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a b s t r a c t

The main aim of this article is numerical solution to the Navier–Stokes equations for incom-

pressible, non-turbulent and subsonic fluid flows with Gaussian physical random parameters.

It is done with the use of the specially adopted Finite Volume Method extended towards

probabilistic analysis by the generalized stochastic perturbation technique. The key feature of

this approach is the weighted version of the Least Squares Method implemented symbolically

in the system MAPLE to recover nodal polynomial response functions of the velocities,

pressures and temperatures versus chosen input random variable(s). Such an implementation

of the Stochastic Finite Volume Method is applied to model 3D flow problem in the statistically

homogeneous fluid with uncertainty in its viscosity and, separately, coefficient of the heat

conduction. Probabilistic central moments of up to the fourth order and the additional

characteristics are determined and visualized for the cavity lid driven flow owing to the

specially adopted graphical environment FEPlot. Further numerical extension of this tech-

nique is seen in an application of the Taylor–Newton–Gauss approximation technique, where

polynomial approximation may be replaced with the exponential or hyperbolic ones.
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1. Introduction

Computational solution of the fully coupled Navier–Stokes
equations is still really challenging problem, especially when
defined in terms of random coefficients. We prefer the
generalized stochastic perturbation technique as it allows for
a determination of third and fourth central moments as well
as such coefficients like skewness and/or kurtosis. Instead of a
time consuming implementation of the Direct Differentiation
Method (DDM), the Response Function Method (RFM) is
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Navier–Stokes equations we solve for some polynomial approx-
imations of the state functions relating the PVT solution with the
input random variable(s). This approximation is proposed here
in a local sense – the response functions for velocities, pressures
and temperatures may be different in each discrete point of the
computational domain. This idea is connected here with the
classical deterministic formulation of the Finite Volume Method
(FVM) [2–4]. A very useful property of the FVM is that the
conservation principles, which are the basis for the mathemati-
cal modeling of continuum mechanical problems are also
pl (M. Kamiński).
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Notation

Roman symbols

c specific heat
dj direction vector
f~i body forces per unit volume
g gravitational acceleration
k thermal conductivity
ns number of the finite volume outer faces
p fluid pressure
pb(x) probability density function
qi the heat flux
t time parameter
vi velocity vector
Aj an area the face j of the given finite volume
E[b] expected value of random variable b
DP

bm matrix of unknown polynomial coefficients for
pressure response

DT
bm matrix of unknown polynomial coefficients for

temperature response
DU

bm matrix of unknown polynomial coefficients for
velocity response

KPðaÞ
l ; K

PðaÞ
l j system matrices for the pressures correspond-

ing to the lth finite volume center and the center
of its jth outer face, ath RFM test

KTðaÞ
l ; K

TðaÞ
l j system matrices for the temperatures corre-

sponding to the lth finite volume center and the
center of its jth outer face, ath RFM test

KUðaÞ
l ; K

UðaÞ
l j system matrices for the velocities corre-

sponding to the lth finite volume center
and the center of its jth outer face, ath RFM
test

M total number of deterministic experiments nec-
essary for the response function recovery

N total number of degrees of freedom in the sys-
tem

P vector of discrete pressures
PðaÞl ðtÞ pressure in the center of finite volume l at time t,

ath RFM test
P
ðaÞ
l j ðtÞ pressure face flux (finite volume l, its j outer

plane, at time t, ath RFM test)
QPðaÞ

l ; QUðaÞ
l ; QTðaÞ

l the R.H.S. vectors for the pressures,
velocities and temperatures at the lth finite
volume and ath RFM test

Sj normal vector
T discrete temperatures vector
TðaÞ
l ðtÞ temperature of the center of finite volume l at

time t, ath RFM test
T
ðaÞ
l j ðtÞ temperature face flux (finite volume l, its j outer

plane, at time t, ath RFM test)
U the vector of discrete velocities
UðaÞ

l ðtÞ velocity of the center of finite volume l at time t,
ath RFM test

U
ðaÞ
l j ðtÞ velocity face flux (finite volume l, its j outer

plane, at time t, ath RFM test)
Vl total volume of the lth sub-volume
Var(b) variance of random variable b

Greek symbols

a, b the local index symbol
a(b) the coefficient of variation of random variable b
b(b) skewness coefficient of random variable b
k(b) kurtosis of random variable b
dij Kronecker delta
eij strain tensor
e perturbation parameter
r fluid density
m fluid viscosity
mp(b) pth central moment of the variable b
sij stress tensor
x interpolation coefficient
u temperature
f
ðaÞ
l viscous dissipation for the lth finite volume and

ath RFM numerical test
wb shape functions
(� � �),i partial derivative symbol
Dt time increment
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fulfilled forthediscrete equations [8]. A startingpoint forthe FVM
is a decomposition of the problem domain into both regular
and irregular sub-volumes, where each such a sub-volume is
represented by its midpoint only. This is the main difference to
the Finite Element Method (FEM) [5,8], where the equilibrium
equations are formed and solved in the nodal points of the mesh
only, which are located in the corners (and midpoints for higher
order approximations) of each finite element.

Computational analysis is provided in a hybrid way here –

the FVM freeware code OpenFVM is engaged to solve all N–S
problems necessary to build up the response functions. The
internal symbolic Least Squares Method of the system MAPLE
accompanied with the perturbation-based formulas imple-
mented in this program leads to the final statistical moments
of the fluid state. We recommend the weighted version of the
LSM, where each discretization point to define variability of the
input random quantity has some associated weight showing
its contribution to the final expected value. Numerical
visualization is carried out in the freeware FEPlot used before
for the FEM and FDM output files and procedures. Computa-
tional illustration deals with incompressible fluid flow in a
cubic domain and this flow occurs with two Gaussian input
random variables – heat conductivity coefficient and, sepa-
rately, fluid viscosity. We compute twice up to fourth order
probabilistic characteristics of the PVT solution to validate an
importance of both physical parameters. Although these input
parameters are state-independent, further extension of the
proposed SFVM toward numerical modeling of nonlinear, i.e.
temperature-dependent systems will be also possible.

2. Governing equations

2.1. Navier–Stokes equations

The system of basic equilibrium equations to be extended
toward stochastic analysis and to be solved numerically can be
written with boundary conditions as follows [2,6,7]:
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r
@vi
@t

þ vi; jv j

� �
¼ si j; j þ

�
f i; (1)

vi;i ¼ 0; (2)

si j ¼ � pdi j þ 2mei j; (3)

rc
@u

@t
þ u;ivi

� �
¼ ðku;iÞ;i þ

�qi; (4)

where the following notation is adopted:

ei j ¼
1
2
ðvi; j þ v j;iÞ ¼ 1

2
@vi
@x j

þ @v j

@xi

  !
; i ¼ 1; 2; 3: (5)

State variables in Eqs. ((1)–(5)) show successively the
velocities (vi), pressure ( p) of the analyzed fluid, the stress
(sij) and strain (eij) tensors as well as the temperature
distribution (u). The uncertainty analysis provided in this
work concerns physical parameters of the fluid, i.e. viscosity
(m) and heat conductivity (k), separately, but may also
represent heat capacity (c) or mass density (r) of this fluid.

Let us complete this system with the following boundary
conditions:

� for the velocity

vi ¼ v̂i; x 2 @Vv; (6)

� for the stress tensor

si jn j ¼ f^i; x 2 @Vs ; (7)

� for the temperature

u ¼ u^; x 2 @VQ (8)

� and for the heat flux

k
@u

@x
¼ q̂; x 2 @Vq: (9)

For the numerical solution of differential equations above
we apply variational formulation, where the equations are
numerically integrated over the given volume V. This
operation allows to obtain the starting equations of thermo-
dynamic equilibrium in the following notation:Z
V

dvirðv_ i þ vi; jv jÞdV þ
Z
V

dvi; jð2mei j � pdi jÞdV

¼
Z
V

dvi
�
f idV þ

Z
@V

dvi f
^
idð@VsÞ; (10)

Z
V

d pvi;idV ¼ 0; (11)

Z
V

durcðu_þ u;iviÞdV þ
Z
V

kdu;iu;idV ¼
Z
V

du
�qdV þ

Z
@Vq

du^q̂dð@VÞ:

(12)

Eqs. ((10)–(12)) are all transformed using the generalized
stochastic perturbation method and discretized by the
Finite Volume Method scheme for a numerical solution of
the unsteady coupled fluid flow problem with random
physical parameters. Some analytical techniques leading
to the solution of at least last equation, Eq. (12) are available
in [1].
2.2. The generalized stochastic perturbation method

Let us consider the random variable b and its probability
density function (PDF) by pb(x), so that its expectation can be
defined as

EðbÞ ¼
Z þ1

�1
b pbðxÞdx (13)

assuming no additional truncation on this variable. Further,
one can define the central probabilistic moment of the mth
order for this variable as

mmðbÞ ¼
Z þ1

�1
ðb � E½b�Þm pbðxÞdx: (14)

Let us note that b represents further some physical
parameters of the system as well as their state functions like
temperatures, pressures or fluid velocities and usually has
arbitrarily chosen Gaussian distribution truncated according to
its physical meaning. As it is known [5–7], the basic idea of the
stochastic perturbation approach follows the classical pertur-
bation expansion idea and is based on approximation of all
input variables, and the state functions of the problem via the
truncated Taylor series about their spatial expectations. Let us
consider the following representation of the random function v
(b) with respect to its parameter b around its mean value:

vðbÞ ¼ v0ðb0Þ þ e
@vðbÞ
@b

����
b¼b0

Db þ � � � þ en

n!
@nvðbÞ
@bn

����
b¼b0

Dbn; (15)

where e is a given perturbation parameter (adopted here as
equal to 1), while the nth order variation of random variable is
given as follows:

enDbn ¼ ðdbÞn ¼ enðb � b0Þn: (16)

Let us note that this expansion procedure may be used with
some small modifications by only for the few random variables
(the vector with the few coordinates) – for both correlated and
uncorrelated quantities. Then, the same expansions are
provided and the cross-correlations terms will additionally
appear in the equations describing basic moments and
characteristics of the state functions (cf. [5]). The expected
values are sufficiently accurate with the use of the 10th order
expansion and for e = 1 (assumed for all further derivations) as

E½vðbÞ� ¼ v0ðb0Þ þ 1
2
@2vðbÞ
@b2

����
b¼b0

m2ðb0Þ þ 1
4!
@4vðbÞ
@b4

����
b¼b0

m4ðb0Þ

þ 1
6!
@6vðbÞ
@b6

����
b¼b0

m6ðb0Þ þ 1
8!
@8vðbÞ
@b8

����
b¼b0

m8ðb0Þ

þ 1
10!

@10vðbÞ
@b10

����
b¼b0

m10ðb0Þ (17)

for any natural m with m2m being the ordinary probabilistic
moment of 2mth order. This expansion is justified for the
symmetric probability distribution functions, like the Gauss-
ian one, where all odd orders simply vanish. Analogous
observation significantly simplifies algebraic equations for
higher central moments also, although full perturbation-based
expansions (with both even and odd order terms are available
in the literature, see [5]). Further, according to some previous
computational convergence studies, we may limit this
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expansion to the 10th order for all the moments of an interest
here. Quite similar considerations lead to the expressions for
higher moments, like the variance, for instance

VarðvðbÞÞ ¼ m2ðvðbÞÞ

¼
Z þ1

�1
ðvðbÞ � E½vðbÞ�Þ2 pbðxÞdx

¼ m2ðb0Þ
@vðbÞ
@b

����
b¼b0

� �2

þ m4ðb0Þ
1
4

@2vðbÞ
@b2

����
b¼b0

� �2

þ 1
3
@3vðbÞ
@b3

����
b¼b0

@vðbÞ
@b

����
b¼b0

( )

þ m6ðb0Þ
(

1
36

@3vðbÞ
@b3

����
b¼b0

� �2

þ 1
24

@4vðbÞ
@b4

����
b¼b0

@2vðbÞ
@b2

����
b¼b0

þ 1
60

@5vðbÞ
@b5

����
b¼b0

@vðbÞ
@b

����
b¼b0

)

þ m8ðb0Þ
(

1
576

@4vðbÞ
@b4

����
b¼b0

� �2

þ 1
360

@5vðbÞ
@b5

����
b¼b0

@3vðbÞ
@b3

����
b¼b0

)

þ m8ðb0Þ
(

1
2520

@7vðbÞ
@b7

����
b¼b0

@vðbÞ
@b

����
b¼b0

þ 1
720

@6vðbÞ
@b6

����
b¼b0

@2vðbÞ
@b2

����
b¼b0

)

þ m10ðb0Þ
(

1
14400

@5vðbÞ
@b5

����
b¼b0

� �2

þ 1
40320

@8vðbÞ
@b8

����
b¼b0

@2vðbÞ
@b2

����
b¼b0

)

þ m10ðb0Þ
1

8640
@6vðbÞ
@b6

����
b¼b0

@4vðbÞ
@b4

����
b¼b0

� �

þ m10ðb0Þ
(

1
15120

@7vðbÞ
@b7

����
b¼b0

@3vðbÞ
@b3

����
b¼b0

þ 1
181440

@9vðbÞ
@b9

����
b¼b0

@vðbÞ
@b

����
b¼b0

)
(18)

Third and fourth probabilistic moment may be recovered
from this scheme quite similarly and are included together
with a discussion of the probabilistic convergence of the entire
method in [5]. The central moments of the variable b may be
obviously simply recovered here as

mpðbÞ ¼ 0; p ¼ 2k þ 1

fsðbÞgpðp � 1Þ!! ¼ fsðbÞgpðp � 1Þ � ðp � 3Þ . . .5 � 3; p ¼ 2k

�
(19)

for any natural k � 1, which is the consequence of the Gaussian
distribution symmetry. As one may suppose, the higher order
moments we need to compute the higher order perturbations
need to be included into all formulas, so that the complexity of
the computational model grows non-proportionally together
with the precision and the size of the output information
needed.

3. The Stochastic Finite Volume Method

Now the goal would be to compute up to nth order velocities,
pressures and temperatures and calculate their first four
statistical moments and coefficients. Because of an un-
known computational error resulting from up to nth order
equilibrium equations and the direct access to the source
code we propose the Response Function Method where some
polynomial approximation of the state function (like
temperatures below) in a given sub-volume center with
respect to the input random variable b is proposed in the
following form [5]:

Tb ¼ DT
bmb

m; m ¼ 0; . . . ; n � 1; b ¼ 1; . . . ; N: (20)

where DT
bm is a rectangular matrix of the unknown polynomial

coefficients, so that there holds

uðxiÞ ¼ ’bðxiÞTb ¼ ’bðxiÞDT
bmb

m; i ¼ 1; 2; . . . ; N; m

¼ 0; . . . ; n � 1; (21)

where ’b are traditional deterministic shape functions and Tb

is a vector of the unknown discrete temperatures in the system
(we discretize similarly the pressures and velocities using the
vectors P and U respectively).

An idea of such an approximation of the random state
functions is somewhat similar to the well-known polyno-
mial chaos approach, but instead of the series of poly-
nomials of lower order defined for the few random variables
we apply a single variable and higher order representation
for all the state functions, separately. It is done in the local
formulation, where such a polynomial representation varies
on the given degree of freedom and a specific node in
computational grid. Coupled Navier–Stokes problem having
triple solutions (P, U, T) needs three different matrices DP

bm,
DU

bm and DT
bm containing unknown polynomial coefficients to

be determined.
Therefore, the temperature gradients are similarly deter-

mined as

u; j ¼ ’b; jTb ¼ ’b; jD
T
bmb

m; i ¼ 1; 2; m ¼ 0; . . . ; n � 1: (22)

Analogous representation is proposed for the pressures

Pb ¼ Dp
bmb

m; m ¼ 0; . . . ; n � 1; b ¼ 1; . . . ; N: (23)

and velocities. It needs to be recalled that the discrete velocity
vector has three times more components than these corre-
sponding to the pressures and temperatures. Contrary to the
Finite Element Method and its stochastic perturbation-based
implementation we rewrite right now this polynomial
approximation for each finite volume separately (having each
ns outer surfaces). Generally, the approximating polynomial
orders for the PVT solution components do not need to be
exactly the same – this choice is affected mainly by the
uncertainty source and physical interpretation in the given
problem. Final recovery of the local approximations for the
state functions results from several trial solutions using the
classical FVM around the mean value of the random input
parameters. So that typical discretization is enriched with the
new upper index a = 1,. . ., M (inserted further in the brackets),
where M denotes the total number of computational experi-
ments necessary to recover the response function (usually
around 10). We need to emphasize that the discretization
method applied here assumes the parameter ns as constant



Fig. 1 – 3D view of the given finite volume.

a r c h i v e s o f c i v i l a n d m e c h a n i c a l e n g i n e e r i n g 1 4 ( 2 0 1 4 ) 7 4 5 – 7 5 6 749
(and equal to 6 for a cube); however during the Delaunay
network discretization it can vary throughout the computa-
tional grid.

The basic idea behind the Finite Volume Method is an
application of the Ostrogradski–Gauss divergence theorem
to replace the volumetric integrals inherent to the governing
Eq. (1) with the surface integrals rewritten for all the finite
volumes completely composing the entire computational
domain. A contribution of each finite volume to the global
equilibrium equation is represented here as the contribution
of its center as well as their outer faces, which differs from
the FEM discretization, where a contribution of each
element is traditionally composed from their nodal points
contributions. Then, Eq. (1) is discretized in each finite
volume l as

rðaÞDUðaÞ

Dt

  !
l

þ 1
Vl

Xns
j¼1

r
ðaÞ
j UðaÞ

j UðaÞ
j A j �

1
Vl

Xns
j¼1

m
ðaÞ
j rUðaÞ

j A j

¼ ðrUðaÞÞlrm
ðaÞ
l � ðrPðaÞÞl þ r

ðaÞ
l gðaÞ (24)

where Vl denotes obviously the lth finite volume. An
exemplary finite volume of the general shape is given in Fig. 1.

The pressure gradient in xi direction is calculated here
using the Gauss integration scheme as

rPðaÞl ðxiÞ ¼ 1
Vl

Xns
j¼1

PðaÞj A jn j (25)

where Aj is the area of the face j, nj denotes the versor of this
surface directed outwards and a = 1,. . ., M (as for all next
equations indexed with a). We obtain analogously for the
velocities

rUðaÞ
l ¼ 1

Vl

Xns
j¼1

UðaÞ
j A jn j (26)

where central differencing scheme is applied to determine the
given value at the cell face center. The area vectors remain
constant during the response polynomials recovery as far as
the domain geometry is defined deterministically. Adopting
the following definitions one may show

KUðaÞ
l ¼ r

ðaÞ
l

Dt
þ 1
Vl

Xns
j¼1

ð1 � xÞrðaÞj UðaÞ
j A j þ m

ðaÞ
j

A j

jd jj

( )

K
UðaÞ
l j ¼ 1

Vl
xr

ðaÞ
j UðaÞ

j A j � m
ðaÞ
j

A j

jd jj

  !

QUðaÞ
l ¼ r

ðaÞ
l UðaÞ

l ðt � DtÞ
Dt

� 1
Vl

Xns
j¼1

PðaÞj A jn j � r
ðaÞ
l gðaÞ

þ ðrUðaÞ
l ðt � DtÞÞðrm

ðaÞ
l ðt � DtÞÞ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(27)

We obtain finally the algebraic equations system for the lth
finite volume

KUðaÞ
l UðaÞ

l ðtÞ þ
Xns
j¼1

K
UðaÞ
l j U

ðaÞ
l j ðtÞ ¼ QUðaÞ

l : (28)

The variable U
ðaÞ
l j ðtÞ is the so-called velocity face flux

adjacent to the finite volume l and its j outer plane
computed at time t for the response function test indexed
with a. Introduction of the face fluxes – for pressures P

ðaÞ
l j ðtÞ,

temperatures T
ðaÞ
l j ðtÞ and corresponding system matrices

(marked all herein systematically with the upper bars)
is specific aspect typical for the Finite Volume Method and
reflects the needs of the divergence theorem. So that
the global momentum equation in the RFM-based SFVM
yields

XN
l¼1

KUðaÞ
l UðaÞ

l ðtÞ þ
XN
l¼1

Xns
j¼1

K
UðaÞ
l j U

ðaÞ
l j ðtÞ ¼

XN
l¼1

QUðaÞ
l : (29)

The central differencing scheme with the coefficient x as
the (linear) interpolation factor connecting the given finite
volume and its particular face j is introduced here to
evaluate the given scalar field at the cell face center. There
holds

Ujl ¼ Ujx þ Ulð1 � xÞ (30)



Fig. 2 – Boundary conditions for the test cube.

Fig. 3 – (a) Expected value of the pressures E[p] for random viscosity. (b) Expected value of the temperatures E[u] for random
viscosity. (c) Expected value of horizontal velocities E[u] for random viscosity. (d) Expected value of vertical velocities E[v] for
random viscosity.
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We discretize similarly the continuity Eq. (2) on the finite
volume level as

Xns
j¼1

UðaÞ
j A j ¼ 0: (31)

Analogous considerations as before lead us to the following
matrix equation for pressures (rewritten for the finite volumes
centers contribution and the finite volumes faces separately)
at the discrete level:

KPðaÞ
l PðaÞl ðtÞ þ

Xns
j¼1

K
PðaÞ
l j P

ðaÞ
l j ðtÞ ¼ QPðaÞ

l (32)

having the global form

XN
l¼1

KPðaÞ
l PðaÞl ðtÞ þ

XN
l¼1

Xns
j¼1

K
PðaÞ
l j P

ðaÞ
l j ðtÞ ¼

XN
l¼1

QPðaÞ
l : (33)

Finally, the SFVM discretization of the heat transfer Eq. (4) is
provided as
Fig. 4 – (a) Coefficient of variation of the pressures a( p) for random
for random viscosity. (c) Coefficient of variation of horizontal velo
vertical velocities a(v) for random viscosity.
KTðaÞ
l TðaÞ

l ðtÞ þ
Xns
j¼1

K
TðaÞ
l j T

ðaÞ
l j ðtÞ ¼ QTðaÞ

l ; (34)

where it is assumed that

KTðaÞ
l ¼ r

ðaÞ
l cðaÞl

Dt
þUðaÞ

li

1
Vl

r
ðaÞ
l cðaÞl

Xns
j¼1
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�� ��
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K
TðaÞ
l j ¼ UðaÞ
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1
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r
ðaÞ
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ðaÞ
l cðaÞl

Dt
TðaÞ
l ðt � DtÞ þ f

ðaÞ
l

8>>>>>>>><
>>>>>>>>:

(35)

and f
ðaÞ
l is the viscous dissipation in the lth finite volume and in

the ath RFM numerical test. The global heat transfer equation
for the SFVM yields

XN
l¼1

KTðaÞ
l TðaÞ

l ðtÞ þ
XN
l¼1

Xns
j¼1

K
TðaÞ
l j T

ðaÞ
l j ðtÞ ¼

XN
l¼1

QTðaÞ
l : (36)

Simultaneous solution to the system of Eqs. ((29), (34), (36))
enables for the polynomial approximation of the pressures,
 viscosity. (b) Coefficient of variation of the temperatures a(u)
cities a(u) for random viscosity. (d) Coefficient of variation of
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temperatures and velocities in a fluid and final algebraic
derivation of their probabilistic characteristics provided
numerically in the next section. As it was mentioned, further
processing of the solution toward statistical moments is
performed with the use of the well-known Least Squares
Method in its weighted version, which has been displayed in
[2,5], for instance.

4. Computational analysis

4.1. Random viscosity modeling

Let us consider a cube of unit dimensions divided into 400
equal cubic finite volumes containing a fluid with the
following physical parameters – density r ¼ 1 kg=m3, specific
heat c ¼ 100 J=kg�K, coefficient of thermal conductivity expec-
tation E½k� ¼ 10 W=m�K and the expected value of viscosity
E½m� ¼ 10�1 Pa�s (their coefficients of variation equal both 0.15).
Fig. 5 – (a) Skewness coefficient of the pressures b( p) for random v
random viscosity. (c) Skewness coefficient of horizontal velocitie
vertical velocities b(v) for random viscosity.
These two parameters are randomized separately according to
the Gaussian distribution to distinguish an influence of their
uncertainty on (P, V, T) solution of the given Navier–Stokes
problem. The imposed boundary conditions for this cube are
shown schematically in Fig. 2 – the problem is restricted to 2D
analysis to make more apparent final visualization of the
resulting state functions and their probabilistic characteris-
tics. The time increment has been chosen as Dt = 0.10 s and the
computations have been stopped at tk = 10 s. Similar numeri-
cal analysis has been carried out in [6] with traditional
polynomial approximation methods instead of the WLSM
technique. Computational analysis has been performed in
three different computer systems – (a) OpenFVM [10], where
deterministic problems with varying random parameters have
been solved consecutively, (b) symbolic environment of the
mathematical package MAPLE, where the local response
functions were recovered on the basis of previous models
and where statistical moments are programmed and derived
as well as (c) by using the internet available freeware FEPlot 3.1
iscosity. (b) Skewness coefficient of the temperatures b(u) for
s b(u) for random viscosity. (d) Skewness coefficient of
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[9], where spatial distribution of the resulting probabilistic
characteristics was provided. The response functions were
obtained through 11-point FVM trials in OpenFVM, where
random viscosity was uniformly modified in the interval
m ¼ ½5 � 10�2; 15 � 10�2� Pa�s. Spatial distributions of the
expected values, coefficients of variation, skewness and
kurtosis for the pressure p, velocities in this flow (u, v) and,
finally, temperature T in this domain are shown in Figs. 3–6
(from a to d, correspondingly to the state variable). Due to the
fact, that this problem is really steady-state analysis its
basic deterministic solution time is small and for a
standard professional notebook with i7 processor is about
90 s. It makes probabilistic analysis 11 times longer plus
additional time to transfer and process all the data in the
system MAPLE and finally preprocess them for the FEPlot
needs. The non-stationary analysis of N–S equations in
deterministic version costs more than 2 h on the same
processor, so that the Monte-Carlo analysis (with about 105

random trials) in this case would demand the very expensive
parallel computing process.

The expected values given in Fig. 3 have spatial distribu-
tions and the particular values almost the same as their
Fig. 6 – (a) Kurtosis of the pressures k( p) for random viscosity. (b
(c) Kurtosis of horizontal velocities k(u) for random viscosity. (d) 
deterministic counterparts reaching extremum values at the
upper edge of the examined domain. As it was expected, the
viscosity coefficient m variations caused a significant change in
the distribution of velocity u inside the cube test and also in
pressure distribution, whereas the effect on temperature
seems to be negligibly small. The largest coefficients of
variation (coefficient of variation, see Fig. 4) are noticed for
the horizontal velocity components, than – for the vertical one,
whereas random dispersion of the pressure and temperature
generally has secondary importance here. Location of the
absolute maximum of these coefficients almost perfectly
coincides with the minimum values of the corresponding
expectations and they are usually larger than the input
coefficient of variation for the fluid viscosity. The most regular
spatial distribution of this probabilistic parameter is detected
for the temperature field, however the values are practically
negligible here, which is expected since the randomness
propagates into it according to the coupling with the fluid
transport equation only.

Higher order statistics (cf. Figs. 5 and 6) form quite irregular
patterns in the domain analyzed, where dominating part of
the PVT solution remains Gaussian (according to the skewness
) Kurtosis of the temperatures k(u) for random viscosity.
Kurtosis of vertical velocities k(v) for random viscosity.



Fig. 7 – (a) Expected value E[p] for random heat conductivity. (b) Expected value E[u] for random heat conductivity. (c) Expected
value E[u] for random heat conductivity. (d) Expected value E[v] for random heat conductivity.
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and kurtosis). However, maximum values of both coefficients
may be even many times more than the values adequate to the
normal probability density function and appear in the
exceptional cases only. A detailed comparison of Figs. 5a
and 6a and the remaining pairs of these probabilistic
characteristics shows clearly that the patterns of skewness
and kurtosis for the specific components of the PVT solution
almost strictly coincide, so that the larger deviations from the
values typical Gaussian distribution in both cases have the
same location in this domain.

4.2. Random heat conductivity coefficient

Quite a similar analysis was conducted using constant
viscosity value m ¼ 10�2 Pa�s; given parameters r; c; b and the
coefficient of thermal conductivity taken as the input Gaussian
random variable with the same coefficient of variation and the
expectation equal to E½k� ¼ 10 W=m�K; analogously as in
Section 4.1 we provide 11 deterministic solutions with
k 2 ½5 . . . 15� W=m�K. The results obtained (expectations, coef-
ficients of variation, skewness and kurtosis) for the tempera-
ture u, flow velocity vx 	 u; vy 	 v and pressure p show
illustrations Figs. 7a, d and 8–10. Assumed variations of the
thermal conductivity coefficient k cause a significant reduc-
tion in the temperature difference Du ¼ uu p � ud (see Fig. 2).
The other physical quantities – u, v and p are totally
independent from this parameter and that is why the detailed
statistical analysis and visualization were conducted only for
temperature u.

As it is typical for the stochastic perturbation-based
methods, the expectations of the state functions computed
at the mean values of various probabilistic parameters are
exactly the same – one may compare Fig. 3a against Fig. 7a, etc.
Some small exceptions at the minimum values follow rather
the discrepancies of the deterministic computer technique
itself. Contrary to the previous cases now all higher order
characteristics – variation coefficient, skewness and kurtosis
all have the very regular spatial distributions without any local



Fig. 10 – Kurtosis k(u) for random heat conductivity.Fig. 8 – Coefficient of variation a(u) for random heat
conductivity.

Fig. 9 – Skewness b(u) for random heat conductivity.
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large gradients and outstanding extremum values. Since that
the extremum values within these coefficients all coincide
with each other and, further, the uncertainty at the output
temperature field is significantly smaller than the input
coefficient of variation for the heat conductivity. Particular
values of skewness and kurtosis show that the temperature
has a distribution very distant from the Gaussian, so that the
first two moments information is not sufficient to characterize
it uniquely.

5. Concluding remarks

(1) The Stochastic perturbation-based Finite Volume Method
proposed in this paper in conjunction with the discrete
Response Function Method based on the Weighted Least
Squares Method seems to be an efficient alternative to both
Monte-Carlo simulation technique and stochastic polyno-
mial chaos expansions. The overall numerical error
inherent in the Direct Differentiation Method version of
the perturbation-based SFEM and resulting from the
solution to the increasing order hierarchical equations is
reduced after an application of the RFM technique. Now,
the proposed technique deficiency equivalent to approxi-
mation error by only, which was additionally decreased by
the weighted least squares technique itself. The values of
most of probabilistic moments obtained with the use of the
weighted version of the LSM were slightly smaller than
these returned by the non-weighted approach presented in
[6], but their patterns remained almost the same.

(2) Generally, the method presented enables for randomiza-
tion of the deterministic FVM models with multi-compo-
nent random vectors also with both uncorrelated and
correlated components, but then the additional cross-
correlations need to be given and inserted into the
equations for all the statistical moments of state param-
eters. Randomization of the non-linear problems with
state-dependent physical parameters of the fluids does not
seem to be straightforward but uncertainty propagation
step-by-step in such a computational analysis may make
higher order statistics extremely large. It can be concluded
from the numerical illustration recalled above, where some
extreme values of the skewness and kurtosis maxima have
been detected that are very distant from the zeroes
adjacent to the Gaussian PDF.
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