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SELF-CONSISTENT CALCULATIONS 
OF THE DYNAMIC, THERMODYNAMIC 

AND ELASTIC PRO-PERTIES OF A LATTICE 
OF ATOMIC CRYSTALS 

 
 
The application of the self-consistent phonon theory (SCPT) formulated by 

Plakida and Siklós on the basis of the double-time Green’s function method to the atomic 
crystals: rare gas solids (RGS), quantum crystals (QC) and metallic crystals (MC) is 
discussed. The special attention is given in theoretical investigation of the dynamic, 
thermodynamic and elastic properties of fcc and bcc structures using the reduced all-
neighbours approximation of SCPT. The interatomic interactions in the mentioned 
crystals are described by the various models, among them by the generalized (exp,m) 
Buckingham, (n,m) Lennard-Jones and (exp,exp) Morse self-consistent potentials. The 
potential parameters are determined self-consistently with the help of the zero-point 
experimental data: the lattice constant, sublimation energy, compressibility and Debye 
characteristic temperature. Within numerical calculations we study the influence of the 
number of “important” shells of neighbours on temperature and pressure variations of 
the selected physical properties of atomic crystals. The computed results are compared 
with available experimental data. 

 
Keywords: self-consistent phonon theory, properties of atomic crystals. 

 
 

1. INTRODUCTION 
 
The theory of lattice dynamics founded on the classical work by Born and 

Kàrmàn in its most simple approximation, in the harmonic approximation, is 
considered to be a well established theory capable to describe many of the 
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physical properties of the crystals in terms of independent normal models-
phonons [1]. For a more precise description the anharmonicity of lattice 
vibrations or the interaction between the phonons should be taken into account 
and usually the ordinary perturbation theory considering the cubic and quartic 
interaction is quite appropriate for this purpose [2]. However, the investigations 
[3] showed that this approach cannot be applied in certain cases: near the phase 
transition points, e.g. melting point; for the quantum crystals with large zero-
point energy; for the light impurities with small binding energy, etc., when the 
anharmonic effects are not small. Thus, many modifications of the theory of 
lattice dynamics of highly anharmonic crystals was elaborated simultaneously 
and indepently by several authors by a variety of techniques. In one of these is 
the self-consistent phonon theory (SCPT) based on the variational principle 
[4,5]. A selective resummation of diagrammatic perturbation theory was used in 
[6]. The SCPT based on the thermodynamic double-time Green’s function was 
proposed by Plakida and Siklós [7].Today this version of SCPT is considered to 
be well established theory and it can be applied for investigation of dynamic, 
thermodynamic and elastic properties in a wide range of temperature and 
external pressure. 

In the present paper the special attention is given to theoretical 
investigations of the physical properties of fcc and bcc lattices of RGS, QC and 
MC using the reduced all-neighbours approximation of the self-consistent 
phonon theory (RANASCPT). 

The lattice atoms of simple atomic crystals with spherical symmetry 
interact with mainly central forces [8]. The long-range attractive interactions are 
of van der Waals-London (vdW-L) type and the short-range repulsion is 
connected with the quantum-mechanical effect of the overlapping of outer 
electronic shells of interacting atoms. Detailed theoretical consideration lead to 
the power (r-6) and the exponential laws, respectively, for the attraction and 
repulsion portion of the pairwise atomic interaction in such crystals [9]. Earlier 
results of theoretical calculations allows us to state that among the functions for 
the initial pair interactions in atomic crystals the most common form was the 
(12,6) Lennard-Jones potential with parameters obtained usually from fits to 
experimental crystalline state properties [10]. 

It should be noted that the repulsion term (r-12) appearing in the above 
mentioned function is not well founded theoretically from quantum mechanics 
[9] and thus a more realistic repulsive potential was desired. Singh and Neb [11] 
have constructed a model consist of the attractive vdW-L force modified by the 
variable induced dipoles and the repulsive Born-Mayer interactions. 

Relative merits of Singh and Neb potential curve have been tested in our 
papers [12,13] by calculating the dynamic, thermodynamic [12] and elastic [13] 
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properties of strongly anharmonic heavier RGS by the help of nearest-
neighbours approximation of the reduced second-order self-consistent phonon 
theory (NNARSOSCPT). The results of papers [12,13] compared with the 
principal theoretical data given in [14] for the Morse, Rydberg and Varshni self-
consistent (s.c.) potentials showed that the best results as compared with 
experimental data were obtained for the purely exponential (exp,exp) Morse s.c. 
potential. Next, we have tested the applicability of the Morse potential together 
with the purely power generalized form of the (n,m) Lennard-Jones and 
mixed power-exponential (exp,m) Buckingham potentials to the description of 
the pressure variations of the limiting temperatures of dynamical and 
thermodynamical stability, selected thermodynamic functions and elastic 
properties of heavier RGS [15]. 

More recently [16,17], the above three s.c. models of pairwise interactions 
have been used for calculations of the most characteristic properties of solid He-3 
and He-4 with the help of NNARSOSCPT [16] and RANASCPT [17]. 

It should be noted that the traditional (12,6) Lennard-Jones as well as its 
generalized (n,m) form were used in [10,18,19] for calculations of the dynamic 
and thermodynamic properties of metallic crystal with the help of the SCPT. 

The all-neighbours approximation together with the five-parameters 
generalized Morse potential, with parameters obtained by Akgün and U�ur [20], 
and the classical (exp,exp) Morse s.c. potential was applied, last time, for 
investigations of the dynamic, thermodynamic [21,22] and elastic [23] properties 
of fcc metallic crystals, particularly properties of Ni fcc lattice. 

In the present work a review of theoretical studies of dynamic, thermody-
namic and elastic properties of atomic crystals in the RANASCPT is given. The 
main results obtained with the help of generalized form of the (exp,m) 
Buckingham, (n,m) Lennard-Jones and (exp,exp) Morse renormalized potentials 
for the lattices of heavier rare gas solids and quantum crystals are shown. In the 
case of metallic crystals interatomic interaction are represented in this paper by 
two versions of the Morse pair potential: classical, which is the four parameter 
one and modified by Akgün and U�ur [20] which is the five parameter. 

 
 

2. RENORMALIZED POTENTIALS OF CRYSTALS 
IN THE REDUCED ALL-NEIGHBOUR APPROXIMATION 

OF THE SCPT 
 

Using the general formula derived by Plakid and Siklós [7] for the s.c. 
potential we get the following analytical expression for the Buckingham ( )lBΦ~ , 
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Lennard-Jones ( )lLJΦ~ , classical Morse ( )lMΦ~  [17] and the modified by Akgün 

and U�ur Morse ( )lM *

~Φ  renormalized potentials [22]: 
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The symbols used in (1)-(4) have the following meaning: 
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kjR  and kjA  are the matrixes defined in [22]. In equations (1)-(4) n, m, α and β 

are the dimensionless parameters describing the slope of the potential curves, r0 
and D0 define the potential minimum and are, respectively, the equilibrium 
distance of two isolated atoms and the energy of their dissociation. The equation 
(4) for y = 0 is equivalent to the original of Akgün and U�ur one [20] and was 
obtained by the following substitutions: 

,00
AUrr =  ,00

AUDD =  ,AUn=γ  ,0
AUAU rαβ =  

AUAUAU rm 0αα =  

Factor x2 should exhibit the correct nature of the interatomic forces in metallic 
crystals, particularly at short distance [22]. 

The renormalization parameter y appearing in Eqs. (1)-(4) is equal to: 
( )

2
0

2

2r
lu

y
><=      (5) 



              Dynamic, thermodynamic and elastic properties of crystals                 37 
 

where: ( ) ( ) 22
0

2 ][ luullu l >−<>=<
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�

 and lu
�

 are the displacements of 

neighbouring atoms from their equilibrium positions and l
�

 is their equilibrium 
separation. >< 2u  depends on the explicit form of s.c. pairwise atomic 
interaction Φ~ (l) and the temperature range. In particular, for the strongly 
anharmonic crystals under an arbitrary external pressure p and temperature T we 
get [7]: 
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The exact expression for the symbols using in (6) are given in [22]. 
The relations (1) to (6) form the system of s.c. equations which determines the 
potential energy of pairwise interactions of atoms at fixed temperature and 
pressure. Of course, the potential energy of crystal consists of energies of 
interaction of all pair of atoms. However, in order to describe the above quantity 
and all other physical properties of crystal lattice we should, at first, calculate all 
unknown parameters appearing in each of Eqs (1) to (4). These parameters are 
fitted to experimental data of zero-point internal energy U0, zero-point volume V0, 
zero-point bulk modulus BT and the Debye characteristic temperature �D 
determine at low temperatures using the modified Fürth [24] and Shu Zen and 
Davies [10] method. These modification [17] allows us to determine the 
parameters of s.c. potentials functions as they depend on the number of shells “i” 
of nearest neighbours zi having an influence on the pair interactions. Obtained 
analytical set of equation for the ( )lBΦ~ , ( )lLJΦ~ , ( )lMΦ~  potential parameters is 

given in [17] and in [22] for ( )lM *

~Φ  and were used as the first approximation in 
our numerical calculations of parameters for the four mentioned model 
renormalized potentials. 

Having the values of potential constants for the pairwise atomic 
interaction in considered crystals we can calculate the pressure and temperature 
variations of y (Eqs (5) and (6)) and the anharmonic force constants f(T,p) and 
g(T,p) defined, respectively, as the second and third derivatives of the s.c. 
potential )(

~
lΦ . Then all dynamic and thermodynamic properties of strongly 

anharmonic crystals may be expressed as functions of y, )(
~

lΦ , )(
~

lΦ ′′  and 

)(
~

lΦ ′′′  but the respective equations must take into account the potential energy 
of crystals obtained in the higher approximation with respect to the number of 
acting  neighbours. 
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3. GENERAL EQUATION OF STATE, THERMODYNAMIC 
FUNCTIONS AND THE ISOTHERMAL ELASTIC 

CONSTANTS IN THE RANASCPT 
 

In the nearest-neighbouring (n.n.) approximation of the SCPT the 
simplifying assumption was taken by Plakida, Siklós and Aksienov [7,25,26] 
that each atom interacts only with its n.n. In this paper we try to reject this 
assumption incorporating further shells “i” and the number of atoms zi in such 
i-th shells in the s.c. equations. Then, the equation of state takes the following 
form [17]: 
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In the same way, the internal energy per atom E(zi) and enthalpy H(zi) are equal to: 
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where p, l, z, E and V denote, respectively, the equation of state, distance 
between neighbouring atoms, number of n.n., internal energy and the specific 
volume in the n.n. approximation [26]. According to the thermodynamic 
relations [27] the difference between the molar heats at constant pressure and 
constant volume is equal to: 
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This formula express a general thermal equation of state for crystal 
characterized by the molar heats and thermodynamic functions – the internal 
energy and enthalpy in the reduced, all neighbours approximation of the self-
consistent phonon theory. 

The temperature and pressure variations of the isothermal elastic constant 
cαβ(T,p) of considered atomic crystals can be obtained with the help of the 
following formula [7]: 

( ) ( ) ( )pTSpTpTcpTc
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The quantities hcαβ , f , kB and 
jk

S �  are, respectively, the harmonic elastic constant, 

harmonic second-order force constant, Boltzmann constant and the coefficient 
defined by the direction of the wave vector k

�
 and polarization j

�
 yelding the 

corresponding elastic constants c11, c44 and c11-c12 [7]. 
Using the above modified s.c. equations (Eqs. (7)-(11)) we can test the 

relative merits of the four forms (Eqs. (1)-(4)) renormalized potentials by 
calculating the temperature and pressure dependent properties of the fcc and bcc 
lattices of atomic crystals. As it was mentioned in section 2 of this paper in the 
respective equations we must take into account the fact that the potential energy 
of crystal consist of energies of interactions of all pair of atoms. 

 
4. NUMERICAL RESULTS 

 
Using as starting point an analytical results for the potential parameters 

given in our previous papers [17,22] we were fitting by trial-and-error method 
the four s.c. potentials for considered crystals (RGS, QC, MC) to the lowest-
pressure experiment trying to predict the experimental values of the lattice 
constant, compressibility and the internal energy with the help of RANASCPT. 
The respective calculations were being carried out for various imax of shells of 
neighbours – up to 10 and over – and the results, as an example, are presented in 
Table 1 for the He-4. The number of shells taken into account is limited to 10 as 
it appeared that the values of parameters obtained for imax= 10 and for instance 
20 are generally nearly the same, while those for imax= 1 and for 10 differ very 
distinctly. 

Table 1  
Optimal values of the Buckingham (B), Lennard-Jones (LJ) and Morse (M) s.c. pair 
potentials parameters for He-4 vs. the number of shells of neighbours [17] 
 

Potential imax n m α β r0 (10-10m) D0 (10-21J) 
 1 - 6.0 4.5 - 2.91290 0.098666 

(B) 5 - 6.0 4.5 - 3.07372 0.101246 
 10 - 6.0 4.5 - 3.07214 0.104952 
 1 10.2 5.1 - - 2.86295 0.105345 

(LJ) 5 10.2 5.1 - - 2.98160 0.076050 
 10 10.2 5.1 - - 3.00550 0.071710 
 1 - - 6.0 3.0 2.69110 0.093480 

(M) 5 - - 6.0 3.0 3.52450 0.042310 
 10 - - 6.0 3.0 3.82740 0.034900 
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Optimal values of the parameters of various models of interatomic 
interactions in rare gas solids (RGS), quantum crystals (QC) and metallic 
crystals (MC) calculated in the highest approximation with respect to the number 
of shells of neighbours are collected in Table 2. 

Table 2  
Optimal values of the Buckingham, Lennard-Jones and Morse pair potential parameters 
for the heavier RGS, QC and MC 
  
Potential Ar Kr Xe 

parameters (α,6)B (n,6)LJ (α,β)M (α,6)B (n,6)LJ (α,β)M (α,6)B (n,6)LJ (α,β)M 
n  or  α [-] 14.26 12.28 13.50 14.92 12.96 13.20 13.91 11.81 13.00 

β [-] - - 5.36 - - 5.86 - - 5.46 
r0 [10-10 m] 3.7909 3.7952 3.7756 4.0532 4.0586 4.0299 4.4279 4.4378 4.4041 
D0 [10-21 J] 1.7485 1.6995 1.9977 2.4393 2.3791 2.8512 3.3726 3.2603 3.8902 

 He-3 He-4 Ni   
 (α,m)B (n,m)LJ (α,m)M (α,m)B (n,m)LJ (α,m)M (α,β)M (α,β)M* 

 (� = 0.44) 
n  [-] - 7.2 - - 10.2 - - - 
m [-] 6 3.6 - 6 5.1 - - - 
α  [-] 3 - 6 4.5 - 6 10.53 10.53 
β  [-] - - 3 - - 3 5.24 4.66 

r0 [10-10 m] 3.40930 3.30300 3.07214 3.00550 3.82740 3.68158 2.549 2.576 
D0 [10-21 J] 0.05979 0.03558 0.10495 0.07171 0.03490 0.04846 45.6 44.47 

 
As a test of validity of both the models of interatomic interactions 

(respectively Buckingham, Lennard-Jones, classical and modified Morse 
potentials with parameters given in Table 1 and 2) and the model of lattice 
dynamics (the reduced all-neighbours approximation of the SCPT) we have 
computed the equilibrium distance between neighbouring atoms l, the internal 
energy E (Table 3 and 4) and the isothermal bulk modulus BT (Table 5) for the 
heavier RGS (Ar, Kr and Xe), QC (He-3 and He-4) and MC (Ni). Theoretical 
results are collected as an example, for two values of temperature (T = 0K and 
T = Tm – the melting temperature) and in the case of QC for a few values of high 
pressure. We are paying a special attention to l, E and BT because just for these 
quantities exist experimental data and we can show their comparison with 
theoretical results. 
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Table 3  
The nearest neighbours separation l and the internal energy E as function of pair 
potential and temperature for RGS and MC. Experimental values [30-32] for T = Tm 
are given for comparison 
 

 l [10-10 m] -E[10-21 J/atom] 
Potential (α,6)B (n,6)LJ (α,β)M (α,6)B (n,6)LJ (α,β)M 

T = 0K 3.7480 3.7480 3.7480 12.8202 12.8199 12.8201 
T = Tm 3.9016 3.9241 3.8842 9.8423 9.6554 9.9832 Ar 

experiment 3.857 - 
T = 0K 3.9920 3.9919 3.9920 18.5350 18.5349 18.5350 
T = Tm 4.1739 4.1954 4.1460 13.7105 13.4435 13.9865 Kr 

experiment 4.125 - 
T = 0K 4.3350 4.3350 4.3350 26.6210 26.6212 26.6213 
T = Tm 4.5377 4.5646 4.5152 19.5803 19.2626 19.8496 Xe 

experiment 4.492 - 
Potential (α,β)M* (α,β)M (α,β)M* (α,β)M 

T = 0K 2.4784 2.4759 -331.21 -332.14 
T = Tm 2.5806 2.5599 -254.330 -263.61 Ni 

experiment 2.478 for T = 0K -331.20 for T = 0K 
 

Table 4  
Pressure variations of the nearest neighbours separation l and internal energy E in QC as 
a function of pair potential at T = 0K. Experimental values [28,29] are given for 
comparison. imax = 20 
 

He-3 He-4 
p (MPa) p (MPa) Potential 

3.516 5.218 7.691 10.051 3.222 6.414 9.646 14.256 
l [10-10 m] 

(α,m)B 3.7270 3.6516 3.5679 3.5055 3.6378 3.5514 3.4863 3.4157 
(n,m)LJ 3.7270 3.6465 3.5586 3.4936 3.6378 3.5480 3.4819 3.4112 
(α,β)M 3.7270 3.5906 3.4562 3.3634 3.6378 3.4609 3.3464 3.2318 
experiment 3.7270 3.6477 3.5648 3.5073 3.6378 3.5468 3.4835 3.4178 

E [10-24 J / atom] 
(α,m)B -14.5 5.4 32.1 55.9 -79.8 -53.2 -28.8 3.5 
(n,m)LJ -14.5 8.5 39.2 66.3 -79.8 -59.5 -37.6 -6.6 
(α,β)M -14.5 -4.7 10.5 25.3 -79.8 -59.8 -39.0 -9.7 
experiment -14.5 -3.9 11.9 26.6 -79.8 -68.0 -54.9 -35.3 
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Table 5  
The isothermal bulk modulus BT as function of pair potential and temperature for RGS, 
QC and MC. Experimental values [30-32] for T = Tm are given for comparison 
 

 BT [Gpa] 
Potential (α,6)B (n,6)LJ (α,β)M 

T = 0K 2.6699 2.6705 2.6680 
T = Tm 0.7779 0.6269 0.9301 Ar 

experiment 1.14 
T = 0K 3.4510 3.4510 3.4515 
T = Tm 0.8917 0.7338 1.1576 Kr 

experiment 1.33 
T = 0K 3.5816 3.5791 3.5792 
T = Tm 1.0005 0.8193 1.2017 Xe 

 1.38 
Potential (α,m)B (n,m)LJ (α,β)M 

He-3 T = 0K 
p = 3.516MPa 0.0103 0.0828 0.01259 

He-4 T = 0K 
p = 3.222MPa 0.0068 0.0080 0.01633 

Potential (α,β)M* (α,β)M 
T = 0K 182.001 182.690 
T = Tm 89.306 88.309 Ni 

experiment 182.0 for T = 0K 
 

5. CONCLUSION 
 
The main results of this paper are the following: 

• Analytical results for quantities describing dynamic, thermodynamic and 
elastic properties of fcc and bcc lattices of atomic crystals as they depend 
on the number of  “important” shells “i” of nearest neighbours zi are given. 

• The calculations in the reduced all-neighbours approximations of the self-
consistent phonon theory (based on the double-time Green’s function 
method) are presented. Interatomic potential functions are described by the 
generalized (exp,m) Buckingham, (n,m) Lennard-Jones, classical (exp,exp) 
Morse and the modified by Akgün and U�ur (for metallic crystals) Morse 
self-consistent potential. 

• Selected numerical results are shown for heavier rare gas solids, quantum 
crystals and metallic crystals. The computed  results for the equilibrium 
distance between neighbouring atoms l, internal energy E and the 
isothermal bulk modulus BT are compared with available measured data. 
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Bearing in the mind this comparison as well as the results of our earlier 
papers [15,17,22] we hope that all self-consistent potentials considered here 
represented quite-good the real interatomic forces in strongly anharmonic 
crystals of light and heavier RGS. Analytical results given in this paper can be 
used for description of the dynamics and thermodynamics of other class of 
atomic crystals with spherical symmetry. 
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WŁA�CIWO�CI DYNAMICZNE, TERMODYNAMICZNE 
I SPR��YSTE KRYSZTAŁÓW PIERWIASTKÓW  

W TEORII POLA SAMOUZGODNIONEGO 
 

Streszczenie 
 

W pracy przedstawiono wyniki bada� wła�ciwo�ci dynamicznych, termo-
dynamicznych i spr��ystych kryształów pierwiastków gazów szlachetnych 
(RGS) oraz kryształów kwantowych (QC) i metalicznych (MC). Analityczny 
opis został wykonany w przybli�eniu wszystkich s�siadów teorii pola samo-
uzgodnionego Plakidy i Siklósa, opartej na metodzie dwuczasowych temperatu-
rowych funkcji Greena. Oddziaływania mi�dzyatomowe w sieci ww. kryształów 
pierwiastków aproksymowano uogólnionymi 4-parametrowymi krzywymi 
(exp,m) Buckinghama, (exp,exp) Morse oraz (n,m) Lennarda-Jonesa. Parametry 
krzywych potencjalnych zostały wyznaczone w funkcji liczby powłok „i” kolej-
nych s�siadów (tab. 1 i 2) w oparciu o dane do�wiadczalne dla stałych sieci, 
energii sublimacji, �ci�liwo�ci oraz temperatury charakterystycznej Debye’a. 
Szczegółowe obliczenia numeryczne dla odległo�ci najbli�szych s�siadów l, 
energii wewn�trznej E (tab. 3 i 4) oraz izotermicznego modułu spr��ysto�ci BT 
(tab. 5) dla trzech grup kryształów pierwiastków zostały porównane z danymi do-
�wiadczalnymi. 




