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Abstract. In  this  paper  the  novel  lattice  structure  composed  of  
homogeneous  invertible  two-point  operations  which  are  connected  in 
regular and simple structure is proposed. Further on the pipeline scheme  
for implementation of such a structure is presented. It is proved with the  
orthogonal  variant  of  the  presented  scheme  that  with  respect  to  the  
computational complexity it is equivalent to the lifting technique. It means  
that  the  proposed  scheme  belongs  to  the  class  of  the  most  effective  
algorithms for calculation of orthogonal wavelet transforms. The variant  
of  the  lattice  structure  with  simplified  two-point  operations  is  also 
proposed.  Finally  the fundamentals of  the synthesis of  lattice structure  
coefficients with the aid of artificial neural networks and some aspects of  
lattice  structures  implementation  on  basic  computational  architectures  
are discussed. 

1. Introduction

The wavelet transforms satisfy the perfect reconstruction condition which in 
matrix notation can be described by the formula

IPP NN =−1 (1)

where NP  and 1
NP −  are NN ×  element matrices representing forward and 

inverse transforms respectively and I  is the identity matrix. The first two rows 
of the forward transform matrix NP  are composed of impulse responses of 

],...,,[ 110 −= KhhhH  and  ],...,,[ 110 −= KgggG  filters  complemented 
with zeros. The successive pairs of rows are obtained by the cyclic N - element 
shift of the previous pair of rows right by two elements. The effectiveness of the 



M.Yatsymirskyy

transformation is determined by the sparsity of its matrix. It means that only the 

pair of sparse NP  and 1
NP −  matrices forms fast wavelet transform. The syn-

thesis of NP  and 1
NP −  matrices utilizes the orthogonality,  biorthogonality 

and wavelet type describing equations [1].
Such an approach has several disadvantages. In the first place there is no 

possibility to  adapt  wavelet  transformation  to  the  requirements  of  performed 
task. There are known only specific cases of orthogonal wavelet transforms (for 

4=K  and 6=K ) that has the capability of adaptation [2-4]. Next the well-
known effective implementation schemes of orthogonal wavelet transforms are 
relatively complicated in practice and/or have the limited character [5-6]. In par-
ticular the lifting scheme requires K  dependent factorizations [5, 6] what make 
its software and hardware implementations difficult. The reduction techniques 
that replace the impulse response with the linear combination of vectors with 
trivial elements depend on the values of filter coefficients [7]. Therefore inten-
sive research efforts were concentrated recently upon the issues of improvement 
of wavelet transform implementations [7-10]. 

Hence it is required to develop methods of synthesis of wavelet transforms 
with sparse structures, simple for implementation on basic computational archi-
tectures, that would also have the capability to adapt to the demands of specific 
applications.

2. The lattice structure

The well known approach to the design of data processing methods and al-
gorithms consists in development of a method that meets the assumed require-
ments and its further effective implementation with respect to the specific com-
putational architecture. In this paper we exploit entirely opposite concept that is 
applicable in construction of artificial neural networks [11-14]. At first the com-
putational structure that is simple for implementation on basic computational ar-
chitectures is selected. Then it is shown that the selected structure is suitable for 
the specific task of data processing.

In order to do so let us consider the following two-point base operation









=

kk

kk

dd

dd

2221

1211
kD ,

where k  stands for the index of operation. Let us assume that  
kD  is invert-

ible, it means that 012212211 ≠− kkkk dddd  condition is satisfied. Hence there ex-

ists inverse operation 1−
kD  such that IDD kk =−1  where  I  is the identity 

matrix.
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We introduce the forward lattice structure that is composed of 2/K  stages, 
each containing the number of 2/N  operations kD , where K  and N  are 
the lengths of the filter impulse response and the processed signal respectively, 
see  Figure  1a. In  the  first  stage  the  pairs  of ix2  and  12 +ix , 

12/,...,1,0 −= Ni , samples are assigned to the inputs of each kD  opera-
tion. Base operations in successive stages are shifted down by one position and 
the lower input of the last base operation in the current stage is connected to the 
upper output of the first base operation in the preceding stage. In other words we 
perform  the  cyclic
N -  element shift of the mentioned outputs left (upward). The outputs of the 

last stage are the outputs iy  of the whole structure where 1,...,1,0 −= Ni . 

Each of kD  operations is invertible.
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Fig. 1. The lattice structure for K = 6, N =10: 1a) forward, 1b) inverse.
Base operations: 1c) forward, 1d) inverse

The inverse lattice structure emerges as the reversed forward structure where 
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base kD  operations are substituted by inverse operations 1−
kD  and the cyclic 

shift  is  performed in the right  direction.  An example  of  forward and inverse 
structures is depicted in Figure 1. The cyclic left (Figure 1a) and right (Figure 
1b) shift operations are represented by 1t  and 2t  symbols.

 Let us estimate the number of arithmetic operations in proposed structures. 
In a general case in order to execute 2/K  stages while operating on N  sam-
ple signals it is needed to perform the number of  )2/)(2/( KN  base opera-
tions kD  where each operation performs two additions and four multiplica-
tions. Hence the forward and the inverse structures require ),( NKα  additions 
and ),( NKµ  multiplications  separately  where 2/),( KNNK =α  and 

KNNK =),(µ .  In other words for one pair of the processed elements each 
structure requires K  additions and K2  multiplications. However while pro-
cessing one pair of elements directly with NP  matrix it is required to perform 

22 −K  additions and K2  multiplications. Hence almost twofold reduction in 
the number of additions is obtained without the increase of the number of multi-
plications. In order to obtain further reduction in arithmetic operations it is re-
quired to consider the particular base operations, see Sections 3 and 4 of this pa-
per. 

The main advantage of the proposed lattice structure is the ease of its realiza-
tion  in  the  pipeline  scheme.  In  a  general  case  the  pipeline  scheme  contains 

2/K  blocks of base operations and 12/ −K  blocks z-1 with delays by one el-
ement, see Figure 2. 

 

 
D1 

x2i 

x2i+1 z -1 

 
D2 

z -1 

 
DK/2 

y2i 

y2i+1 z -1 

 
D3 … 

Fig. 2. The pipeline scheme for K/2 – stage lattice structure

In the scheme from Figure 2 there is no cyclic shift which must be taken un-
der consideration with hardware or software implementation, e.g. it can be per-
formed by cyclic repetition of the first samples of input signal. The proposed 
pipeline scheme is simpler than the well-known lifting scheme [5, 6]. At first it 
reduces  the  number  of  required  two-point  base  operations,  e.g.  by  one  for 

4=K  and 6=K . In the second place it utilizes base operations of one type.

3. The orthogonal lattice structure

Let us assume that two-point operation kD  is orthogonal, i.e. it satisfies 

condition: 022122111 =− kkkk dddd . Then lattice structure is also the orthogonal 
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transformation.  We consider two cases of such operations: 1) symmetric, when 

kS = 1
kS − ;  2) asymmetric, when kF ≠  1

kF −  
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kk
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pq
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kF , 

(2)

where  kp  and kq  are  any non-zero  numbers.  Each  of  operations  (2)  still 
requires two additions and four multiplications. We will  demonstrate  with an 
example  of  kS  operation  the  technique  of  reducing  the  number  of 
multiplications in structures from Figure 1 and 2. In order to do it the following 
factorization is introduced

kkk TES = (3)
where





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


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1

1
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t

t
kT , kkk pqt /= ; 




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
=

k

k

p

p

0

0
kE .

Now let us modify the pipeline scheme for the orthogonal lattice structure 
from Figure 2. The factorization (3) is applied to each stage of the lattice struc-
ture.  However  we  perform  only  kT  operations  while  operations  kE  are 
grouped in the additional stage, see Figure 3.
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Fig. 3. The pipeline scheme for K/2 – stage lattice orthogonal structure

It  can be seen that we obtain  2/K  blocks of simplified base operations 

kT , 12/ −K  blocks with 1−z  delays and one block K/221
K/2 ...EEEE = . 

Each of  kT  operation requires two multiplications and two addition. Within 
K/2E  block two multiplications are performed. Hence the scheme from Figure 

3  requires  K  additions  and  2+K  multiplications  for  one  pair  of  output 
elements. As a result almost twofold reduction in the number of multiplications 
with the same number of additions in comparison to a general lattice structure is 
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obtained. It should be noted that  K/2E  block performs multiplications of its 
inputs  by a  constant  value  and  therefore  it  can  be  omitted  by  grouping  the 
constants at successive factorizations of lengths ,...4/,2/ NN , what results in 
reduction of two multiplications.

In  the  following  table  we  present  the  numbers  of  arithmetic  operations 
required to calculate two output elements with one factorization stage for the 
selected  values  of K .  The  last  column  contains  results  obtained  with  the 
variant omitting K/2E  block.

Table. The number of arithmetic operations for orthogonal transforms algorithms
K Standard Lifting[5] Lattice Lattice 1
4 14 9 10 8
6 22 14 14 12

It should be noted that the orthogonal transformation can be calculated with 
the general  scheme from Figure 1a or 1b with no increase in the number of 
arithmetic calculations. In order to do so  kD  operations should be replaced 

with kT  for 12/,...,2,1 −= Kk  and transforms K/2
K/2TE  must be joined 

into one operation K/2F . As an example we consider the parameterized variant 
of Daubechies 4 transform with filter
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where  3=m  is the arbitrary non-zero number,  1±≠m  [3,4]. With simple 
verification we ascertain that the transformation with filter (4) corresponds with 
orthogonal lattice structure with base operations 1T ,  2T  and 2E  or the lat-

tice structure with base operations 1T  and 2F :
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where )1/()1(2 +−= mmt , )1(2/()1( 2 ++= mme . 
Similarly, it is possible to prove that Daubechies 6 filter can be realised with 

the aid of three stage lattice structure with two T operations (two multiplica-
tions and two additions) and one orthogonal F  operation (four multiplications 
and two additions) including previously described technique of reduction of two 
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multiplications. 

4.  The lattice structure with simplified base operation

The reduction in the number of computations can be obtained with two addi-
tional conditions on the triviality of some coefficients in base operations kD . 
In particular we assume two trivial coefficients with values 0 and 1. Let us con-
sider the specific case of operation, i.e. the operation that does not modify the 
second output









=

10
kk qp

kL , (5)

where kp  and kq  are any numbers, and 0≠kq . Then the lattice structure ex-

ploiting kL  operations, 2/,...,2,1 Kk = , corresponds with application of two 
filters H and G of different lengths K and K-1. It is obvious that with the aid of 
base operation that does not modify the first output it is possible to synthesise 
the lattice structure where filters H and G are of lengths K-1 and K respectively.

It can be proved with direct check that the inverse operation to kL  is









=

−

10

11
kk qp1

kL , (6)

where kk pp /11 = , kkk pqq /1 −= .
It should be noted that simplified operations (5), (6) are also applied to the 

construction of lifting scheme for biorthogonal wavelet transforms [5, 6]. Each 
of (5), (6) operations requires one addition and two multiplications. Hence K/2 
stage lattice structure with simplified operations requires K/2  additions and K 
multiplications for one pair of processed input elements.

5. Determination of the values of coefficients for lattice 
structures

The values of a lattice structure coefficients can be determined by the means 
of two methods: the standard one and the one taking advantage of artificial neur-
al networks. A standard method consists in determining the relations between 
impulse responses of H  and G  filters and coefficients of base operations. In 
this method we rewrite the impulse responses in the form of algebraic expres-
sions  that  are  structure  coefficients  dependent.  Next  we  follow the  standard 
scheme that requires to dissolve the system of equations including the orthogon-
ality and the zero moments equations [1]. This method is not simple (it requires 
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to solve the system of K  nonlinear equations) and in general produces coeffi-
cients that are irrelevant to specific requirements imposed on wavelet transform.

More  interesting  method  utilizes  the  technique  of  artificial  neural  net-
works. This method was developed for the synthesis of fast algorithms for Fouri-
er-like transformations [11-14]. In accordance with this method each stage of the 
lattice structure is replaced with one hidden layer of linear artificial neural net-
work. Each kD  base operation is replaced with two neurons having two inputs 
and  one  output  which  guarantees  the  straightforward  relation  between  the 
weights of a neural network and the coefficients of base operations. Here it is 
possible to perform simplifications resulting from usage of kT  [12] and kL . 
Hence by training such neural network we determine the values of lattice struc-
ture coefficients and it is also possible to take under consideration specific de-
mands of wavelet transform (a lattice structure) applications. Such way of de-
termining lattice structure coefficients can be utilised in any field of application 
of wavelet transform including: signal compression, adaptive filtering and time-
frequency analysis of signals [15,16].

6. The aspects of lattice structure implementation

Let us consider principal aspects of lattice structures implementation on typ-
ical computational architectures.

For iterative processors a lattice structure can be implemented with the aid 
of a nested loop. Here all calculations can be realised in place with additional K/
2-1 memory cells required for storage of tk values.

In Sections 3 and 4 of this paper the possibility of effective implementation 
of lattice structures on pipeline processors was indicated [17]. Due to the feature 
of local data processing in accord with simple and regular structure the lattice 
structure is suitable for implementation on systolic processors and in general on 
parallel architectures.

During the design of  VLSI architecture [9] and utilisation of  micropro-
cessors the structure coefficients should be replaced by “simplified” numbers, 
i.e. the powers of two, in a way enabling the substitution of multiplications by 
additions and shifting operations [3, 4, 7].

7. Conclusions

The lattice structure proposed in this paper can be characterized by the sim-
plicity of its framework and the effectiveness of calculations. It is constructed on 
the basis of iterative repetition of simple two-point base operations and can be 
implemented as simple pipeline scheme. As a result it gives extensive possibili-
ties of software and hardware implementations of wavelet transforms with spe-
cial indication of integrated circuits.
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Within the further development of the proposed lattice structures the relation 
between the lattice orthogonal structure and the orthogonal wavelet transform 
should be determined. It means that the class of wavelet transforms that can be 
implemented with the orthogonal lattice structures should be defined. From the 
practical point of view it is crucial to develop novel problem-oriented training 
techniques  of  neural  networks  with  topologies  based  on the  proposed lattice 
structure. It is also very important to elaborate exemplary implementations of 
lattice structures for various hardware architectures. 
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