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The results of modelling of the magnetorheological elastomers (MREs) mi-
crostructure using Finite Elements Method (FEM) are shown. MREs are
solids analogous to magnetorheological fluids consisting of carbonyl-iron
particles and a soft elastomer matrix. Fabrication of MREs is performed
in an external constant magnetic field. Due to the presence of this field, the
ferromagnetic particles tend to arrange themselves into elongated chains
according to the magnetic field lines. FEM analysis of the MREs micro-
structure takes into account two cases: magnetic power and elastic vectors
as well as their interactions between the components of the composite. The
paper describes spatial ordering of the particles based on their interactions
with the magnetic field. Two phenomena were taken into account: the force
of a magnetic field and the local magnetic dipoles. Both fields have been
modelled for a circular conductor with electrical current.
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1. Problem formulation

Magnetorheological elastomers (MREs) are solid phase analogues of magnetor-
heological fluids. The MREs consist of ferromagnetic carbonyl-iron particles
and a soft elastomer matrix. Their mechanical properties change because of
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the influence of an external magnetic field (Dorfmann and Brigadnov, 2003;
Lokander and Stenberg, 2003b, Zienkiewicz and Taylor, 1994). According to
the literature, the elasticity modulus of MREs can undergo a change by abo-
ut 30-40%, and even 60% (Dorfmann and Brigadnov, 2003; Kankanala and
Trianta fyllidis, 2004) due to the presence of the magnetic field.

MREs most often consist of iron micro-dimensional particles, although in
the literature we can find examples of application of various particles from
carbonyl-iron and iron alloys (Lokander et al., 2004) to magnetostrictive par-
ticles (Lokander and Stenberg, 2003a). Size and shape of the particles applied
in MREs can be different (Farshad and Benine, 2004; de Vicente et al., 2002).

A huge interest in MRE application to technology causes the necessity
of their theoretical description (Connoly and McHugh, 1999). A significant
obstacle to publish materials concerning MREs and their properties is the
lack of description of magneto-elastic deformation. Some solutions on the basis
of Cauchy’s elastic theory for isotropic magnetic sensitive bodies were found
(Jolly et al., 1999).

These theoretical results are not always agreeable with experimental re-
sults. In literature, one can find a lot of mathematical models describing de-
formation of MREs under the influence of a magnetic field (Dorfmann and
Brigadnov, 2003; Dorfmann and Ogden, 2003; Dorfmann et al., 2004). Some
of them even assume that there is various magnetization in the range of fer-
romagnetic particles (Bocera and Bruno, 2001). This phenomenon does not
occur for appropriately small particles of dimensions ¬ 1.5µm. In the case of
greater particles, this effect has to be taken into consideration in mathematical
equations, what is described in Bocera and Bruno (2001).

Other models are focused on analysis of a limited number of particles which
are within limits of the same radius (Yin et al., 2002). Constitutive equations
for composites consisting of magnetic particles in an elastomer matrix and
subjected to deformations can be described according to Eshelby’s approxi-
mation.

A combination of the finite element method with the ”meshfree” method,
makes possible creation of a discrete model subjected to one-axial deforma-
tion with or without the presence of a magnetic field (Kleiber, 1985). FEM
description can be found in many works (Kleiber, 1985; Lokander ans Sten-
berg, 2003a,b; Lokander et al., 2004; Turner et al., 1956; Wang et al., 2003;
Woźniak, 1993, 1995; Yin et al., 2002; Zhou, 2003; Zienkiewicz and Taylor,
1994). FEM is based on the assumption that a solid might be considered as
a collection of finite elements connected to each other with the use of finite
nodal points.
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The FEM concept introduced by Turner et al. (1956) and Zienkiewicz and
Taylor (1994) assumes finite elements which are bounded by a number of nodal
points. FEM enables analysis of objects with complex geometry and can be
applied for a material model in a combined internal structure (Wang et al.,
2003; Zienkiewicz and Taylor, 1994) provided that a proper model can be
created and its division into finite elements can be carried out.

Many works, related to some extent with the subject of this paper were
devoted to analysis of the magnetic field using the finite element method as
well. Only few of them are described here in short. Matsui and Okuda (1998),
for instance, proposed a scheme for calculating the magnetic field in a sphe-
rical shell, based on the Earth’s outer core. According to their results, they
suggested that the accuracy of the dipole field depends on the radius of the
simulation domain. In Tomczyk and Koteras (2008), the authors presented
results of an experimental and numerical study of the influence of the air gap
between the coils in a transformer. They obtained a good agreement between
both investigations. Broeh et al. (1996) showed results of the finite-element
method in combination with the Biot-Savart law concerning the magnetic
field distribution generated by a dipolar source within a homogeneous volume
conductor of an arbitrary shape. Simulations were performed to evaluate the
numerical accuracy for a homogeneous spherical volume conductor.

In this paper, the effect of the magnetic field on the elastomer pattern
containing steel spheres is shown. The theoretical description of the influence
of magnetic field lines on ferromagnetic particles and the determination of
forces is rather complicated. The whole analytical calculations concerning the
knowledge of attraction of the spheres are usually simplified by the assumption
of one concentrated force acting in gravity centre of the body. Such an approach
allows one to obtain only approximated results, however, the numerical model
makes possible the determination of forces in each point of the discrete body. In
this manner, the resultant forces can be found, which allows one to compute
stresses and displacements in the elastomer pattern. The fundamental aim
of the work was to determine the limit value of the magnetic field in order
to destruct elastomer continuity. Two tests (numerical and empirical) were
performed.

In the numerical model, the source of the magnetic field is a solenoid
through which an electrical current passes. Numerical computations for the
spatial model which consists of the solenoid generating the magnetic field and
of the elastomer pattern with two spheres have been conducted. The elastomer
pattern has no magnetic property and the source of appearing stresses in it is
caused by displacements of the spheres due to the magnetic field. The problem
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is solved by applying the finite element method in ANSYS 11.0 code. For given
current values, results have been presented in forms of magnetic field intensity,
magnetic induction, magnetic forces, stresses and displacements. The applied
numerical method is particularly presented in the third Section.

In the experimental model, real elastomer patterns in which two spheres
with diameter 12.7mm had been set were prepared. The experimental appro-
ach allowed one to observe stress distribution in the material.

2. Material properties

The values of mechanical properties of the elastomer are found by performing
a one-directional tensile test. In numerical modelling of the magnetic field, the
effect of elastic deformation of spheres and elastomer is assumed (Table 1).
Because of good cohesion of the spheres and elastomer material condition of
deformation continuity at the border of two bodies has been assumed.

Table 1. Assumed material properties

Ferritical steel Elastomer

Young’s modulus Poisson’s ratio Young’s modulus Poisson’s ratio
E [MPa] ν [–] E [MPa] ν [–]

200000 0.3 0.12 0.45

3. Numerical model (ANSYS 11.0 code)

In the numerical model, a homogeneous magnetic field has been assumed. This
was achieved by incorpolation of a solenoid, which generates a homogeneous
magnetic field as a result of an electric current flowing through a wire. The
assumption that inside a real solenoid the magnetic field is predominantly
homogeneous is to some degree a simplification, although in numerical com-
putations it is acceptable.

The current passing through a wire of a solenoid produces the magnetic
field according to the relation

H =
nI

l
(3.1)

where n is the number of coils (in the FEM model amounts 1), I [A] – current
passing through one coil, l [m] – height of the solenoid.



Analysis of magnetic field effect on ferromagnetic... 663

The value of magnetic induction B is expressed by the equation as

B = µH (3.2)

where µ = µairµ0 is the absolute magnetic permeability, µ0 = 4π10
−7H/m –

magnetic permeability of vacuum, µair = 1 – relative magnetic permeability
of the air.

In Fig. 2, the elements type source are shown as the solenoid producing the
magnetic field. Dimensions of the elastomer pattern and spheres are presented
in Fig. 1.

Fig. 1. Dimensions of the elastomer pattern and spheres, [mm]

In Fig. 2, the solenoid for modelling of the magnetic field is shown.

Fig. 2. (a) Dimensions of the solenoid and spheres (solenoid: length, width, height,
thickness: 130mm× 34mm× 50mm× 10mm), (b) partially numerical model for

computations in Ansys 11.0 code
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The elastomer pattern of dimensions 50mm × 50mm × 13mm with
two steel spheres has been set inside the solenoid and the whole space
around it is surrounded by the air (dimension of the air space amounts
100mm × 100mm × 200mm). The relative magnetic permeability for steel
spheres is assumed µsteel = 10

4, and for the elastomer pattern µelastomer = 1.
Numerical calculations have been carried out in two stages, namely: firstly,
to find magnetic forces appearing only on spheres (it is assumed that the
elastomer pattern has no magnetic property) and secondly, to determine the
stress and displacement distribution for these forces. In numerical calculations,
Biot-Savart’s formula was used for finding the magnetic forces.

The three-dimensional numerical model has been divided into finite ele-
ments (for the spheres and elastomer pattern 13958 and 13608 elements, re-
spectively). For investigation of the magnetic field, an element type solid98
with six degrees of freedom at each node was applied. In order to determine
stresses and displacements, an element type solid92 was used. For the elasto-
mer pattern, the following boundary condition has been assumed: displacement
on two external surfaces is equal to zero in all directions (Fig. 3).

Fig. 3. Division into finite elements and assumed boundary conditions

4. Physical model of MRE (photoelastic model)

A physical model of a MRE is made of polyurethane polymer (PU) formed
by synthesis of two polyols VORALUX R© HF 505 and 14922 and Isocyanate
HB 6013 compound, delivered by Dow Chemical Company. There is a com-
posite model performed in an analogous way as the real MRE created at
Warsaw University of Technology. Inside the elastomer pattern of dimensions
50mm × 50mm and thickness 10mm, two low alloy steel spheres of diame-
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ters 12.7mm were placed. The distance between the gravity center of steel
elements is 15.875mm.

Elastomer PU is optically active what means that under the influence of the
stress state appearing in it and in a polarized light it indicates birefringence.
This property enables one to analyse the stress and strain state caused by the
magnetic field using the photoelastic method.

4.1. Optical and mechanical properties of the elastomer

Photoelastic measurements enabled examinations of deformations and
stresses in the whole structure of the elastomer. On the basis of photoela-
stic measurements, we can directly define the difference of stresses or main
strains

σ1 − σ2 = kσm ε1 − ε2 =
1 + ν

E
(σ1 − σ2) =

1 + ν

E
kσm (4.1)

where: kσ = (σ1−σ2)/m, fε = kσ(1+ν)/E are model constants corresponding
to the difference of stresses and main deformations.
The values of model constants corresponding respectively to the difference

of main stresses kσ or main strains fε on the basis of the compression test of
a cuboid of dimensions 50mm× 50mm× 10mm located in polariscope space
have been determined. The results of the compression test are as in Table 2.

Table 2. Results of the compression test

Stress
σ = P/(gb)
[MPa]

Order
of

isochro-
matic
m

Photoelastic
Force Thickness Width constant
P [N] g [mm] b [mm] k = σ/m

[MPa/is.ord.]∗

9 10 50 0.018 1 0.018

26.5 10 50 0.053 3 0.018
∗ is.ord. – isochromatics order

The material characteristic and Young modulus obtained experimentally
were assumed in the investigations.
Using the material characteristic and Young modulus found on the basis

of compression tests performed in polariscope, the optical properties (model
constants) of elastomer have been then determined.

As it is well known, the lines for which the differences between stresses
and main strains have a constant value and the same color are called the iso-
chromatics. Basing on isochromatics measurements, the stress distribution has
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Fig. 4. Strain-stress curves for the pure elastomer pattern in the case of (a) tensile
test, (b) tensile-compression test

been defined. Applying the stress-strain relation, in an elastic body deviator
strain components are proportional to deviator stress components, as written

σ1 − σsr
ε1 − εsr

=
σ2 − σsr
ε2 − εsr

(4.2)

The result of photoelastic measurements can also be applied to strain and
stress analysis concerning elastic-plastic materials. In an elastic-plastic body,
the proportion of deviator strain components and deviator stress components
is described by the relation

σ1 − σsr
ε1 − εsr

=
σ2 − σsr
ε2 − εsr

= 2G′ G′ =
τ0
γ0

( γ

γ0

)N−1
(4.3)

where N is the hardening exponent, in the elastic-plastic body for γ ­ γ0,
τ = τ0(γ/γ0)

N , τ0 and γ0 are the yield stress and yield strain, and G
′ is

secant shear modulus.
For a simple tensile test, when σ1 = σ, σ2 = σ3 = 0, the parameters

ε1 = εint, ε2 and ε3 can be determined on the basis of the shape change law
ε2 = ε3 = −(εint − 3εsr)/2, where σint = σ = Aε

P and εint = (σint/A)
1/p or

σsr = σ/3.
The main strain difference amounts

ε1 − ε2 =
3

2
εint − 3εsr (4.4)

The model constant should be replaced with the function presenting the main
strain difference in terms of isochromatics loops

ε1 − ε2 = fε(m)m (4.5)
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For the considered materials, the substituted Poisson’s ratio νs−pl value
ranges from 0.45 to 0.49. In the case of a disc loaded by focused force, well
known formulas are used.
The model constant of the elastomer for the assumed characteristic amo-

unts kσ = 0.0183MPa/(is.ord).

Fig. 5. Isochromatics distribution of the sample loaded by a focused force for great
deformations shown on bright and dark photos

For the material with a nonlinear characteristic

σ = σ0
( ε

ε0

)p
Es =

σ0
(ε0)p
εp−1

σθ − σr =
2P

πg

(cosnθ)p

r
n2 =

1− 2µ

µ2

r =
2P

πg

(cos θ)p

σθ − σr

(4.6)

The model constant of the elastomer for the nonlinear characteristic is

kσ(m) =
σ0
εp0

εp

m

[

1−
2

3
(1− 2ν0)

( ε

ε0

)p−1]

σ = σ0
( ε

ε0

)p
(4.7)

where: σ0 = 0.0183MPa, ε0 = 0.1375, ν0 = 0.45, E0 = 0.12MPa.

5. Results

5.1. Numerical investigation

Delivering a suitable magnetic field value that have an effect on the spheres
was performed by a current flow passing through a coil wire. The numerical
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Fig. 6. Isochromatics distribution found on the basis of nonlinear characteristic of
the sample loaded by focused force for great deformations

Fig. 7. Elastomer model used in the investigations: (a) dimensions, (b) model photo
without load in polariscope in sodium light

model differs from the real one since there is one-coil solenoid, whereas in the
numerical study this fact does not has a significant influence.

Numerical computations have been carried out for a various current flow
values to determine the magnetic field influence on stresses in the elastomer
pattern. The calculations were initiated at the current I = 5 · 103 A and is
further gradual increase until the spheres got in touch with each other. On
the basis of theoretical relation (Eq. (3.2)), one can determine the desired
magnetic induction inside the solenoid, assuming the conditions as in pure air.
Hence, the current I = 5 · 103A flowing through this solenoid corresponds to
magnetic induction 0.125T.

Most of the obtained results has been shown in the middle plane (passing
through the gravity centre of the spheres) in order to observe the part of
the elastomer pattern between the spheres. In Fig. 8, a scalar magnetic field
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Fig. 8. Scalar magnetic field distribution for the whole numerical model [Vs/m3]

Fig. 9. Resultant magnetic field intensity Hsum [A/m] for the plane passing through
the gravity centre of the spheres

distribution for the whole numerical model is shown. In Figs. 9a,b, the resultant
magnetic field is presented. Between the spheres, the greatest intensity of
magnetic field amounting to 300000 A/m was noticed. On the other hand,
in Figs. 10a,b, the magnetic induction distribution, where the limited value
reaches 0.44 T, is displayed.

The essential part of numerical calculations was to outline the magnetic
forces. The resultant displacements and von Mises stress distribution have been
calculated for the determined magnetic forces, what is presented in Figs. 11
and 12. The maximum resultant al summary displacement for any discrete
element at magnetic induction 0.125T was equal to about 0.11mm. By these
parameters, von Mises stress in the elastomer came to 0.011MPa.

Repeating the above described calculation course for higher magnetic in-
duction values, it was decided in the farther part of work to show only displace-
ments and stresses in the elastomer pattern. The limiting current value flowing
through the solenoid was assumed when the spheres contacted each other. On
this basis, the diagram (Fig. 13) which shows the relation between the magne-
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Fig. 10. Resultant magnetic induction Bsum [T] for the plane passing through the
gravity centre of the spheres

Fig. 11. Resultant displacement usum [m]

Fig. 12. Von Mises stress distribution σred [Pa]

tic induction and the maximum resultant displacement or maximum von Mises
stress in the elastomer has been created. It can be stated that, theoretically,
the contact of spheres occurs at the magnetic induction 0.44T.
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Fig. 13. Maximum displacements and von Mises stresses depending on magnetic
induction for the spheres of diameter 12.7mm

5.2. Experimental results

In Fig. 14, the vertical displacement distribution obtained by FEM in AN-
SYS 11.0 code as well as the result determined experimentally (Fig. 14b) on
the surface of the real elastomer pattern are illustrated. The displacement di-
stribution found in the empirical model, enables determination of stresses and
deformation only on the external surface of the elastomer. However, the map
in Fig. 14a presents displacements in the middle plane of the elastomer. The
photoelastic study makes it possible to evaluate the average stresses in the
plane of the model.

Fig. 14. Vertical displacement distribution [m]
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Fig. 15. Isochromatics between the spheres for magnetic induction 0.3T:
(a) σ1 − σ2 = 0.064MPa (numerical model) and (b) σ1 − σ2 = kσm = 0.063MPa

(experimental model) for kσ = 0.0183MPa/is.ord., m = 3.5

Fig. 16. Isochromatics between the spheres for magnetic induction 0.35T:
(a) σ1 − σ2 = 0.088MPa (numerical model) and (b) σ1 − σ2 = kσm = 0.091MPa

(experimental model) for kσ = 0.0183MPa/is.ord., m = 5

6. Final conclusions

In the paper, numerical investigation results as well as experimental results of
the effect of magnetic field on steel spheres embedded in an elastomer have
been presented. In the numerical computation, an ANSYS 11.0 code was used
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basing on the finite elements method. The obtained results have been shown
in form of maps of physical magnitudes (magnetic field intensity, magnetic in-
duction, displacements and stresses). In the experimental study, the knowledge
about elasto-optics was applied. The source of real magnetic field generation
was a two-pole electromagnet made by SEIKO company. After conducting the
examinations, the following remarks can be stated:

• Distribution of the magnetic field intensity in pure air created by the so-
lenoid in which there is a steel element, depends on the magnetic perme-
ability and shape of the ferromagnetic body (see H and B distribution
in Fig. 9 and Fig. 10).

• Complete contact of spheres under the influence of the magnetic field
occurs at 0.44T and the maximum effective stress according to the Mises
formula was equal to 0.15MPa (Fig. 14).

• In the numerical model, it can be assumed that in the space inside the
solenoid filled with air, the magnetic field intensity is homogeneous and
can be determined according to Eq. (3.1).

• Comparison between formulation of the numerical model (assumed bo-
undary conditions, see Fig. 3) and the boundary condition in the real
model is of no importance. The support for the real model has been also
verified numerically.

• On the basis of the elastomer pattern model, the photo-elasticity con-
stant was determined. Next, isochromatic distributions corresponding
to the magnetic induction at 0T - 0.35 T were set. A good enough ac-
cordance of the results obtained numerically and experimentally can be
stated. In this case, the fact that both studies have a comparative cha-
racter should be noticed. However, the suggested investigation method
can be applied to numerical computations for a real MRE filled with
carbonyl-iron particles of dimensions from several to over a dozen µm.
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Badanie wpływu pola magnetycznego na ferromagnetyczne kule
w osnowie elastomerowej

Streszczenie

W pracy przedstawiono wyniki modelowania mikrostruktury magnetoreologicz-
nych elastomerów (MRE) z wykorzystaniem metody elementów skończonych (MES).
MRE są odpowiednikami w stanie stałym cieczy magnetoreologicznych, złożonymi
z cząstek żelaza karbonylkowego i miękkiej osnowy elastomerowej. Wytwarzanie MRE
prowadzone jest w stałym polu magnetycznym. Pod wpływem pola cząstki ferroma-
gnetyczne układają się w łańcuchy wzdłuż linii pola magnetycznego, tworząc struktu-
rę kolumnową. W analizie MES mikrostruktury MRE rozpatrzono siły magnetyczne
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i sprężystości oraz ich wzajemne oddziaływania pomiędzy składnikami kompozytu.
Przedstawiono przestrzenne rozmieszczenie cząstek w oparciu o ich oddziaływania
w polu magnetycznym. W rozważaniach wzięto pod uwagę rozkład pola magnetycz-
nego i momenty dipolowe cząstek. W obu przypadkach pole było zamodelowane dla
kołowego przewodnika prądu elektrycznego.
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