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Abstract. In this paper the authors show that fast parametrized biorthogonal
transforms (FPBT) are well suited for adaptive generalized Wiener image fil-
tering. Research results are obtained with a use of a new graphical user in-
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implemented and published by the authors as a part of a project Innovative
Economy Programme 2007-2013 „Platforma Informatyczna TEWI”.
Keywords: biorthogonal transforms, fast algorithms, image filtering, image
processing applications, graphical user interface.

1. Introduction

Discrete biorthogonal transforms [1, 2] are a generalization of well known dis-
crete orthogonal transforms [3, 4], which have been widely used in two-dimensio-
nal signal filtering, especially in image compression [5, 6, 7], image processing
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and recognition [8, 9, 10] as well as in image watermarking algorithms [11]. The
aforementioned generalization comes from the fact that in case of a pair of linear
biorthogonal transforms A and B the only restriction imposed on the analysis and
the synthesis transform matrices is that they have to be invertible, i.e. det (A) , 0
and det (B) , 0. The motivation for using such transforms, instead of orthogonal
ones, is that it has been shown, both theoretically and practically, that for many sig-
nal filtering problems their optimal solutions are not the ones involving orthogonal
matrix pairs. One example of such non-orthogonal optimal solutions is a gener-
alized Wiener filtering problem [12], which will be discussed in the next section.
The second example involves the problem of finding optimal pair of coding and
decoding matrices in the task of transform image compression with scalar quan-
tization. This problem is of great practical significance, since such image com-
pression scheme is widely used in many of the contemporary image compression
algorithms such as a JPEG method [13]. It has been shown theoretically in [14]
that at least one of the optimal pair of coding and decoding matrices Aopt and Bopt

is not orthogonal and that for the overall optimal transfer matrix Aopt · Bopt , I
holds, where I denotes the respective identity matrix. The above paragraph ex-
plains briefly only the first of the premises for biorthogonal transforms to be an
interesting alternative to the orthogonal ones.

The second motivation for the one to be interested in using biorthogonal trans-
forms is that the earlier work of the authors has been conducted to construct fast
parametrized orthogonal transform adaptation algorithms, which lately have been
generalized by the authors to biorthogonal cases, in many signal processing tasks,
e.g. [2, 6, 9, 10, 15]. Those adaptation techniques developed by the authors in
their earlier works [7, 16], use fast computational structures for calculation of var-
ious known discrete linear transforms (e.g. discrete sine, cosine, Fourier or Hartley
transforms) which allow to obtain computational complexity of order O(N log2N),
while maintaining the potential to adapt to solutions, which are close to optimal
ones.

Taking into consideration the above arguments in this paper the authors con-
sider a problem of automatic adaptation of the biorthogonal parametrized trans-
forms to a task of image filtering resulting in the reduction of noise level in nat-
ural images, i.e. generalized Wiener filtering. For this purpose the authors use the
graphical user interface (GUI) system for designing and performing experiments
in adaptive signal/image processing which has been originally developed and pub-
lished by the authors as a part of the project Innovative Economy Programme
2007-2013 „Platforma Informatyczna TEWI”. Thus the paper is organized as fol-
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lows: in the first part the problem of image filtering with the use of biorthogo-
nal parametrized transforms is considered, the experiments are conducted and de-
scribed in detail, finally the results are presented. In the second part of the article
a brief but comprehensive description of the GUI research aid system, which has
been designed by the authors and used during experiments, is described regarding
it’s most general functionality and capabilities. In the last section summary and
conclusions are presented.

2. Image filtering with fast parametrized biorthogonal
transforms

2.1. Generalized Wiener filtering for two-dimensional signals

In this paper authors use generalized Wiener filtering, formulated in [12], as
the starting point for the adaptation of parametrized biorthogonal transforms of
two-dimesional signals. A generalized Wiener filtering scheme for one-dimesional
signals is presented in Fig. 1.

Figure 1. Generalized Wiener filtering scheme for one-dimesional signals

Here an input to the system consists of a sum of the N-element zero-mean signal
vector x and the N-element zero-mean noise vector e. It’s assumed that the signal
and noise vectors x and e are mutually uncorrelated. First, the input signal x + e
is multiplied by the N × N - element matrix A to the scheme’s analysis transform
domain represented by this matrix. In the second step the transformed signal is
multiplied by the N × N - element filtering matrix G, which performs the actual
filtering. In the last step the filtered signal is transformed back to the time domain
with the use of N ×N - element matrix B representing the scheme’s sythesis trans-
form. This results in an N-element output signal x̄ which takes the following form
x̄ = BGA(x + e). The aim of the filtering process is to find optimal forms of all of
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the three matrices A, B and G, i.e. the analysis transform, the synthesis transform
and the filtering matrix, respectively, such that the mean-square error between the
original signal x and the output signal x̄ is minimized. Thus the problem can be
formally stated as follows

argmin
A, B, G

{
E { tr [ ( x − x̄ ) ( x − x̄ )T ] }

}
(1)

where E { · } denotes expectation operator, tr [ · ] stands for a matrix trace operator
and ( · ) T denotes matrix transposition. It has been shown in [12] that the solution
of the problem (1) is obtained by any triple of matrices A, B and G, which obey
the following necessary and sufficient condition

B G A = Rx ( Rx + Re ) −1 (2)

where Rx and Re are the N × N autocorrelation matrices of the original signal x
and noise signal e, respectively.

Generalization of the above results to two-dimensional case, i.e. the images,
is straightforward. For this purpose one can use a matrix column stack opera-
tor vec ( · ) , which takes an N × N - element matrix and converts it into an N 2

element column vector by stacking it’s columns. For a two-dimensional N × N,
zero-mean original signal X and the respective noise signal E one can make a
formal substitution in (1), which can be written as follows

x = vec ( X ) and x̄ = B G A ( vec ( X ) + vec ( E ) ) (3)

where, this time, the respective Wiener filtering matrices A, B and G are N 2 × N 2

element linear transforms. Finally, making a following formal substitution in (2)

Rx = E { vec ( X ) vec ( X ) T } and Re = E { vec ( E ) vec ( E ) T } (4)

one obtains the desired conversion form two-dimensional to one-dimensional sig-
nal case. Having performed the above conversion all assumptions, considerations
and results obtained for one-dimensional generalized Wiener filtering scheme also
apply for the two-dimensional case.

Finally, it should be noted that in general case from the solution (2) of the
generalized Wiener filtering problem it follows that at least one of the filtering
matrices, either A, B or G has to represent a non-orthogonal transformation, which
on behalf of (3) and (4) also holds for two-dimensional case.
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2.2. Fast parametrized biorthogonal transforms

Fast parametrized biorthogonal transforms (FPBT) were introduced by two of
the authors in paper [2]. In this paragraph main concepts and a brief introduction to
fast parametrized biorthogonal transforms will be presented. As mentioned in [2]
parametrized transforms, unlike transforms with fixed base vectors, have an advan-
tage of the ability to adapt to statistical characteristics of signals. The construction
of fast parametrized biorthogonal transforms relies on two facts. Firstly, there exist
one and two-dimensional structurally unified fast algorithms of order O ( N log2N)
for computation of many known fixed base discrete transforms with the use of a
single unified structures, (see e.g. [16, 17, 18]). Secondly, many types of base oper-
ations along with respective adaptation rules for fast parametrized transforms can
be constructed to reflect both – the particular restrictions on the transform itself
(e.g. orthogonality [15] or biorthogonality [2] ) and an adaptation goal function
forms (see e.g. [7, 19]) – for a specified transform used in a particular application.
For the purposes of this article authors have chosen to use a two-stage Walsh-
Hadamard like transform structure, whose analysis part for the two-dimensional
signal case is depicted in Fig. 2.

Figure 2. Two-stage Walsh-Hadamard like transform graph for 2D signals

Each butterfly operator „•” shown in Fig. 2 is schematically depicted in Fig. 3.
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Figure 3. Single butterfly operator of fast parametrized transform structure

Here Ui, j denotes 2 × 2 matrix of the j-th butterfly operator inside a given layer of
the structure from Fig. 2, i stands for a layer number, while xi,p, xi,q and yi,p, yi,q

are the inputs and the outputs of the operator respectively, where p and q denote
connection indices. Among many possible operator models (see section 4) for the
purpose of this article authors have chosen the operator type with four parameters
whose matrix along with it’s operation are defined by the following equations

Ui, j =

[
ai, j bi, j

ci, j di, j

]
,

[
yi,p

yi,q

]
= Ui, j

[
xi,p

xi,q

]
. (5)

It can be easily verified [2], that for the above operator definition and transform
structure shown in Fig. 2 number of additions N+ and multiplications N∗ needed
to calculate the transform’s outputs are equal to

N+ = 2 N ( log2 N − 0.5 ) , N∗ = 4 N ( log2 N − 0.5 ) (6)

where N denotes the total number of inputs/outputs of the structure depicted in
Fig. 2. The values of N+ and N∗ given in (6) imply immediately that the consid-
ered transform is fast in terms of computational complexity. It can also be easily
verified [6, 15] that for the steepest descent adaptation technique of the considered
parametrized transform and the mean-square-error (MSE) between the obtained
and the demanded outputs of the transform taken as the adaptation criterion, the
local adaptation rule for a single butterfly operator takes the form

ẑi, j = zi, j + η
∂

∂ zi, j

 [
yi,p

yi,q

] T

Ui, j

[
xi,p

xi,q

]  (7)

where zi, j stands for an appropriate parameter of the Ui, j butterfly operator, ẑi, j is
the parameter’s new value and η > 0 is the adaptation step. Form the above as-
sumptions it follows immediately that in order to adapt the transform’s parameters
one may use a standard error-backpropagation method (see e.g. [7]) with the local
adaptation rule (7) for each of the butterfly operators.
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3. Experimental results

In order to verify the effectiveness of FPBT several experiments were con-
ducted regarding generalized Wiener filtering, described in paragraph 2.1, for nat-
ural images. The complete data flow graph used during adaptation and latter testing
of the obtained FPBT’s was constructed out of two structures. Both structures were
identical to that depicted in Fig. 2 and corresponded to the analysis and synthesis
transforms i.e. matrices A and B in Fig. 1, respectively. For a particular experiment
setup that was used there was no need to optimize the filtering matrix G form Fig.
1 separately. Despite the lack of explicit reference to the matrix G in the adapta-
tion scheme, the results still maintained the ability of being potentially optimal,
since for biorthogonal transform pair A and B the considered filtering matrix G
could successfully be incorporated into one or both of the mentioned transforms
during the adaptation process. The data flow diagram of the structure used during
the adaptation step is depicted in Fig. 4.

Figure 4. FPBT’s data flow graph used during experiments

During adaptation process 512 × 512 - pixel, 8 - bit gray-scale natural images
were used, which are shown in Fig 5. For all of three variants of the experiment
the input training patterns consisted of the Lena image, partitioned into 8 × 8
pixel blocks and corrupted (in the sense of addition) with white Gaussian noise,
for which the standard deviations σk, k = 1, 2, 3 were equal to 30, 20 and 15, re-
spectively. The pattern demanded at the output of the optimized structure was the
respective 8 × 8 - pixel block of the original Lena image. A standard steepest
gradient descend method was invoked with formula (7) used for adaptation of the
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Figure 5. Training image a) and test images a), b), c), d) and f)

transforms’ parameters and the mean-square-error measure (MSE) between the
obtained and the demanded output was used as an optimization criterion. Dur-
ing tests all of the gathered images were used, including the Lena image which,
as the only image among all others, served as a source to generate training pat-
terns during adaptation process. Tests were held by inputting all test images’ 8× 8
pixel fragments to the two-dimensional generalized Wiener filtering scheme with
the adapted earlier fast biorthogonal transforms. The results obtained with FPBTs
were compared against results obtained with optimal filtering scheme [12] tak-
ing the advantage of signal dependent Karhunen-Loève transform (KLT) which
was computed for the training (Lena) image only. The results, given in terms of
the PSNR measure according to formula (8), calculated for the corrupted/filtered
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images and their original counterparts are presented below in Tab. 1, 2 and 3.

PSNR = 10 · log10
255 2

MSE
,

MSE =
1

N 2

N∑
i=1

N∑
j=1

(
fi j − f̂i j

) 2
.

(8)

In definition (8) N stands for horizontal/vertical experimental images’ dimensions
while fi j and f̂i j denote the original and the corrupted/filtered image’s pixels re-
spectively.

Table 1. Results of the 1-st experiment, Gaussian noise standard deviation σ1 = 30
PSNR [db] / Image Lena Girl Baboon Bridge F-16 Plant
NOISED 19.07 19.28 19.04 19.17 19.23 19.42
FBPT 27.46 26.75 21.27 22.92 25.55 27.80
KLT 27.97 27.25 21.80 23.60 26.28 28.20

Table 2.Results of the 2-nd experiment, Gaussian noise standard deviationσ2 = 20
PSNR [db] / Image Lena Girl Baboon Bridge F-16 Plant
NOISED 22.01 22.16 22.02 22.10 22.05 22.33
FBPT 28.89 27.99 21.94 23.87 26.87 29.19
KLT 29.50 28.56 22.71 24.78 27.88 29.74

Table 3. Results of the 3-rd experiment, Gaussian noise standard deviation σ3 = 15
PSNR [db] / Image Lena Girl Baboon Bridge F-16 Plant
NOISED 25.02 25.07 25.01 25.06 25.00 25.26
FBPT 30.62 29.53 23.06 25.26 28.70 30.85
KLT 31.15 30.16 23.75 26.09 29.61 31.34
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Figure 6. Girl image fragments - original, noised and filtered, σ = 30

Figure 7. Baboon image fragments - original, noised and filtered, σ = 30
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In Fig. 6 and Fig. 7 selected testing images’ fragments are shown. The original
image fragments are presented in a) subfigures, image fragments corrupted with
Gaussian white noise with standard deviation σ1 = 30 in b) subfigures and frag-
ments filtered with the use of adapted FPBTs and KLTs in c) and d) subfigures
respectively. From the results gathered in Tab. 1, 2 and 3 one can clearly see that
the PSNR values of the images filtered with the use of FPBTs are close to those ob-
tained in the Wiener filtering scheme with the use of Karhunen-Loève transform.
Secondly, it’s worth noting that for all noise levels the biggest absolute PSNR
values for images filtered with the use the FPBTs and the KLTs are obtained for
the Lena images and Plant images, which comes as no surprise in both cases
since the first of the mentioned images was used as the training pattern for both of
the compared transforms and the second of the mentioned images clearly has the
closest statistical characteristics to the one possessed by the Lena training image.
It’s also has to be noted that blocking artifacts arise after the filtering process in
both cases i.e. for Karhunen-Loève transforms and the adapted fast parametrized
biorthogonal transforms, which is a consequence of the fact that the both transform
types were adapted with the use of 8 × 8 – pixel blocks.

4. A new GUI research aid system

In this section authors describe the most general functionality and capabilities
of the new GUI research aid system, which has been designed by the authors and
used during the conducted experiments. The system was created and published by
the authors as a part of the project Innovative Economy Programme 2007-2013
„Platforma Informatyczna TEWI”.

The graphical user interface (GUI) research aid system was created for the
purpose of visual designing and automating the conduction of the experiments
involving general fast parametric transforms including biorthogonal ones.

4.1. System structure

The presented system has been implemented in C++ language under Linux
operating system with the use of the standard gcc compiler and can be easily
ported to other operating systems such as Windows OS family. The whole project
is divided into two parts. The first part consists of basic tools that enable creation,
adaptation and testing of the various types of fast parametrized transforms, Ap-
plications which are contained in this part are all command line tools that enable
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flexible setup of the the conducted experiments based on the command line op-
tions. Main tools available to the user in the first part of the system are

• test_FonNet – a basic module for adaptation and tests performed on the
adapted fast parametrized transforms

• test_FonNetGenerator – a basic module for generation of the trans-
form structures

The second part of the system contains GUI tools that encapsulate the functionality
of the command line applications and enable the user to visually create, design
and control the conduction of the experiments regarding general fast parametric
transforms. Main tools available to the user in the second part of the system are

• ButterflySimualtor – a GUI application that enables visual creation
of complex data processing diagrams, consisting of the functional blocks,
which include visual creation of data flow graphs of various fast parametrized
transforms

• testWxProperties – a GUI application for easy editing the parameters
of the functional blocks of the mentioned data processing diagrams created
in ButterflySimualtor

For the ButterflySimualtor and the testWxProperties applica-
tions selected views of their main windows are shown in Fig. 8 and Fig. 9.

From the fast parametrized transforms researcher’s point of view, among many
of the system’s capabilities, one of the major advantages is the ability to construct
and visually manipulate data flow graphs of fast parametrized transforms (FPTs)
of various kinds. The user has to his/her disposal a whole collection of possible
butterfly operators and processing units of other types with the ability to easily add
his or her new operator/processing units types. A list of already implemented op-
erators and processing unit types is comprehensive for most of the research tasks,
the mentioned list is depicted in Fig. 10. Since a whole description of the presented
system capabilities is beyond the scope of this paper, the authors have decided to
show a part of an exemplary application showing the process of creation of the
connection scheme for two-stage 8-point fast parametrized biorthogonal transform
based on BOON (Basic Operation Orthogonal Neuron) operators [20].
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Figure 8. ButterflySimualtor - selected view of the main window

Figure 9. testWxProperties - selected view of the main window

4.2. Exemplary application

In this paragraph an exemplary application will be presented briefly describ-
ing the process of creation of the connection scheme for two-stage 8-point fast
parametrized biorthogonal transform based on BOON butterfly operators [20].
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Figure 10. A list of available butterfly operators and processing units of other types

Biorthogonal transform consists of L layers. Each layer is represented by a matrix
defining the connection scheme in this layer. A single row of the matrix refers to a
single butterfly of BOON type and it contains 9 values:

in1, in2, out1, out2, type, w1, w2, w3, w4;

where

– in1 is the index of the first input,

– in2 is the index of the second input,
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– out1 is the index of the first output,

– out2 is the index of the second output,

– type is the butterfly operation type,

– w1, w2, w3, w4 are connection parameters.

The fifth field (type) defines the butterfly operation type according to the types
shown in Fig. 10. Dependent on the operation type, some of the other fields may
be unused. For example, the connection of type m requires only the fields: in1,
out1 and w1; the values of the remaining fields are ignored. It should also be
noted that all the four parameters w1 – w4 are necessary only in the case of the
last operation type (f). The sequence of L matrices, representing the consecutive
layers of the parametrized transform is written to text files (with repeated ’=’ sign
as matrix separator). Exemplary text file is given below

/*--------------------------------------------------------------------*/
Exemplary configuration text file for transform structure
based on 8-point discrete cosine transform of type II (FCT2)

/*--------------------------------------------------------------------*/

====
0.00000
0.00000
0.00000
1.00000
1.00000
1.00000
====
1.00000 2.00000 1.00000 5.00000 2.00000 1.00000 1.00000 1.00000 1.00000
3.00000 4.00000 2.00000 6.00000 1.00000 1.00000 1.00000 1.00000 1.00000
5.00000 6.00000 3.00000 7.00000 2.00000 1.00000 1.00000 1.00000 1.00000
7.00000 8.00000 4.00000 8.00000 1.00000 1.00000 1.00000 1.00000 1.00000
====
1.00000 2.00000 1.00000 3.00000 2.00000 1.00000 1.00000 1.00000 1.00000
3.00000 4.00000 2.00000 4.00000 1.00000 1.00000 1.00000 1.00000 1.00000
5.00000 6.00000 5.00000 7.00000 2.00000 1.00000 1.00000 1.00000 1.00000
7.00000 8.00000 6.00000 8.00000 1.00000 1.00000 1.00000 1.00000 1.00000
====
1.00000 2.00000 1.00000 2.00000 2.00000 1.00000 1.00000 1.00000 1.00000
3.00000 4.00000 3.00000 4.00000 2.00000 1.00000 1.00000 1.00000 1.00000
5.00000 6.00000 5.00000 6.00000 2.00000 1.00000 1.00000 1.00000 1.00000
7.00000 8.00000 7.00000 8.00000 2.00000 1.00000 1.00000 1.00000 1.00000
====
1.00000 1.00000 1.00000 1.00000 5.00000 1.00000 0.00000 1.00000 1.00000
2.00000 1.00000 2.00000 1.00000 5.00000 0.70710 0.00000 1.00000 1.00000
3.00000 3.00000 3.00000 3.00000 5.00000 1.00000 0.00000 1.00000 1.00000
4.00000 3.00000 4.00000 3.00000 5.00000 0.70710 0.00000 1.00000 1.00000
5.00000 5.00000 5.00000 5.00000 5.00000 1.00000 0.00000 1.00000 1.00000
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6.00000 5.00000 6.00000 5.00000 5.00000 0.70710 0.00000 1.00000 1.00000
7.00000 7.00000 7.00000 7.00000 5.00000 1.00000 0.00000 1.00000 1.00000
8.00000 7.00000 8.00000 7.00000 5.00000 0.70710 0.00000 1.00000 1.00000
====
1.00000 1.00000 1.00000 1.00000 5.00000 1.00000 0.00000 1.00000 1.00000
3.00000 1.00000 3.00000 1.00000 5.00000 0.70710 0.00000 1.00000 1.00000
2.00000 4.00000 2.00000 4.00000 1.00000 0.92387 0.38268 1.00000 1.00000
5.00000 5.00000 5.00000 5.00000 5.00000 1.00000 0.00000 1.00000 1.00000
7.00000 5.00000 7.00000 5.00000 5.00000 0.70710 0.00000 1.00000 1.00000
6.00000 8.00000 6.00000 8.00000 1.00000 0.92387 0.38268 1.00000 1.00000
====
1.00000 1.00000 1.00000 1.00000 5.00000 1.00000 0.00000 1.00000 1.00000
5.00000 1.00000 5.00000 1.00000 5.00000 0.70710 0.00000 1.00000 1.00000
2.00000 8.00000 2.00000 8.00000 1.00000 0.98078 0.19509 1.00000 1.00000
3.00000 7.00000 3.00000 7.00000 1.00000 0.92387 0.38268 1.00000 1.00000
4.00000 6.00000 4.00000 6.00000 1.00000 0.83146 0.55557 1.00000 1.00000

At the beginning of the file a binary column vector is written (a matrix of size
L × 1), each element of which stores information if a given layer can be adapted
during the training stage (1) or not (0). An example of a transform structure based
on 8-point cosine transform of type II (FCT2) is presented below in Fig. 11.

Figure 11. An example of the network based on two-stage FCT2 transform

The structure is based on a scheme of two-stage algorithm, where the first stage is
not subjected to adaptation. Due to this fact the symbols of the operations in the
first three layers are displayed as „empty”. It should be also noted that the butter-
flies of type 1 and 2 (p and q) have two inputs; therefore the matrices representing
the first three layers have 4 rows each. The next layer contains single connections
only (of type 5: m) so its matrix has 8 rows. In the case of the two last layers an
intermediate situation occurs.



D. Puchala, B. Stasiak, K. Stokfiszewski, M. Yatsymirskyy 113

To sum up, a brief exemplary application shows only a fraction of the func-
tionality and flexibility of the implemented system. For an interested reader it’s
worth mentioning that a full documentation of the presented GUI research aid sys-
tem is available on the „Platforma Informatyczna TEWI” user service located at
http://tewi.p.lodz.pl/Windchill.

5. Conclusions

In this paper authors presented results of applying fast parametrized biorthog-
onal transforms to the Wiener image filtering scheme and compared them with the
Karhunen-Loève transform, which is less efficient in terms of computational com-
plexity than FPBTs. The obtained results show that the fast parametrized biorthog-
onal transforms are well suited for performing image filtering task in the sense
of popular objective measures for classes of images with similar statistical char-
acteristics. In the second part of the paper authors presented a brief description
of a new GUI research aid system, which was implemented by the authors as a
part „Platforma Informatyczna TEWI” project and used for evaluation of the ob-
tained experimental results. The system was designed for the general purposes of
digital signal processing realized with aid of fast parametric transforms, including
biorthogonal ones, and has proved to be a very elastic, functional and helpful tool
in performing digital signal processing experiments.
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