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The object of analysis is an unbounded layer made of two isotropic, linear elastic 

materials and periodically laminated along the 1Ox  axis (cf. Fig.1). The layer is 

resting on the rigid base. It is assumed that the laminas are homogeneous and their 

number is very large. Hence we deal with a certain microstructured layer. The aim 

of this contribution is to propose a certain mass discretized model for the analysis 

of vibrations of the layer. It is shown that there exist two kinds of these vibrations 

which are independent of 2x  and 3x  coordinates. 

 

1. OBJECT OF ANALYSIS 

 

Let 321 xxOx  be the inertial coordinate system of Cartesian coordinates in the 

physical space. The elastic layer under considerations in its natural state occupies the 

region bounded by coordinate planes 01 x  and Lx 1 . The layer is made of a very 

large number of thin laminas with a constant thickness 2/l , where Ll /  is negligibly 

small when compared to 1. Hence l stands for the period of the structure and by means of 

 

Fig. 1. Scheme of a part of the layer for 03 x  



Stability of Structures XIII-th Symposium – Zakopane 2012 

694 

1/ Ll  this structure can be referred to as microperiodic. The number of laminas is 

denoted by p , where 1/1 p . The scheme of the layer is shown in Figure 1. 

The material properties of every lamina are determined by mass densities RM  , , 

Young moduli RM EE ,  and Kirchhoff moduli RM GG ,  in the matrix and reinforcement 

materials, respectively. The object of consideration is the analysis of the free vibrations of 

the layer. 

 

2. AIM OF THE CONTRIBUTION 

 

The aim of contribution is to propose and apply a certain mass discretized model of 

the microstructured layer under consideration. 

Free vibrations of the layer will be investigated under simplifying assumption that 

the piece wise constant mass distribution across the layer is approximated by masses 

concentrated exclusively on the interfaces between laminas. These masses are equal to 

  2/lRM    per unit area. 

The main feature of the proposed model is that it describes the effect of the period 

length l  on the values of free vibration frequencies. Obviously the proposed model has a 

physical sense if it describes wave lengths in the 1Ox - axis direction sufficiently large 

when compared to the microstructure period l . 

 

3. INTRODUCTORY CONCEPTS  

 

3.1 LAMINATED SPACE 

 

The subsequent considerations will start with the concept of laminated space 

interpreted as 3D-space obtained by the formal extension of microstructure from interval 

 L,0  to the whole 1Ox - axis. The scheme of the fragment of the space is shown in 

Figure 2. 

 

Fig. 2. A fragment of the space for 03 x  
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In the vibration problem for the laminated space we shall independently deal with 

longitudinal or transversal waves along 1Ox - axis.  

Let
2

l
nxx n  , ,...2,1,0 n  stand for a system of interfaces between adjacent 

laminas for the laminated space under consideration. Let MR HH ,  stand respectively 

either for MR EE ,  or MR GG , . Tripled   MR HHw ,,  will be subsequently related 

either to longitudinal or to transversal waves. The corresponding displacement 

components, related to 321 xxOx  system will be denoted by        321 ,, www . 

Consideration will be restricted to 1-D model of the laminated space by the assumption 

that  txww , , where 1xx  , Rx 1 , Rt  and          321 ,, wwww . 

 

3.2 MASS DISCRETIZATION  

 

The mass discretization will be formulated for the laminated space introduced 

above. The mass discretization assumption, introduced in this Section, will be extended 

on the whole laminated space. The displacement assigned to the n-th interface will be 

denoted by  txww nn , , Rt . 

From the equilibrium equations for an arbitrary lamina we obtain: 
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It has to be remembered that for laminated space, ,...2,1,0 n  

Let us denote by  131211 ,, RRRR ssss  ,  131211 ,, MMMM ssss   stress components 11s , 12s , 

13s  in reinforcement and matrix material, respectively. Hence 
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At the same time at every interface ,...2,1,0,  nxx n  the following dynamic 

equilibrium conditions hold: 
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 (3) 

Equations (1)-(3) represent the mass discretized model equations for the elastic laminated 

space under consideration. 

It has to be emphasized that the model equations (1)-(3) have a physical sense only 

if the mass discretization assumption is reliable. This situation takes place only if the 

wave lengths are large when compared to the period l . 

 

3.3 DISPERSION RELATION 

 

In order to describe the wave propagation along 1Ox  axis in a laminated space we 

have to introduce the concept of the wave length which will be denoted by  . We also 

introduce the wave number 





2
  and the dimensionless wave number l

l
k 






2
. 

The above terminology is based on that introduced in Brillouin [1] and many related 

papers. Following the line of approach given in Brillouin [1] we look for the solution of 

Equations (3) for  nw , ,...2,1,0 n  in the form: 
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where BA,  are arbitrary constants. 

The non trivial solution to this system exists only if the following dispersion relation 

holds: 
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where   and  are allowable free vibration frequencies. 

After denotation 
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2

2 16
 the diagram of dispersion relation is 

shown in Figure 3. 
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Fig.3.  Diagram of dispersion relation 

 

From the physical reliability off the mass discretization assumption it follows that 

formula (5) and the corresponding diagram have the physical meaning only for small 

values of parameter k  with respect to 1. 

 

3.4 BOUNDARY CONDITIONS 

 

Now assume that the constants A, B in (4) are imaginary. In this case: 
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 Subsequently we shall restrict considerations to the layer made of p  laminas; we 

recall that 1/1 p . If the number p  of laminas is even then the formula (6)1 takes place 

for 
2

,...,1,0
p

n  . If the number p  of laminas is odd then the formula (6)2 takes place for 

2

1
,...,1,0




p
n . 

Since the layer rests on the rigid base, for 01 x  we obtain   0,0 0  wtw . At the 

same time the upper bound plLx 1  is free of tractions 01  pp ww .  Hence the 

value of s  is equal to zero in the interval  pp xx ,1 . 

Condition on the upper boundary implies that: 

1. If a number p  of laminas is even then 0
2

1
sin

2
sin 




p
kB

p
kA , 

2. If a number p  of lamina is odd then 0
2

1
sin

2
sin 




p
kA

p
kB . 

The boundary condition on the plane 01 x  is satisfied identically.  



Stability of Structures XIII-th Symposium – Zakopane 2012 

698 

The above boundary conditions are represented by the interrelation between real 

constants (vibration amplitudes) A and B and take place for the 1-D model of the 

laminated layer under consideration. 

 

4. MODELLING RESULTS 

 

The model of free vibrations is obtained directly from the dispersion relation. For 

free vibration frequencies we obtain the following formulas: 
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We recall that the above formulas have a physical sense only if the dimensionless wave 

number k is not large when compared to 1. 

For 1k , the formula (7) can be rewritten in the asymptotic form: 
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The first terms on the right hand side of the following formulas represent the asymptotic 

approximation of higher and lower free vibration frequencies. 

For a homogeneous layer we obtain MR   , MR HHH   and formula 

(8) takes the form:  
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Formulas (7)-(9) represent the final results of the 1-D modelling procedure proposed in 

this contribution.  

 

5. CONCLUDING REMARKS 

 

The characteristic feature of the free vibration analysis are two independent simple 

formulas for the lower frequency   and higher frequency  . 

It can be seen that the obtained general results depend on the microstructure 

parameter l . The asymptotic formulas for the lower free vibrations   for sufficiently 

large wave length   (eg. for L ) are dispersion less e.a. they are independent on l , 

while the upper frequencies are constant and very large. 
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