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Abstract: The purpose of this study is to create a new mathematical model of pennate
striated skeletal muscle. This new model describes behaviour of isolated flat pennate
muscle in two dimensions (2D) by taking into account that rheological properties of
muscle fibres depend on their planar arrangement. A new mathematical model is
implemented in two types: 1) numerical model of unipennate muscle (unipennate
model); 2) numerical model of bipennate muscle (bipennate model). Applying similar
boundary conditions and similar load, proposed numerical models had been tested.
Obtained results were compared with results of numerical researches by applying a
Hill-Zajac muscle model (this is a Hill type muscle model, in which the angle of
pennation is taken into consideration) and a fusiform muscle model (a muscle is
treated as a structure composed of serially linked different mechanical properties
parts).

1. Introduction

The human movement system consists of striated skeletal muscles that have different architectures.
Among these muscles are fusiform muscles and pennate muscles (unipennate muscles, bipennate
muscles and multipennate muscles) [7]. The fusiform muscle fibers run generally parallel to the
muscle axis (it is line connecting the origin tendon and the insertion tendon). The unipennate muscle
fibers run parallel to each other but at the pennation angle to the muscle axis [6]. The bipennate
muscle consists of two unipennate muscles that run in two distinct directions (i.e. different pennation
angles). The multipennate muscle is composed of a few bundles of fibers that run in distinct
directions.

From the physiology point of view the unipennate muscle consists of three parts: the muscle
insertion (‘muscle — insertion tendon’ connection), the belly (muscle fibers), and the muscle origin
(‘muscle — origin tendon’ connection). It is assumed that during contraction the belly maintains the
isovolume, each tendon moves only along its axis and muscle fibers become more pennated (the
pennation angle is increased) [12].

The spatial arrangement of pennate muscle fibres determines the muscle fibres length, the lengths
of tendons and mechanical properties of muscle. That is why the contractile characteristic (i.e. force-
generating capacity) depends on the pennation angle [6]. Moreover, one should take into

consideration that a real pennate muscle is a non-homogenous structure: the distal muscle fascicles
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tend to contract more (i.e. they act at greater pennation angles) than the more proximal muscle
fascicles.

Applying an imaging techniques, such as nuclear magnetic resonance (MRI) and ultrasonography
(US), with a motion analysis techniques, one might perform in vivo non-invasive measurements to
estimate volumes of muscles, muscle fibres lengths and pennation angles [6]. However, one should
perform invasive measurements to obtain [1]: 1) mechanical properties values (by applying tensile
tests and sonomicrometry); 2) muscle morphology and architecture evaluated at the microscopic level
(by using a muscle biopsy); 3) muscle static characteristic (length-force dependence); 4) muscle
dynamic characteristic (velocity-force dependence); 5) muscle-tendon parameters used in the Hill-
type muscle model. That is why a very limited amount of data describing mechanical properties of
pennation muscles can be found in literature.

To model behaviour of pennate muscle one should take into consideration that spatial
arrangement of muscle fibers influence mechanical properties and contractile properties of this
muscle. Nowadays, to describe pennate muscle function in muscle biomechanics there are applied
rheological models: Hill-type muscle models and Hill-Zajac muscle models [4,12]. However,
application of these models is very limited due to problems related to the obtainment of model
parameters.

The purpose of this study is to create a new mathematical model of pennate striated skeletal
muscle that describes behaviour of isolated flat pennate muscle in two dimensions (2D) by taking into
account that rheological properties of muscle fibres depend on their planar arrangement. A new
mathematical model is implemented in two types: 1) numerical model of unipennate muscle

(unipennate model); 2) numerical model of bipennate muscle (bipennate model).

2. Pennate muscle modelling

2.1  Principles of modelling

The mathematical models of unipennate muscle and bipennate muscle were created on the base of a
deformation schema of unipennate muscle shown in the Figure 1. According to this deformation
schema, the muscle contraction occurs in the plane (two-dimension space) along muscle fibers
directed at the pennation angle «, towards the line connecting the muscle insertion (it is a movable
part with one degree of freedom) and the muscle origin (it is a non-movable part). It is assumed that
during muscle contraction the muscle width tt is constant (according to [5]) and muscle fibers
generate a contractile muscle force F, which causes the displacement of muscle insertion x and
counterbalances an external force Fey:

Fext = Fm -cOSczy . 1)
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During contraction the muscle fibers are shortening and the muscle insertion is translated from the
point B to the point B’ (the distance BB’ is equal to x). It causes the change of pennation angle: the
initial value of pennation angle e, (at the length of muscle equals AB), is changed to the value o (at
the length of muscle equals 4B’). Analyzing the deformation schema of unipennate muscle, the

following relation can be derived:

tt=AB-cosa,, = AB-COsa, . 2
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Figure 1. Deformation schema of unipennate muscle:

A) directions of acting of external force F.,; and contractile muscle force F,, towards the
muscle insertion displacement x; B) schema of deformation of unipennate muscle (AB — the
initial length of muscle (before contraction); AB’ — the finish length of muscle (after
contraction); Fn,, — initial contractile muscle force at the length of muscle equals AB; F, — finish
contractile muscle force at the length of muscle equals 4B’; o, — the pennation angle before
contraction (at the length of muscle equals AB); o, — the pennation angle after contraction (at
the length of muscle equals 4B°); X, — change of muscle length that is equal to the difference
of the length AB and the length 4B").

Taking into consideration a deformation schema of unipennate muscle, five rheological models
were created:

1) Unipennate muscle model WW (the author is Wiktoria Wojnicz) (part 2.2);

2) Unipennate muscle model BZ (the author is Battomiej Zagrodny) (part 2.3);

3) Hill-Zajac unipennate muscle model (part 2.4);

4) The bipennate muscle model WW (the author is Wiktoria Wojnicz) (part 2.5);

5) The bipennate muscle model BZ (the author is Battomiej Zagrodny) (part 2.6).

Assuming that the time variable is t, proposed models can be applied to solve the dynamics task

formulated in three following problems:
1) Input variables are the insertion displacement x(t) and the external force F.(t); output variables

are the internal force P"(t) (this force is generated by the contractile elements of muscle model

and it causes an appearing of contractile muscle force Fp(t)), the pennation angle «,(t) and
deformations of muscle model parts (for chosen muscle models);
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2) Input variables are the insertion displacement x(t) and the internal force P""(t); output variables
are the external force Fey(t), the pennation angle e, (t) and deformations of muscle model parts
(for chosen muscle models);

3) Input variables are the external force Fe(t) and the internal force PW(t); output variables are the

insertion displacement x(t), the pennation angle o,(t) and deformations of muscle model parts (for
chosen muscle models).

2.2.  Unipennate muscle model WW

The unipennate muscle model WW describes behaviour of unipennate muscle with the pennation
angle equals o, (Figure 2). This muscle behaviour is described by the rheological model created on
the base of the rheological model of fusiform muscle published in [10,11]. The rheological model of
unipennate muscle model WW is composed of serially linked three fragments (two passive (non-
contractile) fragments and one active (contractile) fragment) that describe different mechanical
properties of muscle parts. Each fragment is composed of mass element, elastic element and viscous
element. Active fragment has additionally a contractile element that models an ability of muscle to
contract. Two lateral fragments model the passive muscle parts (muscle-tendon connections of the
muscle insertion and the muscle origin). One middle fragment models the active muscle part (i.e.
muscle belly). This model has three degrees of freedom. According to this model: 1) the difference of
displacements (xo — X,) describes the change of upper passive muscle fragment; 2) the difference of
displacements (x; — x,) describes the change of middle active muscle fragment; 3) the displacement x,

describes the change of lower passive muscle fragment.

Figure 2. Unipennate muscle model WW (rheological model).

The mathematical model of the unipennate muscle model WW is described by the system of

three differential equations:
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Mg - X+ Lo - (X — ¥ )-cosarp + Ko - (Xg = X1 )- COsap = —Fey (t)
My -5 + Lo - (% =g )+ Ko - (% = X0 )+ Ly - (g = %o )+ Ky - (3¢ =30 ) = R"(t)
My g + Ly - (%o =g )+ Ky - (xp =g )+ Lp - %o + K - xp ==R"(t) , (3)

and following geometrical relations:

ly - sina
ap= arcsin[%} , (4A)
0~ Xo
X-COS&p, —|
X0:|0+ po 0 , (4B)
coslap —apo
. dxg X-COS&pg (4c)
X=—"-= - '
dt cos(ap—apo)—A(x0)~sm(ap—ap0)~(x0—lo)
Iy - sina
Altg) =250 L (4D)

> ,

(lo—xo) L lo - sina g 2
lo—%o

where: m; — mass of the j-th element; K; — stiffness coefficient of the j-th elastic element; L; —

damping coefficient of the j-th viscous element; PlW(t)— internal force of the contractile element; I, —

initial length of muscle model; o, — initial pennation angle when the length of muscle model is

equals to I,.

2.3. Unipennate muscle model BZ

The unipennate muscle model BZ describes behaviour of unipennate muscle with the pennation angle
equals o, (Figure 3). This model is similar to the unipennate muscle model WW (part 2.2). The
unipennate muscle model BZ takes into consideration that stiffness and dumping characteristics of

skeletal muscle is described by a nonlinear relationship according to [2,9]:
1) KJ- = kj ~xj2 J =W, z, 1,2, where k; is a correction factor of stiffness;

2) Cj=c;j ‘XJ—Z . j=Ww, z, 1,2, where ¢; is a correction factor of damping.
Applying the geometrical relations (4A — 4D), the mathematical model of unipennate muscle

model BZ is described by the system of two following equations:

my, - XW +CW . XW + KW Xy — CZ (XZ _Xé.());aKz '(XZ _Xl) = Pw(t)
p

m, -X, -C, '(Xz - Xl)_ K, '(Xz - Xz)= —Fext (t) (5)

1

where: X1 = Xy -COSap ; X — displacement of mass m,,; X, — displacement of mass m,.
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Figure 3. Unipennate muscle model BZ.

2.4.  Hill-Zajac unipennate muscle model

The Hill-Zajac unipennate muscle model describes behaviour of unnipennate muscle by using the
Hill-type muscle model and Zajac muscle model (this is a Hill type muscle model, in which the angle
of pennation ¢, is taken into consideration). There are a lot of modifications of these models [4,12].
In this paper it was assumed that Hill-Zajac unipennate muscle model has a rheological structure
shown in the Figure 4. In this model the muscle length is the sum of belly length L/cos(e,) and
tendon length L. Mechanical properties of muscle are described by using a mass element M (this is a
muscle mass reduced to a point) and parallel linking of three elements: a contractile element that
generates a force Fce (it depends on the actual muscle length I, velocity of muscle fibers contraction
and activation Act that originate from a nervous system), a parallel elastic element described by a
stiffness coefficient equals Kpe and a viscous element described by a damping coefficient equals L.
Tendon behaviour is modelled by using an elastic element and its force depends on the tendon

stiffness coefficient K, and the tendon elongation described by a difference of displacements (x; — x).

Figure 4. Hill-Zajac unipennate muscle model (rheological model).
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The mathematical model of Hill-Zajaca unipennate muscle model is described by the system of
two equations:

Fext + K¢ '(X_Xt):O

) 6

M X+ Kq - (x— % )= Fp -COSa, ©
where the contractile muscle force is equals to:

Fm =Fce —Kpe - Xg—L-%o. @

It was assumed that force of contractile element F-g depends on the muscle activation Act, the
muscle length | and difference between the active component of static muscle characteristic F2° and

the passive component of static muscle characteristic F?2°:

Fee = Act-(F3%(1)- F224(). ®

To implement the Hill-Zajac unipennate muscle model there were used: 1) a static muscle

characteristic (length-force relationship) proposed in [5]; 2) a static tendon characteristic (elongation-

force relationship) proposed in [12]; 3) a dynamic muscle characteristic (velocity-force relationship)

published in [12]; 4) data described musculotendon properties (the maximum isometric muscle force,
the optimal muscle fiber length, the tendon slack length) according with [5].

2.5. Bipennate muscle model WW

The bipennate muscle model WW described behaviour of bipennate muscle composed of two parts
directed at the pennation angle oy, (left part with a constant muscle width tt;) and the pennation angle
apy (right part with a constant muscle width tt,) towards the muscle insertion (it is movable part) and
muscle origins (there are non-movable parts) (Figure 5). Each muscle part behaviour is modelled as a
rheological model of the unipennate muscle WW described in the part 2.2 (i.e. each muscle part is
composed of two passive fragments and one active fragment). The bipennate muscle model WW has
six degrees of freedom. According to this model: 1) difference of displacements (xo; — X;1) describes
the length change of upper passive fragment of muscle left part; 2) difference of displacements
(X11 — X21) describes the length change of middle active fragment of muscle left part; 3) displacement
Xp1 describes the length change of lower passive fragment of muscle left part; 4) difference of
displacements (Xg» — X12) describes the length change of upper passive fragment of muscle right part;
5) difference of displacements (X1, — x»,) describes the length change of middle active fragment of
muscle right part; 6) displacement x,, describes the length change of lower passive fragment of

muscle right part.
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Figure 5. Bipennate muscle model WW (rheological model).

The mathematical model of bipennate muscle model WW is described by the system of five
differential equations:
m- X+ Lo~ (Xo1— %1 1)-COSerpy + Koy - (Xo1— X 1) COSarpy +
+Loo - (o2 — ¥12)-COS@pp + Ko+ (Xop = X12)- COSetpp = —Fey (t)
My3-Sa1+ Loz~ (%1 —Xoa)+ Kor- (41 = Xo1)+ Laz- (kg = Yor) + Kag- (1 = Xo0) = R ()

My K1+ Lyg-(Xo1 =% 1)+ Kyp- (Xo1 = X11)+ Log - o1+ Kog - Xp1 =—P"(t)

N . o , 9)
My %2+ Lop - (%42 = X02)+ Koo - (12— X02)+ Lio - (%42 — Xa2)+ Kiz - (X1 — X02) = P (t)
My Kop + Lo+ (Xag = %2)+ Ky (Xop = X12)+ Loz Xop + Kop - Xpp =—P)'(t)
and following geometrical relations:
(lpy-Sina (g -sina
ap = arcm{u} apy = arcm{uj, (10A)
lo1—Xo1 lo2 — %02
X-COSay; — | X-COSapy, —|
pl— 01 p2 — 102
Xo1=lo1+ » Xo2=lgp + , (10B)
COSapl—apol COSapz—apoz
oy = 901 _ X-COSap
dt Cos(apl_apol)_A(XOl)'Sin(apl_apol)'(XM_IOl) (100)
o — dxgy X-COSat
02=—,°

dt COS(Ofpz _apoz) - Alxg2)- sin(ap2 _“p02)'(xoz ~lp,)
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where: m; — mass of the j-th element of i-th muscle part; m — mass of the element m, and the

Alxo1)=

, (10D)

Alxo2

element my,; K

;i — stiffness coefficient of the j-th elastic element of i-th muscle part; L; — damping

coefficient of the j-th viscous element of i-th muscle part; le(t)— internal force of the contractile

element of left muscle part; P2""(t)— internal force of the contractile element of right muscle part; lo; —

initial length of left part of muscle model; Iy, — initial length of right part of muscle model; oo —
initial pennation angle when the length of left part of muscle model is equal to lo;; o, — initial

pennation angle when the length of right part of muscle model is equal to l,.

2.6. Bipennate muscle model BZ
The bipennate muscle model BZ described behaviour of bipennate muscle directed at the pennation
angle « (left part) and the pennation angle g (right part) towards the muscle insertion (it is movable

part) and muscle origins (there are non-movable parts) (Figure 6).

Figure 6. Bipennate muscle model BZ.
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The bipennate muscle model BZ is similar to the bipennate muscle model WW (part 2.5) but it takes
into consideration that stiffness and dumping characteristics of skeletal muscle are nonlinear (part.
2.3). Applying the geometrical relationships (10A — 10D), the mathematical model of bipennate
muscle model BZ is described by the system of four following equations:

My %z +Cy - (X =¥ )+ Ky - (X =%1) = —Fex(t)

My Xz +Cp-Xp +Ka - X = Pa(t)+ Fy(t)

m3 - %3 +Cg - X3 + K3 -x3 = P3(t)+ Fa(t)

Fu(t)-cosa + Fa(t)-cos g =C; - (%, —%q )+ Kz -(x; %) (11)

where: X; =X2-C0Sa =Xx3-C0Sp .

3. Numerical simulation results

Numerical models of unipennate muscle and bipennate muscle were created on the base of proposed
mathematical models. To perform numerical researches there were used data describing a lateral head
of triceps brachii published in [5]. Applying similar boundary conditions and similar load, proposed
numerical models had been tested. Numerical model of unipennate muscle model WW (described in
part 2.2) was applied to solve three problems of the dynamics task described in part 2.1. Chosen
results obtained from numerical solving of the third problem are shown at the Figure 7.
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Figure 7. Numerical simulation results of the unipennate muscle model WW: A) displacement of
muscle points; B) stiffness of muscle.

Numerical model of Hill-Zajac unipennate muscle model (described in part 2.4) was applied to
solve a dynamics task formulated in the following problem: input variables are the insertion
displacement x(t), the pennation angle o(t) and the external force Fe(t); output variables are the

force of contractile element Fcg and muscle activation Act. Chosen results obtained from numerical

solving of this problem are shown at the Figure 8.
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Figure 8. Numerical simulation results of the Hill-Zajac unipennate muscle model: contractile muscle
force F, and force of contractile element Fcg.

Numerical model of bipennate muscle model WW (described in part 2.5) was applied to solve
the third problem of the dynamics task (described in part 2.1). Chosen results obtained from

numerical solving of the third problem are shown in the Figure 9.
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Figure 9. Numerical simulation results of the bipennate muscle model WW: A) displacement of left
muscle part points; B) stiffness of muscle left and right part.

Numerical model of unipennate muscle model BZ (described in part 2.3) and bipennate muscle
model BZ (described in part 2.6) were applied to solve the third problem of the dynamics task
(described in part 2.1). Chosen results obtained from numerical solving of the third problem are

shown in the Figure 10.

displacement [m)

/
/

A) B)

Figure 10. Numerical simulation results of: A) the unipennate muscle model BZ (displacement of
the tendon x, and muscle fiber x,,; B) the bipennate muscle model BZ (displacement of the tendon x,
and muscle fibers x, = x3 in the case of a = f).
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To compare the influence of planar arrangement of muscle fibers the numerical model of
fusiform muscle model published in [11] was applied to solve the third problem of the dynamics task

(chosen results are shown in the Figure 11).
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Figure 11. Numerical simulation results of the fusiform muscle model: A) displacement of muscle
points; B) stiffness of muscle.

4. Method of verification

To prove models proposed in this paper a method of verification was elaborated. According to this
method, a first step consists in applying a non-invasive image analysis and a second step consists in
performing experiments by using the prototype of pennate muscle. An image analysis (US or MRI)
allows us to perform static image analysis (for a single image) and dynamical image analysis (for a
multiple images or a single movie). It is worth noticing that an image analysis requires that an image
has high resolution to precisely distinguish muscle fibers [3,8]. Single image of muscle section allows

to measure a pennation angle ay,, a muscle diameter and a muscle length (Figure 12).

Figure 12. Muscle geometrical parameters in visual analysis: pennation angle o,
muscle diameter d and muscle length .

The prototype of pennate muscle is composed of four artificial pneumatic muscles (Figure 13).
Each artificial muscle is a linear McKibben actuator. This prototype allows us to form four initial
pennation angles: 9°, 14°, 18° and 24°. Chosen experiments results and numerical simulation results
are shown in the Figure 14. Analysing these results, we may conclude that greater pennation angle
causes the drop of force measured along a long axis of the muscle (each pneumatic actuator produces
the same maximal force, which is independent of the pennation angle).
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Figure 14. Normalized force as a function of
Figure 13. A prototype of pennate pennation angle.

muscle (a prototype is composed of

four artificial pneumatic muscles)

5. Conclusions
The aim of this study was to create mathematical models of unipennate striated skeletal muscle and
bipennate striated skeletal muscle. New models were created in the form of rheological models by
taking into consideration that muscle contraction occurs in two-dimension space and the arrangement
of muscle fibers influence mechanical properties and contractile properties of this muscle. Moreover,
at this stage of modelling we assumed that slow and fast muscle tissues have identical mechanical
properties.
Analysing results of numerical simulations we concluded that:
1) efficiency of fusiform muscle (it is a quotient the external force to the contractile muscle force) is
more than the efficiency of unipennate muscle (because a unipennate muscle works in a plane and
a part of its contractile force is devoted to spatial arrangement of muscle fibers);
2) the efficiency of bipennate muscle is more that the efficiency of unipennate muscle;
3) to model a behaviour of pennate muscle one should precisely describe the geometrical relations
occurring between pennate muscle fibers (i.e. geometrical constrains) and the force-length
relations depended on the time variable (i.e. dynamics equations of motion).
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