iq·/ 
2 

where I is a moment of inertia of the whole acrobat with respect to an axis per­
pendicular to the plane of motion and going through the base of the first link. 
The kinetic energy associated with q2 was deliberately omitted in order to increase 
effectiveness of the regulator. This fact was verified experimentally. 

Any move of the second link changes location of the center of mass of the whole 
system. It gives the condition to create the torque To that decelerates movement of 
the first link. As it is assumed that if this torque is kept constant than the first link 
decelerates with constant acceleration and work done by the torque can be obtained 
from: 

/ ( 
.. t:..t2) 

W = Todx = ef_1 b..t - qi 
2 

To 

where b..t is the time it would take the first link decelerate to 0. Taking into account: 

.. q1 
ql = b..t 

following equation can be obtained: 

W = q_iD..t To 
2 

Now comparing equations (7) and (8) To can be calculated: 

l<h lq1 
To=-=-

D..t T 

(7) 

(8) 

(9) 

where T is a constant parameter of regulator. By implementing calculated torque 
into equation (6) new value of q2stab is calculated: 

(
lc1 cos(q1)g(m1 + 2m3) + m2gl1 cos(q1) - *) 

q2stab = arccos l - q1 
m2g c2 
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If an error of regulation is defined as: 

e ( t) = Q2stab ( t) - Q2 ( t) 

than a simple proportional regulator can be constructed: 

u(t) = kpe(t) 

In the very first stage of simulations it was observed that this kind of kp regulator 
requires very high values of to stabilize the system. To obtain better characteristics 
of e(t), especially for small values, the regulator was changed into nonlinear one 
(arctan): 

u(t) = kp arctan[ce(t)] (10) 

where c is just a scaling constant. With those simple transformations a final equa­
tion for the regulator is reached. This regulator has two constants coefficients kp 
and T. 

3. Numerical simulations of the control system 

The control system is simulated by an application written in C++. The first step of 
the program is numerical integration of equations (3, 4) using Runge-Kutta method 
of the fourth order (RK4), than using the formula (9) the torque on the motor is 
computed, but it cannot be greater than motors capabilities so it is checked with 
equation (5). In each step of int~gration values of A* is calculated with formula 
(1) and also its average in time A*. After the average value of A* stabilizes it is 
assumed to be LLE.LLE is applied to verify performance of the control system and 
the value of the LLE is estimated on basis of state vector using formula (1). 

In simulations different coefficients of the regulator have been chosen and for 
each combination LLE was calculated. Later on, most optimal values of parameters 
were chosen that corresponded to the smallest value of LLE. 

Parameters of the system were chosen based on the measurements of acrobot 
which is in phase of construction. Its physical parameters are as follows: 

m1 = m2 = 0, 18kg, 

m3 = 0,05kg, 

h = lei = l2 = lc2 = 0, 42 m 

Dynamic parameters of the motor are: 

Tmax = 1, 25Nm 
rad 

nmax =0,5-
s 

and have been determined experimentally. 
Initial conditions are: 

Q1 (0) = 5° = :0 rad, q2(0) = -16° = !; rad, <i1 (0) = 0, <i2(0) = 0 
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Figure 3 Dependence of LLE for combinations of regulator coefficients k p and T 
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Figure 4 Dependence of LLE from kp for T = 2, 4 
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Figure 5 Dependence of LLE from T for kp = 2, 4 
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One step of RK4 integration is equal to 2-10-:s and the process of integration 
is terminated if the absolute value of difference of A* for 1000 estimated values does 
not exceed 10-3 or if the first link crosses horizontal position which makes this 
system no longer controllable with proposed method. 

Fig. 3 presents results of calculation of LLE for following values of kp, T: 

kp E { O; 0, 2; 0, 4; ... 12} 

TE {O; 0, 2; 0, 4; ... 12} 

In minimum is visible and the lowest value of LLE is obtained for kp = 2,6±0,2 and 
T = 2,4±0,2, but to determine closer value for kp and T another simulations have 
been done for T = 2,4 and kp E {O; 0, 05; 0, 1; .. .4, 1}. 

On Fig. 4 it can be observed that that the lowest value of LLE is achieved 
for kp = 2, 35 ± 0, 05. Similar simulation has been done but for kp = 2, 4 and 
T E (O; 0.05 : 0.1 ... ; 5) (Fig. 5). 

Also a bifurcation diagram can be sketched (Fig. 6). Points for this diagram 
were taken after omission of at least 200 oscillations of the second link. 

It is clearly seen that that there is neither chaotic nor quasiperiodic behavior 
which implies that negative Lyapunov exponent should be expected. 

Form Figs 4 and 5 one can draw conclusion that optimal constant coefficients 
for this regulator are kp = 2, 4 ± 0, 05 and T = 2, 4 ± 0, 05. For this set of parameters 
q1 as a function of time can be obtained (Fig. 7). 

Into this data an exponential decay can be fitted and form its parameters one can 
read that a decay time is equal to 1,057 s where calculated LLE is equal to -1,013 
and because between a decay time and Lyapunov exponent for simple harmonic 
oscillations there is a relation: 

- 1 
A*= --

T 

Then, it can be assumed, that this method of calculation of LLE is well-defined. 

To see if parameters of the regulator have been chosen correctly one can draw a 
plot of q1 ( t) for different values of T and kp but fairly close to T = 2, 4 and kp = 2, 4 
(Fig. 8). Values of T and kp have been chosen as follows: 

kp E (2, 2; 2, 4; 2, 6) 

T E (2, 2; 2, 4; 2, 6) 
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Figure 6 Bifurcation diagram as a function of kp for T = 2, 4 
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Figure 7 Time series plot of qi for kp = 2, 4 and T = 2, 4 with approximation with exponential 
function 
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What is clearly visible values of q1 tend to O for T = 2, 4 and kp = 2, 4. An 
interesting fact is that with those optimal parameters of regulation critical damping 
of error of regulation has been achieved, because for T = 2, 4, kp = 2, 2 and T = 2, 6, 
kp = 2, 4 and overshoot is visible whereas for T = 2, 2, kp = 2, 4 and T = 2, 4, 
kp = 2, 6 values of q1 tend to O slower. This is also an evidence that the change 
in parameters or in the system itself does not cause the system to be unstable or 
uncontrollable. 

At last LQR controller (17] has been created to compare quality of proposed 
regulator. A time series plot of q1 has been done for both controllers with the same 
initial conditions (Fig. 9). 

One can clearly see that with proposed regulator system much faster reaches 
demanded position of the first link. Also accurately obtained LLE for LQR is equal 
to -0,68 while for proposed regulator LLE is equal to -1,14. 

4. Conclusions 

Method of calculation of LLE proposed in (2] can be classified as very effective, 
however by numerical calculations of).* a problem with discontinuity occurs while 
lzl = 0 especially in systems with few oscillations averaging the values of ). * tend 
to be problematic. Nevertheless it was possible to optimize the parameters of the 
regulator with satisfying precision. 

As for the regulator it turned out to be effective and what is more very simple 
to construct. It was possible to use this kind of regulation because the demanded 
position of the acrobot was a stable position which automatically makes it an at­
tactor in a phase space. It was possible to reach this position since the system was 
actually overregulated, because in equation (7) kinetic energy of the second link 
with respect to the first one and also potential energy of the whole system was not 
taken into account. 
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